1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_X64
6
7 #include "src/full-codegen/full-codegen.h"
8 #include "src/ast/compile-time-value.h"
9 #include "src/ast/scopes.h"
10 #include "src/code-factory.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/compilation-info.h"
14 #include "src/compiler.h"
15 #include "src/debug/debug.h"
16 #include "src/ic/ic.h"
17
18 namespace v8 {
19 namespace internal {
20
21 #define __ ACCESS_MASM(masm())
22
23 class JumpPatchSite BASE_EMBEDDED {
24 public:
JumpPatchSite(MacroAssembler * masm)25 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
26 #ifdef DEBUG
27 info_emitted_ = false;
28 #endif
29 }
30
~JumpPatchSite()31 ~JumpPatchSite() {
32 DCHECK(patch_site_.is_bound() == info_emitted_);
33 }
34
EmitJumpIfNotSmi(Register reg,Label * target,Label::Distance near_jump=Label::kFar)35 void EmitJumpIfNotSmi(Register reg,
36 Label* target,
37 Label::Distance near_jump = Label::kFar) {
38 __ testb(reg, Immediate(kSmiTagMask));
39 EmitJump(not_carry, target, near_jump); // Always taken before patched.
40 }
41
EmitJumpIfSmi(Register reg,Label * target,Label::Distance near_jump=Label::kFar)42 void EmitJumpIfSmi(Register reg,
43 Label* target,
44 Label::Distance near_jump = Label::kFar) {
45 __ testb(reg, Immediate(kSmiTagMask));
46 EmitJump(carry, target, near_jump); // Never taken before patched.
47 }
48
EmitPatchInfo()49 void EmitPatchInfo() {
50 if (patch_site_.is_bound()) {
51 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
52 DCHECK(is_uint8(delta_to_patch_site));
53 __ testl(rax, Immediate(delta_to_patch_site));
54 #ifdef DEBUG
55 info_emitted_ = true;
56 #endif
57 } else {
58 __ nop(); // Signals no inlined code.
59 }
60 }
61
62 private:
63 // jc will be patched with jz, jnc will become jnz.
EmitJump(Condition cc,Label * target,Label::Distance near_jump)64 void EmitJump(Condition cc, Label* target, Label::Distance near_jump) {
65 DCHECK(!patch_site_.is_bound() && !info_emitted_);
66 DCHECK(cc == carry || cc == not_carry);
67 __ bind(&patch_site_);
68 __ j(cc, target, near_jump);
69 }
70
masm()71 MacroAssembler* masm() { return masm_; }
72 MacroAssembler* masm_;
73 Label patch_site_;
74 #ifdef DEBUG
75 bool info_emitted_;
76 #endif
77 };
78
79
80 // Generate code for a JS function. On entry to the function the receiver
81 // and arguments have been pushed on the stack left to right, with the
82 // return address on top of them. The actual argument count matches the
83 // formal parameter count expected by the function.
84 //
85 // The live registers are:
86 // o rdi: the JS function object being called (i.e. ourselves)
87 // o rdx: the new target value
88 // o rsi: our context
89 // o rbp: our caller's frame pointer
90 // o rsp: stack pointer (pointing to return address)
91 //
92 // The function builds a JS frame. Please see JavaScriptFrameConstants in
93 // frames-x64.h for its layout.
Generate()94 void FullCodeGenerator::Generate() {
95 CompilationInfo* info = info_;
96 DCHECK_EQ(scope(), info->scope());
97 profiling_counter_ = isolate()->factory()->NewCell(
98 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
99 SetFunctionPosition(literal());
100 Comment cmnt(masm_, "[ function compiled by full code generator");
101
102 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
103
104 if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
105 StackArgumentsAccessor args(rsp, info->scope()->num_parameters());
106 __ movp(rcx, args.GetReceiverOperand());
107 __ AssertNotSmi(rcx);
108 __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rcx);
109 __ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver);
110 }
111
112 // Open a frame scope to indicate that there is a frame on the stack. The
113 // MANUAL indicates that the scope shouldn't actually generate code to set up
114 // the frame (that is done below).
115 FrameScope frame_scope(masm_, StackFrame::MANUAL);
116
117 info->set_prologue_offset(masm_->pc_offset());
118 __ Prologue(info->GeneratePreagedPrologue());
119
120 // Increment invocation count for the function.
121 {
122 Comment cmnt(masm_, "[ Increment invocation count");
123 __ movp(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
124 __ movp(rcx, FieldOperand(rcx, LiteralsArray::kFeedbackVectorOffset));
125 __ SmiAddConstant(
126 FieldOperand(rcx,
127 TypeFeedbackVector::kInvocationCountIndex * kPointerSize +
128 TypeFeedbackVector::kHeaderSize),
129 Smi::FromInt(1));
130 }
131
132 { Comment cmnt(masm_, "[ Allocate locals");
133 int locals_count = info->scope()->num_stack_slots();
134 // Generators allocate locals, if any, in context slots.
135 DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
136 OperandStackDepthIncrement(locals_count);
137 if (locals_count == 1) {
138 __ PushRoot(Heap::kUndefinedValueRootIndex);
139 } else if (locals_count > 1) {
140 if (locals_count >= 128) {
141 Label ok;
142 __ movp(rcx, rsp);
143 __ subp(rcx, Immediate(locals_count * kPointerSize));
144 __ CompareRoot(rcx, Heap::kRealStackLimitRootIndex);
145 __ j(above_equal, &ok, Label::kNear);
146 __ CallRuntime(Runtime::kThrowStackOverflow);
147 __ bind(&ok);
148 }
149 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
150 const int kMaxPushes = 32;
151 if (locals_count >= kMaxPushes) {
152 int loop_iterations = locals_count / kMaxPushes;
153 __ movp(rcx, Immediate(loop_iterations));
154 Label loop_header;
155 __ bind(&loop_header);
156 // Do pushes.
157 for (int i = 0; i < kMaxPushes; i++) {
158 __ Push(rax);
159 }
160 // Continue loop if not done.
161 __ decp(rcx);
162 __ j(not_zero, &loop_header, Label::kNear);
163 }
164 int remaining = locals_count % kMaxPushes;
165 // Emit the remaining pushes.
166 for (int i = 0; i < remaining; i++) {
167 __ Push(rax);
168 }
169 }
170 }
171
172 bool function_in_register = true;
173
174 // Possibly allocate a local context.
175 if (info->scope()->NeedsContext()) {
176 Comment cmnt(masm_, "[ Allocate context");
177 bool need_write_barrier = true;
178 int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
179 // Argument to NewContext is the function, which is still in rdi.
180 if (info->scope()->is_script_scope()) {
181 __ Push(rdi);
182 __ Push(info->scope()->scope_info());
183 __ CallRuntime(Runtime::kNewScriptContext);
184 PrepareForBailoutForId(BailoutId::ScriptContext(),
185 BailoutState::TOS_REGISTER);
186 // The new target value is not used, clobbering is safe.
187 DCHECK_NULL(info->scope()->new_target_var());
188 } else {
189 if (info->scope()->new_target_var() != nullptr) {
190 __ Push(rdx); // Preserve new target.
191 }
192 if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
193 FastNewFunctionContextStub stub(isolate());
194 __ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
195 __ CallStub(&stub);
196 // Result of FastNewFunctionContextStub is always in new space.
197 need_write_barrier = false;
198 } else {
199 __ Push(rdi);
200 __ CallRuntime(Runtime::kNewFunctionContext);
201 }
202 if (info->scope()->new_target_var() != nullptr) {
203 __ Pop(rdx); // Restore new target.
204 }
205 }
206 function_in_register = false;
207 // Context is returned in rax. It replaces the context passed to us.
208 // It's saved in the stack and kept live in rsi.
209 __ movp(rsi, rax);
210 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
211
212 // Copy any necessary parameters into the context.
213 int num_parameters = info->scope()->num_parameters();
214 int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
215 for (int i = first_parameter; i < num_parameters; i++) {
216 Variable* var =
217 (i == -1) ? info->scope()->receiver() : info->scope()->parameter(i);
218 if (var->IsContextSlot()) {
219 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
220 (num_parameters - 1 - i) * kPointerSize;
221 // Load parameter from stack.
222 __ movp(rax, Operand(rbp, parameter_offset));
223 // Store it in the context.
224 int context_offset = Context::SlotOffset(var->index());
225 __ movp(Operand(rsi, context_offset), rax);
226 // Update the write barrier. This clobbers rax and rbx.
227 if (need_write_barrier) {
228 __ RecordWriteContextSlot(
229 rsi, context_offset, rax, rbx, kDontSaveFPRegs);
230 } else if (FLAG_debug_code) {
231 Label done;
232 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
233 __ Abort(kExpectedNewSpaceObject);
234 __ bind(&done);
235 }
236 }
237 }
238 }
239
240 // Register holding this function and new target are both trashed in case we
241 // bailout here. But since that can happen only when new target is not used
242 // and we allocate a context, the value of |function_in_register| is correct.
243 PrepareForBailoutForId(BailoutId::FunctionContext(),
244 BailoutState::NO_REGISTERS);
245
246 // Possibly set up a local binding to the this function which is used in
247 // derived constructors with super calls.
248 Variable* this_function_var = info->scope()->this_function_var();
249 if (this_function_var != nullptr) {
250 Comment cmnt(masm_, "[ This function");
251 if (!function_in_register) {
252 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
253 // The write barrier clobbers register again, keep it marked as such.
254 }
255 SetVar(this_function_var, rdi, rbx, rcx);
256 }
257
258 // Possibly set up a local binding to the new target value.
259 Variable* new_target_var = info->scope()->new_target_var();
260 if (new_target_var != nullptr) {
261 Comment cmnt(masm_, "[ new.target");
262 SetVar(new_target_var, rdx, rbx, rcx);
263 }
264
265 // Possibly allocate RestParameters
266 Variable* rest_param = info->scope()->rest_parameter();
267 if (rest_param != nullptr) {
268 Comment cmnt(masm_, "[ Allocate rest parameter array");
269 if (!function_in_register) {
270 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
271 }
272 FastNewRestParameterStub stub(isolate());
273 __ CallStub(&stub);
274 function_in_register = false;
275 SetVar(rest_param, rax, rbx, rdx);
276 }
277
278 // Possibly allocate an arguments object.
279 DCHECK_EQ(scope(), info->scope());
280 Variable* arguments = info->scope()->arguments();
281 if (arguments != NULL) {
282 // Arguments object must be allocated after the context object, in
283 // case the "arguments" or ".arguments" variables are in the context.
284 Comment cmnt(masm_, "[ Allocate arguments object");
285 if (!function_in_register) {
286 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
287 }
288 if (is_strict(language_mode()) || !has_simple_parameters()) {
289 FastNewStrictArgumentsStub stub(isolate());
290 __ CallStub(&stub);
291 } else if (literal()->has_duplicate_parameters()) {
292 __ Push(rdi);
293 __ CallRuntime(Runtime::kNewSloppyArguments_Generic);
294 } else {
295 FastNewSloppyArgumentsStub stub(isolate());
296 __ CallStub(&stub);
297 }
298
299 SetVar(arguments, rax, rbx, rdx);
300 }
301
302 if (FLAG_trace) {
303 __ CallRuntime(Runtime::kTraceEnter);
304 }
305
306 // Visit the declarations and body unless there is an illegal
307 // redeclaration.
308 PrepareForBailoutForId(BailoutId::FunctionEntry(),
309 BailoutState::NO_REGISTERS);
310 {
311 Comment cmnt(masm_, "[ Declarations");
312 VisitDeclarations(info->scope()->declarations());
313 }
314
315 // Assert that the declarations do not use ICs. Otherwise the debugger
316 // won't be able to redirect a PC at an IC to the correct IC in newly
317 // recompiled code.
318 DCHECK_EQ(0, ic_total_count_);
319
320 {
321 Comment cmnt(masm_, "[ Stack check");
322 PrepareForBailoutForId(BailoutId::Declarations(),
323 BailoutState::NO_REGISTERS);
324 Label ok;
325 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
326 __ j(above_equal, &ok, Label::kNear);
327 __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
328 __ bind(&ok);
329 }
330
331 {
332 Comment cmnt(masm_, "[ Body");
333 DCHECK(loop_depth() == 0);
334 VisitStatements(literal()->body());
335 DCHECK(loop_depth() == 0);
336 }
337
338 // Always emit a 'return undefined' in case control fell off the end of
339 // the body.
340 { Comment cmnt(masm_, "[ return <undefined>;");
341 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
342 EmitReturnSequence();
343 }
344 }
345
346
ClearAccumulator()347 void FullCodeGenerator::ClearAccumulator() {
348 __ Set(rax, 0);
349 }
350
351
EmitProfilingCounterDecrement(int delta)352 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
353 __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
354 __ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset),
355 Smi::FromInt(-delta));
356 }
357
358
EmitProfilingCounterReset()359 void FullCodeGenerator::EmitProfilingCounterReset() {
360 int reset_value = FLAG_interrupt_budget;
361 __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
362 __ Move(kScratchRegister, Smi::FromInt(reset_value));
363 __ movp(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister);
364 }
365
366
367 static const byte kJnsOffset = kPointerSize == kInt64Size ? 0x1d : 0x14;
368
369
EmitBackEdgeBookkeeping(IterationStatement * stmt,Label * back_edge_target)370 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
371 Label* back_edge_target) {
372 Comment cmnt(masm_, "[ Back edge bookkeeping");
373 Label ok;
374
375 DCHECK(back_edge_target->is_bound());
376 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
377 int weight = Min(kMaxBackEdgeWeight,
378 Max(1, distance / kCodeSizeMultiplier));
379 EmitProfilingCounterDecrement(weight);
380
381 __ j(positive, &ok, Label::kNear);
382 {
383 PredictableCodeSizeScope predictible_code_size_scope(masm_, kJnsOffset);
384 DontEmitDebugCodeScope dont_emit_debug_code_scope(masm_);
385 __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
386
387 // Record a mapping of this PC offset to the OSR id. This is used to find
388 // the AST id from the unoptimized code in order to use it as a key into
389 // the deoptimization input data found in the optimized code.
390 RecordBackEdge(stmt->OsrEntryId());
391
392 EmitProfilingCounterReset();
393 }
394 __ bind(&ok);
395
396 PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS);
397 // Record a mapping of the OSR id to this PC. This is used if the OSR
398 // entry becomes the target of a bailout. We don't expect it to be, but
399 // we want it to work if it is.
400 PrepareForBailoutForId(stmt->OsrEntryId(), BailoutState::NO_REGISTERS);
401 }
402
EmitProfilingCounterHandlingForReturnSequence(bool is_tail_call)403 void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence(
404 bool is_tail_call) {
405 // Pretend that the exit is a backwards jump to the entry.
406 int weight = 1;
407 if (info_->ShouldSelfOptimize()) {
408 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
409 } else {
410 int distance = masm_->pc_offset();
411 weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
412 }
413 EmitProfilingCounterDecrement(weight);
414 Label ok;
415 __ j(positive, &ok, Label::kNear);
416 // Don't need to save result register if we are going to do a tail call.
417 if (!is_tail_call) {
418 __ Push(rax);
419 }
420 __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
421 if (!is_tail_call) {
422 __ Pop(rax);
423 }
424 EmitProfilingCounterReset();
425 __ bind(&ok);
426 }
427
EmitReturnSequence()428 void FullCodeGenerator::EmitReturnSequence() {
429 Comment cmnt(masm_, "[ Return sequence");
430 if (return_label_.is_bound()) {
431 __ jmp(&return_label_);
432 } else {
433 __ bind(&return_label_);
434 if (FLAG_trace) {
435 __ Push(rax);
436 __ CallRuntime(Runtime::kTraceExit);
437 }
438 EmitProfilingCounterHandlingForReturnSequence(false);
439
440 SetReturnPosition(literal());
441 __ leave();
442
443 int arg_count = info_->scope()->num_parameters() + 1;
444 int arguments_bytes = arg_count * kPointerSize;
445 __ Ret(arguments_bytes, rcx);
446 }
447 }
448
RestoreContext()449 void FullCodeGenerator::RestoreContext() {
450 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
451 }
452
Plug(Variable * var) const453 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
454 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
455 MemOperand operand = codegen()->VarOperand(var, result_register());
456 codegen()->PushOperand(operand);
457 }
458
459
Plug(Heap::RootListIndex index) const460 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
461 }
462
463
Plug(Heap::RootListIndex index) const464 void FullCodeGenerator::AccumulatorValueContext::Plug(
465 Heap::RootListIndex index) const {
466 __ LoadRoot(result_register(), index);
467 }
468
469
Plug(Heap::RootListIndex index) const470 void FullCodeGenerator::StackValueContext::Plug(
471 Heap::RootListIndex index) const {
472 codegen()->OperandStackDepthIncrement(1);
473 __ PushRoot(index);
474 }
475
476
Plug(Heap::RootListIndex index) const477 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
478 codegen()->PrepareForBailoutBeforeSplit(condition(),
479 true,
480 true_label_,
481 false_label_);
482 if (index == Heap::kUndefinedValueRootIndex ||
483 index == Heap::kNullValueRootIndex ||
484 index == Heap::kFalseValueRootIndex) {
485 if (false_label_ != fall_through_) __ jmp(false_label_);
486 } else if (index == Heap::kTrueValueRootIndex) {
487 if (true_label_ != fall_through_) __ jmp(true_label_);
488 } else {
489 __ LoadRoot(result_register(), index);
490 codegen()->DoTest(this);
491 }
492 }
493
494
Plug(Handle<Object> lit) const495 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
496 }
497
498
Plug(Handle<Object> lit) const499 void FullCodeGenerator::AccumulatorValueContext::Plug(
500 Handle<Object> lit) const {
501 if (lit->IsSmi()) {
502 __ SafeMove(result_register(), Smi::cast(*lit));
503 } else {
504 __ Move(result_register(), lit);
505 }
506 }
507
508
Plug(Handle<Object> lit) const509 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
510 codegen()->OperandStackDepthIncrement(1);
511 if (lit->IsSmi()) {
512 __ SafePush(Smi::cast(*lit));
513 } else {
514 __ Push(lit);
515 }
516 }
517
518
Plug(Handle<Object> lit) const519 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
520 codegen()->PrepareForBailoutBeforeSplit(condition(),
521 true,
522 true_label_,
523 false_label_);
524 DCHECK(lit->IsNull(isolate()) || lit->IsUndefined(isolate()) ||
525 !lit->IsUndetectable());
526 if (lit->IsUndefined(isolate()) || lit->IsNull(isolate()) ||
527 lit->IsFalse(isolate())) {
528 if (false_label_ != fall_through_) __ jmp(false_label_);
529 } else if (lit->IsTrue(isolate()) || lit->IsJSObject()) {
530 if (true_label_ != fall_through_) __ jmp(true_label_);
531 } else if (lit->IsString()) {
532 if (String::cast(*lit)->length() == 0) {
533 if (false_label_ != fall_through_) __ jmp(false_label_);
534 } else {
535 if (true_label_ != fall_through_) __ jmp(true_label_);
536 }
537 } else if (lit->IsSmi()) {
538 if (Smi::cast(*lit)->value() == 0) {
539 if (false_label_ != fall_through_) __ jmp(false_label_);
540 } else {
541 if (true_label_ != fall_through_) __ jmp(true_label_);
542 }
543 } else {
544 // For simplicity we always test the accumulator register.
545 __ Move(result_register(), lit);
546 codegen()->DoTest(this);
547 }
548 }
549
550
DropAndPlug(int count,Register reg) const551 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
552 Register reg) const {
553 DCHECK(count > 0);
554 if (count > 1) codegen()->DropOperands(count - 1);
555 __ movp(Operand(rsp, 0), reg);
556 }
557
558
Plug(Label * materialize_true,Label * materialize_false) const559 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
560 Label* materialize_false) const {
561 DCHECK(materialize_true == materialize_false);
562 __ bind(materialize_true);
563 }
564
565
Plug(Label * materialize_true,Label * materialize_false) const566 void FullCodeGenerator::AccumulatorValueContext::Plug(
567 Label* materialize_true,
568 Label* materialize_false) const {
569 Label done;
570 __ bind(materialize_true);
571 __ Move(result_register(), isolate()->factory()->true_value());
572 __ jmp(&done, Label::kNear);
573 __ bind(materialize_false);
574 __ Move(result_register(), isolate()->factory()->false_value());
575 __ bind(&done);
576 }
577
578
Plug(Label * materialize_true,Label * materialize_false) const579 void FullCodeGenerator::StackValueContext::Plug(
580 Label* materialize_true,
581 Label* materialize_false) const {
582 codegen()->OperandStackDepthIncrement(1);
583 Label done;
584 __ bind(materialize_true);
585 __ Push(isolate()->factory()->true_value());
586 __ jmp(&done, Label::kNear);
587 __ bind(materialize_false);
588 __ Push(isolate()->factory()->false_value());
589 __ bind(&done);
590 }
591
592
Plug(Label * materialize_true,Label * materialize_false) const593 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
594 Label* materialize_false) const {
595 DCHECK(materialize_true == true_label_);
596 DCHECK(materialize_false == false_label_);
597 }
598
599
Plug(bool flag) const600 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
601 Heap::RootListIndex value_root_index =
602 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
603 __ LoadRoot(result_register(), value_root_index);
604 }
605
606
Plug(bool flag) const607 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
608 codegen()->OperandStackDepthIncrement(1);
609 Heap::RootListIndex value_root_index =
610 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
611 __ PushRoot(value_root_index);
612 }
613
614
Plug(bool flag) const615 void FullCodeGenerator::TestContext::Plug(bool flag) const {
616 codegen()->PrepareForBailoutBeforeSplit(condition(),
617 true,
618 true_label_,
619 false_label_);
620 if (flag) {
621 if (true_label_ != fall_through_) __ jmp(true_label_);
622 } else {
623 if (false_label_ != fall_through_) __ jmp(false_label_);
624 }
625 }
626
627
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)628 void FullCodeGenerator::DoTest(Expression* condition,
629 Label* if_true,
630 Label* if_false,
631 Label* fall_through) {
632 Handle<Code> ic = ToBooleanICStub::GetUninitialized(isolate());
633 CallIC(ic, condition->test_id());
634 __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
635 Split(equal, if_true, if_false, fall_through);
636 }
637
638
Split(Condition cc,Label * if_true,Label * if_false,Label * fall_through)639 void FullCodeGenerator::Split(Condition cc,
640 Label* if_true,
641 Label* if_false,
642 Label* fall_through) {
643 if (if_false == fall_through) {
644 __ j(cc, if_true);
645 } else if (if_true == fall_through) {
646 __ j(NegateCondition(cc), if_false);
647 } else {
648 __ j(cc, if_true);
649 __ jmp(if_false);
650 }
651 }
652
653
StackOperand(Variable * var)654 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
655 DCHECK(var->IsStackAllocated());
656 // Offset is negative because higher indexes are at lower addresses.
657 int offset = -var->index() * kPointerSize;
658 // Adjust by a (parameter or local) base offset.
659 if (var->IsParameter()) {
660 offset += kFPOnStackSize + kPCOnStackSize +
661 (info_->scope()->num_parameters() - 1) * kPointerSize;
662 } else {
663 offset += JavaScriptFrameConstants::kLocal0Offset;
664 }
665 return Operand(rbp, offset);
666 }
667
668
VarOperand(Variable * var,Register scratch)669 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
670 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
671 if (var->IsContextSlot()) {
672 int context_chain_length = scope()->ContextChainLength(var->scope());
673 __ LoadContext(scratch, context_chain_length);
674 return ContextOperand(scratch, var->index());
675 } else {
676 return StackOperand(var);
677 }
678 }
679
680
GetVar(Register dest,Variable * var)681 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
682 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
683 MemOperand location = VarOperand(var, dest);
684 __ movp(dest, location);
685 }
686
687
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)688 void FullCodeGenerator::SetVar(Variable* var,
689 Register src,
690 Register scratch0,
691 Register scratch1) {
692 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
693 DCHECK(!scratch0.is(src));
694 DCHECK(!scratch0.is(scratch1));
695 DCHECK(!scratch1.is(src));
696 MemOperand location = VarOperand(var, scratch0);
697 __ movp(location, src);
698
699 // Emit the write barrier code if the location is in the heap.
700 if (var->IsContextSlot()) {
701 int offset = Context::SlotOffset(var->index());
702 __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
703 }
704 }
705
706
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)707 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
708 bool should_normalize,
709 Label* if_true,
710 Label* if_false) {
711 // Only prepare for bailouts before splits if we're in a test
712 // context. Otherwise, we let the Visit function deal with the
713 // preparation to avoid preparing with the same AST id twice.
714 if (!context()->IsTest()) return;
715
716 Label skip;
717 if (should_normalize) __ jmp(&skip, Label::kNear);
718 PrepareForBailout(expr, BailoutState::TOS_REGISTER);
719 if (should_normalize) {
720 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
721 Split(equal, if_true, if_false, NULL);
722 __ bind(&skip);
723 }
724 }
725
726
EmitDebugCheckDeclarationContext(Variable * variable)727 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
728 // The variable in the declaration always resides in the current context.
729 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
730 if (FLAG_debug_code) {
731 // Check that we're not inside a with or catch context.
732 __ movp(rbx, FieldOperand(rsi, HeapObject::kMapOffset));
733 __ CompareRoot(rbx, Heap::kWithContextMapRootIndex);
734 __ Check(not_equal, kDeclarationInWithContext);
735 __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex);
736 __ Check(not_equal, kDeclarationInCatchContext);
737 }
738 }
739
740
VisitVariableDeclaration(VariableDeclaration * declaration)741 void FullCodeGenerator::VisitVariableDeclaration(
742 VariableDeclaration* declaration) {
743 VariableProxy* proxy = declaration->proxy();
744 Variable* variable = proxy->var();
745 switch (variable->location()) {
746 case VariableLocation::UNALLOCATED: {
747 DCHECK(!variable->binding_needs_init());
748 FeedbackVectorSlot slot = proxy->VariableFeedbackSlot();
749 DCHECK(!slot.IsInvalid());
750 globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
751 globals_->Add(isolate()->factory()->undefined_value(), zone());
752 break;
753 }
754 case VariableLocation::PARAMETER:
755 case VariableLocation::LOCAL:
756 if (variable->binding_needs_init()) {
757 Comment cmnt(masm_, "[ VariableDeclaration");
758 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
759 __ movp(StackOperand(variable), kScratchRegister);
760 }
761 break;
762
763 case VariableLocation::CONTEXT:
764 if (variable->binding_needs_init()) {
765 Comment cmnt(masm_, "[ VariableDeclaration");
766 EmitDebugCheckDeclarationContext(variable);
767 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
768 __ movp(ContextOperand(rsi, variable->index()), kScratchRegister);
769 // No write barrier since the hole value is in old space.
770 PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
771 }
772 break;
773
774 case VariableLocation::LOOKUP: {
775 Comment cmnt(masm_, "[ VariableDeclaration");
776 DCHECK_EQ(VAR, variable->mode());
777 DCHECK(!variable->binding_needs_init());
778 __ Push(variable->name());
779 __ CallRuntime(Runtime::kDeclareEvalVar);
780 PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
781 break;
782 }
783
784 case VariableLocation::MODULE:
785 UNREACHABLE();
786 }
787 }
788
789
VisitFunctionDeclaration(FunctionDeclaration * declaration)790 void FullCodeGenerator::VisitFunctionDeclaration(
791 FunctionDeclaration* declaration) {
792 VariableProxy* proxy = declaration->proxy();
793 Variable* variable = proxy->var();
794 switch (variable->location()) {
795 case VariableLocation::UNALLOCATED: {
796 FeedbackVectorSlot slot = proxy->VariableFeedbackSlot();
797 DCHECK(!slot.IsInvalid());
798 globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone());
799 Handle<SharedFunctionInfo> function =
800 Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
801 // Check for stack-overflow exception.
802 if (function.is_null()) return SetStackOverflow();
803 globals_->Add(function, zone());
804 break;
805 }
806
807 case VariableLocation::PARAMETER:
808 case VariableLocation::LOCAL: {
809 Comment cmnt(masm_, "[ FunctionDeclaration");
810 VisitForAccumulatorValue(declaration->fun());
811 __ movp(StackOperand(variable), result_register());
812 break;
813 }
814
815 case VariableLocation::CONTEXT: {
816 Comment cmnt(masm_, "[ FunctionDeclaration");
817 EmitDebugCheckDeclarationContext(variable);
818 VisitForAccumulatorValue(declaration->fun());
819 __ movp(ContextOperand(rsi, variable->index()), result_register());
820 int offset = Context::SlotOffset(variable->index());
821 // We know that we have written a function, which is not a smi.
822 __ RecordWriteContextSlot(rsi,
823 offset,
824 result_register(),
825 rcx,
826 kDontSaveFPRegs,
827 EMIT_REMEMBERED_SET,
828 OMIT_SMI_CHECK);
829 PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
830 break;
831 }
832
833 case VariableLocation::LOOKUP: {
834 Comment cmnt(masm_, "[ FunctionDeclaration");
835 PushOperand(variable->name());
836 VisitForStackValue(declaration->fun());
837 CallRuntimeWithOperands(Runtime::kDeclareEvalFunction);
838 PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS);
839 break;
840 }
841
842 case VariableLocation::MODULE:
843 UNREACHABLE();
844 }
845 }
846
847
DeclareGlobals(Handle<FixedArray> pairs)848 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
849 // Call the runtime to declare the globals.
850 __ Push(pairs);
851 __ Push(Smi::FromInt(DeclareGlobalsFlags()));
852 __ EmitLoadTypeFeedbackVector(rax);
853 __ Push(rax);
854 __ CallRuntime(Runtime::kDeclareGlobals);
855 // Return value is ignored.
856 }
857
858
VisitSwitchStatement(SwitchStatement * stmt)859 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
860 Comment cmnt(masm_, "[ SwitchStatement");
861 Breakable nested_statement(this, stmt);
862 SetStatementPosition(stmt);
863
864 // Keep the switch value on the stack until a case matches.
865 VisitForStackValue(stmt->tag());
866 PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS);
867
868 ZoneList<CaseClause*>* clauses = stmt->cases();
869 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
870
871 Label next_test; // Recycled for each test.
872 // Compile all the tests with branches to their bodies.
873 for (int i = 0; i < clauses->length(); i++) {
874 CaseClause* clause = clauses->at(i);
875 clause->body_target()->Unuse();
876
877 // The default is not a test, but remember it as final fall through.
878 if (clause->is_default()) {
879 default_clause = clause;
880 continue;
881 }
882
883 Comment cmnt(masm_, "[ Case comparison");
884 __ bind(&next_test);
885 next_test.Unuse();
886
887 // Compile the label expression.
888 VisitForAccumulatorValue(clause->label());
889
890 // Perform the comparison as if via '==='.
891 __ movp(rdx, Operand(rsp, 0)); // Switch value.
892 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
893 JumpPatchSite patch_site(masm_);
894 if (inline_smi_code) {
895 Label slow_case;
896 __ movp(rcx, rdx);
897 __ orp(rcx, rax);
898 patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
899
900 __ cmpp(rdx, rax);
901 __ j(not_equal, &next_test);
902 __ Drop(1); // Switch value is no longer needed.
903 __ jmp(clause->body_target());
904 __ bind(&slow_case);
905 }
906
907 // Record position before stub call for type feedback.
908 SetExpressionPosition(clause);
909 Handle<Code> ic =
910 CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
911 CallIC(ic, clause->CompareId());
912 patch_site.EmitPatchInfo();
913
914 Label skip;
915 __ jmp(&skip, Label::kNear);
916 PrepareForBailout(clause, BailoutState::TOS_REGISTER);
917 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
918 __ j(not_equal, &next_test);
919 __ Drop(1);
920 __ jmp(clause->body_target());
921 __ bind(&skip);
922
923 __ testp(rax, rax);
924 __ j(not_equal, &next_test);
925 __ Drop(1); // Switch value is no longer needed.
926 __ jmp(clause->body_target());
927 }
928
929 // Discard the test value and jump to the default if present, otherwise to
930 // the end of the statement.
931 __ bind(&next_test);
932 DropOperands(1); // Switch value is no longer needed.
933 if (default_clause == NULL) {
934 __ jmp(nested_statement.break_label());
935 } else {
936 __ jmp(default_clause->body_target());
937 }
938
939 // Compile all the case bodies.
940 for (int i = 0; i < clauses->length(); i++) {
941 Comment cmnt(masm_, "[ Case body");
942 CaseClause* clause = clauses->at(i);
943 __ bind(clause->body_target());
944 PrepareForBailoutForId(clause->EntryId(), BailoutState::NO_REGISTERS);
945 VisitStatements(clause->statements());
946 }
947
948 __ bind(nested_statement.break_label());
949 PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS);
950 }
951
952
VisitForInStatement(ForInStatement * stmt)953 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
954 Comment cmnt(masm_, "[ ForInStatement");
955 SetStatementPosition(stmt, SKIP_BREAK);
956
957 FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
958
959 // Get the object to enumerate over.
960 SetExpressionAsStatementPosition(stmt->enumerable());
961 VisitForAccumulatorValue(stmt->enumerable());
962 OperandStackDepthIncrement(5);
963
964 Label loop, exit;
965 Iteration loop_statement(this, stmt);
966 increment_loop_depth();
967
968 // If the object is null or undefined, skip over the loop, otherwise convert
969 // it to a JS receiver. See ECMA-262 version 5, section 12.6.4.
970 Label convert, done_convert;
971 __ JumpIfSmi(rax, &convert, Label::kNear);
972 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
973 __ j(above_equal, &done_convert, Label::kNear);
974 __ CompareRoot(rax, Heap::kNullValueRootIndex);
975 __ j(equal, &exit);
976 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
977 __ j(equal, &exit);
978 __ bind(&convert);
979 __ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET);
980 RestoreContext();
981 __ bind(&done_convert);
982 PrepareForBailoutForId(stmt->ToObjectId(), BailoutState::TOS_REGISTER);
983 __ Push(rax);
984
985 // Check cache validity in generated code. If we cannot guarantee cache
986 // validity, call the runtime system to check cache validity or get the
987 // property names in a fixed array. Note: Proxies never have an enum cache,
988 // so will always take the slow path.
989 Label call_runtime;
990 __ CheckEnumCache(&call_runtime);
991
992 // The enum cache is valid. Load the map of the object being
993 // iterated over and use the cache for the iteration.
994 Label use_cache;
995 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
996 __ jmp(&use_cache, Label::kNear);
997
998 // Get the set of properties to enumerate.
999 __ bind(&call_runtime);
1000 __ Push(rax); // Duplicate the enumerable object on the stack.
1001 __ CallRuntime(Runtime::kForInEnumerate);
1002 PrepareForBailoutForId(stmt->EnumId(), BailoutState::TOS_REGISTER);
1003
1004 // If we got a map from the runtime call, we can do a fast
1005 // modification check. Otherwise, we got a fixed array, and we have
1006 // to do a slow check.
1007 Label fixed_array;
1008 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
1009 Heap::kMetaMapRootIndex);
1010 __ j(not_equal, &fixed_array);
1011
1012 // We got a map in register rax. Get the enumeration cache from it.
1013 __ bind(&use_cache);
1014
1015 Label no_descriptors;
1016
1017 __ EnumLength(rdx, rax);
1018 __ Cmp(rdx, Smi::kZero);
1019 __ j(equal, &no_descriptors);
1020
1021 __ LoadInstanceDescriptors(rax, rcx);
1022 __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheOffset));
1023 __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
1024
1025 // Set up the four remaining stack slots.
1026 __ Push(rax); // Map.
1027 __ Push(rcx); // Enumeration cache.
1028 __ Push(rdx); // Number of valid entries for the map in the enum cache.
1029 __ Push(Smi::kZero); // Initial index.
1030 __ jmp(&loop);
1031
1032 __ bind(&no_descriptors);
1033 __ addp(rsp, Immediate(kPointerSize));
1034 __ jmp(&exit);
1035
1036 // We got a fixed array in register rax. Iterate through that.
1037 __ bind(&fixed_array);
1038
1039 __ movp(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object
1040 __ Push(Smi::FromInt(1)); // Smi(1) indicates slow check
1041 __ Push(rax); // Array
1042 __ movp(rax, FieldOperand(rax, FixedArray::kLengthOffset));
1043 __ Push(rax); // Fixed array length (as smi).
1044 PrepareForBailoutForId(stmt->PrepareId(), BailoutState::NO_REGISTERS);
1045 __ Push(Smi::kZero); // Initial index.
1046
1047 // Generate code for doing the condition check.
1048 __ bind(&loop);
1049 SetExpressionAsStatementPosition(stmt->each());
1050
1051 __ movp(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index.
1052 __ cmpp(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length.
1053 __ j(above_equal, loop_statement.break_label());
1054
1055 // Get the current entry of the array into register rax.
1056 __ movp(rbx, Operand(rsp, 2 * kPointerSize));
1057 SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2);
1058 __ movp(rax,
1059 FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize));
1060
1061 // Get the expected map from the stack or a smi in the
1062 // permanent slow case into register rdx.
1063 __ movp(rdx, Operand(rsp, 3 * kPointerSize));
1064
1065 // Check if the expected map still matches that of the enumerable.
1066 // If not, we may have to filter the key.
1067 Label update_each;
1068 __ movp(rbx, Operand(rsp, 4 * kPointerSize));
1069 __ cmpp(rdx, FieldOperand(rbx, HeapObject::kMapOffset));
1070 __ j(equal, &update_each, Label::kNear);
1071
1072 // We need to filter the key, record slow-path here.
1073 int const vector_index = SmiFromSlot(slot)->value();
1074 __ EmitLoadTypeFeedbackVector(rdx);
1075 __ Move(FieldOperand(rdx, FixedArray::OffsetOfElementAt(vector_index)),
1076 TypeFeedbackVector::MegamorphicSentinel(isolate()));
1077
1078 // rax contains the key. The receiver in rbx is the second argument to
1079 // ForInFilter. ForInFilter returns undefined if the receiver doesn't
1080 // have the key or returns the name-converted key.
1081 __ Call(isolate()->builtins()->ForInFilter(), RelocInfo::CODE_TARGET);
1082 RestoreContext();
1083 PrepareForBailoutForId(stmt->FilterId(), BailoutState::TOS_REGISTER);
1084 __ JumpIfRoot(result_register(), Heap::kUndefinedValueRootIndex,
1085 loop_statement.continue_label());
1086
1087 // Update the 'each' property or variable from the possibly filtered
1088 // entry in register rax.
1089 __ bind(&update_each);
1090 // Perform the assignment as if via '='.
1091 { EffectContext context(this);
1092 EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1093 PrepareForBailoutForId(stmt->AssignmentId(), BailoutState::NO_REGISTERS);
1094 }
1095
1096 // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
1097 PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS);
1098 // Generate code for the body of the loop.
1099 Visit(stmt->body());
1100
1101 // Generate code for going to the next element by incrementing the
1102 // index (smi) stored on top of the stack.
1103 __ bind(loop_statement.continue_label());
1104 PrepareForBailoutForId(stmt->IncrementId(), BailoutState::NO_REGISTERS);
1105 __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1));
1106
1107 EmitBackEdgeBookkeeping(stmt, &loop);
1108 __ jmp(&loop);
1109
1110 // Remove the pointers stored on the stack.
1111 __ bind(loop_statement.break_label());
1112 DropOperands(5);
1113
1114 // Exit and decrement the loop depth.
1115 PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS);
1116 __ bind(&exit);
1117 decrement_loop_depth();
1118 }
1119
1120
EmitSetHomeObject(Expression * initializer,int offset,FeedbackVectorSlot slot)1121 void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
1122 FeedbackVectorSlot slot) {
1123 DCHECK(NeedsHomeObject(initializer));
1124 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1125 __ movp(StoreDescriptor::ValueRegister(),
1126 Operand(rsp, offset * kPointerSize));
1127 CallStoreIC(slot, isolate()->factory()->home_object_symbol());
1128 }
1129
1130
EmitSetHomeObjectAccumulator(Expression * initializer,int offset,FeedbackVectorSlot slot)1131 void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
1132 int offset,
1133 FeedbackVectorSlot slot) {
1134 DCHECK(NeedsHomeObject(initializer));
1135 __ movp(StoreDescriptor::ReceiverRegister(), rax);
1136 __ movp(StoreDescriptor::ValueRegister(),
1137 Operand(rsp, offset * kPointerSize));
1138 CallStoreIC(slot, isolate()->factory()->home_object_symbol());
1139 }
1140
1141
EmitLoadGlobalCheckExtensions(VariableProxy * proxy,TypeofMode typeof_mode,Label * slow)1142 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1143 TypeofMode typeof_mode,
1144 Label* slow) {
1145 Register context = rsi;
1146 Register temp = rdx;
1147
1148 int to_check = scope()->ContextChainLengthUntilOutermostSloppyEval();
1149 for (Scope* s = scope(); to_check > 0; s = s->outer_scope()) {
1150 if (!s->NeedsContext()) continue;
1151 if (s->calls_sloppy_eval()) {
1152 // Check that extension is "the hole".
1153 __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
1154 Heap::kTheHoleValueRootIndex, slow);
1155 }
1156 // Load next context in chain.
1157 __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1158 // Walk the rest of the chain without clobbering rsi.
1159 context = temp;
1160 to_check--;
1161 }
1162
1163 // All extension objects were empty and it is safe to use a normal global
1164 // load machinery.
1165 EmitGlobalVariableLoad(proxy, typeof_mode);
1166 }
1167
1168
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1169 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1170 Label* slow) {
1171 DCHECK(var->IsContextSlot());
1172 Register context = rsi;
1173 Register temp = rbx;
1174
1175 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1176 if (s->NeedsContext()) {
1177 if (s->calls_sloppy_eval()) {
1178 // Check that extension is "the hole".
1179 __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
1180 Heap::kTheHoleValueRootIndex, slow);
1181 }
1182 __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1183 // Walk the rest of the chain without clobbering rsi.
1184 context = temp;
1185 }
1186 }
1187 // Check that last extension is "the hole".
1188 __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
1189 Heap::kTheHoleValueRootIndex, slow);
1190
1191 // This function is used only for loads, not stores, so it's safe to
1192 // return an rsi-based operand (the write barrier cannot be allowed to
1193 // destroy the rsi register).
1194 return ContextOperand(context, var->index());
1195 }
1196
1197
EmitDynamicLookupFastCase(VariableProxy * proxy,TypeofMode typeof_mode,Label * slow,Label * done)1198 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1199 TypeofMode typeof_mode,
1200 Label* slow, Label* done) {
1201 // Generate fast-case code for variables that might be shadowed by
1202 // eval-introduced variables. Eval is used a lot without
1203 // introducing variables. In those cases, we do not want to
1204 // perform a runtime call for all variables in the scope
1205 // containing the eval.
1206 Variable* var = proxy->var();
1207 if (var->mode() == DYNAMIC_GLOBAL) {
1208 EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1209 __ jmp(done);
1210 } else if (var->mode() == DYNAMIC_LOCAL) {
1211 Variable* local = var->local_if_not_shadowed();
1212 __ movp(rax, ContextSlotOperandCheckExtensions(local, slow));
1213 if (local->binding_needs_init()) {
1214 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
1215 __ j(not_equal, done);
1216 __ Push(var->name());
1217 __ CallRuntime(Runtime::kThrowReferenceError);
1218 } else {
1219 __ jmp(done);
1220 }
1221 }
1222 }
1223
EmitVariableLoad(VariableProxy * proxy,TypeofMode typeof_mode)1224 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1225 TypeofMode typeof_mode) {
1226 // Record position before possible IC call.
1227 SetExpressionPosition(proxy);
1228 PrepareForBailoutForId(proxy->BeforeId(), BailoutState::NO_REGISTERS);
1229 Variable* var = proxy->var();
1230
1231 // Three cases: global variables, lookup variables, and all other types of
1232 // variables.
1233 switch (var->location()) {
1234 case VariableLocation::UNALLOCATED: {
1235 Comment cmnt(masm_, "[ Global variable");
1236 EmitGlobalVariableLoad(proxy, typeof_mode);
1237 context()->Plug(rax);
1238 break;
1239 }
1240
1241 case VariableLocation::PARAMETER:
1242 case VariableLocation::LOCAL:
1243 case VariableLocation::CONTEXT: {
1244 DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1245 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context slot"
1246 : "[ Stack slot");
1247 if (proxy->hole_check_mode() == HoleCheckMode::kRequired) {
1248 // Throw a reference error when using an uninitialized let/const
1249 // binding in harmony mode.
1250 DCHECK(IsLexicalVariableMode(var->mode()));
1251 Label done;
1252 GetVar(rax, var);
1253 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
1254 __ j(not_equal, &done, Label::kNear);
1255 __ Push(var->name());
1256 __ CallRuntime(Runtime::kThrowReferenceError);
1257 __ bind(&done);
1258 context()->Plug(rax);
1259 break;
1260 }
1261 context()->Plug(var);
1262 break;
1263 }
1264
1265 case VariableLocation::LOOKUP: {
1266 Comment cmnt(masm_, "[ Lookup slot");
1267 Label done, slow;
1268 // Generate code for loading from variables potentially shadowed
1269 // by eval-introduced variables.
1270 EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1271 __ bind(&slow);
1272 __ Push(var->name());
1273 Runtime::FunctionId function_id =
1274 typeof_mode == NOT_INSIDE_TYPEOF
1275 ? Runtime::kLoadLookupSlot
1276 : Runtime::kLoadLookupSlotInsideTypeof;
1277 __ CallRuntime(function_id);
1278 __ bind(&done);
1279 context()->Plug(rax);
1280 break;
1281 }
1282
1283 case VariableLocation::MODULE:
1284 UNREACHABLE();
1285 }
1286 }
1287
1288
EmitAccessor(ObjectLiteralProperty * property)1289 void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
1290 Expression* expression = (property == NULL) ? NULL : property->value();
1291 if (expression == NULL) {
1292 OperandStackDepthIncrement(1);
1293 __ PushRoot(Heap::kNullValueRootIndex);
1294 } else {
1295 VisitForStackValue(expression);
1296 if (NeedsHomeObject(expression)) {
1297 DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
1298 property->kind() == ObjectLiteral::Property::SETTER);
1299 int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
1300 EmitSetHomeObject(expression, offset, property->GetSlot());
1301 }
1302 }
1303 }
1304
1305
VisitObjectLiteral(ObjectLiteral * expr)1306 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1307 Comment cmnt(masm_, "[ ObjectLiteral");
1308
1309 Handle<FixedArray> constant_properties = expr->constant_properties();
1310 int flags = expr->ComputeFlags();
1311 if (MustCreateObjectLiteralWithRuntime(expr)) {
1312 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1313 __ Push(Smi::FromInt(expr->literal_index()));
1314 __ Push(constant_properties);
1315 __ Push(Smi::FromInt(flags));
1316 __ CallRuntime(Runtime::kCreateObjectLiteral);
1317 } else {
1318 __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1319 __ Move(rbx, Smi::FromInt(expr->literal_index()));
1320 __ Move(rcx, constant_properties);
1321 __ Move(rdx, Smi::FromInt(flags));
1322 FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1323 __ CallStub(&stub);
1324 RestoreContext();
1325 }
1326 PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER);
1327
1328 // If result_saved is true the result is on top of the stack. If
1329 // result_saved is false the result is in rax.
1330 bool result_saved = false;
1331
1332 AccessorTable accessor_table(zone());
1333 int property_index = 0;
1334 for (; property_index < expr->properties()->length(); property_index++) {
1335 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1336 if (property->is_computed_name()) break;
1337 if (property->IsCompileTimeValue()) continue;
1338
1339 Literal* key = property->key()->AsLiteral();
1340 Expression* value = property->value();
1341 if (!result_saved) {
1342 PushOperand(rax); // Save result on the stack
1343 result_saved = true;
1344 }
1345 switch (property->kind()) {
1346 case ObjectLiteral::Property::CONSTANT:
1347 UNREACHABLE();
1348 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1349 DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
1350 // Fall through.
1351 case ObjectLiteral::Property::COMPUTED:
1352 // It is safe to use [[Put]] here because the boilerplate already
1353 // contains computed properties with an uninitialized value.
1354 if (key->IsStringLiteral()) {
1355 DCHECK(key->IsPropertyName());
1356 if (property->emit_store()) {
1357 VisitForAccumulatorValue(value);
1358 DCHECK(StoreDescriptor::ValueRegister().is(rax));
1359 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1360 CallStoreIC(property->GetSlot(0), key->value());
1361 PrepareForBailoutForId(key->id(), BailoutState::NO_REGISTERS);
1362
1363 if (NeedsHomeObject(value)) {
1364 EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
1365 }
1366 } else {
1367 VisitForEffect(value);
1368 }
1369 break;
1370 }
1371 PushOperand(Operand(rsp, 0)); // Duplicate receiver.
1372 VisitForStackValue(key);
1373 VisitForStackValue(value);
1374 if (property->emit_store()) {
1375 if (NeedsHomeObject(value)) {
1376 EmitSetHomeObject(value, 2, property->GetSlot());
1377 }
1378 PushOperand(Smi::FromInt(SLOPPY)); // Language mode
1379 CallRuntimeWithOperands(Runtime::kSetProperty);
1380 } else {
1381 DropOperands(3);
1382 }
1383 break;
1384 case ObjectLiteral::Property::PROTOTYPE:
1385 PushOperand(Operand(rsp, 0)); // Duplicate receiver.
1386 VisitForStackValue(value);
1387 DCHECK(property->emit_store());
1388 CallRuntimeWithOperands(Runtime::kInternalSetPrototype);
1389 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1390 BailoutState::NO_REGISTERS);
1391 break;
1392 case ObjectLiteral::Property::GETTER:
1393 if (property->emit_store()) {
1394 AccessorTable::Iterator it = accessor_table.lookup(key);
1395 it->second->bailout_id = expr->GetIdForPropertySet(property_index);
1396 it->second->getter = property;
1397 }
1398 break;
1399 case ObjectLiteral::Property::SETTER:
1400 if (property->emit_store()) {
1401 AccessorTable::Iterator it = accessor_table.lookup(key);
1402 it->second->bailout_id = expr->GetIdForPropertySet(property_index);
1403 it->second->setter = property;
1404 }
1405 break;
1406 }
1407 }
1408
1409 // Emit code to define accessors, using only a single call to the runtime for
1410 // each pair of corresponding getters and setters.
1411 for (AccessorTable::Iterator it = accessor_table.begin();
1412 it != accessor_table.end();
1413 ++it) {
1414 PushOperand(Operand(rsp, 0)); // Duplicate receiver.
1415 VisitForStackValue(it->first);
1416 EmitAccessor(it->second->getter);
1417 EmitAccessor(it->second->setter);
1418 PushOperand(Smi::FromInt(NONE));
1419 CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked);
1420 PrepareForBailoutForId(it->second->bailout_id, BailoutState::NO_REGISTERS);
1421 }
1422
1423 // Object literals have two parts. The "static" part on the left contains no
1424 // computed property names, and so we can compute its map ahead of time; see
1425 // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1426 // starts with the first computed property name, and continues with all
1427 // properties to its right. All the code from above initializes the static
1428 // component of the object literal, and arranges for the map of the result to
1429 // reflect the static order in which the keys appear. For the dynamic
1430 // properties, we compile them into a series of "SetOwnProperty" runtime
1431 // calls. This will preserve insertion order.
1432 for (; property_index < expr->properties()->length(); property_index++) {
1433 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1434
1435 Expression* value = property->value();
1436 if (!result_saved) {
1437 PushOperand(rax); // Save result on the stack
1438 result_saved = true;
1439 }
1440
1441 PushOperand(Operand(rsp, 0)); // Duplicate receiver.
1442
1443 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1444 DCHECK(!property->is_computed_name());
1445 VisitForStackValue(value);
1446 DCHECK(property->emit_store());
1447 CallRuntimeWithOperands(Runtime::kInternalSetPrototype);
1448 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1449 BailoutState::NO_REGISTERS);
1450 } else {
1451 EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
1452 VisitForStackValue(value);
1453 if (NeedsHomeObject(value)) {
1454 EmitSetHomeObject(value, 2, property->GetSlot());
1455 }
1456
1457 switch (property->kind()) {
1458 case ObjectLiteral::Property::CONSTANT:
1459 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1460 case ObjectLiteral::Property::COMPUTED:
1461 if (property->emit_store()) {
1462 PushOperand(Smi::FromInt(NONE));
1463 PushOperand(Smi::FromInt(property->NeedsSetFunctionName()));
1464 CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral);
1465 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1466 BailoutState::NO_REGISTERS);
1467 } else {
1468 DropOperands(3);
1469 }
1470 break;
1471
1472 case ObjectLiteral::Property::PROTOTYPE:
1473 UNREACHABLE();
1474 break;
1475
1476 case ObjectLiteral::Property::GETTER:
1477 PushOperand(Smi::FromInt(NONE));
1478 CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked);
1479 break;
1480
1481 case ObjectLiteral::Property::SETTER:
1482 PushOperand(Smi::FromInt(NONE));
1483 CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked);
1484 break;
1485 }
1486 }
1487 }
1488
1489 if (result_saved) {
1490 context()->PlugTOS();
1491 } else {
1492 context()->Plug(rax);
1493 }
1494 }
1495
1496
VisitArrayLiteral(ArrayLiteral * expr)1497 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1498 Comment cmnt(masm_, "[ ArrayLiteral");
1499
1500 Handle<FixedArray> constant_elements = expr->constant_elements();
1501 bool has_constant_fast_elements =
1502 IsFastObjectElementsKind(expr->constant_elements_kind());
1503
1504 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1505 if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
1506 // If the only customer of allocation sites is transitioning, then
1507 // we can turn it off if we don't have anywhere else to transition to.
1508 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1509 }
1510
1511 if (MustCreateArrayLiteralWithRuntime(expr)) {
1512 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1513 __ Push(Smi::FromInt(expr->literal_index()));
1514 __ Push(constant_elements);
1515 __ Push(Smi::FromInt(expr->ComputeFlags()));
1516 __ CallRuntime(Runtime::kCreateArrayLiteral);
1517 } else {
1518 __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1519 __ Move(rbx, Smi::FromInt(expr->literal_index()));
1520 __ Move(rcx, constant_elements);
1521 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1522 __ CallStub(&stub);
1523 RestoreContext();
1524 }
1525 PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER);
1526
1527 bool result_saved = false; // Is the result saved to the stack?
1528 ZoneList<Expression*>* subexprs = expr->values();
1529 int length = subexprs->length();
1530
1531 // Emit code to evaluate all the non-constant subexpressions and to store
1532 // them into the newly cloned array.
1533 for (int array_index = 0; array_index < length; array_index++) {
1534 Expression* subexpr = subexprs->at(array_index);
1535 DCHECK(!subexpr->IsSpread());
1536
1537 // If the subexpression is a literal or a simple materialized literal it
1538 // is already set in the cloned array.
1539 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1540
1541 if (!result_saved) {
1542 PushOperand(rax); // array literal
1543 result_saved = true;
1544 }
1545 VisitForAccumulatorValue(subexpr);
1546
1547 __ Move(StoreDescriptor::NameRegister(), Smi::FromInt(array_index));
1548 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1549 CallKeyedStoreIC(expr->LiteralFeedbackSlot());
1550
1551 PrepareForBailoutForId(expr->GetIdForElement(array_index),
1552 BailoutState::NO_REGISTERS);
1553 }
1554
1555 if (result_saved) {
1556 context()->PlugTOS();
1557 } else {
1558 context()->Plug(rax);
1559 }
1560 }
1561
1562
VisitAssignment(Assignment * expr)1563 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1564 DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1565
1566 Comment cmnt(masm_, "[ Assignment");
1567
1568 Property* property = expr->target()->AsProperty();
1569 LhsKind assign_type = Property::GetAssignType(property);
1570
1571 // Evaluate LHS expression.
1572 switch (assign_type) {
1573 case VARIABLE:
1574 // Nothing to do here.
1575 break;
1576 case NAMED_PROPERTY:
1577 if (expr->is_compound()) {
1578 // We need the receiver both on the stack and in the register.
1579 VisitForStackValue(property->obj());
1580 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
1581 } else {
1582 VisitForStackValue(property->obj());
1583 }
1584 break;
1585 case NAMED_SUPER_PROPERTY:
1586 VisitForStackValue(
1587 property->obj()->AsSuperPropertyReference()->this_var());
1588 VisitForAccumulatorValue(
1589 property->obj()->AsSuperPropertyReference()->home_object());
1590 PushOperand(result_register());
1591 if (expr->is_compound()) {
1592 PushOperand(MemOperand(rsp, kPointerSize));
1593 PushOperand(result_register());
1594 }
1595 break;
1596 case KEYED_SUPER_PROPERTY:
1597 VisitForStackValue(
1598 property->obj()->AsSuperPropertyReference()->this_var());
1599 VisitForStackValue(
1600 property->obj()->AsSuperPropertyReference()->home_object());
1601 VisitForAccumulatorValue(property->key());
1602 PushOperand(result_register());
1603 if (expr->is_compound()) {
1604 PushOperand(MemOperand(rsp, 2 * kPointerSize));
1605 PushOperand(MemOperand(rsp, 2 * kPointerSize));
1606 PushOperand(result_register());
1607 }
1608 break;
1609 case KEYED_PROPERTY: {
1610 if (expr->is_compound()) {
1611 VisitForStackValue(property->obj());
1612 VisitForStackValue(property->key());
1613 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
1614 __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
1615 } else {
1616 VisitForStackValue(property->obj());
1617 VisitForStackValue(property->key());
1618 }
1619 break;
1620 }
1621 }
1622
1623 // For compound assignments we need another deoptimization point after the
1624 // variable/property load.
1625 if (expr->is_compound()) {
1626 { AccumulatorValueContext context(this);
1627 switch (assign_type) {
1628 case VARIABLE:
1629 EmitVariableLoad(expr->target()->AsVariableProxy());
1630 PrepareForBailout(expr->target(), BailoutState::TOS_REGISTER);
1631 break;
1632 case NAMED_PROPERTY:
1633 EmitNamedPropertyLoad(property);
1634 PrepareForBailoutForId(property->LoadId(),
1635 BailoutState::TOS_REGISTER);
1636 break;
1637 case NAMED_SUPER_PROPERTY:
1638 EmitNamedSuperPropertyLoad(property);
1639 PrepareForBailoutForId(property->LoadId(),
1640 BailoutState::TOS_REGISTER);
1641 break;
1642 case KEYED_SUPER_PROPERTY:
1643 EmitKeyedSuperPropertyLoad(property);
1644 PrepareForBailoutForId(property->LoadId(),
1645 BailoutState::TOS_REGISTER);
1646 break;
1647 case KEYED_PROPERTY:
1648 EmitKeyedPropertyLoad(property);
1649 PrepareForBailoutForId(property->LoadId(),
1650 BailoutState::TOS_REGISTER);
1651 break;
1652 }
1653 }
1654
1655 Token::Value op = expr->binary_op();
1656 PushOperand(rax); // Left operand goes on the stack.
1657 VisitForAccumulatorValue(expr->value());
1658
1659 AccumulatorValueContext context(this);
1660 if (ShouldInlineSmiCase(op)) {
1661 EmitInlineSmiBinaryOp(expr->binary_operation(),
1662 op,
1663 expr->target(),
1664 expr->value());
1665 } else {
1666 EmitBinaryOp(expr->binary_operation(), op);
1667 }
1668 // Deoptimization point in case the binary operation may have side effects.
1669 PrepareForBailout(expr->binary_operation(), BailoutState::TOS_REGISTER);
1670 } else {
1671 VisitForAccumulatorValue(expr->value());
1672 }
1673
1674 SetExpressionPosition(expr);
1675
1676 // Store the value.
1677 switch (assign_type) {
1678 case VARIABLE: {
1679 VariableProxy* proxy = expr->target()->AsVariableProxy();
1680 EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(),
1681 proxy->hole_check_mode());
1682 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
1683 context()->Plug(rax);
1684 break;
1685 }
1686 case NAMED_PROPERTY:
1687 EmitNamedPropertyAssignment(expr);
1688 break;
1689 case NAMED_SUPER_PROPERTY:
1690 EmitNamedSuperPropertyStore(property);
1691 context()->Plug(rax);
1692 break;
1693 case KEYED_SUPER_PROPERTY:
1694 EmitKeyedSuperPropertyStore(property);
1695 context()->Plug(rax);
1696 break;
1697 case KEYED_PROPERTY:
1698 EmitKeyedPropertyAssignment(expr);
1699 break;
1700 }
1701 }
1702
1703
VisitYield(Yield * expr)1704 void FullCodeGenerator::VisitYield(Yield* expr) {
1705 Comment cmnt(masm_, "[ Yield");
1706 SetExpressionPosition(expr);
1707
1708 // Evaluate yielded value first; the initial iterator definition depends on
1709 // this. It stays on the stack while we update the iterator.
1710 VisitForStackValue(expr->expression());
1711
1712 Label suspend, continuation, post_runtime, resume, exception;
1713
1714 __ jmp(&suspend);
1715 __ bind(&continuation);
1716 // When we arrive here, rax holds the generator object.
1717 __ RecordGeneratorContinuation();
1718 __ movp(rbx, FieldOperand(rax, JSGeneratorObject::kResumeModeOffset));
1719 __ movp(rax, FieldOperand(rax, JSGeneratorObject::kInputOrDebugPosOffset));
1720 STATIC_ASSERT(JSGeneratorObject::kNext < JSGeneratorObject::kReturn);
1721 STATIC_ASSERT(JSGeneratorObject::kThrow > JSGeneratorObject::kReturn);
1722 __ SmiCompare(rbx, Smi::FromInt(JSGeneratorObject::kReturn));
1723 __ j(less, &resume);
1724 __ Push(result_register());
1725 __ j(greater, &exception);
1726 EmitCreateIteratorResult(true);
1727 EmitUnwindAndReturn();
1728
1729 __ bind(&exception);
1730 __ CallRuntime(expr->rethrow_on_exception() ? Runtime::kReThrow
1731 : Runtime::kThrow);
1732
1733 __ bind(&suspend);
1734 OperandStackDepthIncrement(1); // Not popped on this path.
1735 VisitForAccumulatorValue(expr->generator_object());
1736 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
1737 __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
1738 Smi::FromInt(continuation.pos()));
1739 __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
1740 __ movp(rcx, rsi);
1741 __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
1742 kDontSaveFPRegs);
1743 __ leap(rbx, Operand(rbp, StandardFrameConstants::kExpressionsOffset));
1744 __ cmpp(rsp, rbx);
1745 __ j(equal, &post_runtime);
1746 __ Push(rax); // generator object
1747 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
1748 RestoreContext();
1749 __ bind(&post_runtime);
1750
1751 PopOperand(result_register());
1752 EmitReturnSequence();
1753
1754 __ bind(&resume);
1755 context()->Plug(result_register());
1756 }
1757
PushOperand(MemOperand operand)1758 void FullCodeGenerator::PushOperand(MemOperand operand) {
1759 OperandStackDepthIncrement(1);
1760 __ Push(operand);
1761 }
1762
EmitOperandStackDepthCheck()1763 void FullCodeGenerator::EmitOperandStackDepthCheck() {
1764 if (FLAG_debug_code) {
1765 int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp +
1766 operand_stack_depth_ * kPointerSize;
1767 __ movp(rax, rbp);
1768 __ subp(rax, rsp);
1769 __ cmpp(rax, Immediate(expected_diff));
1770 __ Assert(equal, kUnexpectedStackDepth);
1771 }
1772 }
1773
EmitCreateIteratorResult(bool done)1774 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
1775 Label allocate, done_allocate;
1776
1777 __ Allocate(JSIteratorResult::kSize, rax, rcx, rdx, &allocate,
1778 NO_ALLOCATION_FLAGS);
1779 __ jmp(&done_allocate, Label::kNear);
1780
1781 __ bind(&allocate);
1782 __ Push(Smi::FromInt(JSIteratorResult::kSize));
1783 __ CallRuntime(Runtime::kAllocateInNewSpace);
1784
1785 __ bind(&done_allocate);
1786 __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, rbx);
1787 __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx);
1788 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
1789 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
1790 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx);
1791 __ Pop(FieldOperand(rax, JSIteratorResult::kValueOffset));
1792 __ LoadRoot(FieldOperand(rax, JSIteratorResult::kDoneOffset),
1793 done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
1794 STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
1795 OperandStackDepthDecrement(1);
1796 }
1797
1798
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,Expression * left,Expression * right)1799 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
1800 Token::Value op,
1801 Expression* left,
1802 Expression* right) {
1803 // Do combined smi check of the operands. Left operand is on the
1804 // stack (popped into rdx). Right operand is in rax but moved into
1805 // rcx to make the shifts easier.
1806 Label done, stub_call, smi_case;
1807 PopOperand(rdx);
1808 __ movp(rcx, rax);
1809 __ orp(rax, rdx);
1810 JumpPatchSite patch_site(masm_);
1811 patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear);
1812
1813 __ bind(&stub_call);
1814 __ movp(rax, rcx);
1815 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code();
1816 CallIC(code, expr->BinaryOperationFeedbackId());
1817 patch_site.EmitPatchInfo();
1818 __ jmp(&done, Label::kNear);
1819
1820 __ bind(&smi_case);
1821 switch (op) {
1822 case Token::SAR:
1823 __ SmiShiftArithmeticRight(rax, rdx, rcx);
1824 break;
1825 case Token::SHL:
1826 __ SmiShiftLeft(rax, rdx, rcx, &stub_call);
1827 break;
1828 case Token::SHR:
1829 __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call);
1830 break;
1831 case Token::ADD:
1832 __ SmiAdd(rax, rdx, rcx, &stub_call);
1833 break;
1834 case Token::SUB:
1835 __ SmiSub(rax, rdx, rcx, &stub_call);
1836 break;
1837 case Token::MUL:
1838 __ SmiMul(rax, rdx, rcx, &stub_call);
1839 break;
1840 case Token::BIT_OR:
1841 __ SmiOr(rax, rdx, rcx);
1842 break;
1843 case Token::BIT_AND:
1844 __ SmiAnd(rax, rdx, rcx);
1845 break;
1846 case Token::BIT_XOR:
1847 __ SmiXor(rax, rdx, rcx);
1848 break;
1849 default:
1850 UNREACHABLE();
1851 break;
1852 }
1853
1854 __ bind(&done);
1855 context()->Plug(rax);
1856 }
1857
1858
EmitClassDefineProperties(ClassLiteral * lit)1859 void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
1860 for (int i = 0; i < lit->properties()->length(); i++) {
1861 ClassLiteral::Property* property = lit->properties()->at(i);
1862 Expression* value = property->value();
1863
1864 if (property->is_static()) {
1865 PushOperand(Operand(rsp, kPointerSize)); // constructor
1866 } else {
1867 PushOperand(Operand(rsp, 0)); // prototype
1868 }
1869 EmitPropertyKey(property, lit->GetIdForProperty(i));
1870
1871 // The static prototype property is read only. We handle the non computed
1872 // property name case in the parser. Since this is the only case where we
1873 // need to check for an own read only property we special case this so we do
1874 // not need to do this for every property.
1875 if (property->is_static() && property->is_computed_name()) {
1876 __ CallRuntime(Runtime::kThrowIfStaticPrototype);
1877 __ Push(rax);
1878 }
1879
1880 VisitForStackValue(value);
1881 if (NeedsHomeObject(value)) {
1882 EmitSetHomeObject(value, 2, property->GetSlot());
1883 }
1884
1885 switch (property->kind()) {
1886 case ClassLiteral::Property::METHOD:
1887 PushOperand(Smi::FromInt(DONT_ENUM));
1888 PushOperand(Smi::FromInt(property->NeedsSetFunctionName()));
1889 CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral);
1890 break;
1891
1892 case ClassLiteral::Property::GETTER:
1893 PushOperand(Smi::FromInt(DONT_ENUM));
1894 CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked);
1895 break;
1896
1897 case ClassLiteral::Property::SETTER:
1898 PushOperand(Smi::FromInt(DONT_ENUM));
1899 CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked);
1900 break;
1901
1902 case ClassLiteral::Property::FIELD:
1903 default:
1904 UNREACHABLE();
1905 }
1906 }
1907 }
1908
1909
EmitBinaryOp(BinaryOperation * expr,Token::Value op)1910 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
1911 PopOperand(rdx);
1912 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code();
1913 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
1914 CallIC(code, expr->BinaryOperationFeedbackId());
1915 patch_site.EmitPatchInfo();
1916 context()->Plug(rax);
1917 }
1918
1919
EmitAssignment(Expression * expr,FeedbackVectorSlot slot)1920 void FullCodeGenerator::EmitAssignment(Expression* expr,
1921 FeedbackVectorSlot slot) {
1922 DCHECK(expr->IsValidReferenceExpressionOrThis());
1923
1924 Property* prop = expr->AsProperty();
1925 LhsKind assign_type = Property::GetAssignType(prop);
1926
1927 switch (assign_type) {
1928 case VARIABLE: {
1929 VariableProxy* proxy = expr->AsVariableProxy();
1930 EffectContext context(this);
1931 EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot,
1932 proxy->hole_check_mode());
1933 break;
1934 }
1935 case NAMED_PROPERTY: {
1936 PushOperand(rax); // Preserve value.
1937 VisitForAccumulatorValue(prop->obj());
1938 __ Move(StoreDescriptor::ReceiverRegister(), rax);
1939 PopOperand(StoreDescriptor::ValueRegister()); // Restore value.
1940 CallStoreIC(slot, prop->key()->AsLiteral()->value());
1941 break;
1942 }
1943 case NAMED_SUPER_PROPERTY: {
1944 PushOperand(rax);
1945 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
1946 VisitForAccumulatorValue(
1947 prop->obj()->AsSuperPropertyReference()->home_object());
1948 // stack: value, this; rax: home_object
1949 Register scratch = rcx;
1950 Register scratch2 = rdx;
1951 __ Move(scratch, result_register()); // home_object
1952 __ movp(rax, MemOperand(rsp, kPointerSize)); // value
1953 __ movp(scratch2, MemOperand(rsp, 0)); // this
1954 __ movp(MemOperand(rsp, kPointerSize), scratch2); // this
1955 __ movp(MemOperand(rsp, 0), scratch); // home_object
1956 // stack: this, home_object; rax: value
1957 EmitNamedSuperPropertyStore(prop);
1958 break;
1959 }
1960 case KEYED_SUPER_PROPERTY: {
1961 PushOperand(rax);
1962 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
1963 VisitForStackValue(
1964 prop->obj()->AsSuperPropertyReference()->home_object());
1965 VisitForAccumulatorValue(prop->key());
1966 Register scratch = rcx;
1967 Register scratch2 = rdx;
1968 __ movp(scratch2, MemOperand(rsp, 2 * kPointerSize)); // value
1969 // stack: value, this, home_object; rax: key, rdx: value
1970 __ movp(scratch, MemOperand(rsp, kPointerSize)); // this
1971 __ movp(MemOperand(rsp, 2 * kPointerSize), scratch);
1972 __ movp(scratch, MemOperand(rsp, 0)); // home_object
1973 __ movp(MemOperand(rsp, kPointerSize), scratch);
1974 __ movp(MemOperand(rsp, 0), rax);
1975 __ Move(rax, scratch2);
1976 // stack: this, home_object, key; rax: value.
1977 EmitKeyedSuperPropertyStore(prop);
1978 break;
1979 }
1980 case KEYED_PROPERTY: {
1981 PushOperand(rax); // Preserve value.
1982 VisitForStackValue(prop->obj());
1983 VisitForAccumulatorValue(prop->key());
1984 __ Move(StoreDescriptor::NameRegister(), rax);
1985 PopOperand(StoreDescriptor::ReceiverRegister());
1986 PopOperand(StoreDescriptor::ValueRegister()); // Restore value.
1987 CallKeyedStoreIC(slot);
1988 break;
1989 }
1990 }
1991 context()->Plug(rax);
1992 }
1993
1994
EmitStoreToStackLocalOrContextSlot(Variable * var,MemOperand location)1995 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
1996 Variable* var, MemOperand location) {
1997 __ movp(location, rax);
1998 if (var->IsContextSlot()) {
1999 __ movp(rdx, rax);
2000 __ RecordWriteContextSlot(
2001 rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs);
2002 }
2003 }
2004
EmitVariableAssignment(Variable * var,Token::Value op,FeedbackVectorSlot slot,HoleCheckMode hole_check_mode)2005 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2006 FeedbackVectorSlot slot,
2007 HoleCheckMode hole_check_mode) {
2008 if (var->IsUnallocated()) {
2009 // Global var, const, or let.
2010 __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
2011 CallStoreIC(slot, var->name());
2012
2013 } else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) {
2014 DCHECK(!var->IsLookupSlot());
2015 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2016 MemOperand location = VarOperand(var, rcx);
2017 // Perform an initialization check for lexically declared variables.
2018 if (hole_check_mode == HoleCheckMode::kRequired) {
2019 Label assign;
2020 __ movp(rdx, location);
2021 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2022 __ j(not_equal, &assign, Label::kNear);
2023 __ Push(var->name());
2024 __ CallRuntime(Runtime::kThrowReferenceError);
2025 __ bind(&assign);
2026 }
2027 if (var->mode() != CONST) {
2028 EmitStoreToStackLocalOrContextSlot(var, location);
2029 } else if (var->throw_on_const_assignment(language_mode())) {
2030 __ CallRuntime(Runtime::kThrowConstAssignError);
2031 }
2032
2033 } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
2034 // Initializing assignment to const {this} needs a write barrier.
2035 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2036 Label uninitialized_this;
2037 MemOperand location = VarOperand(var, rcx);
2038 __ movp(rdx, location);
2039 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2040 __ j(equal, &uninitialized_this);
2041 __ Push(var->name());
2042 __ CallRuntime(Runtime::kThrowReferenceError);
2043 __ bind(&uninitialized_this);
2044 EmitStoreToStackLocalOrContextSlot(var, location);
2045
2046 } else {
2047 DCHECK(var->mode() != CONST || op == Token::INIT);
2048 if (var->IsLookupSlot()) {
2049 // Assignment to var.
2050 __ Push(var->name());
2051 __ Push(rax);
2052 __ CallRuntime(is_strict(language_mode())
2053 ? Runtime::kStoreLookupSlot_Strict
2054 : Runtime::kStoreLookupSlot_Sloppy);
2055 } else {
2056 // Assignment to var or initializing assignment to let/const in harmony
2057 // mode.
2058 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2059 MemOperand location = VarOperand(var, rcx);
2060 if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) {
2061 // Check for an uninitialized let binding.
2062 __ movp(rdx, location);
2063 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2064 __ Check(equal, kLetBindingReInitialization);
2065 }
2066 EmitStoreToStackLocalOrContextSlot(var, location);
2067 }
2068 }
2069 }
2070
2071
EmitNamedPropertyAssignment(Assignment * expr)2072 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2073 // Assignment to a property, using a named store IC.
2074 Property* prop = expr->target()->AsProperty();
2075 DCHECK(prop != NULL);
2076 DCHECK(prop->key()->IsLiteral());
2077
2078 PopOperand(StoreDescriptor::ReceiverRegister());
2079 CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value());
2080
2081 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
2082 context()->Plug(rax);
2083 }
2084
2085
EmitNamedSuperPropertyStore(Property * prop)2086 void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2087 // Assignment to named property of super.
2088 // rax : value
2089 // stack : receiver ('this'), home_object
2090 DCHECK(prop != NULL);
2091 Literal* key = prop->key()->AsLiteral();
2092 DCHECK(key != NULL);
2093
2094 PushOperand(key->value());
2095 PushOperand(rax);
2096 CallRuntimeWithOperands(is_strict(language_mode())
2097 ? Runtime::kStoreToSuper_Strict
2098 : Runtime::kStoreToSuper_Sloppy);
2099 }
2100
2101
EmitKeyedSuperPropertyStore(Property * prop)2102 void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2103 // Assignment to named property of super.
2104 // rax : value
2105 // stack : receiver ('this'), home_object, key
2106 DCHECK(prop != NULL);
2107
2108 PushOperand(rax);
2109 CallRuntimeWithOperands(is_strict(language_mode())
2110 ? Runtime::kStoreKeyedToSuper_Strict
2111 : Runtime::kStoreKeyedToSuper_Sloppy);
2112 }
2113
2114
EmitKeyedPropertyAssignment(Assignment * expr)2115 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2116 // Assignment to a property, using a keyed store IC.
2117 PopOperand(StoreDescriptor::NameRegister()); // Key.
2118 PopOperand(StoreDescriptor::ReceiverRegister());
2119 DCHECK(StoreDescriptor::ValueRegister().is(rax));
2120 CallKeyedStoreIC(expr->AssignmentSlot());
2121
2122 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
2123 context()->Plug(rax);
2124 }
2125
2126 // Code common for calls using the IC.
EmitCallWithLoadIC(Call * expr)2127 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2128 Expression* callee = expr->expression();
2129
2130 // Get the target function.
2131 ConvertReceiverMode convert_mode;
2132 if (callee->IsVariableProxy()) {
2133 { StackValueContext context(this);
2134 EmitVariableLoad(callee->AsVariableProxy());
2135 PrepareForBailout(callee, BailoutState::NO_REGISTERS);
2136 }
2137 // Push undefined as receiver. This is patched in the Call builtin if it
2138 // is a sloppy mode method.
2139 PushOperand(isolate()->factory()->undefined_value());
2140 convert_mode = ConvertReceiverMode::kNullOrUndefined;
2141 } else {
2142 // Load the function from the receiver.
2143 DCHECK(callee->IsProperty());
2144 DCHECK(!callee->AsProperty()->IsSuperAccess());
2145 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2146 EmitNamedPropertyLoad(callee->AsProperty());
2147 PrepareForBailoutForId(callee->AsProperty()->LoadId(),
2148 BailoutState::TOS_REGISTER);
2149 // Push the target function under the receiver.
2150 PushOperand(Operand(rsp, 0));
2151 __ movp(Operand(rsp, kPointerSize), rax);
2152 convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
2153 }
2154
2155 EmitCall(expr, convert_mode);
2156 }
2157
2158
EmitSuperCallWithLoadIC(Call * expr)2159 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2160 Expression* callee = expr->expression();
2161 DCHECK(callee->IsProperty());
2162 Property* prop = callee->AsProperty();
2163 DCHECK(prop->IsSuperAccess());
2164 SetExpressionPosition(prop);
2165
2166 Literal* key = prop->key()->AsLiteral();
2167 DCHECK(!key->value()->IsSmi());
2168 // Load the function from the receiver.
2169 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2170 VisitForStackValue(super_ref->home_object());
2171 VisitForAccumulatorValue(super_ref->this_var());
2172 PushOperand(rax);
2173 PushOperand(rax);
2174 PushOperand(Operand(rsp, kPointerSize * 2));
2175 PushOperand(key->value());
2176
2177 // Stack here:
2178 // - home_object
2179 // - this (receiver)
2180 // - this (receiver) <-- LoadFromSuper will pop here and below.
2181 // - home_object
2182 // - key
2183 CallRuntimeWithOperands(Runtime::kLoadFromSuper);
2184 PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER);
2185
2186 // Replace home_object with target function.
2187 __ movp(Operand(rsp, kPointerSize), rax);
2188
2189 // Stack here:
2190 // - target function
2191 // - this (receiver)
2192 EmitCall(expr);
2193 }
2194
2195
2196 // Common code for calls using the IC.
EmitKeyedCallWithLoadIC(Call * expr,Expression * key)2197 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2198 Expression* key) {
2199 // Load the key.
2200 VisitForAccumulatorValue(key);
2201
2202 Expression* callee = expr->expression();
2203
2204 // Load the function from the receiver.
2205 DCHECK(callee->IsProperty());
2206 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2207 __ Move(LoadDescriptor::NameRegister(), rax);
2208 EmitKeyedPropertyLoad(callee->AsProperty());
2209 PrepareForBailoutForId(callee->AsProperty()->LoadId(),
2210 BailoutState::TOS_REGISTER);
2211
2212 // Push the target function under the receiver.
2213 PushOperand(Operand(rsp, 0));
2214 __ movp(Operand(rsp, kPointerSize), rax);
2215
2216 EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
2217 }
2218
2219
EmitKeyedSuperCallWithLoadIC(Call * expr)2220 void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2221 Expression* callee = expr->expression();
2222 DCHECK(callee->IsProperty());
2223 Property* prop = callee->AsProperty();
2224 DCHECK(prop->IsSuperAccess());
2225
2226 SetExpressionPosition(prop);
2227 // Load the function from the receiver.
2228 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2229 VisitForStackValue(super_ref->home_object());
2230 VisitForAccumulatorValue(super_ref->this_var());
2231 PushOperand(rax);
2232 PushOperand(rax);
2233 PushOperand(Operand(rsp, kPointerSize * 2));
2234 VisitForStackValue(prop->key());
2235
2236 // Stack here:
2237 // - home_object
2238 // - this (receiver)
2239 // - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2240 // - home_object
2241 // - key
2242 CallRuntimeWithOperands(Runtime::kLoadKeyedFromSuper);
2243 PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER);
2244
2245 // Replace home_object with target function.
2246 __ movp(Operand(rsp, kPointerSize), rax);
2247
2248 // Stack here:
2249 // - target function
2250 // - this (receiver)
2251 EmitCall(expr);
2252 }
2253
2254
EmitCall(Call * expr,ConvertReceiverMode mode)2255 void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
2256 // Load the arguments.
2257 ZoneList<Expression*>* args = expr->arguments();
2258 int arg_count = args->length();
2259 for (int i = 0; i < arg_count; i++) {
2260 VisitForStackValue(args->at(i));
2261 }
2262
2263 PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS);
2264 SetCallPosition(expr, expr->tail_call_mode());
2265 if (expr->tail_call_mode() == TailCallMode::kAllow) {
2266 if (FLAG_trace) {
2267 __ CallRuntime(Runtime::kTraceTailCall);
2268 }
2269 // Update profiling counters before the tail call since we will
2270 // not return to this function.
2271 EmitProfilingCounterHandlingForReturnSequence(true);
2272 }
2273 Handle<Code> code =
2274 CodeFactory::CallIC(isolate(), mode, expr->tail_call_mode()).code();
2275 __ Move(rdx, SmiFromSlot(expr->CallFeedbackICSlot()));
2276 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
2277 __ Set(rax, arg_count);
2278 CallIC(code);
2279 OperandStackDepthDecrement(arg_count + 1);
2280
2281 RecordJSReturnSite(expr);
2282 RestoreContext();
2283 // Discard the function left on TOS.
2284 context()->DropAndPlug(1, rax);
2285 }
2286
EmitResolvePossiblyDirectEval(Call * expr)2287 void FullCodeGenerator::EmitResolvePossiblyDirectEval(Call* expr) {
2288 int arg_count = expr->arguments()->length();
2289 // Push copy of the first argument or undefined if it doesn't exist.
2290 if (arg_count > 0) {
2291 __ Push(Operand(rsp, arg_count * kPointerSize));
2292 } else {
2293 __ PushRoot(Heap::kUndefinedValueRootIndex);
2294 }
2295
2296 // Push the enclosing function.
2297 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
2298
2299 // Push the language mode.
2300 __ Push(Smi::FromInt(language_mode()));
2301
2302 // Push the start position of the scope the calls resides in.
2303 __ Push(Smi::FromInt(scope()->start_position()));
2304
2305 // Push the source position of the eval call.
2306 __ Push(Smi::FromInt(expr->position()));
2307
2308 // Do the runtime call.
2309 __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
2310 }
2311
2312
2313 // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
PushCalleeAndWithBaseObject(Call * expr)2314 void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
2315 VariableProxy* callee = expr->expression()->AsVariableProxy();
2316 if (callee->var()->IsLookupSlot()) {
2317 Label slow, done;
2318 SetExpressionPosition(callee);
2319 // Generate code for loading from variables potentially shadowed by
2320 // eval-introduced variables.
2321 EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
2322 __ bind(&slow);
2323 // Call the runtime to find the function to call (returned in rax) and
2324 // the object holding it (returned in rdx).
2325 __ Push(callee->name());
2326 __ CallRuntime(Runtime::kLoadLookupSlotForCall);
2327 PushOperand(rax); // Function.
2328 PushOperand(rdx); // Receiver.
2329 PrepareForBailoutForId(expr->LookupId(), BailoutState::NO_REGISTERS);
2330
2331 // If fast case code has been generated, emit code to push the function
2332 // and receiver and have the slow path jump around this code.
2333 if (done.is_linked()) {
2334 Label call;
2335 __ jmp(&call, Label::kNear);
2336 __ bind(&done);
2337 // Push function.
2338 __ Push(rax);
2339 // Pass undefined as the receiver, which is the WithBaseObject of a
2340 // non-object environment record. If the callee is sloppy, it will patch
2341 // it up to be the global receiver.
2342 __ PushRoot(Heap::kUndefinedValueRootIndex);
2343 __ bind(&call);
2344 }
2345 } else {
2346 VisitForStackValue(callee);
2347 // refEnv.WithBaseObject()
2348 OperandStackDepthIncrement(1);
2349 __ PushRoot(Heap::kUndefinedValueRootIndex);
2350 }
2351 }
2352
2353
EmitPossiblyEvalCall(Call * expr)2354 void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
2355 // In a call to eval, we first call Runtime_ResolvePossiblyDirectEval
2356 // to resolve the function we need to call. Then we call the resolved
2357 // function using the given arguments.
2358 ZoneList<Expression*>* args = expr->arguments();
2359 int arg_count = args->length();
2360 PushCalleeAndWithBaseObject(expr);
2361
2362 // Push the arguments.
2363 for (int i = 0; i < arg_count; i++) {
2364 VisitForStackValue(args->at(i));
2365 }
2366
2367 // Push a copy of the function (found below the arguments) and resolve
2368 // eval.
2369 __ Push(Operand(rsp, (arg_count + 1) * kPointerSize));
2370 EmitResolvePossiblyDirectEval(expr);
2371
2372 // Touch up the callee.
2373 __ movp(Operand(rsp, (arg_count + 1) * kPointerSize), rax);
2374
2375 PrepareForBailoutForId(expr->EvalId(), BailoutState::NO_REGISTERS);
2376
2377 SetCallPosition(expr);
2378 Handle<Code> code = CodeFactory::CallIC(isolate(), ConvertReceiverMode::kAny,
2379 expr->tail_call_mode())
2380 .code();
2381 __ Move(rdx, SmiFromSlot(expr->CallFeedbackICSlot()));
2382 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
2383 __ Set(rax, arg_count);
2384 __ call(code, RelocInfo::CODE_TARGET);
2385 OperandStackDepthDecrement(arg_count + 1);
2386 RecordJSReturnSite(expr);
2387 RestoreContext();
2388 context()->DropAndPlug(1, rax);
2389 }
2390
2391
VisitCallNew(CallNew * expr)2392 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2393 Comment cmnt(masm_, "[ CallNew");
2394 // According to ECMA-262, section 11.2.2, page 44, the function
2395 // expression in new calls must be evaluated before the
2396 // arguments.
2397
2398 // Push constructor on the stack. If it's not a function it's used as
2399 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2400 // ignored.
2401 DCHECK(!expr->expression()->IsSuperPropertyReference());
2402 VisitForStackValue(expr->expression());
2403
2404 // Push the arguments ("left-to-right") on the stack.
2405 ZoneList<Expression*>* args = expr->arguments();
2406 int arg_count = args->length();
2407 for (int i = 0; i < arg_count; i++) {
2408 VisitForStackValue(args->at(i));
2409 }
2410
2411 // Call the construct call builtin that handles allocation and
2412 // constructor invocation.
2413 SetConstructCallPosition(expr);
2414
2415 // Load function and argument count into rdi and rax.
2416 __ Set(rax, arg_count);
2417 __ movp(rdi, Operand(rsp, arg_count * kPointerSize));
2418
2419 // Record call targets in unoptimized code, but not in the snapshot.
2420 __ EmitLoadTypeFeedbackVector(rbx);
2421 __ Move(rdx, SmiFromSlot(expr->CallNewFeedbackSlot()));
2422
2423 CallConstructStub stub(isolate());
2424 CallIC(stub.GetCode());
2425 OperandStackDepthDecrement(arg_count + 1);
2426 PrepareForBailoutForId(expr->ReturnId(), BailoutState::TOS_REGISTER);
2427 RestoreContext();
2428 context()->Plug(rax);
2429 }
2430
2431
EmitSuperConstructorCall(Call * expr)2432 void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
2433 SuperCallReference* super_call_ref =
2434 expr->expression()->AsSuperCallReference();
2435 DCHECK_NOT_NULL(super_call_ref);
2436
2437 // Push the super constructor target on the stack (may be null,
2438 // but the Construct builtin can deal with that properly).
2439 VisitForAccumulatorValue(super_call_ref->this_function_var());
2440 __ AssertFunction(result_register());
2441 __ movp(result_register(),
2442 FieldOperand(result_register(), HeapObject::kMapOffset));
2443 PushOperand(FieldOperand(result_register(), Map::kPrototypeOffset));
2444
2445 // Push the arguments ("left-to-right") on the stack.
2446 ZoneList<Expression*>* args = expr->arguments();
2447 int arg_count = args->length();
2448 for (int i = 0; i < arg_count; i++) {
2449 VisitForStackValue(args->at(i));
2450 }
2451
2452 // Call the construct call builtin that handles allocation and
2453 // constructor invocation.
2454 SetConstructCallPosition(expr);
2455
2456 // Load new target into rdx.
2457 VisitForAccumulatorValue(super_call_ref->new_target_var());
2458 __ movp(rdx, result_register());
2459
2460 // Load function and argument count into rdi and rax.
2461 __ Set(rax, arg_count);
2462 __ movp(rdi, Operand(rsp, arg_count * kPointerSize));
2463
2464 __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2465 OperandStackDepthDecrement(arg_count + 1);
2466
2467 RecordJSReturnSite(expr);
2468 RestoreContext();
2469 context()->Plug(rax);
2470 }
2471
2472
EmitIsSmi(CallRuntime * expr)2473 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2474 ZoneList<Expression*>* args = expr->arguments();
2475 DCHECK(args->length() == 1);
2476
2477 VisitForAccumulatorValue(args->at(0));
2478
2479 Label materialize_true, materialize_false;
2480 Label* if_true = NULL;
2481 Label* if_false = NULL;
2482 Label* fall_through = NULL;
2483 context()->PrepareTest(&materialize_true, &materialize_false,
2484 &if_true, &if_false, &fall_through);
2485
2486 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2487 __ JumpIfSmi(rax, if_true);
2488 __ jmp(if_false);
2489
2490 context()->Plug(if_true, if_false);
2491 }
2492
2493
EmitIsJSReceiver(CallRuntime * expr)2494 void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
2495 ZoneList<Expression*>* args = expr->arguments();
2496 DCHECK(args->length() == 1);
2497
2498 VisitForAccumulatorValue(args->at(0));
2499
2500 Label materialize_true, materialize_false;
2501 Label* if_true = NULL;
2502 Label* if_false = NULL;
2503 Label* fall_through = NULL;
2504 context()->PrepareTest(&materialize_true, &materialize_false,
2505 &if_true, &if_false, &fall_through);
2506
2507 __ JumpIfSmi(rax, if_false);
2508 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rbx);
2509 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2510 Split(above_equal, if_true, if_false, fall_through);
2511
2512 context()->Plug(if_true, if_false);
2513 }
2514
2515
EmitIsArray(CallRuntime * expr)2516 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2517 ZoneList<Expression*>* args = expr->arguments();
2518 DCHECK(args->length() == 1);
2519
2520 VisitForAccumulatorValue(args->at(0));
2521
2522 Label materialize_true, materialize_false;
2523 Label* if_true = NULL;
2524 Label* if_false = NULL;
2525 Label* fall_through = NULL;
2526 context()->PrepareTest(&materialize_true, &materialize_false,
2527 &if_true, &if_false, &fall_through);
2528
2529 __ JumpIfSmi(rax, if_false);
2530 __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx);
2531 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2532 Split(equal, if_true, if_false, fall_through);
2533
2534 context()->Plug(if_true, if_false);
2535 }
2536
2537
EmitIsTypedArray(CallRuntime * expr)2538 void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
2539 ZoneList<Expression*>* args = expr->arguments();
2540 DCHECK(args->length() == 1);
2541
2542 VisitForAccumulatorValue(args->at(0));
2543
2544 Label materialize_true, materialize_false;
2545 Label* if_true = NULL;
2546 Label* if_false = NULL;
2547 Label* fall_through = NULL;
2548 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2549 &if_false, &fall_through);
2550
2551 __ JumpIfSmi(rax, if_false);
2552 __ CmpObjectType(rax, JS_TYPED_ARRAY_TYPE, rbx);
2553 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2554 Split(equal, if_true, if_false, fall_through);
2555
2556 context()->Plug(if_true, if_false);
2557 }
2558
2559
EmitIsRegExp(CallRuntime * expr)2560 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2561 ZoneList<Expression*>* args = expr->arguments();
2562 DCHECK(args->length() == 1);
2563
2564 VisitForAccumulatorValue(args->at(0));
2565
2566 Label materialize_true, materialize_false;
2567 Label* if_true = NULL;
2568 Label* if_false = NULL;
2569 Label* fall_through = NULL;
2570 context()->PrepareTest(&materialize_true, &materialize_false,
2571 &if_true, &if_false, &fall_through);
2572
2573 __ JumpIfSmi(rax, if_false);
2574 __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx);
2575 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2576 Split(equal, if_true, if_false, fall_through);
2577
2578 context()->Plug(if_true, if_false);
2579 }
2580
2581
EmitIsJSProxy(CallRuntime * expr)2582 void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
2583 ZoneList<Expression*>* args = expr->arguments();
2584 DCHECK(args->length() == 1);
2585
2586 VisitForAccumulatorValue(args->at(0));
2587
2588 Label materialize_true, materialize_false;
2589 Label* if_true = NULL;
2590 Label* if_false = NULL;
2591 Label* fall_through = NULL;
2592 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2593 &if_false, &fall_through);
2594
2595
2596 __ JumpIfSmi(rax, if_false);
2597 __ CmpObjectType(rax, JS_PROXY_TYPE, rbx);
2598 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2599 Split(equal, if_true, if_false, fall_through);
2600
2601 context()->Plug(if_true, if_false);
2602 }
2603
2604
EmitClassOf(CallRuntime * expr)2605 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
2606 ZoneList<Expression*>* args = expr->arguments();
2607 DCHECK(args->length() == 1);
2608 Label done, null, function, non_function_constructor;
2609
2610 VisitForAccumulatorValue(args->at(0));
2611
2612 // If the object is not a JSReceiver, we return null.
2613 __ JumpIfSmi(rax, &null, Label::kNear);
2614 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2615 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rax);
2616 __ j(below, &null, Label::kNear);
2617
2618 // Return 'Function' for JSFunction and JSBoundFunction objects.
2619 __ CmpInstanceType(rax, FIRST_FUNCTION_TYPE);
2620 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2621 __ j(above_equal, &function, Label::kNear);
2622
2623 // Check if the constructor in the map is a JS function.
2624 __ GetMapConstructor(rax, rax, rbx);
2625 __ CmpInstanceType(rbx, JS_FUNCTION_TYPE);
2626 __ j(not_equal, &non_function_constructor, Label::kNear);
2627
2628 // rax now contains the constructor function. Grab the
2629 // instance class name from there.
2630 __ movp(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
2631 __ movp(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset));
2632 __ jmp(&done, Label::kNear);
2633
2634 // Non-JS objects have class null.
2635 __ bind(&null);
2636 __ LoadRoot(rax, Heap::kNullValueRootIndex);
2637 __ jmp(&done, Label::kNear);
2638
2639 // Functions have class 'Function'.
2640 __ bind(&function);
2641 __ LoadRoot(rax, Heap::kFunction_stringRootIndex);
2642 __ jmp(&done, Label::kNear);
2643
2644 // Objects with a non-function constructor have class 'Object'.
2645 __ bind(&non_function_constructor);
2646 __ LoadRoot(rax, Heap::kObject_stringRootIndex);
2647
2648 // All done.
2649 __ bind(&done);
2650
2651 context()->Plug(rax);
2652 }
2653
2654
EmitStringCharCodeAt(CallRuntime * expr)2655 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
2656 ZoneList<Expression*>* args = expr->arguments();
2657 DCHECK(args->length() == 2);
2658
2659 VisitForStackValue(args->at(0));
2660 VisitForAccumulatorValue(args->at(1));
2661
2662 Register object = rbx;
2663 Register index = rax;
2664 Register result = rdx;
2665
2666 PopOperand(object);
2667
2668 Label need_conversion;
2669 Label index_out_of_range;
2670 Label done;
2671 StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
2672 &need_conversion, &index_out_of_range);
2673 generator.GenerateFast(masm_);
2674 __ jmp(&done);
2675
2676 __ bind(&index_out_of_range);
2677 // When the index is out of range, the spec requires us to return
2678 // NaN.
2679 __ LoadRoot(result, Heap::kNanValueRootIndex);
2680 __ jmp(&done);
2681
2682 __ bind(&need_conversion);
2683 // Move the undefined value into the result register, which will
2684 // trigger conversion.
2685 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2686 __ jmp(&done);
2687
2688 NopRuntimeCallHelper call_helper;
2689 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
2690
2691 __ bind(&done);
2692 context()->Plug(result);
2693 }
2694
2695
EmitCall(CallRuntime * expr)2696 void FullCodeGenerator::EmitCall(CallRuntime* expr) {
2697 ZoneList<Expression*>* args = expr->arguments();
2698 DCHECK_LE(2, args->length());
2699 // Push target, receiver and arguments onto the stack.
2700 for (Expression* const arg : *args) {
2701 VisitForStackValue(arg);
2702 }
2703 PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS);
2704 // Move target to rdi.
2705 int const argc = args->length() - 2;
2706 __ movp(rdi, Operand(rsp, (argc + 1) * kPointerSize));
2707 // Call the target.
2708 __ Set(rax, argc);
2709 __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2710 OperandStackDepthDecrement(argc + 1);
2711 RestoreContext();
2712 // Discard the function left on TOS.
2713 context()->DropAndPlug(1, rax);
2714 }
2715
EmitGetSuperConstructor(CallRuntime * expr)2716 void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
2717 ZoneList<Expression*>* args = expr->arguments();
2718 DCHECK_EQ(1, args->length());
2719 VisitForAccumulatorValue(args->at(0));
2720 __ AssertFunction(rax);
2721 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
2722 __ movp(rax, FieldOperand(rax, Map::kPrototypeOffset));
2723 context()->Plug(rax);
2724 }
2725
EmitDebugIsActive(CallRuntime * expr)2726 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
2727 DCHECK(expr->arguments()->length() == 0);
2728 ExternalReference debug_is_active =
2729 ExternalReference::debug_is_active_address(isolate());
2730 __ Move(kScratchRegister, debug_is_active);
2731 __ movzxbp(rax, Operand(kScratchRegister, 0));
2732 __ Integer32ToSmi(rax, rax);
2733 context()->Plug(rax);
2734 }
2735
2736
EmitCreateIterResultObject(CallRuntime * expr)2737 void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
2738 ZoneList<Expression*>* args = expr->arguments();
2739 DCHECK_EQ(2, args->length());
2740 VisitForStackValue(args->at(0));
2741 VisitForStackValue(args->at(1));
2742
2743 Label runtime, done;
2744
2745 __ Allocate(JSIteratorResult::kSize, rax, rcx, rdx, &runtime,
2746 NO_ALLOCATION_FLAGS);
2747 __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, rbx);
2748 __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx);
2749 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
2750 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
2751 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx);
2752 __ Pop(FieldOperand(rax, JSIteratorResult::kDoneOffset));
2753 __ Pop(FieldOperand(rax, JSIteratorResult::kValueOffset));
2754 STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
2755 __ jmp(&done, Label::kNear);
2756
2757 __ bind(&runtime);
2758 CallRuntimeWithOperands(Runtime::kCreateIterResultObject);
2759
2760 __ bind(&done);
2761 context()->Plug(rax);
2762 }
2763
2764
EmitLoadJSRuntimeFunction(CallRuntime * expr)2765 void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
2766 // Push function.
2767 __ LoadNativeContextSlot(expr->context_index(), rax);
2768 PushOperand(rax);
2769
2770 // Push undefined as receiver.
2771 OperandStackDepthIncrement(1);
2772 __ PushRoot(Heap::kUndefinedValueRootIndex);
2773 }
2774
2775
EmitCallJSRuntimeFunction(CallRuntime * expr)2776 void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
2777 ZoneList<Expression*>* args = expr->arguments();
2778 int arg_count = args->length();
2779
2780 SetCallPosition(expr);
2781 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
2782 __ Set(rax, arg_count);
2783 __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
2784 RelocInfo::CODE_TARGET);
2785 OperandStackDepthDecrement(arg_count + 1);
2786 RestoreContext();
2787 }
2788
2789
VisitUnaryOperation(UnaryOperation * expr)2790 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
2791 switch (expr->op()) {
2792 case Token::DELETE: {
2793 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
2794 Property* property = expr->expression()->AsProperty();
2795 VariableProxy* proxy = expr->expression()->AsVariableProxy();
2796
2797 if (property != NULL) {
2798 VisitForStackValue(property->obj());
2799 VisitForStackValue(property->key());
2800 CallRuntimeWithOperands(is_strict(language_mode())
2801 ? Runtime::kDeleteProperty_Strict
2802 : Runtime::kDeleteProperty_Sloppy);
2803 context()->Plug(rax);
2804 } else if (proxy != NULL) {
2805 Variable* var = proxy->var();
2806 // Delete of an unqualified identifier is disallowed in strict mode but
2807 // "delete this" is allowed.
2808 bool is_this = var->is_this();
2809 DCHECK(is_sloppy(language_mode()) || is_this);
2810 if (var->IsUnallocated()) {
2811 __ movp(rax, NativeContextOperand());
2812 __ Push(ContextOperand(rax, Context::EXTENSION_INDEX));
2813 __ Push(var->name());
2814 __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
2815 context()->Plug(rax);
2816 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
2817 // Result of deleting non-global variables is false. 'this' is
2818 // not really a variable, though we implement it as one. The
2819 // subexpression does not have side effects.
2820 context()->Plug(is_this);
2821 } else {
2822 // Non-global variable. Call the runtime to try to delete from the
2823 // context where the variable was introduced.
2824 __ Push(var->name());
2825 __ CallRuntime(Runtime::kDeleteLookupSlot);
2826 context()->Plug(rax);
2827 }
2828 } else {
2829 // Result of deleting non-property, non-variable reference is true.
2830 // The subexpression may have side effects.
2831 VisitForEffect(expr->expression());
2832 context()->Plug(true);
2833 }
2834 break;
2835 }
2836
2837 case Token::VOID: {
2838 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
2839 VisitForEffect(expr->expression());
2840 context()->Plug(Heap::kUndefinedValueRootIndex);
2841 break;
2842 }
2843
2844 case Token::NOT: {
2845 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
2846 if (context()->IsEffect()) {
2847 // Unary NOT has no side effects so it's only necessary to visit the
2848 // subexpression. Match the optimizing compiler by not branching.
2849 VisitForEffect(expr->expression());
2850 } else if (context()->IsTest()) {
2851 const TestContext* test = TestContext::cast(context());
2852 // The labels are swapped for the recursive call.
2853 VisitForControl(expr->expression(),
2854 test->false_label(),
2855 test->true_label(),
2856 test->fall_through());
2857 context()->Plug(test->true_label(), test->false_label());
2858 } else {
2859 // We handle value contexts explicitly rather than simply visiting
2860 // for control and plugging the control flow into the context,
2861 // because we need to prepare a pair of extra administrative AST ids
2862 // for the optimizing compiler.
2863 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
2864 Label materialize_true, materialize_false, done;
2865 VisitForControl(expr->expression(),
2866 &materialize_false,
2867 &materialize_true,
2868 &materialize_true);
2869 if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1);
2870 __ bind(&materialize_true);
2871 PrepareForBailoutForId(expr->MaterializeTrueId(),
2872 BailoutState::NO_REGISTERS);
2873 if (context()->IsAccumulatorValue()) {
2874 __ LoadRoot(rax, Heap::kTrueValueRootIndex);
2875 } else {
2876 __ PushRoot(Heap::kTrueValueRootIndex);
2877 }
2878 __ jmp(&done, Label::kNear);
2879 __ bind(&materialize_false);
2880 PrepareForBailoutForId(expr->MaterializeFalseId(),
2881 BailoutState::NO_REGISTERS);
2882 if (context()->IsAccumulatorValue()) {
2883 __ LoadRoot(rax, Heap::kFalseValueRootIndex);
2884 } else {
2885 __ PushRoot(Heap::kFalseValueRootIndex);
2886 }
2887 __ bind(&done);
2888 }
2889 break;
2890 }
2891
2892 case Token::TYPEOF: {
2893 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
2894 {
2895 AccumulatorValueContext context(this);
2896 VisitForTypeofValue(expr->expression());
2897 }
2898 __ movp(rbx, rax);
2899 __ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET);
2900 context()->Plug(rax);
2901 break;
2902 }
2903
2904 default:
2905 UNREACHABLE();
2906 }
2907 }
2908
2909
VisitCountOperation(CountOperation * expr)2910 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
2911 DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
2912
2913 Comment cmnt(masm_, "[ CountOperation");
2914
2915 Property* prop = expr->expression()->AsProperty();
2916 LhsKind assign_type = Property::GetAssignType(prop);
2917
2918 // Evaluate expression and get value.
2919 if (assign_type == VARIABLE) {
2920 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
2921 AccumulatorValueContext context(this);
2922 EmitVariableLoad(expr->expression()->AsVariableProxy());
2923 } else {
2924 // Reserve space for result of postfix operation.
2925 if (expr->is_postfix() && !context()->IsEffect()) {
2926 PushOperand(Smi::kZero);
2927 }
2928 switch (assign_type) {
2929 case NAMED_PROPERTY: {
2930 VisitForStackValue(prop->obj());
2931 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2932 EmitNamedPropertyLoad(prop);
2933 break;
2934 }
2935
2936 case NAMED_SUPER_PROPERTY: {
2937 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2938 VisitForAccumulatorValue(
2939 prop->obj()->AsSuperPropertyReference()->home_object());
2940 PushOperand(result_register());
2941 PushOperand(MemOperand(rsp, kPointerSize));
2942 PushOperand(result_register());
2943 EmitNamedSuperPropertyLoad(prop);
2944 break;
2945 }
2946
2947 case KEYED_SUPER_PROPERTY: {
2948 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2949 VisitForStackValue(
2950 prop->obj()->AsSuperPropertyReference()->home_object());
2951 VisitForAccumulatorValue(prop->key());
2952 PushOperand(result_register());
2953 PushOperand(MemOperand(rsp, 2 * kPointerSize));
2954 PushOperand(MemOperand(rsp, 2 * kPointerSize));
2955 PushOperand(result_register());
2956 EmitKeyedSuperPropertyLoad(prop);
2957 break;
2958 }
2959
2960 case KEYED_PROPERTY: {
2961 VisitForStackValue(prop->obj());
2962 VisitForStackValue(prop->key());
2963 // Leave receiver on stack
2964 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
2965 // Copy of key, needed for later store.
2966 __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
2967 EmitKeyedPropertyLoad(prop);
2968 break;
2969 }
2970
2971 case VARIABLE:
2972 UNREACHABLE();
2973 }
2974 }
2975
2976 // We need a second deoptimization point after loading the value
2977 // in case evaluating the property load my have a side effect.
2978 if (assign_type == VARIABLE) {
2979 PrepareForBailout(expr->expression(), BailoutState::TOS_REGISTER);
2980 } else {
2981 PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER);
2982 }
2983
2984 // Inline smi case if we are in a loop.
2985 Label done, stub_call;
2986 JumpPatchSite patch_site(masm_);
2987 if (ShouldInlineSmiCase(expr->op())) {
2988 Label slow;
2989 patch_site.EmitJumpIfNotSmi(rax, &slow, Label::kNear);
2990
2991 // Save result for postfix expressions.
2992 if (expr->is_postfix()) {
2993 if (!context()->IsEffect()) {
2994 // Save the result on the stack. If we have a named or keyed property
2995 // we store the result under the receiver that is currently on top
2996 // of the stack.
2997 switch (assign_type) {
2998 case VARIABLE:
2999 __ Push(rax);
3000 break;
3001 case NAMED_PROPERTY:
3002 __ movp(Operand(rsp, kPointerSize), rax);
3003 break;
3004 case NAMED_SUPER_PROPERTY:
3005 __ movp(Operand(rsp, 2 * kPointerSize), rax);
3006 break;
3007 case KEYED_PROPERTY:
3008 __ movp(Operand(rsp, 2 * kPointerSize), rax);
3009 break;
3010 case KEYED_SUPER_PROPERTY:
3011 __ movp(Operand(rsp, 3 * kPointerSize), rax);
3012 break;
3013 }
3014 }
3015 }
3016
3017 SmiOperationConstraints constraints =
3018 SmiOperationConstraint::kPreserveSourceRegister |
3019 SmiOperationConstraint::kBailoutOnNoOverflow;
3020 if (expr->op() == Token::INC) {
3021 __ SmiAddConstant(rax, rax, Smi::FromInt(1), constraints, &done,
3022 Label::kNear);
3023 } else {
3024 __ SmiSubConstant(rax, rax, Smi::FromInt(1), constraints, &done,
3025 Label::kNear);
3026 }
3027 __ jmp(&stub_call, Label::kNear);
3028 __ bind(&slow);
3029 }
3030
3031 // Convert old value into a number.
3032 __ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
3033 RestoreContext();
3034 PrepareForBailoutForId(expr->ToNumberId(), BailoutState::TOS_REGISTER);
3035
3036 // Save result for postfix expressions.
3037 if (expr->is_postfix()) {
3038 if (!context()->IsEffect()) {
3039 // Save the result on the stack. If we have a named or keyed property
3040 // we store the result under the receiver that is currently on top
3041 // of the stack.
3042 switch (assign_type) {
3043 case VARIABLE:
3044 PushOperand(rax);
3045 break;
3046 case NAMED_PROPERTY:
3047 __ movp(Operand(rsp, kPointerSize), rax);
3048 break;
3049 case NAMED_SUPER_PROPERTY:
3050 __ movp(Operand(rsp, 2 * kPointerSize), rax);
3051 break;
3052 case KEYED_PROPERTY:
3053 __ movp(Operand(rsp, 2 * kPointerSize), rax);
3054 break;
3055 case KEYED_SUPER_PROPERTY:
3056 __ movp(Operand(rsp, 3 * kPointerSize), rax);
3057 break;
3058 }
3059 }
3060 }
3061
3062 SetExpressionPosition(expr);
3063
3064 // Call stub for +1/-1.
3065 __ bind(&stub_call);
3066 __ movp(rdx, rax);
3067 __ Move(rax, Smi::FromInt(1));
3068 Handle<Code> code =
3069 CodeFactory::BinaryOpIC(isolate(), expr->binary_op()).code();
3070 CallIC(code, expr->CountBinOpFeedbackId());
3071 patch_site.EmitPatchInfo();
3072 __ bind(&done);
3073
3074 // Store the value returned in rax.
3075 switch (assign_type) {
3076 case VARIABLE: {
3077 VariableProxy* proxy = expr->expression()->AsVariableProxy();
3078 if (expr->is_postfix()) {
3079 // Perform the assignment as if via '='.
3080 { EffectContext context(this);
3081 EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
3082 proxy->hole_check_mode());
3083 PrepareForBailoutForId(expr->AssignmentId(),
3084 BailoutState::TOS_REGISTER);
3085 context.Plug(rax);
3086 }
3087 // For all contexts except kEffect: We have the result on
3088 // top of the stack.
3089 if (!context()->IsEffect()) {
3090 context()->PlugTOS();
3091 }
3092 } else {
3093 // Perform the assignment as if via '='.
3094 EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(),
3095 proxy->hole_check_mode());
3096 PrepareForBailoutForId(expr->AssignmentId(),
3097 BailoutState::TOS_REGISTER);
3098 context()->Plug(rax);
3099 }
3100 break;
3101 }
3102 case NAMED_PROPERTY: {
3103 PopOperand(StoreDescriptor::ReceiverRegister());
3104 CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value());
3105 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3106 if (expr->is_postfix()) {
3107 if (!context()->IsEffect()) {
3108 context()->PlugTOS();
3109 }
3110 } else {
3111 context()->Plug(rax);
3112 }
3113 break;
3114 }
3115 case NAMED_SUPER_PROPERTY: {
3116 EmitNamedSuperPropertyStore(prop);
3117 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3118 if (expr->is_postfix()) {
3119 if (!context()->IsEffect()) {
3120 context()->PlugTOS();
3121 }
3122 } else {
3123 context()->Plug(rax);
3124 }
3125 break;
3126 }
3127 case KEYED_SUPER_PROPERTY: {
3128 EmitKeyedSuperPropertyStore(prop);
3129 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3130 if (expr->is_postfix()) {
3131 if (!context()->IsEffect()) {
3132 context()->PlugTOS();
3133 }
3134 } else {
3135 context()->Plug(rax);
3136 }
3137 break;
3138 }
3139 case KEYED_PROPERTY: {
3140 PopOperand(StoreDescriptor::NameRegister());
3141 PopOperand(StoreDescriptor::ReceiverRegister());
3142 CallKeyedStoreIC(expr->CountSlot());
3143 PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER);
3144 if (expr->is_postfix()) {
3145 if (!context()->IsEffect()) {
3146 context()->PlugTOS();
3147 }
3148 } else {
3149 context()->Plug(rax);
3150 }
3151 break;
3152 }
3153 }
3154 }
3155
3156
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)3157 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
3158 Expression* sub_expr,
3159 Handle<String> check) {
3160 Label materialize_true, materialize_false;
3161 Label* if_true = NULL;
3162 Label* if_false = NULL;
3163 Label* fall_through = NULL;
3164 context()->PrepareTest(&materialize_true, &materialize_false,
3165 &if_true, &if_false, &fall_through);
3166
3167 { AccumulatorValueContext context(this);
3168 VisitForTypeofValue(sub_expr);
3169 }
3170 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3171
3172 Factory* factory = isolate()->factory();
3173 if (String::Equals(check, factory->number_string())) {
3174 __ JumpIfSmi(rax, if_true);
3175 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
3176 __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex);
3177 Split(equal, if_true, if_false, fall_through);
3178 } else if (String::Equals(check, factory->string_string())) {
3179 __ JumpIfSmi(rax, if_false);
3180 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
3181 Split(below, if_true, if_false, fall_through);
3182 } else if (String::Equals(check, factory->symbol_string())) {
3183 __ JumpIfSmi(rax, if_false);
3184 __ CmpObjectType(rax, SYMBOL_TYPE, rdx);
3185 Split(equal, if_true, if_false, fall_through);
3186 } else if (String::Equals(check, factory->boolean_string())) {
3187 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
3188 __ j(equal, if_true);
3189 __ CompareRoot(rax, Heap::kFalseValueRootIndex);
3190 Split(equal, if_true, if_false, fall_through);
3191 } else if (String::Equals(check, factory->undefined_string())) {
3192 __ CompareRoot(rax, Heap::kNullValueRootIndex);
3193 __ j(equal, if_false);
3194 __ JumpIfSmi(rax, if_false);
3195 // Check for undetectable objects => true.
3196 __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
3197 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
3198 Immediate(1 << Map::kIsUndetectable));
3199 Split(not_zero, if_true, if_false, fall_through);
3200 } else if (String::Equals(check, factory->function_string())) {
3201 __ JumpIfSmi(rax, if_false);
3202 // Check for callable and not undetectable objects => true.
3203 __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
3204 __ movzxbl(rdx, FieldOperand(rdx, Map::kBitFieldOffset));
3205 __ andb(rdx,
3206 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
3207 __ cmpb(rdx, Immediate(1 << Map::kIsCallable));
3208 Split(equal, if_true, if_false, fall_through);
3209 } else if (String::Equals(check, factory->object_string())) {
3210 __ JumpIfSmi(rax, if_false);
3211 __ CompareRoot(rax, Heap::kNullValueRootIndex);
3212 __ j(equal, if_true);
3213 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
3214 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rdx);
3215 __ j(below, if_false);
3216 // Check for callable or undetectable objects => false.
3217 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
3218 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
3219 Split(zero, if_true, if_false, fall_through);
3220 // clang-format off
3221 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
3222 } else if (String::Equals(check, factory->type##_string())) { \
3223 __ JumpIfSmi(rax, if_false); \
3224 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); \
3225 __ CompareRoot(rax, Heap::k##Type##MapRootIndex); \
3226 Split(equal, if_true, if_false, fall_through);
3227 SIMD128_TYPES(SIMD128_TYPE)
3228 #undef SIMD128_TYPE
3229 // clang-format on
3230 } else {
3231 if (if_false != fall_through) __ jmp(if_false);
3232 }
3233 context()->Plug(if_true, if_false);
3234 }
3235
3236
VisitCompareOperation(CompareOperation * expr)3237 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
3238 Comment cmnt(masm_, "[ CompareOperation");
3239
3240 // First we try a fast inlined version of the compare when one of
3241 // the operands is a literal.
3242 if (TryLiteralCompare(expr)) return;
3243
3244 // Always perform the comparison for its control flow. Pack the result
3245 // into the expression's context after the comparison is performed.
3246 Label materialize_true, materialize_false;
3247 Label* if_true = NULL;
3248 Label* if_false = NULL;
3249 Label* fall_through = NULL;
3250 context()->PrepareTest(&materialize_true, &materialize_false,
3251 &if_true, &if_false, &fall_through);
3252
3253 Token::Value op = expr->op();
3254 VisitForStackValue(expr->left());
3255 switch (op) {
3256 case Token::IN:
3257 VisitForStackValue(expr->right());
3258 SetExpressionPosition(expr);
3259 EmitHasProperty();
3260 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
3261 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
3262 Split(equal, if_true, if_false, fall_through);
3263 break;
3264
3265 case Token::INSTANCEOF: {
3266 VisitForAccumulatorValue(expr->right());
3267 SetExpressionPosition(expr);
3268 PopOperand(rdx);
3269 __ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET);
3270 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
3271 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
3272 Split(equal, if_true, if_false, fall_through);
3273 break;
3274 }
3275
3276 default: {
3277 VisitForAccumulatorValue(expr->right());
3278 SetExpressionPosition(expr);
3279 Condition cc = CompareIC::ComputeCondition(op);
3280 PopOperand(rdx);
3281
3282 bool inline_smi_code = ShouldInlineSmiCase(op);
3283 JumpPatchSite patch_site(masm_);
3284 if (inline_smi_code) {
3285 Label slow_case;
3286 __ movp(rcx, rdx);
3287 __ orp(rcx, rax);
3288 patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
3289 __ cmpp(rdx, rax);
3290 Split(cc, if_true, if_false, NULL);
3291 __ bind(&slow_case);
3292 }
3293
3294 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
3295 CallIC(ic, expr->CompareOperationFeedbackId());
3296 patch_site.EmitPatchInfo();
3297
3298 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3299 __ testp(rax, rax);
3300 Split(cc, if_true, if_false, fall_through);
3301 }
3302 }
3303
3304 // Convert the result of the comparison into one expected for this
3305 // expression's context.
3306 context()->Plug(if_true, if_false);
3307 }
3308
3309
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)3310 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
3311 Expression* sub_expr,
3312 NilValue nil) {
3313 Label materialize_true, materialize_false;
3314 Label* if_true = NULL;
3315 Label* if_false = NULL;
3316 Label* fall_through = NULL;
3317 context()->PrepareTest(&materialize_true, &materialize_false,
3318 &if_true, &if_false, &fall_through);
3319
3320 VisitForAccumulatorValue(sub_expr);
3321 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3322 if (expr->op() == Token::EQ_STRICT) {
3323 Heap::RootListIndex nil_value = nil == kNullValue ?
3324 Heap::kNullValueRootIndex :
3325 Heap::kUndefinedValueRootIndex;
3326 __ CompareRoot(rax, nil_value);
3327 Split(equal, if_true, if_false, fall_through);
3328 } else {
3329 __ JumpIfSmi(rax, if_false);
3330 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
3331 __ testb(FieldOperand(rax, Map::kBitFieldOffset),
3332 Immediate(1 << Map::kIsUndetectable));
3333 Split(not_zero, if_true, if_false, fall_through);
3334 }
3335 context()->Plug(if_true, if_false);
3336 }
3337
3338
result_register()3339 Register FullCodeGenerator::result_register() {
3340 return rax;
3341 }
3342
3343
context_register()3344 Register FullCodeGenerator::context_register() {
3345 return rsi;
3346 }
3347
LoadFromFrameField(int frame_offset,Register value)3348 void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) {
3349 DCHECK(IsAligned(frame_offset, kPointerSize));
3350 __ movp(value, Operand(rbp, frame_offset));
3351 }
3352
StoreToFrameField(int frame_offset,Register value)3353 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
3354 DCHECK(IsAligned(frame_offset, kPointerSize));
3355 __ movp(Operand(rbp, frame_offset), value);
3356 }
3357
3358
LoadContextField(Register dst,int context_index)3359 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
3360 __ movp(dst, ContextOperand(rsi, context_index));
3361 }
3362
3363
PushFunctionArgumentForContextAllocation()3364 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
3365 DeclarationScope* closure_scope = scope()->GetClosureScope();
3366 if (closure_scope->is_script_scope() ||
3367 closure_scope->is_module_scope()) {
3368 // Contexts nested in the native context have a canonical empty function
3369 // as their closure, not the anonymous closure containing the global
3370 // code.
3371 __ movp(rax, NativeContextOperand());
3372 PushOperand(ContextOperand(rax, Context::CLOSURE_INDEX));
3373 } else if (closure_scope->is_eval_scope()) {
3374 // Contexts created by a call to eval have the same closure as the
3375 // context calling eval, not the anonymous closure containing the eval
3376 // code. Fetch it from the context.
3377 PushOperand(ContextOperand(rsi, Context::CLOSURE_INDEX));
3378 } else {
3379 DCHECK(closure_scope->is_function_scope());
3380 PushOperand(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3381 }
3382 }
3383
3384
3385 // ----------------------------------------------------------------------------
3386 // Non-local control flow support.
3387
3388
EnterFinallyBlock()3389 void FullCodeGenerator::EnterFinallyBlock() {
3390 DCHECK(!result_register().is(rdx));
3391
3392 // Store pending message while executing finally block.
3393 ExternalReference pending_message_obj =
3394 ExternalReference::address_of_pending_message_obj(isolate());
3395 __ Load(rdx, pending_message_obj);
3396 PushOperand(rdx);
3397
3398 ClearPendingMessage();
3399 }
3400
3401
ExitFinallyBlock()3402 void FullCodeGenerator::ExitFinallyBlock() {
3403 DCHECK(!result_register().is(rdx));
3404 // Restore pending message from stack.
3405 PopOperand(rdx);
3406 ExternalReference pending_message_obj =
3407 ExternalReference::address_of_pending_message_obj(isolate());
3408 __ Store(pending_message_obj, rdx);
3409 }
3410
3411
ClearPendingMessage()3412 void FullCodeGenerator::ClearPendingMessage() {
3413 DCHECK(!result_register().is(rdx));
3414 ExternalReference pending_message_obj =
3415 ExternalReference::address_of_pending_message_obj(isolate());
3416 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
3417 __ Store(pending_message_obj, rdx);
3418 }
3419
3420
EmitCommands()3421 void FullCodeGenerator::DeferredCommands::EmitCommands() {
3422 __ Pop(result_register()); // Restore the accumulator.
3423 __ Pop(rdx); // Get the token.
3424 for (DeferredCommand cmd : commands_) {
3425 Label skip;
3426 __ SmiCompare(rdx, Smi::FromInt(cmd.token));
3427 __ j(not_equal, &skip);
3428 switch (cmd.command) {
3429 case kReturn:
3430 codegen_->EmitUnwindAndReturn();
3431 break;
3432 case kThrow:
3433 __ Push(result_register());
3434 __ CallRuntime(Runtime::kReThrow);
3435 break;
3436 case kContinue:
3437 codegen_->EmitContinue(cmd.target);
3438 break;
3439 case kBreak:
3440 codegen_->EmitBreak(cmd.target);
3441 break;
3442 }
3443 __ bind(&skip);
3444 }
3445 }
3446
3447 #undef __
3448
3449
3450 static const byte kJnsInstruction = 0x79;
3451 static const byte kNopByteOne = 0x66;
3452 static const byte kNopByteTwo = 0x90;
3453 #ifdef DEBUG
3454 static const byte kCallInstruction = 0xe8;
3455 #endif
3456
3457
PatchAt(Code * unoptimized_code,Address pc,BackEdgeState target_state,Code * replacement_code)3458 void BackEdgeTable::PatchAt(Code* unoptimized_code,
3459 Address pc,
3460 BackEdgeState target_state,
3461 Code* replacement_code) {
3462 Address call_target_address = pc - kIntSize;
3463 Address jns_instr_address = call_target_address - 3;
3464 Address jns_offset_address = call_target_address - 2;
3465
3466 switch (target_state) {
3467 case INTERRUPT:
3468 // sub <profiling_counter>, <delta> ;; Not changed
3469 // jns ok
3470 // call <interrupt stub>
3471 // ok:
3472 *jns_instr_address = kJnsInstruction;
3473 *jns_offset_address = kJnsOffset;
3474 break;
3475 case ON_STACK_REPLACEMENT:
3476 // sub <profiling_counter>, <delta> ;; Not changed
3477 // nop
3478 // nop
3479 // call <on-stack replacment>
3480 // ok:
3481 *jns_instr_address = kNopByteOne;
3482 *jns_offset_address = kNopByteTwo;
3483 break;
3484 }
3485
3486 Assembler::set_target_address_at(unoptimized_code->GetIsolate(),
3487 call_target_address, unoptimized_code,
3488 replacement_code->entry());
3489 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
3490 unoptimized_code, call_target_address, replacement_code);
3491 }
3492
3493
GetBackEdgeState(Isolate * isolate,Code * unoptimized_code,Address pc)3494 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
3495 Isolate* isolate,
3496 Code* unoptimized_code,
3497 Address pc) {
3498 Address call_target_address = pc - kIntSize;
3499 Address jns_instr_address = call_target_address - 3;
3500 DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
3501
3502 if (*jns_instr_address == kJnsInstruction) {
3503 DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
3504 DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
3505 Assembler::target_address_at(call_target_address,
3506 unoptimized_code));
3507 return INTERRUPT;
3508 }
3509
3510 DCHECK_EQ(kNopByteOne, *jns_instr_address);
3511 DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
3512
3513 DCHECK_EQ(
3514 isolate->builtins()->OnStackReplacement()->entry(),
3515 Assembler::target_address_at(call_target_address, unoptimized_code));
3516 return ON_STACK_REPLACEMENT;
3517 }
3518
3519 } // namespace internal
3520 } // namespace v8
3521
3522 #endif // V8_TARGET_ARCH_X64
3523