1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_IA32
6
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/codegen.h"
12 #include "src/ia32/code-stubs-ia32.h"
13 #include "src/ia32/frames-ia32.h"
14 #include "src/ic/handler-compiler.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/isolate.h"
18 #include "src/regexp/jsregexp.h"
19 #include "src/regexp/regexp-macro-assembler.h"
20 #include "src/runtime/runtime.h"
21
22 namespace v8 {
23 namespace internal {
24
25 #define __ ACCESS_MASM(masm)
26
Generate(MacroAssembler * masm)27 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
28 __ pop(ecx);
29 __ mov(MemOperand(esp, eax, times_4, 0), edi);
30 __ push(edi);
31 __ push(ebx);
32 __ push(ecx);
33 __ add(eax, Immediate(3));
34 __ TailCallRuntime(Runtime::kNewArray);
35 }
36
InitializeDescriptor(CodeStubDescriptor * descriptor)37 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
38 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
39 descriptor->Initialize(eax, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
40 }
41
InitializeDescriptor(CodeStubDescriptor * descriptor)42 void FastFunctionBindStub::InitializeDescriptor(
43 CodeStubDescriptor* descriptor) {
44 Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
45 descriptor->Initialize(eax, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
46 }
47
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)48 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
49 ExternalReference miss) {
50 // Update the static counter each time a new code stub is generated.
51 isolate()->counters()->code_stubs()->Increment();
52
53 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
54 int param_count = descriptor.GetRegisterParameterCount();
55 {
56 // Call the runtime system in a fresh internal frame.
57 FrameScope scope(masm, StackFrame::INTERNAL);
58 DCHECK(param_count == 0 ||
59 eax.is(descriptor.GetRegisterParameter(param_count - 1)));
60 // Push arguments
61 for (int i = 0; i < param_count; ++i) {
62 __ push(descriptor.GetRegisterParameter(i));
63 }
64 __ CallExternalReference(miss, param_count);
65 }
66
67 __ ret(0);
68 }
69
70
Generate(MacroAssembler * masm)71 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
72 // We don't allow a GC during a store buffer overflow so there is no need to
73 // store the registers in any particular way, but we do have to store and
74 // restore them.
75 __ pushad();
76 if (save_doubles()) {
77 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
78 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
79 XMMRegister reg = XMMRegister::from_code(i);
80 __ movsd(Operand(esp, i * kDoubleSize), reg);
81 }
82 }
83 const int argument_count = 1;
84
85 AllowExternalCallThatCantCauseGC scope(masm);
86 __ PrepareCallCFunction(argument_count, ecx);
87 __ mov(Operand(esp, 0 * kPointerSize),
88 Immediate(ExternalReference::isolate_address(isolate())));
89 __ CallCFunction(
90 ExternalReference::store_buffer_overflow_function(isolate()),
91 argument_count);
92 if (save_doubles()) {
93 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
94 XMMRegister reg = XMMRegister::from_code(i);
95 __ movsd(reg, Operand(esp, i * kDoubleSize));
96 }
97 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
98 }
99 __ popad();
100 __ ret(0);
101 }
102
103
104 class FloatingPointHelper : public AllStatic {
105 public:
106 enum ArgLocation {
107 ARGS_ON_STACK,
108 ARGS_IN_REGISTERS
109 };
110
111 // Code pattern for loading a floating point value. Input value must
112 // be either a smi or a heap number object (fp value). Requirements:
113 // operand in register number. Returns operand as floating point number
114 // on FPU stack.
115 static void LoadFloatOperand(MacroAssembler* masm, Register number);
116
117 // Test if operands are smi or number objects (fp). Requirements:
118 // operand_1 in eax, operand_2 in edx; falls through on float
119 // operands, jumps to the non_float label otherwise.
120 static void CheckFloatOperands(MacroAssembler* masm,
121 Label* non_float,
122 Register scratch);
123
124 // Test if operands are numbers (smi or HeapNumber objects), and load
125 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
126 // either operand is not a number. Operands are in edx and eax.
127 // Leaves operands unchanged.
128 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
129 };
130
131
Generate(MacroAssembler * masm)132 void DoubleToIStub::Generate(MacroAssembler* masm) {
133 Register input_reg = this->source();
134 Register final_result_reg = this->destination();
135 DCHECK(is_truncating());
136
137 Label check_negative, process_64_bits, done, done_no_stash;
138
139 int double_offset = offset();
140
141 // Account for return address and saved regs if input is esp.
142 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
143
144 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
145 MemOperand exponent_operand(MemOperand(input_reg,
146 double_offset + kDoubleSize / 2));
147
148 Register scratch1;
149 {
150 Register scratch_candidates[3] = { ebx, edx, edi };
151 for (int i = 0; i < 3; i++) {
152 scratch1 = scratch_candidates[i];
153 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
154 }
155 }
156 // Since we must use ecx for shifts below, use some other register (eax)
157 // to calculate the result if ecx is the requested return register.
158 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
159 // Save ecx if it isn't the return register and therefore volatile, or if it
160 // is the return register, then save the temp register we use in its stead for
161 // the result.
162 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
163 __ push(scratch1);
164 __ push(save_reg);
165
166 bool stash_exponent_copy = !input_reg.is(esp);
167 __ mov(scratch1, mantissa_operand);
168 if (CpuFeatures::IsSupported(SSE3)) {
169 CpuFeatureScope scope(masm, SSE3);
170 // Load x87 register with heap number.
171 __ fld_d(mantissa_operand);
172 }
173 __ mov(ecx, exponent_operand);
174 if (stash_exponent_copy) __ push(ecx);
175
176 __ and_(ecx, HeapNumber::kExponentMask);
177 __ shr(ecx, HeapNumber::kExponentShift);
178 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
179 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
180 __ j(below, &process_64_bits);
181
182 // Result is entirely in lower 32-bits of mantissa
183 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
184 if (CpuFeatures::IsSupported(SSE3)) {
185 __ fstp(0);
186 }
187 __ sub(ecx, Immediate(delta));
188 __ xor_(result_reg, result_reg);
189 __ cmp(ecx, Immediate(31));
190 __ j(above, &done);
191 __ shl_cl(scratch1);
192 __ jmp(&check_negative);
193
194 __ bind(&process_64_bits);
195 if (CpuFeatures::IsSupported(SSE3)) {
196 CpuFeatureScope scope(masm, SSE3);
197 if (stash_exponent_copy) {
198 // Already a copy of the exponent on the stack, overwrite it.
199 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
200 __ sub(esp, Immediate(kDoubleSize / 2));
201 } else {
202 // Reserve space for 64 bit answer.
203 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
204 }
205 // Do conversion, which cannot fail because we checked the exponent.
206 __ fisttp_d(Operand(esp, 0));
207 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
208 __ add(esp, Immediate(kDoubleSize));
209 __ jmp(&done_no_stash);
210 } else {
211 // Result must be extracted from shifted 32-bit mantissa
212 __ sub(ecx, Immediate(delta));
213 __ neg(ecx);
214 if (stash_exponent_copy) {
215 __ mov(result_reg, MemOperand(esp, 0));
216 } else {
217 __ mov(result_reg, exponent_operand);
218 }
219 __ and_(result_reg,
220 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
221 __ add(result_reg,
222 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
223 __ shrd_cl(scratch1, result_reg);
224 __ shr_cl(result_reg);
225 __ test(ecx, Immediate(32));
226 __ cmov(not_equal, scratch1, result_reg);
227 }
228
229 // If the double was negative, negate the integer result.
230 __ bind(&check_negative);
231 __ mov(result_reg, scratch1);
232 __ neg(result_reg);
233 if (stash_exponent_copy) {
234 __ cmp(MemOperand(esp, 0), Immediate(0));
235 } else {
236 __ cmp(exponent_operand, Immediate(0));
237 }
238 __ cmov(greater, result_reg, scratch1);
239
240 // Restore registers
241 __ bind(&done);
242 if (stash_exponent_copy) {
243 __ add(esp, Immediate(kDoubleSize / 2));
244 }
245 __ bind(&done_no_stash);
246 if (!final_result_reg.is(result_reg)) {
247 DCHECK(final_result_reg.is(ecx));
248 __ mov(final_result_reg, result_reg);
249 }
250 __ pop(save_reg);
251 __ pop(scratch1);
252 __ ret(0);
253 }
254
255
LoadFloatOperand(MacroAssembler * masm,Register number)256 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
257 Register number) {
258 Label load_smi, done;
259
260 __ JumpIfSmi(number, &load_smi, Label::kNear);
261 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
262 __ jmp(&done, Label::kNear);
263
264 __ bind(&load_smi);
265 __ SmiUntag(number);
266 __ push(number);
267 __ fild_s(Operand(esp, 0));
268 __ pop(number);
269
270 __ bind(&done);
271 }
272
273
LoadSSE2Operands(MacroAssembler * masm,Label * not_numbers)274 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
275 Label* not_numbers) {
276 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
277 // Load operand in edx into xmm0, or branch to not_numbers.
278 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
279 Factory* factory = masm->isolate()->factory();
280 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
281 __ j(not_equal, not_numbers); // Argument in edx is not a number.
282 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
283 __ bind(&load_eax);
284 // Load operand in eax into xmm1, or branch to not_numbers.
285 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
286 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
287 __ j(equal, &load_float_eax, Label::kNear);
288 __ jmp(not_numbers); // Argument in eax is not a number.
289 __ bind(&load_smi_edx);
290 __ SmiUntag(edx); // Untag smi before converting to float.
291 __ Cvtsi2sd(xmm0, edx);
292 __ SmiTag(edx); // Retag smi for heap number overwriting test.
293 __ jmp(&load_eax);
294 __ bind(&load_smi_eax);
295 __ SmiUntag(eax); // Untag smi before converting to float.
296 __ Cvtsi2sd(xmm1, eax);
297 __ SmiTag(eax); // Retag smi for heap number overwriting test.
298 __ jmp(&done, Label::kNear);
299 __ bind(&load_float_eax);
300 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
301 __ bind(&done);
302 }
303
304
CheckFloatOperands(MacroAssembler * masm,Label * non_float,Register scratch)305 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
306 Label* non_float,
307 Register scratch) {
308 Label test_other, done;
309 // Test if both operands are floats or smi -> scratch=k_is_float;
310 // Otherwise scratch = k_not_float.
311 __ JumpIfSmi(edx, &test_other, Label::kNear);
312 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
313 Factory* factory = masm->isolate()->factory();
314 __ cmp(scratch, factory->heap_number_map());
315 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
316
317 __ bind(&test_other);
318 __ JumpIfSmi(eax, &done, Label::kNear);
319 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
320 __ cmp(scratch, factory->heap_number_map());
321 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
322
323 // Fall-through: Both operands are numbers.
324 __ bind(&done);
325 }
326
327
Generate(MacroAssembler * masm)328 void MathPowStub::Generate(MacroAssembler* masm) {
329 const Register exponent = MathPowTaggedDescriptor::exponent();
330 DCHECK(exponent.is(eax));
331 const Register scratch = ecx;
332 const XMMRegister double_result = xmm3;
333 const XMMRegister double_base = xmm2;
334 const XMMRegister double_exponent = xmm1;
335 const XMMRegister double_scratch = xmm4;
336
337 Label call_runtime, done, exponent_not_smi, int_exponent;
338
339 // Save 1 in double_result - we need this several times later on.
340 __ mov(scratch, Immediate(1));
341 __ Cvtsi2sd(double_result, scratch);
342
343 if (exponent_type() == TAGGED) {
344 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
345 __ SmiUntag(exponent);
346 __ jmp(&int_exponent);
347
348 __ bind(&exponent_not_smi);
349 __ movsd(double_exponent,
350 FieldOperand(exponent, HeapNumber::kValueOffset));
351 }
352
353 if (exponent_type() != INTEGER) {
354 Label fast_power, try_arithmetic_simplification;
355 __ DoubleToI(exponent, double_exponent, double_scratch,
356 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
357 &try_arithmetic_simplification,
358 &try_arithmetic_simplification);
359 __ jmp(&int_exponent);
360
361 __ bind(&try_arithmetic_simplification);
362 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
363 __ cvttsd2si(exponent, Operand(double_exponent));
364 __ cmp(exponent, Immediate(0x1));
365 __ j(overflow, &call_runtime);
366
367 // Using FPU instructions to calculate power.
368 Label fast_power_failed;
369 __ bind(&fast_power);
370 __ fnclex(); // Clear flags to catch exceptions later.
371 // Transfer (B)ase and (E)xponent onto the FPU register stack.
372 __ sub(esp, Immediate(kDoubleSize));
373 __ movsd(Operand(esp, 0), double_exponent);
374 __ fld_d(Operand(esp, 0)); // E
375 __ movsd(Operand(esp, 0), double_base);
376 __ fld_d(Operand(esp, 0)); // B, E
377
378 // Exponent is in st(1) and base is in st(0)
379 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
380 // FYL2X calculates st(1) * log2(st(0))
381 __ fyl2x(); // X
382 __ fld(0); // X, X
383 __ frndint(); // rnd(X), X
384 __ fsub(1); // rnd(X), X-rnd(X)
385 __ fxch(1); // X - rnd(X), rnd(X)
386 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
387 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
388 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
389 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
390 // FSCALE calculates st(0) * 2^st(1)
391 __ fscale(); // 2^X, rnd(X)
392 __ fstp(1); // 2^X
393 // Bail out to runtime in case of exceptions in the status word.
394 __ fnstsw_ax();
395 __ test_b(eax,
396 Immediate(0x5F)); // We check for all but precision exception.
397 __ j(not_zero, &fast_power_failed, Label::kNear);
398 __ fstp_d(Operand(esp, 0));
399 __ movsd(double_result, Operand(esp, 0));
400 __ add(esp, Immediate(kDoubleSize));
401 __ jmp(&done);
402
403 __ bind(&fast_power_failed);
404 __ fninit();
405 __ add(esp, Immediate(kDoubleSize));
406 __ jmp(&call_runtime);
407 }
408
409 // Calculate power with integer exponent.
410 __ bind(&int_exponent);
411 const XMMRegister double_scratch2 = double_exponent;
412 __ mov(scratch, exponent); // Back up exponent.
413 __ movsd(double_scratch, double_base); // Back up base.
414 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
415
416 // Get absolute value of exponent.
417 Label no_neg, while_true, while_false;
418 __ test(scratch, scratch);
419 __ j(positive, &no_neg, Label::kNear);
420 __ neg(scratch);
421 __ bind(&no_neg);
422
423 __ j(zero, &while_false, Label::kNear);
424 __ shr(scratch, 1);
425 // Above condition means CF==0 && ZF==0. This means that the
426 // bit that has been shifted out is 0 and the result is not 0.
427 __ j(above, &while_true, Label::kNear);
428 __ movsd(double_result, double_scratch);
429 __ j(zero, &while_false, Label::kNear);
430
431 __ bind(&while_true);
432 __ shr(scratch, 1);
433 __ mulsd(double_scratch, double_scratch);
434 __ j(above, &while_true, Label::kNear);
435 __ mulsd(double_result, double_scratch);
436 __ j(not_zero, &while_true);
437
438 __ bind(&while_false);
439 // scratch has the original value of the exponent - if the exponent is
440 // negative, return 1/result.
441 __ test(exponent, exponent);
442 __ j(positive, &done);
443 __ divsd(double_scratch2, double_result);
444 __ movsd(double_result, double_scratch2);
445 // Test whether result is zero. Bail out to check for subnormal result.
446 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
447 __ xorps(double_scratch2, double_scratch2);
448 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
449 // double_exponent aliased as double_scratch2 has already been overwritten
450 // and may not have contained the exponent value in the first place when the
451 // exponent is a smi. We reset it with exponent value before bailing out.
452 __ j(not_equal, &done);
453 __ Cvtsi2sd(double_exponent, exponent);
454
455 // Returning or bailing out.
456 __ bind(&call_runtime);
457 {
458 AllowExternalCallThatCantCauseGC scope(masm);
459 __ PrepareCallCFunction(4, scratch);
460 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
461 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
462 __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
463 4);
464 }
465 // Return value is in st(0) on ia32.
466 // Store it into the (fixed) result register.
467 __ sub(esp, Immediate(kDoubleSize));
468 __ fstp_d(Operand(esp, 0));
469 __ movsd(double_result, Operand(esp, 0));
470 __ add(esp, Immediate(kDoubleSize));
471
472 __ bind(&done);
473 __ ret(0);
474 }
475
Generate(MacroAssembler * masm)476 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
477 Label miss;
478 Register receiver = LoadDescriptor::ReceiverRegister();
479 // With careful management, we won't have to save slot and vector on
480 // the stack. Simply handle the possibly missing case first.
481 // TODO(mvstanton): this code can be more efficient.
482 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
483 Immediate(isolate()->factory()->the_hole_value()));
484 __ j(equal, &miss);
485 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
486 __ ret(0);
487
488 __ bind(&miss);
489 PropertyAccessCompiler::TailCallBuiltin(
490 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
491 }
492
493
Generate(MacroAssembler * masm)494 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
495 // Return address is on the stack.
496 Label miss;
497
498 Register receiver = LoadDescriptor::ReceiverRegister();
499 Register index = LoadDescriptor::NameRegister();
500 Register scratch = edi;
501 DCHECK(!scratch.is(receiver) && !scratch.is(index));
502 Register result = eax;
503 DCHECK(!result.is(scratch));
504 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
505 result.is(LoadDescriptor::SlotRegister()));
506
507 // StringCharAtGenerator doesn't use the result register until it's passed
508 // the different miss possibilities. If it did, we would have a conflict
509 // when FLAG_vector_ics is true.
510 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
511 &miss, // When not a string.
512 &miss, // When not a number.
513 &miss, // When index out of range.
514 RECEIVER_IS_STRING);
515 char_at_generator.GenerateFast(masm);
516 __ ret(0);
517
518 StubRuntimeCallHelper call_helper;
519 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
520
521 __ bind(&miss);
522 PropertyAccessCompiler::TailCallBuiltin(
523 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
524 }
525
526
Generate(MacroAssembler * masm)527 void RegExpExecStub::Generate(MacroAssembler* masm) {
528 // Just jump directly to runtime if native RegExp is not selected at compile
529 // time or if regexp entry in generated code is turned off runtime switch or
530 // at compilation.
531 #ifdef V8_INTERPRETED_REGEXP
532 __ TailCallRuntime(Runtime::kRegExpExec);
533 #else // V8_INTERPRETED_REGEXP
534
535 // Stack frame on entry.
536 // esp[0]: return address
537 // esp[4]: last_match_info (expected JSArray)
538 // esp[8]: previous index
539 // esp[12]: subject string
540 // esp[16]: JSRegExp object
541
542 static const int kLastMatchInfoOffset = 1 * kPointerSize;
543 static const int kPreviousIndexOffset = 2 * kPointerSize;
544 static const int kSubjectOffset = 3 * kPointerSize;
545 static const int kJSRegExpOffset = 4 * kPointerSize;
546
547 Label runtime;
548 Factory* factory = isolate()->factory();
549
550 // Ensure that a RegExp stack is allocated.
551 ExternalReference address_of_regexp_stack_memory_address =
552 ExternalReference::address_of_regexp_stack_memory_address(isolate());
553 ExternalReference address_of_regexp_stack_memory_size =
554 ExternalReference::address_of_regexp_stack_memory_size(isolate());
555 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
556 __ test(ebx, ebx);
557 __ j(zero, &runtime);
558
559 // Check that the first argument is a JSRegExp object.
560 __ mov(eax, Operand(esp, kJSRegExpOffset));
561 STATIC_ASSERT(kSmiTag == 0);
562 __ JumpIfSmi(eax, &runtime);
563 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
564 __ j(not_equal, &runtime);
565
566 // Check that the RegExp has been compiled (data contains a fixed array).
567 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
568 if (FLAG_debug_code) {
569 __ test(ecx, Immediate(kSmiTagMask));
570 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
571 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
572 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
573 }
574
575 // ecx: RegExp data (FixedArray)
576 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
577 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
578 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
579 __ j(not_equal, &runtime);
580
581 // ecx: RegExp data (FixedArray)
582 // Check that the number of captures fit in the static offsets vector buffer.
583 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
584 // Check (number_of_captures + 1) * 2 <= offsets vector size
585 // Or number_of_captures * 2 <= offsets vector size - 2
586 // Multiplying by 2 comes for free since edx is smi-tagged.
587 STATIC_ASSERT(kSmiTag == 0);
588 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
589 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
590 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
591 __ j(above, &runtime);
592
593 // Reset offset for possibly sliced string.
594 __ Move(edi, Immediate(0));
595 __ mov(eax, Operand(esp, kSubjectOffset));
596 __ JumpIfSmi(eax, &runtime);
597 __ mov(edx, eax); // Make a copy of the original subject string.
598
599 // eax: subject string
600 // edx: subject string
601 // ecx: RegExp data (FixedArray)
602 // Handle subject string according to its encoding and representation:
603 // (1) Sequential two byte? If yes, go to (9).
604 // (2) Sequential one byte? If yes, go to (5).
605 // (3) Sequential or cons? If not, go to (6).
606 // (4) Cons string. If the string is flat, replace subject with first string
607 // and go to (1). Otherwise bail out to runtime.
608 // (5) One byte sequential. Load regexp code for one byte.
609 // (E) Carry on.
610 /// [...]
611
612 // Deferred code at the end of the stub:
613 // (6) Long external string? If not, go to (10).
614 // (7) External string. Make it, offset-wise, look like a sequential string.
615 // (8) Is the external string one byte? If yes, go to (5).
616 // (9) Two byte sequential. Load regexp code for two byte. Go to (E).
617 // (10) Short external string or not a string? If yes, bail out to runtime.
618 // (11) Sliced string. Replace subject with parent. Go to (1).
619
620 Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
621 external_string /* 7 */, check_underlying /* 1 */,
622 not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
623
624 __ bind(&check_underlying);
625 // (1) Sequential two byte? If yes, go to (9).
626 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
627 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
628
629 __ and_(ebx, kIsNotStringMask |
630 kStringRepresentationMask |
631 kStringEncodingMask |
632 kShortExternalStringMask);
633 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
634 __ j(zero, &seq_two_byte_string); // Go to (9).
635
636 // (2) Sequential one byte? If yes, go to (5).
637 // Any other sequential string must be one byte.
638 __ and_(ebx, Immediate(kIsNotStringMask |
639 kStringRepresentationMask |
640 kShortExternalStringMask));
641 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5).
642
643 // (3) Sequential or cons? If not, go to (6).
644 // We check whether the subject string is a cons, since sequential strings
645 // have already been covered.
646 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
647 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
648 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
649 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
650 __ cmp(ebx, Immediate(kExternalStringTag));
651 __ j(greater_equal, ¬_seq_nor_cons); // Go to (6).
652
653 // (4) Cons string. Check that it's flat.
654 // Replace subject with first string and reload instance type.
655 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
656 __ j(not_equal, &runtime);
657 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
658 __ jmp(&check_underlying);
659
660 // eax: sequential subject string (or look-alike, external string)
661 // edx: original subject string
662 // ecx: RegExp data (FixedArray)
663 // (5) One byte sequential. Load regexp code for one byte.
664 __ bind(&seq_one_byte_string);
665 // Load previous index and check range before edx is overwritten. We have
666 // to use edx instead of eax here because it might have been only made to
667 // look like a sequential string when it actually is an external string.
668 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
669 __ JumpIfNotSmi(ebx, &runtime);
670 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
671 __ j(above_equal, &runtime);
672 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
673 __ Move(ecx, Immediate(1)); // Type is one byte.
674
675 // (E) Carry on. String handling is done.
676 __ bind(&check_code);
677 // edx: irregexp code
678 // Check that the irregexp code has been generated for the actual string
679 // encoding. If it has, the field contains a code object otherwise it contains
680 // a smi (code flushing support).
681 __ JumpIfSmi(edx, &runtime);
682
683 // eax: subject string
684 // ebx: previous index (smi)
685 // edx: code
686 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
687 // All checks done. Now push arguments for native regexp code.
688 Counters* counters = isolate()->counters();
689 __ IncrementCounter(counters->regexp_entry_native(), 1);
690
691 // Isolates: note we add an additional parameter here (isolate pointer).
692 static const int kRegExpExecuteArguments = 9;
693 __ EnterApiExitFrame(kRegExpExecuteArguments);
694
695 // Argument 9: Pass current isolate address.
696 __ mov(Operand(esp, 8 * kPointerSize),
697 Immediate(ExternalReference::isolate_address(isolate())));
698
699 // Argument 8: Indicate that this is a direct call from JavaScript.
700 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
701
702 // Argument 7: Start (high end) of backtracking stack memory area.
703 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
704 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
705 __ mov(Operand(esp, 6 * kPointerSize), esi);
706
707 // Argument 6: Set the number of capture registers to zero to force global
708 // regexps to behave as non-global. This does not affect non-global regexps.
709 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
710
711 // Argument 5: static offsets vector buffer.
712 __ mov(Operand(esp, 4 * kPointerSize),
713 Immediate(ExternalReference::address_of_static_offsets_vector(
714 isolate())));
715
716 // Argument 2: Previous index.
717 __ SmiUntag(ebx);
718 __ mov(Operand(esp, 1 * kPointerSize), ebx);
719
720 // Argument 1: Original subject string.
721 // The original subject is in the previous stack frame. Therefore we have to
722 // use ebp, which points exactly to one pointer size below the previous esp.
723 // (Because creating a new stack frame pushes the previous ebp onto the stack
724 // and thereby moves up esp by one kPointerSize.)
725 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
726 __ mov(Operand(esp, 0 * kPointerSize), esi);
727
728 // esi: original subject string
729 // eax: underlying subject string
730 // ebx: previous index
731 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
732 // edx: code
733 // Argument 4: End of string data
734 // Argument 3: Start of string data
735 // Prepare start and end index of the input.
736 // Load the length from the original sliced string if that is the case.
737 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
738 __ add(esi, edi); // Calculate input end wrt offset.
739 __ SmiUntag(edi);
740 __ add(ebx, edi); // Calculate input start wrt offset.
741
742 // ebx: start index of the input string
743 // esi: end index of the input string
744 Label setup_two_byte, setup_rest;
745 __ test(ecx, ecx);
746 __ j(zero, &setup_two_byte, Label::kNear);
747 __ SmiUntag(esi);
748 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
749 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
750 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
751 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
752 __ jmp(&setup_rest, Label::kNear);
753
754 __ bind(&setup_two_byte);
755 STATIC_ASSERT(kSmiTag == 0);
756 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
757 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
758 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
759 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
760 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
761
762 __ bind(&setup_rest);
763
764 // Locate the code entry and call it.
765 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
766 __ call(edx);
767
768 // Drop arguments and come back to JS mode.
769 __ LeaveApiExitFrame(true);
770
771 // Check the result.
772 Label success;
773 __ cmp(eax, 1);
774 // We expect exactly one result since we force the called regexp to behave
775 // as non-global.
776 __ j(equal, &success);
777 Label failure;
778 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
779 __ j(equal, &failure);
780 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
781 // If not exception it can only be retry. Handle that in the runtime system.
782 __ j(not_equal, &runtime);
783 // Result must now be exception. If there is no pending exception already a
784 // stack overflow (on the backtrack stack) was detected in RegExp code but
785 // haven't created the exception yet. Handle that in the runtime system.
786 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
787 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
788 isolate());
789 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
790 __ mov(eax, Operand::StaticVariable(pending_exception));
791 __ cmp(edx, eax);
792 __ j(equal, &runtime);
793
794 // For exception, throw the exception again.
795 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
796
797 __ bind(&failure);
798 // For failure to match, return null.
799 __ mov(eax, factory->null_value());
800 __ ret(4 * kPointerSize);
801
802 // Load RegExp data.
803 __ bind(&success);
804 __ mov(eax, Operand(esp, kJSRegExpOffset));
805 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
806 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
807 // Calculate number of capture registers (number_of_captures + 1) * 2.
808 STATIC_ASSERT(kSmiTag == 0);
809 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
810 __ add(edx, Immediate(2)); // edx was a smi.
811
812 // edx: Number of capture registers
813 // Check that the last match info is a FixedArray.
814 __ mov(ebx, Operand(esp, kLastMatchInfoOffset));
815 __ JumpIfSmi(ebx, &runtime);
816 // Check that the object has fast elements.
817 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
818 __ cmp(eax, factory->fixed_array_map());
819 __ j(not_equal, &runtime);
820 // Check that the last match info has space for the capture registers and the
821 // additional information.
822 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
823 __ SmiUntag(eax);
824 __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead));
825 __ cmp(edx, eax);
826 __ j(greater, &runtime);
827
828 // ebx: last_match_info (FixedArray)
829 // edx: number of capture registers
830 // Store the capture count.
831 __ SmiTag(edx); // Number of capture registers to smi.
832 __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx);
833 __ SmiUntag(edx); // Number of capture registers back from smi.
834 // Store last subject and last input.
835 __ mov(eax, Operand(esp, kSubjectOffset));
836 __ mov(ecx, eax);
837 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax);
838 __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi,
839 kDontSaveFPRegs);
840 __ mov(eax, ecx);
841 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax);
842 __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi,
843 kDontSaveFPRegs);
844
845 // Get the static offsets vector filled by the native regexp code.
846 ExternalReference address_of_static_offsets_vector =
847 ExternalReference::address_of_static_offsets_vector(isolate());
848 __ mov(ecx, Immediate(address_of_static_offsets_vector));
849
850 // ebx: last_match_info (FixedArray)
851 // ecx: offsets vector
852 // edx: number of capture registers
853 Label next_capture, done;
854 // Capture register counter starts from number of capture registers and
855 // counts down until wrapping after zero.
856 __ bind(&next_capture);
857 __ sub(edx, Immediate(1));
858 __ j(negative, &done, Label::kNear);
859 // Read the value from the static offsets vector buffer.
860 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
861 __ SmiTag(edi);
862 // Store the smi value in the last match info.
863 __ mov(FieldOperand(ebx, edx, times_pointer_size,
864 RegExpMatchInfo::kFirstCaptureOffset),
865 edi);
866 __ jmp(&next_capture);
867 __ bind(&done);
868
869 // Return last match info.
870 __ mov(eax, ebx);
871 __ ret(4 * kPointerSize);
872
873 // Do the runtime call to execute the regexp.
874 __ bind(&runtime);
875 __ TailCallRuntime(Runtime::kRegExpExec);
876
877 // Deferred code for string handling.
878 // (6) Long external string? If not, go to (10).
879 __ bind(¬_seq_nor_cons);
880 // Compare flags are still set from (3).
881 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
882
883 // (7) External string. Short external strings have been ruled out.
884 __ bind(&external_string);
885 // Reload instance type.
886 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
887 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
888 if (FLAG_debug_code) {
889 // Assert that we do not have a cons or slice (indirect strings) here.
890 // Sequential strings have already been ruled out.
891 __ test_b(ebx, Immediate(kIsIndirectStringMask));
892 __ Assert(zero, kExternalStringExpectedButNotFound);
893 }
894 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
895 // Move the pointer so that offset-wise, it looks like a sequential string.
896 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
897 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
898 STATIC_ASSERT(kTwoByteStringTag == 0);
899 // (8) Is the external string one byte? If yes, go to (5).
900 __ test_b(ebx, Immediate(kStringEncodingMask));
901 __ j(not_zero, &seq_one_byte_string); // Go to (5).
902
903 // eax: sequential subject string (or look-alike, external string)
904 // edx: original subject string
905 // ecx: RegExp data (FixedArray)
906 // (9) Two byte sequential. Load regexp code for two byte. Go to (E).
907 __ bind(&seq_two_byte_string);
908 // Load previous index and check range before edx is overwritten. We have
909 // to use edx instead of eax here because it might have been only made to
910 // look like a sequential string when it actually is an external string.
911 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
912 __ JumpIfNotSmi(ebx, &runtime);
913 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
914 __ j(above_equal, &runtime);
915 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
916 __ Move(ecx, Immediate(0)); // Type is two byte.
917 __ jmp(&check_code); // Go to (E).
918
919 // (10) Not a string or a short external string? If yes, bail out to runtime.
920 __ bind(¬_long_external);
921 // Catch non-string subject or short external string.
922 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
923 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
924 __ j(not_zero, &runtime);
925
926 // (11) Sliced string. Replace subject with parent. Go to (1).
927 // Load offset into edi and replace subject string with parent.
928 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
929 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
930 __ jmp(&check_underlying); // Go to (1).
931 #endif // V8_INTERPRETED_REGEXP
932 }
933
934
NegativeComparisonResult(Condition cc)935 static int NegativeComparisonResult(Condition cc) {
936 DCHECK(cc != equal);
937 DCHECK((cc == less) || (cc == less_equal)
938 || (cc == greater) || (cc == greater_equal));
939 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
940 }
941
942
CheckInputType(MacroAssembler * masm,Register input,CompareICState::State expected,Label * fail)943 static void CheckInputType(MacroAssembler* masm, Register input,
944 CompareICState::State expected, Label* fail) {
945 Label ok;
946 if (expected == CompareICState::SMI) {
947 __ JumpIfNotSmi(input, fail);
948 } else if (expected == CompareICState::NUMBER) {
949 __ JumpIfSmi(input, &ok);
950 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
951 Immediate(masm->isolate()->factory()->heap_number_map()));
952 __ j(not_equal, fail);
953 }
954 // We could be strict about internalized/non-internalized here, but as long as
955 // hydrogen doesn't care, the stub doesn't have to care either.
956 __ bind(&ok);
957 }
958
959
BranchIfNotInternalizedString(MacroAssembler * masm,Label * label,Register object,Register scratch)960 static void BranchIfNotInternalizedString(MacroAssembler* masm,
961 Label* label,
962 Register object,
963 Register scratch) {
964 __ JumpIfSmi(object, label);
965 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
966 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
967 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
968 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
969 __ j(not_zero, label);
970 }
971
972
GenerateGeneric(MacroAssembler * masm)973 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
974 Label runtime_call, check_unequal_objects;
975 Condition cc = GetCondition();
976
977 Label miss;
978 CheckInputType(masm, edx, left(), &miss);
979 CheckInputType(masm, eax, right(), &miss);
980
981 // Compare two smis.
982 Label non_smi, smi_done;
983 __ mov(ecx, edx);
984 __ or_(ecx, eax);
985 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
986 __ sub(edx, eax); // Return on the result of the subtraction.
987 __ j(no_overflow, &smi_done, Label::kNear);
988 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
989 __ bind(&smi_done);
990 __ mov(eax, edx);
991 __ ret(0);
992 __ bind(&non_smi);
993
994 // NOTICE! This code is only reached after a smi-fast-case check, so
995 // it is certain that at least one operand isn't a smi.
996
997 // Identical objects can be compared fast, but there are some tricky cases
998 // for NaN and undefined.
999 Label generic_heap_number_comparison;
1000 {
1001 Label not_identical;
1002 __ cmp(eax, edx);
1003 __ j(not_equal, ¬_identical);
1004
1005 if (cc != equal) {
1006 // Check for undefined. undefined OP undefined is false even though
1007 // undefined == undefined.
1008 __ cmp(edx, isolate()->factory()->undefined_value());
1009 Label check_for_nan;
1010 __ j(not_equal, &check_for_nan, Label::kNear);
1011 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1012 __ ret(0);
1013 __ bind(&check_for_nan);
1014 }
1015
1016 // Test for NaN. Compare heap numbers in a general way,
1017 // to handle NaNs correctly.
1018 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1019 Immediate(isolate()->factory()->heap_number_map()));
1020 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1021 if (cc != equal) {
1022 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1023 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1024 // Call runtime on identical JSObjects. Otherwise return equal.
1025 __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
1026 __ j(above_equal, &runtime_call, Label::kFar);
1027 // Call runtime on identical symbols since we need to throw a TypeError.
1028 __ cmpb(ecx, Immediate(SYMBOL_TYPE));
1029 __ j(equal, &runtime_call, Label::kFar);
1030 // Call runtime on identical SIMD values since we must throw a TypeError.
1031 __ cmpb(ecx, Immediate(SIMD128_VALUE_TYPE));
1032 __ j(equal, &runtime_call, Label::kFar);
1033 }
1034 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1035 __ ret(0);
1036
1037
1038 __ bind(¬_identical);
1039 }
1040
1041 // Strict equality can quickly decide whether objects are equal.
1042 // Non-strict object equality is slower, so it is handled later in the stub.
1043 if (cc == equal && strict()) {
1044 Label slow; // Fallthrough label.
1045 Label not_smis;
1046 // If we're doing a strict equality comparison, we don't have to do
1047 // type conversion, so we generate code to do fast comparison for objects
1048 // and oddballs. Non-smi numbers and strings still go through the usual
1049 // slow-case code.
1050 // If either is a Smi (we know that not both are), then they can only
1051 // be equal if the other is a HeapNumber. If so, use the slow case.
1052 STATIC_ASSERT(kSmiTag == 0);
1053 DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
1054 __ mov(ecx, Immediate(kSmiTagMask));
1055 __ and_(ecx, eax);
1056 __ test(ecx, edx);
1057 __ j(not_zero, ¬_smis, Label::kNear);
1058 // One operand is a smi.
1059
1060 // Check whether the non-smi is a heap number.
1061 STATIC_ASSERT(kSmiTagMask == 1);
1062 // ecx still holds eax & kSmiTag, which is either zero or one.
1063 __ sub(ecx, Immediate(0x01));
1064 __ mov(ebx, edx);
1065 __ xor_(ebx, eax);
1066 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1067 __ xor_(ebx, eax);
1068 // if eax was smi, ebx is now edx, else eax.
1069
1070 // Check if the non-smi operand is a heap number.
1071 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1072 Immediate(isolate()->factory()->heap_number_map()));
1073 // If heap number, handle it in the slow case.
1074 __ j(equal, &slow, Label::kNear);
1075 // Return non-equal (ebx is not zero)
1076 __ mov(eax, ebx);
1077 __ ret(0);
1078
1079 __ bind(¬_smis);
1080 // If either operand is a JSObject or an oddball value, then they are not
1081 // equal since their pointers are different
1082 // There is no test for undetectability in strict equality.
1083
1084 // Get the type of the first operand.
1085 // If the first object is a JS object, we have done pointer comparison.
1086 Label first_non_object;
1087 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1088 __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
1089 __ j(below, &first_non_object, Label::kNear);
1090
1091 // Return non-zero (eax is not zero)
1092 Label return_not_equal;
1093 STATIC_ASSERT(kHeapObjectTag != 0);
1094 __ bind(&return_not_equal);
1095 __ ret(0);
1096
1097 __ bind(&first_non_object);
1098 // Check for oddballs: true, false, null, undefined.
1099 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1100 __ j(equal, &return_not_equal);
1101
1102 __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
1103 __ j(above_equal, &return_not_equal);
1104
1105 // Check for oddballs: true, false, null, undefined.
1106 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1107 __ j(equal, &return_not_equal);
1108
1109 // Fall through to the general case.
1110 __ bind(&slow);
1111 }
1112
1113 // Generate the number comparison code.
1114 Label non_number_comparison;
1115 Label unordered;
1116 __ bind(&generic_heap_number_comparison);
1117
1118 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1119 __ ucomisd(xmm0, xmm1);
1120 // Don't base result on EFLAGS when a NaN is involved.
1121 __ j(parity_even, &unordered, Label::kNear);
1122
1123 __ mov(eax, 0); // equal
1124 __ mov(ecx, Immediate(Smi::FromInt(1)));
1125 __ cmov(above, eax, ecx);
1126 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1127 __ cmov(below, eax, ecx);
1128 __ ret(0);
1129
1130 // If one of the numbers was NaN, then the result is always false.
1131 // The cc is never not-equal.
1132 __ bind(&unordered);
1133 DCHECK(cc != not_equal);
1134 if (cc == less || cc == less_equal) {
1135 __ mov(eax, Immediate(Smi::FromInt(1)));
1136 } else {
1137 __ mov(eax, Immediate(Smi::FromInt(-1)));
1138 }
1139 __ ret(0);
1140
1141 // The number comparison code did not provide a valid result.
1142 __ bind(&non_number_comparison);
1143
1144 // Fast negative check for internalized-to-internalized equality.
1145 Label check_for_strings;
1146 if (cc == equal) {
1147 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1148 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1149
1150 // We've already checked for object identity, so if both operands
1151 // are internalized they aren't equal. Register eax already holds a
1152 // non-zero value, which indicates not equal, so just return.
1153 __ ret(0);
1154 }
1155
1156 __ bind(&check_for_strings);
1157
1158 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1159 &check_unequal_objects);
1160
1161 // Inline comparison of one-byte strings.
1162 if (cc == equal) {
1163 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1164 } else {
1165 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1166 edi);
1167 }
1168 #ifdef DEBUG
1169 __ Abort(kUnexpectedFallThroughFromStringComparison);
1170 #endif
1171
1172 __ bind(&check_unequal_objects);
1173 if (cc == equal && !strict()) {
1174 // Non-strict equality. Objects are unequal if
1175 // they are both JSObjects and not undetectable,
1176 // and their pointers are different.
1177 Label return_equal, return_unequal, undetectable;
1178 // At most one is a smi, so we can test for smi by adding the two.
1179 // A smi plus a heap object has the low bit set, a heap object plus
1180 // a heap object has the low bit clear.
1181 STATIC_ASSERT(kSmiTag == 0);
1182 STATIC_ASSERT(kSmiTagMask == 1);
1183 __ lea(ecx, Operand(eax, edx, times_1, 0));
1184 __ test(ecx, Immediate(kSmiTagMask));
1185 __ j(not_zero, &runtime_call);
1186
1187 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1188 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
1189
1190 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1191 Immediate(1 << Map::kIsUndetectable));
1192 __ j(not_zero, &undetectable, Label::kNear);
1193 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1194 Immediate(1 << Map::kIsUndetectable));
1195 __ j(not_zero, &return_unequal, Label::kNear);
1196
1197 __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
1198 __ j(below, &runtime_call, Label::kNear);
1199 __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
1200 __ j(below, &runtime_call, Label::kNear);
1201
1202 __ bind(&return_unequal);
1203 // Return non-equal by returning the non-zero object pointer in eax.
1204 __ ret(0); // eax, edx were pushed
1205
1206 __ bind(&undetectable);
1207 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1208 Immediate(1 << Map::kIsUndetectable));
1209 __ j(zero, &return_unequal, Label::kNear);
1210
1211 // If both sides are JSReceivers, then the result is false according to
1212 // the HTML specification, which says that only comparisons with null or
1213 // undefined are affected by special casing for document.all.
1214 __ CmpInstanceType(ebx, ODDBALL_TYPE);
1215 __ j(zero, &return_equal, Label::kNear);
1216 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1217 __ j(not_zero, &return_unequal, Label::kNear);
1218
1219 __ bind(&return_equal);
1220 __ Move(eax, Immediate(EQUAL));
1221 __ ret(0); // eax, edx were pushed
1222 }
1223 __ bind(&runtime_call);
1224
1225 if (cc == equal) {
1226 {
1227 FrameScope scope(masm, StackFrame::INTERNAL);
1228 __ Push(edx);
1229 __ Push(eax);
1230 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
1231 }
1232 // Turn true into 0 and false into some non-zero value.
1233 STATIC_ASSERT(EQUAL == 0);
1234 __ sub(eax, Immediate(isolate()->factory()->true_value()));
1235 __ Ret();
1236 } else {
1237 // Push arguments below the return address.
1238 __ pop(ecx);
1239 __ push(edx);
1240 __ push(eax);
1241 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1242 __ push(ecx);
1243 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1244 // tagged as a small integer.
1245 __ TailCallRuntime(Runtime::kCompare);
1246 }
1247
1248 __ bind(&miss);
1249 GenerateMiss(masm);
1250 }
1251
1252
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1253 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1254 // eax : number of arguments to the construct function
1255 // ebx : feedback vector
1256 // edx : slot in feedback vector (Smi)
1257 // edi : the function to call
1258
1259 {
1260 FrameScope scope(masm, StackFrame::INTERNAL);
1261
1262 // Number-of-arguments register must be smi-tagged to call out.
1263 __ SmiTag(eax);
1264 __ push(eax);
1265 __ push(edi);
1266 __ push(edx);
1267 __ push(ebx);
1268 __ push(esi);
1269
1270 __ CallStub(stub);
1271
1272 __ pop(esi);
1273 __ pop(ebx);
1274 __ pop(edx);
1275 __ pop(edi);
1276 __ pop(eax);
1277 __ SmiUntag(eax);
1278 }
1279 }
1280
1281
GenerateRecordCallTarget(MacroAssembler * masm)1282 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1283 // Cache the called function in a feedback vector slot. Cache states
1284 // are uninitialized, monomorphic (indicated by a JSFunction), and
1285 // megamorphic.
1286 // eax : number of arguments to the construct function
1287 // ebx : feedback vector
1288 // edx : slot in feedback vector (Smi)
1289 // edi : the function to call
1290 Isolate* isolate = masm->isolate();
1291 Label initialize, done, miss, megamorphic, not_array_function;
1292
1293 // Load the cache state into ecx.
1294 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1295 FixedArray::kHeaderSize));
1296
1297 // A monomorphic cache hit or an already megamorphic state: invoke the
1298 // function without changing the state.
1299 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1300 // at this position in a symbol (see static asserts in
1301 // type-feedback-vector.h).
1302 Label check_allocation_site;
1303 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1304 __ j(equal, &done, Label::kFar);
1305 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1306 __ j(equal, &done, Label::kFar);
1307 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1308 Heap::kWeakCellMapRootIndex);
1309 __ j(not_equal, &check_allocation_site);
1310
1311 // If the weak cell is cleared, we have a new chance to become monomorphic.
1312 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1313 __ jmp(&megamorphic);
1314
1315 __ bind(&check_allocation_site);
1316 // If we came here, we need to see if we are the array function.
1317 // If we didn't have a matching function, and we didn't find the megamorph
1318 // sentinel, then we have in the slot either some other function or an
1319 // AllocationSite.
1320 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1321 __ j(not_equal, &miss);
1322
1323 // Make sure the function is the Array() function
1324 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1325 __ cmp(edi, ecx);
1326 __ j(not_equal, &megamorphic);
1327 __ jmp(&done, Label::kFar);
1328
1329 __ bind(&miss);
1330
1331 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1332 // megamorphic.
1333 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
1334 __ j(equal, &initialize);
1335 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1336 // write-barrier is needed.
1337 __ bind(&megamorphic);
1338 __ mov(
1339 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1340 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1341 __ jmp(&done, Label::kFar);
1342
1343 // An uninitialized cache is patched with the function or sentinel to
1344 // indicate the ElementsKind if function is the Array constructor.
1345 __ bind(&initialize);
1346 // Make sure the function is the Array() function
1347 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1348 __ cmp(edi, ecx);
1349 __ j(not_equal, ¬_array_function);
1350
1351 // The target function is the Array constructor,
1352 // Create an AllocationSite if we don't already have it, store it in the
1353 // slot.
1354 CreateAllocationSiteStub create_stub(isolate);
1355 CallStubInRecordCallTarget(masm, &create_stub);
1356 __ jmp(&done);
1357
1358 __ bind(¬_array_function);
1359 CreateWeakCellStub weak_cell_stub(isolate);
1360 CallStubInRecordCallTarget(masm, &weak_cell_stub);
1361
1362 __ bind(&done);
1363 // Increment the call count for all function calls.
1364 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
1365 FixedArray::kHeaderSize + kPointerSize),
1366 Immediate(Smi::FromInt(1)));
1367 }
1368
1369
Generate(MacroAssembler * masm)1370 void CallConstructStub::Generate(MacroAssembler* masm) {
1371 // eax : number of arguments
1372 // ebx : feedback vector
1373 // edx : slot in feedback vector (Smi, for RecordCallTarget)
1374 // edi : constructor function
1375
1376 Label non_function;
1377 // Check that function is not a smi.
1378 __ JumpIfSmi(edi, &non_function);
1379 // Check that function is a JSFunction.
1380 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1381 __ j(not_equal, &non_function);
1382
1383 GenerateRecordCallTarget(masm);
1384
1385 Label feedback_register_initialized;
1386 // Put the AllocationSite from the feedback vector into ebx, or undefined.
1387 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1388 FixedArray::kHeaderSize));
1389 Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
1390 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
1391 __ j(equal, &feedback_register_initialized);
1392 __ mov(ebx, isolate()->factory()->undefined_value());
1393 __ bind(&feedback_register_initialized);
1394
1395 __ AssertUndefinedOrAllocationSite(ebx);
1396
1397 // Pass new target to construct stub.
1398 __ mov(edx, edi);
1399
1400 // Tail call to the function-specific construct stub (still in the caller
1401 // context at this point).
1402 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1403 __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
1404 __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
1405 __ jmp(ecx);
1406
1407 __ bind(&non_function);
1408 __ mov(edx, edi);
1409 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1410 }
1411
IncrementCallCount(MacroAssembler * masm,Register feedback_vector,Register slot)1412 static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector,
1413 Register slot) {
1414 __ add(FieldOperand(feedback_vector, slot, times_half_pointer_size,
1415 FixedArray::kHeaderSize + kPointerSize),
1416 Immediate(Smi::FromInt(1)));
1417 }
1418
HandleArrayCase(MacroAssembler * masm,Label * miss)1419 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
1420 // eax - number of arguments
1421 // edi - function
1422 // edx - slot id
1423 // ebx - vector
1424 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1425 __ cmp(edi, ecx);
1426 __ j(not_equal, miss);
1427
1428 // Reload ecx.
1429 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1430 FixedArray::kHeaderSize));
1431
1432 // Increment the call count for monomorphic function calls.
1433 IncrementCallCount(masm, ebx, edx);
1434
1435 __ mov(ebx, ecx);
1436 __ mov(edx, edi);
1437 ArrayConstructorStub stub(masm->isolate());
1438 __ TailCallStub(&stub);
1439
1440 // Unreachable.
1441 }
1442
1443
Generate(MacroAssembler * masm)1444 void CallICStub::Generate(MacroAssembler* masm) {
1445 // edi - number of arguments
1446 // edi - function
1447 // edx - slot id
1448 // ebx - vector
1449 Isolate* isolate = masm->isolate();
1450 Label extra_checks_or_miss, call, call_function, call_count_incremented;
1451
1452 // The checks. First, does edi match the recorded monomorphic target?
1453 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1454 FixedArray::kHeaderSize));
1455
1456 // We don't know that we have a weak cell. We might have a private symbol
1457 // or an AllocationSite, but the memory is safe to examine.
1458 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
1459 // FixedArray.
1460 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
1461 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
1462 // computed, meaning that it can't appear to be a pointer. If the low bit is
1463 // 0, then hash is computed, but the 0 bit prevents the field from appearing
1464 // to be a pointer.
1465 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
1466 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
1467 WeakCell::kValueOffset &&
1468 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
1469
1470 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1471 __ j(not_equal, &extra_checks_or_miss);
1472
1473 // The compare above could have been a SMI/SMI comparison. Guard against this
1474 // convincing us that we have a monomorphic JSFunction.
1475 __ JumpIfSmi(edi, &extra_checks_or_miss);
1476
1477 __ bind(&call_function);
1478
1479 // Increment the call count for monomorphic function calls.
1480 IncrementCallCount(masm, ebx, edx);
1481
1482 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
1483 tail_call_mode()),
1484 RelocInfo::CODE_TARGET);
1485
1486 __ bind(&extra_checks_or_miss);
1487 Label uninitialized, miss, not_allocation_site;
1488
1489 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1490 __ j(equal, &call);
1491
1492 // Check if we have an allocation site.
1493 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1494 Heap::kAllocationSiteMapRootIndex);
1495 __ j(not_equal, ¬_allocation_site);
1496
1497 // We have an allocation site.
1498 HandleArrayCase(masm, &miss);
1499
1500 __ bind(¬_allocation_site);
1501
1502 // The following cases attempt to handle MISS cases without going to the
1503 // runtime.
1504 if (FLAG_trace_ic) {
1505 __ jmp(&miss);
1506 }
1507
1508 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
1509 __ j(equal, &uninitialized);
1510
1511 // We are going megamorphic. If the feedback is a JSFunction, it is fine
1512 // to handle it here. More complex cases are dealt with in the runtime.
1513 __ AssertNotSmi(ecx);
1514 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
1515 __ j(not_equal, &miss);
1516 __ mov(
1517 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1518 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1519
1520 __ bind(&call);
1521
1522 // Increment the call count for megamorphic function calls.
1523 IncrementCallCount(masm, ebx, edx);
1524
1525 __ bind(&call_count_incremented);
1526
1527 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
1528 RelocInfo::CODE_TARGET);
1529
1530 __ bind(&uninitialized);
1531
1532 // We are going monomorphic, provided we actually have a JSFunction.
1533 __ JumpIfSmi(edi, &miss);
1534
1535 // Goto miss case if we do not have a function.
1536 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1537 __ j(not_equal, &miss);
1538
1539 // Make sure the function is not the Array() function, which requires special
1540 // behavior on MISS.
1541 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1542 __ cmp(edi, ecx);
1543 __ j(equal, &miss);
1544
1545 // Make sure the function belongs to the same native context.
1546 __ mov(ecx, FieldOperand(edi, JSFunction::kContextOffset));
1547 __ mov(ecx, ContextOperand(ecx, Context::NATIVE_CONTEXT_INDEX));
1548 __ cmp(ecx, NativeContextOperand());
1549 __ j(not_equal, &miss);
1550
1551 // Store the function. Use a stub since we need a frame for allocation.
1552 // eax - number of arguments
1553 // ebx - vector
1554 // edx - slot
1555 // edi - function
1556 {
1557 FrameScope scope(masm, StackFrame::INTERNAL);
1558 CreateWeakCellStub create_stub(isolate);
1559 __ SmiTag(eax);
1560 __ push(eax);
1561 __ push(ebx);
1562 __ push(edx);
1563 __ push(edi);
1564 __ push(esi);
1565 __ CallStub(&create_stub);
1566 __ pop(esi);
1567 __ pop(edi);
1568 __ pop(edx);
1569 __ pop(ebx);
1570 __ pop(eax);
1571 __ SmiUntag(eax);
1572 }
1573
1574 __ jmp(&call_function);
1575
1576 // We are here because tracing is on or we encountered a MISS case we can't
1577 // handle here.
1578 __ bind(&miss);
1579 GenerateMiss(masm);
1580
1581 __ jmp(&call_count_incremented);
1582
1583 // Unreachable
1584 __ int3();
1585 }
1586
1587
GenerateMiss(MacroAssembler * masm)1588 void CallICStub::GenerateMiss(MacroAssembler* masm) {
1589 FrameScope scope(masm, StackFrame::INTERNAL);
1590
1591 // Preserve the number of arguments.
1592 __ SmiTag(eax);
1593 __ push(eax);
1594
1595 // Push the function and feedback info.
1596 __ push(edi);
1597 __ push(ebx);
1598 __ push(edx);
1599
1600 // Call the entry.
1601 __ CallRuntime(Runtime::kCallIC_Miss);
1602
1603 // Move result to edi and exit the internal frame.
1604 __ mov(edi, eax);
1605
1606 // Restore number of arguments.
1607 __ pop(eax);
1608 __ SmiUntag(eax);
1609 }
1610
1611
NeedsImmovableCode()1612 bool CEntryStub::NeedsImmovableCode() {
1613 return false;
1614 }
1615
1616
GenerateStubsAheadOfTime(Isolate * isolate)1617 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1618 CEntryStub::GenerateAheadOfTime(isolate);
1619 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1620 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1621 // It is important that the store buffer overflow stubs are generated first.
1622 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
1623 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1624 CreateWeakCellStub::GenerateAheadOfTime(isolate);
1625 BinaryOpICStub::GenerateAheadOfTime(isolate);
1626 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1627 StoreFastElementStub::GenerateAheadOfTime(isolate);
1628 }
1629
1630
GenerateFPStubs(Isolate * isolate)1631 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1632 // Generate if not already in cache.
1633 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
1634 isolate->set_fp_stubs_generated(true);
1635 }
1636
1637
GenerateAheadOfTime(Isolate * isolate)1638 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1639 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1640 stub.GetCode();
1641 }
1642
1643
Generate(MacroAssembler * masm)1644 void CEntryStub::Generate(MacroAssembler* masm) {
1645 // eax: number of arguments including receiver
1646 // ebx: pointer to C function (C callee-saved)
1647 // ebp: frame pointer (restored after C call)
1648 // esp: stack pointer (restored after C call)
1649 // esi: current context (C callee-saved)
1650 // edi: JS function of the caller (C callee-saved)
1651 //
1652 // If argv_in_register():
1653 // ecx: pointer to the first argument
1654
1655 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1656
1657 // Reserve space on the stack for the three arguments passed to the call. If
1658 // result size is greater than can be returned in registers, also reserve
1659 // space for the hidden argument for the result location, and space for the
1660 // result itself.
1661 int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();
1662
1663 // Enter the exit frame that transitions from JavaScript to C++.
1664 if (argv_in_register()) {
1665 DCHECK(!save_doubles());
1666 DCHECK(!is_builtin_exit());
1667 __ EnterApiExitFrame(arg_stack_space);
1668
1669 // Move argc and argv into the correct registers.
1670 __ mov(esi, ecx);
1671 __ mov(edi, eax);
1672 } else {
1673 __ EnterExitFrame(
1674 arg_stack_space, save_doubles(),
1675 is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
1676 }
1677
1678 // ebx: pointer to C function (C callee-saved)
1679 // ebp: frame pointer (restored after C call)
1680 // esp: stack pointer (restored after C call)
1681 // edi: number of arguments including receiver (C callee-saved)
1682 // esi: pointer to the first argument (C callee-saved)
1683
1684 // Result returned in eax, or eax+edx if result size is 2.
1685
1686 // Check stack alignment.
1687 if (FLAG_debug_code) {
1688 __ CheckStackAlignment();
1689 }
1690 // Call C function.
1691 if (result_size() <= 2) {
1692 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
1693 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
1694 __ mov(Operand(esp, 2 * kPointerSize),
1695 Immediate(ExternalReference::isolate_address(isolate())));
1696 } else {
1697 DCHECK_EQ(3, result_size());
1698 // Pass a pointer to the result location as the first argument.
1699 __ lea(eax, Operand(esp, 4 * kPointerSize));
1700 __ mov(Operand(esp, 0 * kPointerSize), eax);
1701 __ mov(Operand(esp, 1 * kPointerSize), edi); // argc.
1702 __ mov(Operand(esp, 2 * kPointerSize), esi); // argv.
1703 __ mov(Operand(esp, 3 * kPointerSize),
1704 Immediate(ExternalReference::isolate_address(isolate())));
1705 }
1706 __ call(ebx);
1707
1708 if (result_size() > 2) {
1709 DCHECK_EQ(3, result_size());
1710 #ifndef _WIN32
1711 // Restore the "hidden" argument on the stack which was popped by caller.
1712 __ sub(esp, Immediate(kPointerSize));
1713 #endif
1714 // Read result values stored on stack. Result is stored above the arguments.
1715 __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
1716 __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
1717 __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
1718 }
1719 // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!
1720
1721 // Check result for exception sentinel.
1722 Label exception_returned;
1723 __ cmp(eax, isolate()->factory()->exception());
1724 __ j(equal, &exception_returned);
1725
1726 // Check that there is no pending exception, otherwise we
1727 // should have returned the exception sentinel.
1728 if (FLAG_debug_code) {
1729 __ push(edx);
1730 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1731 Label okay;
1732 ExternalReference pending_exception_address(
1733 Isolate::kPendingExceptionAddress, isolate());
1734 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
1735 // Cannot use check here as it attempts to generate call into runtime.
1736 __ j(equal, &okay, Label::kNear);
1737 __ int3();
1738 __ bind(&okay);
1739 __ pop(edx);
1740 }
1741
1742 // Exit the JavaScript to C++ exit frame.
1743 __ LeaveExitFrame(save_doubles(), !argv_in_register());
1744 __ ret(0);
1745
1746 // Handling of exception.
1747 __ bind(&exception_returned);
1748
1749 ExternalReference pending_handler_context_address(
1750 Isolate::kPendingHandlerContextAddress, isolate());
1751 ExternalReference pending_handler_code_address(
1752 Isolate::kPendingHandlerCodeAddress, isolate());
1753 ExternalReference pending_handler_offset_address(
1754 Isolate::kPendingHandlerOffsetAddress, isolate());
1755 ExternalReference pending_handler_fp_address(
1756 Isolate::kPendingHandlerFPAddress, isolate());
1757 ExternalReference pending_handler_sp_address(
1758 Isolate::kPendingHandlerSPAddress, isolate());
1759
1760 // Ask the runtime for help to determine the handler. This will set eax to
1761 // contain the current pending exception, don't clobber it.
1762 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1763 isolate());
1764 {
1765 FrameScope scope(masm, StackFrame::MANUAL);
1766 __ PrepareCallCFunction(3, eax);
1767 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
1768 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
1769 __ mov(Operand(esp, 2 * kPointerSize),
1770 Immediate(ExternalReference::isolate_address(isolate())));
1771 __ CallCFunction(find_handler, 3);
1772 }
1773
1774 // Retrieve the handler context, SP and FP.
1775 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
1776 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
1777 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
1778
1779 // If the handler is a JS frame, restore the context to the frame. Note that
1780 // the context will be set to (esi == 0) for non-JS frames.
1781 Label skip;
1782 __ test(esi, esi);
1783 __ j(zero, &skip, Label::kNear);
1784 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1785 __ bind(&skip);
1786
1787 // Compute the handler entry address and jump to it.
1788 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
1789 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
1790 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1791 __ jmp(edi);
1792 }
1793
1794
Generate(MacroAssembler * masm)1795 void JSEntryStub::Generate(MacroAssembler* masm) {
1796 Label invoke, handler_entry, exit;
1797 Label not_outermost_js, not_outermost_js_2;
1798
1799 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1800
1801 // Set up frame.
1802 __ push(ebp);
1803 __ mov(ebp, esp);
1804
1805 // Push marker in two places.
1806 int marker = type();
1807 __ push(Immediate(Smi::FromInt(marker))); // marker
1808 ExternalReference context_address(Isolate::kContextAddress, isolate());
1809 __ push(Operand::StaticVariable(context_address)); // context
1810 // Save callee-saved registers (C calling conventions).
1811 __ push(edi);
1812 __ push(esi);
1813 __ push(ebx);
1814
1815 // Save copies of the top frame descriptor on the stack.
1816 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
1817 __ push(Operand::StaticVariable(c_entry_fp));
1818
1819 // If this is the outermost JS call, set js_entry_sp value.
1820 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1821 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
1822 __ j(not_equal, ¬_outermost_js, Label::kNear);
1823 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
1824 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1825 __ jmp(&invoke, Label::kNear);
1826 __ bind(¬_outermost_js);
1827 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1828
1829 // Jump to a faked try block that does the invoke, with a faked catch
1830 // block that sets the pending exception.
1831 __ jmp(&invoke);
1832 __ bind(&handler_entry);
1833 handler_offset_ = handler_entry.pos();
1834 // Caught exception: Store result (exception) in the pending exception
1835 // field in the JSEnv and return a failure sentinel.
1836 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1837 isolate());
1838 __ mov(Operand::StaticVariable(pending_exception), eax);
1839 __ mov(eax, Immediate(isolate()->factory()->exception()));
1840 __ jmp(&exit);
1841
1842 // Invoke: Link this frame into the handler chain.
1843 __ bind(&invoke);
1844 __ PushStackHandler();
1845
1846 // Fake a receiver (NULL).
1847 __ push(Immediate(0)); // receiver
1848
1849 // Invoke the function by calling through JS entry trampoline builtin and
1850 // pop the faked function when we return. Notice that we cannot store a
1851 // reference to the trampoline code directly in this stub, because the
1852 // builtin stubs may not have been generated yet.
1853 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1854 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1855 isolate());
1856 __ mov(edx, Immediate(construct_entry));
1857 } else {
1858 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1859 __ mov(edx, Immediate(entry));
1860 }
1861 __ mov(edx, Operand(edx, 0)); // deref address
1862 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
1863 __ call(edx);
1864
1865 // Unlink this frame from the handler chain.
1866 __ PopStackHandler();
1867
1868 __ bind(&exit);
1869 // Check if the current stack frame is marked as the outermost JS frame.
1870 __ pop(ebx);
1871 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1872 __ j(not_equal, ¬_outermost_js_2);
1873 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
1874 __ bind(¬_outermost_js_2);
1875
1876 // Restore the top frame descriptor from the stack.
1877 __ pop(Operand::StaticVariable(ExternalReference(
1878 Isolate::kCEntryFPAddress, isolate())));
1879
1880 // Restore callee-saved registers (C calling conventions).
1881 __ pop(ebx);
1882 __ pop(esi);
1883 __ pop(edi);
1884 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
1885
1886 // Restore frame pointer and return.
1887 __ pop(ebp);
1888 __ ret(0);
1889 }
1890
1891
1892 // -------------------------------------------------------------------------
1893 // StringCharCodeAtGenerator
1894
GenerateFast(MacroAssembler * masm)1895 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1896 // If the receiver is a smi trigger the non-string case.
1897 STATIC_ASSERT(kSmiTag == 0);
1898 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1899 __ JumpIfSmi(object_, receiver_not_string_);
1900
1901 // Fetch the instance type of the receiver into result register.
1902 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
1903 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
1904 // If the receiver is not a string trigger the non-string case.
1905 __ test(result_, Immediate(kIsNotStringMask));
1906 __ j(not_zero, receiver_not_string_);
1907 }
1908
1909 // If the index is non-smi trigger the non-smi case.
1910 STATIC_ASSERT(kSmiTag == 0);
1911 __ JumpIfNotSmi(index_, &index_not_smi_);
1912 __ bind(&got_smi_index_);
1913
1914 // Check for index out of range.
1915 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
1916 __ j(above_equal, index_out_of_range_);
1917
1918 __ SmiUntag(index_);
1919
1920 Factory* factory = masm->isolate()->factory();
1921 StringCharLoadGenerator::Generate(
1922 masm, factory, object_, index_, result_, &call_runtime_);
1923
1924 __ SmiTag(result_);
1925 __ bind(&exit_);
1926 }
1927
1928
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)1929 void StringCharCodeAtGenerator::GenerateSlow(
1930 MacroAssembler* masm, EmbedMode embed_mode,
1931 const RuntimeCallHelper& call_helper) {
1932 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
1933
1934 // Index is not a smi.
1935 __ bind(&index_not_smi_);
1936 // If index is a heap number, try converting it to an integer.
1937 __ CheckMap(index_,
1938 masm->isolate()->factory()->heap_number_map(),
1939 index_not_number_,
1940 DONT_DO_SMI_CHECK);
1941 call_helper.BeforeCall(masm);
1942 if (embed_mode == PART_OF_IC_HANDLER) {
1943 __ push(LoadWithVectorDescriptor::VectorRegister());
1944 __ push(LoadDescriptor::SlotRegister());
1945 }
1946 __ push(object_);
1947 __ push(index_); // Consumed by runtime conversion function.
1948 __ CallRuntime(Runtime::kNumberToSmi);
1949 if (!index_.is(eax)) {
1950 // Save the conversion result before the pop instructions below
1951 // have a chance to overwrite it.
1952 __ mov(index_, eax);
1953 }
1954 __ pop(object_);
1955 if (embed_mode == PART_OF_IC_HANDLER) {
1956 __ pop(LoadDescriptor::SlotRegister());
1957 __ pop(LoadWithVectorDescriptor::VectorRegister());
1958 }
1959 // Reload the instance type.
1960 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
1961 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
1962 call_helper.AfterCall(masm);
1963 // If index is still not a smi, it must be out of range.
1964 STATIC_ASSERT(kSmiTag == 0);
1965 __ JumpIfNotSmi(index_, index_out_of_range_);
1966 // Otherwise, return to the fast path.
1967 __ jmp(&got_smi_index_);
1968
1969 // Call runtime. We get here when the receiver is a string and the
1970 // index is a number, but the code of getting the actual character
1971 // is too complex (e.g., when the string needs to be flattened).
1972 __ bind(&call_runtime_);
1973 call_helper.BeforeCall(masm);
1974 __ push(object_);
1975 __ SmiTag(index_);
1976 __ push(index_);
1977 __ CallRuntime(Runtime::kStringCharCodeAtRT);
1978 if (!result_.is(eax)) {
1979 __ mov(result_, eax);
1980 }
1981 call_helper.AfterCall(masm);
1982 __ jmp(&exit_);
1983
1984 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
1985 }
1986
1987
1988 // -------------------------------------------------------------------------
1989 // StringCharFromCodeGenerator
1990
GenerateFast(MacroAssembler * masm)1991 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
1992 // Fast case of Heap::LookupSingleCharacterStringFromCode.
1993 STATIC_ASSERT(kSmiTag == 0);
1994 STATIC_ASSERT(kSmiShiftSize == 0);
1995 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
1996 __ test(code_, Immediate(kSmiTagMask |
1997 ((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
1998 __ j(not_zero, &slow_case_);
1999
2000 Factory* factory = masm->isolate()->factory();
2001 __ Move(result_, Immediate(factory->single_character_string_cache()));
2002 STATIC_ASSERT(kSmiTag == 0);
2003 STATIC_ASSERT(kSmiTagSize == 1);
2004 STATIC_ASSERT(kSmiShiftSize == 0);
2005 // At this point code register contains smi tagged one byte char code.
2006 __ mov(result_, FieldOperand(result_,
2007 code_, times_half_pointer_size,
2008 FixedArray::kHeaderSize));
2009 __ cmp(result_, factory->undefined_value());
2010 __ j(equal, &slow_case_);
2011 __ bind(&exit_);
2012 }
2013
2014
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2015 void StringCharFromCodeGenerator::GenerateSlow(
2016 MacroAssembler* masm,
2017 const RuntimeCallHelper& call_helper) {
2018 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2019
2020 __ bind(&slow_case_);
2021 call_helper.BeforeCall(masm);
2022 __ push(code_);
2023 __ CallRuntime(Runtime::kStringCharFromCode);
2024 if (!result_.is(eax)) {
2025 __ mov(result_, eax);
2026 }
2027 call_helper.AfterCall(masm);
2028 __ jmp(&exit_);
2029
2030 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2031 }
2032
2033
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)2034 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2035 Register dest,
2036 Register src,
2037 Register count,
2038 Register scratch,
2039 String::Encoding encoding) {
2040 DCHECK(!scratch.is(dest));
2041 DCHECK(!scratch.is(src));
2042 DCHECK(!scratch.is(count));
2043
2044 // Nothing to do for zero characters.
2045 Label done;
2046 __ test(count, count);
2047 __ j(zero, &done);
2048
2049 // Make count the number of bytes to copy.
2050 if (encoding == String::TWO_BYTE_ENCODING) {
2051 __ shl(count, 1);
2052 }
2053
2054 Label loop;
2055 __ bind(&loop);
2056 __ mov_b(scratch, Operand(src, 0));
2057 __ mov_b(Operand(dest, 0), scratch);
2058 __ inc(src);
2059 __ inc(dest);
2060 __ dec(count);
2061 __ j(not_zero, &loop);
2062
2063 __ bind(&done);
2064 }
2065
2066
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)2067 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2068 Register left,
2069 Register right,
2070 Register scratch1,
2071 Register scratch2) {
2072 Register length = scratch1;
2073
2074 // Compare lengths.
2075 Label strings_not_equal, check_zero_length;
2076 __ mov(length, FieldOperand(left, String::kLengthOffset));
2077 __ cmp(length, FieldOperand(right, String::kLengthOffset));
2078 __ j(equal, &check_zero_length, Label::kNear);
2079 __ bind(&strings_not_equal);
2080 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
2081 __ ret(0);
2082
2083 // Check if the length is zero.
2084 Label compare_chars;
2085 __ bind(&check_zero_length);
2086 STATIC_ASSERT(kSmiTag == 0);
2087 __ test(length, length);
2088 __ j(not_zero, &compare_chars, Label::kNear);
2089 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2090 __ ret(0);
2091
2092 // Compare characters.
2093 __ bind(&compare_chars);
2094 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2095 &strings_not_equal, Label::kNear);
2096
2097 // Characters are equal.
2098 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2099 __ ret(0);
2100 }
2101
2102
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)2103 void StringHelper::GenerateCompareFlatOneByteStrings(
2104 MacroAssembler* masm, Register left, Register right, Register scratch1,
2105 Register scratch2, Register scratch3) {
2106 Counters* counters = masm->isolate()->counters();
2107 __ IncrementCounter(counters->string_compare_native(), 1);
2108
2109 // Find minimum length.
2110 Label left_shorter;
2111 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
2112 __ mov(scratch3, scratch1);
2113 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
2114
2115 Register length_delta = scratch3;
2116
2117 __ j(less_equal, &left_shorter, Label::kNear);
2118 // Right string is shorter. Change scratch1 to be length of right string.
2119 __ sub(scratch1, length_delta);
2120 __ bind(&left_shorter);
2121
2122 Register min_length = scratch1;
2123
2124 // If either length is zero, just compare lengths.
2125 Label compare_lengths;
2126 __ test(min_length, min_length);
2127 __ j(zero, &compare_lengths, Label::kNear);
2128
2129 // Compare characters.
2130 Label result_not_equal;
2131 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2132 &result_not_equal, Label::kNear);
2133
2134 // Compare lengths - strings up to min-length are equal.
2135 __ bind(&compare_lengths);
2136 __ test(length_delta, length_delta);
2137 Label length_not_equal;
2138 __ j(not_zero, &length_not_equal, Label::kNear);
2139
2140 // Result is EQUAL.
2141 STATIC_ASSERT(EQUAL == 0);
2142 STATIC_ASSERT(kSmiTag == 0);
2143 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2144 __ ret(0);
2145
2146 Label result_greater;
2147 Label result_less;
2148 __ bind(&length_not_equal);
2149 __ j(greater, &result_greater, Label::kNear);
2150 __ jmp(&result_less, Label::kNear);
2151 __ bind(&result_not_equal);
2152 __ j(above, &result_greater, Label::kNear);
2153 __ bind(&result_less);
2154
2155 // Result is LESS.
2156 __ Move(eax, Immediate(Smi::FromInt(LESS)));
2157 __ ret(0);
2158
2159 // Result is GREATER.
2160 __ bind(&result_greater);
2161 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
2162 __ ret(0);
2163 }
2164
2165
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch,Label * chars_not_equal,Label::Distance chars_not_equal_near)2166 void StringHelper::GenerateOneByteCharsCompareLoop(
2167 MacroAssembler* masm, Register left, Register right, Register length,
2168 Register scratch, Label* chars_not_equal,
2169 Label::Distance chars_not_equal_near) {
2170 // Change index to run from -length to -1 by adding length to string
2171 // start. This means that loop ends when index reaches zero, which
2172 // doesn't need an additional compare.
2173 __ SmiUntag(length);
2174 __ lea(left,
2175 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
2176 __ lea(right,
2177 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
2178 __ neg(length);
2179 Register index = length; // index = -length;
2180
2181 // Compare loop.
2182 Label loop;
2183 __ bind(&loop);
2184 __ mov_b(scratch, Operand(left, index, times_1, 0));
2185 __ cmpb(scratch, Operand(right, index, times_1, 0));
2186 __ j(not_equal, chars_not_equal, chars_not_equal_near);
2187 __ inc(index);
2188 __ j(not_zero, &loop);
2189 }
2190
2191
Generate(MacroAssembler * masm)2192 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2193 // ----------- S t a t e -------------
2194 // -- edx : left
2195 // -- eax : right
2196 // -- esp[0] : return address
2197 // -----------------------------------
2198
2199 // Load ecx with the allocation site. We stick an undefined dummy value here
2200 // and replace it with the real allocation site later when we instantiate this
2201 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2202 __ mov(ecx, isolate()->factory()->undefined_value());
2203
2204 // Make sure that we actually patched the allocation site.
2205 if (FLAG_debug_code) {
2206 __ test(ecx, Immediate(kSmiTagMask));
2207 __ Assert(not_equal, kExpectedAllocationSite);
2208 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
2209 isolate()->factory()->allocation_site_map());
2210 __ Assert(equal, kExpectedAllocationSite);
2211 }
2212
2213 // Tail call into the stub that handles binary operations with allocation
2214 // sites.
2215 BinaryOpWithAllocationSiteStub stub(isolate(), state());
2216 __ TailCallStub(&stub);
2217 }
2218
2219
GenerateBooleans(MacroAssembler * masm)2220 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2221 DCHECK_EQ(CompareICState::BOOLEAN, state());
2222 Label miss;
2223 Label::Distance const miss_distance =
2224 masm->emit_debug_code() ? Label::kFar : Label::kNear;
2225
2226 __ JumpIfSmi(edx, &miss, miss_distance);
2227 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
2228 __ JumpIfSmi(eax, &miss, miss_distance);
2229 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
2230 __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
2231 __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
2232 if (!Token::IsEqualityOp(op())) {
2233 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
2234 __ AssertSmi(eax);
2235 __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
2236 __ AssertSmi(edx);
2237 __ push(eax);
2238 __ mov(eax, edx);
2239 __ pop(edx);
2240 }
2241 __ sub(eax, edx);
2242 __ Ret();
2243
2244 __ bind(&miss);
2245 GenerateMiss(masm);
2246 }
2247
2248
GenerateSmis(MacroAssembler * masm)2249 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2250 DCHECK(state() == CompareICState::SMI);
2251 Label miss;
2252 __ mov(ecx, edx);
2253 __ or_(ecx, eax);
2254 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
2255
2256 if (GetCondition() == equal) {
2257 // For equality we do not care about the sign of the result.
2258 __ sub(eax, edx);
2259 } else {
2260 Label done;
2261 __ sub(edx, eax);
2262 __ j(no_overflow, &done, Label::kNear);
2263 // Correct sign of result in case of overflow.
2264 __ not_(edx);
2265 __ bind(&done);
2266 __ mov(eax, edx);
2267 }
2268 __ ret(0);
2269
2270 __ bind(&miss);
2271 GenerateMiss(masm);
2272 }
2273
2274
GenerateNumbers(MacroAssembler * masm)2275 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2276 DCHECK(state() == CompareICState::NUMBER);
2277
2278 Label generic_stub;
2279 Label unordered, maybe_undefined1, maybe_undefined2;
2280 Label miss;
2281
2282 if (left() == CompareICState::SMI) {
2283 __ JumpIfNotSmi(edx, &miss);
2284 }
2285 if (right() == CompareICState::SMI) {
2286 __ JumpIfNotSmi(eax, &miss);
2287 }
2288
2289 // Load left and right operand.
2290 Label done, left, left_smi, right_smi;
2291 __ JumpIfSmi(eax, &right_smi, Label::kNear);
2292 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
2293 isolate()->factory()->heap_number_map());
2294 __ j(not_equal, &maybe_undefined1, Label::kNear);
2295 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2296 __ jmp(&left, Label::kNear);
2297 __ bind(&right_smi);
2298 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
2299 __ SmiUntag(ecx);
2300 __ Cvtsi2sd(xmm1, ecx);
2301
2302 __ bind(&left);
2303 __ JumpIfSmi(edx, &left_smi, Label::kNear);
2304 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
2305 isolate()->factory()->heap_number_map());
2306 __ j(not_equal, &maybe_undefined2, Label::kNear);
2307 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2308 __ jmp(&done);
2309 __ bind(&left_smi);
2310 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
2311 __ SmiUntag(ecx);
2312 __ Cvtsi2sd(xmm0, ecx);
2313
2314 __ bind(&done);
2315 // Compare operands.
2316 __ ucomisd(xmm0, xmm1);
2317
2318 // Don't base result on EFLAGS when a NaN is involved.
2319 __ j(parity_even, &unordered, Label::kNear);
2320
2321 // Return a result of -1, 0, or 1, based on EFLAGS.
2322 // Performing mov, because xor would destroy the flag register.
2323 __ mov(eax, 0); // equal
2324 __ mov(ecx, Immediate(Smi::FromInt(1)));
2325 __ cmov(above, eax, ecx);
2326 __ mov(ecx, Immediate(Smi::FromInt(-1)));
2327 __ cmov(below, eax, ecx);
2328 __ ret(0);
2329
2330 __ bind(&unordered);
2331 __ bind(&generic_stub);
2332 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2333 CompareICState::GENERIC, CompareICState::GENERIC);
2334 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
2335
2336 __ bind(&maybe_undefined1);
2337 if (Token::IsOrderedRelationalCompareOp(op())) {
2338 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
2339 __ j(not_equal, &miss);
2340 __ JumpIfSmi(edx, &unordered);
2341 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
2342 __ j(not_equal, &maybe_undefined2, Label::kNear);
2343 __ jmp(&unordered);
2344 }
2345
2346 __ bind(&maybe_undefined2);
2347 if (Token::IsOrderedRelationalCompareOp(op())) {
2348 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
2349 __ j(equal, &unordered);
2350 }
2351
2352 __ bind(&miss);
2353 GenerateMiss(masm);
2354 }
2355
2356
GenerateInternalizedStrings(MacroAssembler * masm)2357 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2358 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2359 DCHECK(GetCondition() == equal);
2360
2361 // Registers containing left and right operands respectively.
2362 Register left = edx;
2363 Register right = eax;
2364 Register tmp1 = ecx;
2365 Register tmp2 = ebx;
2366
2367 // Check that both operands are heap objects.
2368 Label miss;
2369 __ mov(tmp1, left);
2370 STATIC_ASSERT(kSmiTag == 0);
2371 __ and_(tmp1, right);
2372 __ JumpIfSmi(tmp1, &miss, Label::kNear);
2373
2374 // Check that both operands are internalized strings.
2375 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
2376 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
2377 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
2378 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
2379 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2380 __ or_(tmp1, tmp2);
2381 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
2382 __ j(not_zero, &miss, Label::kNear);
2383
2384 // Internalized strings are compared by identity.
2385 Label done;
2386 __ cmp(left, right);
2387 // Make sure eax is non-zero. At this point input operands are
2388 // guaranteed to be non-zero.
2389 DCHECK(right.is(eax));
2390 __ j(not_equal, &done, Label::kNear);
2391 STATIC_ASSERT(EQUAL == 0);
2392 STATIC_ASSERT(kSmiTag == 0);
2393 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2394 __ bind(&done);
2395 __ ret(0);
2396
2397 __ bind(&miss);
2398 GenerateMiss(masm);
2399 }
2400
2401
GenerateUniqueNames(MacroAssembler * masm)2402 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2403 DCHECK(state() == CompareICState::UNIQUE_NAME);
2404 DCHECK(GetCondition() == equal);
2405
2406 // Registers containing left and right operands respectively.
2407 Register left = edx;
2408 Register right = eax;
2409 Register tmp1 = ecx;
2410 Register tmp2 = ebx;
2411
2412 // Check that both operands are heap objects.
2413 Label miss;
2414 __ mov(tmp1, left);
2415 STATIC_ASSERT(kSmiTag == 0);
2416 __ and_(tmp1, right);
2417 __ JumpIfSmi(tmp1, &miss, Label::kNear);
2418
2419 // Check that both operands are unique names. This leaves the instance
2420 // types loaded in tmp1 and tmp2.
2421 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
2422 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
2423 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
2424 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
2425
2426 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
2427 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
2428
2429 // Unique names are compared by identity.
2430 Label done;
2431 __ cmp(left, right);
2432 // Make sure eax is non-zero. At this point input operands are
2433 // guaranteed to be non-zero.
2434 DCHECK(right.is(eax));
2435 __ j(not_equal, &done, Label::kNear);
2436 STATIC_ASSERT(EQUAL == 0);
2437 STATIC_ASSERT(kSmiTag == 0);
2438 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2439 __ bind(&done);
2440 __ ret(0);
2441
2442 __ bind(&miss);
2443 GenerateMiss(masm);
2444 }
2445
2446
GenerateStrings(MacroAssembler * masm)2447 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2448 DCHECK(state() == CompareICState::STRING);
2449 Label miss;
2450
2451 bool equality = Token::IsEqualityOp(op());
2452
2453 // Registers containing left and right operands respectively.
2454 Register left = edx;
2455 Register right = eax;
2456 Register tmp1 = ecx;
2457 Register tmp2 = ebx;
2458 Register tmp3 = edi;
2459
2460 // Check that both operands are heap objects.
2461 __ mov(tmp1, left);
2462 STATIC_ASSERT(kSmiTag == 0);
2463 __ and_(tmp1, right);
2464 __ JumpIfSmi(tmp1, &miss);
2465
2466 // Check that both operands are strings. This leaves the instance
2467 // types loaded in tmp1 and tmp2.
2468 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
2469 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
2470 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
2471 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
2472 __ mov(tmp3, tmp1);
2473 STATIC_ASSERT(kNotStringTag != 0);
2474 __ or_(tmp3, tmp2);
2475 __ test(tmp3, Immediate(kIsNotStringMask));
2476 __ j(not_zero, &miss);
2477
2478 // Fast check for identical strings.
2479 Label not_same;
2480 __ cmp(left, right);
2481 __ j(not_equal, ¬_same, Label::kNear);
2482 STATIC_ASSERT(EQUAL == 0);
2483 STATIC_ASSERT(kSmiTag == 0);
2484 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
2485 __ ret(0);
2486
2487 // Handle not identical strings.
2488 __ bind(¬_same);
2489
2490 // Check that both strings are internalized. If they are, we're done
2491 // because we already know they are not identical. But in the case of
2492 // non-equality compare, we still need to determine the order. We
2493 // also know they are both strings.
2494 if (equality) {
2495 Label do_compare;
2496 STATIC_ASSERT(kInternalizedTag == 0);
2497 __ or_(tmp1, tmp2);
2498 __ test(tmp1, Immediate(kIsNotInternalizedMask));
2499 __ j(not_zero, &do_compare, Label::kNear);
2500 // Make sure eax is non-zero. At this point input operands are
2501 // guaranteed to be non-zero.
2502 DCHECK(right.is(eax));
2503 __ ret(0);
2504 __ bind(&do_compare);
2505 }
2506
2507 // Check that both strings are sequential one-byte.
2508 Label runtime;
2509 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
2510
2511 // Compare flat one byte strings. Returns when done.
2512 if (equality) {
2513 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
2514 tmp2);
2515 } else {
2516 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2517 tmp2, tmp3);
2518 }
2519
2520 // Handle more complex cases in runtime.
2521 __ bind(&runtime);
2522 if (equality) {
2523 {
2524 FrameScope scope(masm, StackFrame::INTERNAL);
2525 __ Push(left);
2526 __ Push(right);
2527 __ CallRuntime(Runtime::kStringEqual);
2528 }
2529 __ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
2530 __ Ret();
2531 } else {
2532 __ pop(tmp1); // Return address.
2533 __ push(left);
2534 __ push(right);
2535 __ push(tmp1);
2536 __ TailCallRuntime(Runtime::kStringCompare);
2537 }
2538
2539 __ bind(&miss);
2540 GenerateMiss(masm);
2541 }
2542
2543
GenerateReceivers(MacroAssembler * masm)2544 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2545 DCHECK_EQ(CompareICState::RECEIVER, state());
2546 Label miss;
2547 __ mov(ecx, edx);
2548 __ and_(ecx, eax);
2549 __ JumpIfSmi(ecx, &miss, Label::kNear);
2550
2551 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2552 __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
2553 __ j(below, &miss, Label::kNear);
2554 __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
2555 __ j(below, &miss, Label::kNear);
2556
2557 DCHECK_EQ(equal, GetCondition());
2558 __ sub(eax, edx);
2559 __ ret(0);
2560
2561 __ bind(&miss);
2562 GenerateMiss(masm);
2563 }
2564
2565
GenerateKnownReceivers(MacroAssembler * masm)2566 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2567 Label miss;
2568 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2569 __ mov(ecx, edx);
2570 __ and_(ecx, eax);
2571 __ JumpIfSmi(ecx, &miss, Label::kNear);
2572
2573 __ GetWeakValue(edi, cell);
2574 __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
2575 __ j(not_equal, &miss, Label::kNear);
2576 __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
2577 __ j(not_equal, &miss, Label::kNear);
2578
2579 if (Token::IsEqualityOp(op())) {
2580 __ sub(eax, edx);
2581 __ ret(0);
2582 } else {
2583 __ PopReturnAddressTo(ecx);
2584 __ Push(edx);
2585 __ Push(eax);
2586 __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
2587 __ PushReturnAddressFrom(ecx);
2588 __ TailCallRuntime(Runtime::kCompare);
2589 }
2590
2591 __ bind(&miss);
2592 GenerateMiss(masm);
2593 }
2594
2595
GenerateMiss(MacroAssembler * masm)2596 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2597 {
2598 // Call the runtime system in a fresh internal frame.
2599 FrameScope scope(masm, StackFrame::INTERNAL);
2600 __ push(edx); // Preserve edx and eax.
2601 __ push(eax);
2602 __ push(edx); // And also use them as the arguments.
2603 __ push(eax);
2604 __ push(Immediate(Smi::FromInt(op())));
2605 __ CallRuntime(Runtime::kCompareIC_Miss);
2606 // Compute the entry point of the rewritten stub.
2607 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
2608 __ pop(eax);
2609 __ pop(edx);
2610 }
2611
2612 // Do a tail call to the rewritten stub.
2613 __ jmp(edi);
2614 }
2615
2616
2617 // Helper function used to check that the dictionary doesn't contain
2618 // the property. This function may return false negatives, so miss_label
2619 // must always call a backup property check that is complete.
2620 // This function is safe to call if the receiver has fast properties.
2621 // Name must be a unique name and receiver must be a heap object.
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register properties,Handle<Name> name,Register r0)2622 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
2623 Label* miss,
2624 Label* done,
2625 Register properties,
2626 Handle<Name> name,
2627 Register r0) {
2628 DCHECK(name->IsUniqueName());
2629
2630 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2631 // not equal to the name and kProbes-th slot is not used (its name is the
2632 // undefined value), it guarantees the hash table doesn't contain the
2633 // property. It's true even if some slots represent deleted properties
2634 // (their names are the hole value).
2635 for (int i = 0; i < kInlinedProbes; i++) {
2636 // Compute the masked index: (hash + i + i * i) & mask.
2637 Register index = r0;
2638 // Capacity is smi 2^n.
2639 __ mov(index, FieldOperand(properties, kCapacityOffset));
2640 __ dec(index);
2641 __ and_(index,
2642 Immediate(Smi::FromInt(name->Hash() +
2643 NameDictionary::GetProbeOffset(i))));
2644
2645 // Scale the index by multiplying by the entry size.
2646 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2647 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
2648 Register entity_name = r0;
2649 // Having undefined at this place means the name is not contained.
2650 STATIC_ASSERT(kSmiTagSize == 1);
2651 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
2652 kElementsStartOffset - kHeapObjectTag));
2653 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
2654 __ j(equal, done);
2655
2656 // Stop if found the property.
2657 __ cmp(entity_name, Handle<Name>(name));
2658 __ j(equal, miss);
2659
2660 Label good;
2661 // Check for the hole and skip.
2662 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
2663 __ j(equal, &good, Label::kNear);
2664
2665 // Check if the entry name is not a unique name.
2666 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
2667 __ JumpIfNotUniqueNameInstanceType(
2668 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
2669 __ bind(&good);
2670 }
2671
2672 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
2673 NEGATIVE_LOOKUP);
2674 __ push(Immediate(Handle<Object>(name)));
2675 __ push(Immediate(name->Hash()));
2676 __ CallStub(&stub);
2677 __ test(r0, r0);
2678 __ j(not_zero, miss);
2679 __ jmp(done);
2680 }
2681
2682
2683 // Probe the name dictionary in the |elements| register. Jump to the
2684 // |done| label if a property with the given name is found leaving the
2685 // index into the dictionary in |r0|. Jump to the |miss| label
2686 // otherwise.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register r0,Register r1)2687 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
2688 Label* miss,
2689 Label* done,
2690 Register elements,
2691 Register name,
2692 Register r0,
2693 Register r1) {
2694 DCHECK(!elements.is(r0));
2695 DCHECK(!elements.is(r1));
2696 DCHECK(!name.is(r0));
2697 DCHECK(!name.is(r1));
2698
2699 __ AssertName(name);
2700
2701 __ mov(r1, FieldOperand(elements, kCapacityOffset));
2702 __ shr(r1, kSmiTagSize); // convert smi to int
2703 __ dec(r1);
2704
2705 // Generate an unrolled loop that performs a few probes before
2706 // giving up. Measurements done on Gmail indicate that 2 probes
2707 // cover ~93% of loads from dictionaries.
2708 for (int i = 0; i < kInlinedProbes; i++) {
2709 // Compute the masked index: (hash + i + i * i) & mask.
2710 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
2711 __ shr(r0, Name::kHashShift);
2712 if (i > 0) {
2713 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
2714 }
2715 __ and_(r0, r1);
2716
2717 // Scale the index by multiplying by the entry size.
2718 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2719 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
2720
2721 // Check if the key is identical to the name.
2722 __ cmp(name, Operand(elements,
2723 r0,
2724 times_4,
2725 kElementsStartOffset - kHeapObjectTag));
2726 __ j(equal, done);
2727 }
2728
2729 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
2730 POSITIVE_LOOKUP);
2731 __ push(name);
2732 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
2733 __ shr(r0, Name::kHashShift);
2734 __ push(r0);
2735 __ CallStub(&stub);
2736
2737 __ test(r1, r1);
2738 __ j(zero, miss);
2739 __ jmp(done);
2740 }
2741
2742
Generate(MacroAssembler * masm)2743 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2744 // This stub overrides SometimesSetsUpAFrame() to return false. That means
2745 // we cannot call anything that could cause a GC from this stub.
2746 // Stack frame on entry:
2747 // esp[0 * kPointerSize]: return address.
2748 // esp[1 * kPointerSize]: key's hash.
2749 // esp[2 * kPointerSize]: key.
2750 // Registers:
2751 // dictionary_: NameDictionary to probe.
2752 // result_: used as scratch.
2753 // index_: will hold an index of entry if lookup is successful.
2754 // might alias with result_.
2755 // Returns:
2756 // result_ is zero if lookup failed, non zero otherwise.
2757
2758 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2759
2760 Register scratch = result();
2761
2762 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
2763 __ dec(scratch);
2764 __ SmiUntag(scratch);
2765 __ push(scratch);
2766
2767 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2768 // not equal to the name and kProbes-th slot is not used (its name is the
2769 // undefined value), it guarantees the hash table doesn't contain the
2770 // property. It's true even if some slots represent deleted properties
2771 // (their names are the null value).
2772 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2773 // Compute the masked index: (hash + i + i * i) & mask.
2774 __ mov(scratch, Operand(esp, 2 * kPointerSize));
2775 if (i > 0) {
2776 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
2777 }
2778 __ and_(scratch, Operand(esp, 0));
2779
2780 // Scale the index by multiplying by the entry size.
2781 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2782 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
2783
2784 // Having undefined at this place means the name is not contained.
2785 STATIC_ASSERT(kSmiTagSize == 1);
2786 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
2787 kElementsStartOffset - kHeapObjectTag));
2788 __ cmp(scratch, isolate()->factory()->undefined_value());
2789 __ j(equal, ¬_in_dictionary);
2790
2791 // Stop if found the property.
2792 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
2793 __ j(equal, &in_dictionary);
2794
2795 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2796 // If we hit a key that is not a unique name during negative
2797 // lookup we have to bailout as this key might be equal to the
2798 // key we are looking for.
2799
2800 // Check if the entry name is not a unique name.
2801 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2802 __ JumpIfNotUniqueNameInstanceType(
2803 FieldOperand(scratch, Map::kInstanceTypeOffset),
2804 &maybe_in_dictionary);
2805 }
2806 }
2807
2808 __ bind(&maybe_in_dictionary);
2809 // If we are doing negative lookup then probing failure should be
2810 // treated as a lookup success. For positive lookup probing failure
2811 // should be treated as lookup failure.
2812 if (mode() == POSITIVE_LOOKUP) {
2813 __ mov(result(), Immediate(0));
2814 __ Drop(1);
2815 __ ret(2 * kPointerSize);
2816 }
2817
2818 __ bind(&in_dictionary);
2819 __ mov(result(), Immediate(1));
2820 __ Drop(1);
2821 __ ret(2 * kPointerSize);
2822
2823 __ bind(¬_in_dictionary);
2824 __ mov(result(), Immediate(0));
2825 __ Drop(1);
2826 __ ret(2 * kPointerSize);
2827 }
2828
2829
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)2830 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2831 Isolate* isolate) {
2832 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
2833 stub.GetCode();
2834 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2835 stub2.GetCode();
2836 }
2837
2838
2839 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
2840 // the value has just been written into the object, now this stub makes sure
2841 // we keep the GC informed. The word in the object where the value has been
2842 // written is in the address register.
Generate(MacroAssembler * masm)2843 void RecordWriteStub::Generate(MacroAssembler* masm) {
2844 Label skip_to_incremental_noncompacting;
2845 Label skip_to_incremental_compacting;
2846
2847 // The first two instructions are generated with labels so as to get the
2848 // offset fixed up correctly by the bind(Label*) call. We patch it back and
2849 // forth between a compare instructions (a nop in this position) and the
2850 // real branch when we start and stop incremental heap marking.
2851 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
2852 __ jmp(&skip_to_incremental_compacting, Label::kFar);
2853
2854 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2855 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2856 MacroAssembler::kReturnAtEnd);
2857 } else {
2858 __ ret(0);
2859 }
2860
2861 __ bind(&skip_to_incremental_noncompacting);
2862 GenerateIncremental(masm, INCREMENTAL);
2863
2864 __ bind(&skip_to_incremental_compacting);
2865 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
2866
2867 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
2868 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
2869 masm->set_byte_at(0, kTwoByteNopInstruction);
2870 masm->set_byte_at(2, kFiveByteNopInstruction);
2871 }
2872
2873
GenerateIncremental(MacroAssembler * masm,Mode mode)2874 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
2875 regs_.Save(masm);
2876
2877 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2878 Label dont_need_remembered_set;
2879
2880 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
2881 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
2882 regs_.scratch0(),
2883 &dont_need_remembered_set);
2884
2885 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
2886 &dont_need_remembered_set);
2887
2888 // First notify the incremental marker if necessary, then update the
2889 // remembered set.
2890 CheckNeedsToInformIncrementalMarker(
2891 masm,
2892 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
2893 mode);
2894 InformIncrementalMarker(masm);
2895 regs_.Restore(masm);
2896 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2897 MacroAssembler::kReturnAtEnd);
2898
2899 __ bind(&dont_need_remembered_set);
2900 }
2901
2902 CheckNeedsToInformIncrementalMarker(
2903 masm,
2904 kReturnOnNoNeedToInformIncrementalMarker,
2905 mode);
2906 InformIncrementalMarker(masm);
2907 regs_.Restore(masm);
2908 __ ret(0);
2909 }
2910
2911
InformIncrementalMarker(MacroAssembler * masm)2912 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
2913 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
2914 int argument_count = 3;
2915 __ PrepareCallCFunction(argument_count, regs_.scratch0());
2916 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
2917 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
2918 __ mov(Operand(esp, 2 * kPointerSize),
2919 Immediate(ExternalReference::isolate_address(isolate())));
2920
2921 AllowExternalCallThatCantCauseGC scope(masm);
2922 __ CallCFunction(
2923 ExternalReference::incremental_marking_record_write_function(isolate()),
2924 argument_count);
2925
2926 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
2927 }
2928
2929
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)2930 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
2931 MacroAssembler* masm,
2932 OnNoNeedToInformIncrementalMarker on_no_need,
2933 Mode mode) {
2934 Label object_is_black, need_incremental, need_incremental_pop_object;
2935
2936 // Let's look at the color of the object: If it is not black we don't have
2937 // to inform the incremental marker.
2938 __ JumpIfBlack(regs_.object(),
2939 regs_.scratch0(),
2940 regs_.scratch1(),
2941 &object_is_black,
2942 Label::kNear);
2943
2944 regs_.Restore(masm);
2945 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2946 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2947 MacroAssembler::kReturnAtEnd);
2948 } else {
2949 __ ret(0);
2950 }
2951
2952 __ bind(&object_is_black);
2953
2954 // Get the value from the slot.
2955 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
2956
2957 if (mode == INCREMENTAL_COMPACTION) {
2958 Label ensure_not_white;
2959
2960 __ CheckPageFlag(regs_.scratch0(), // Contains value.
2961 regs_.scratch1(), // Scratch.
2962 MemoryChunk::kEvacuationCandidateMask,
2963 zero,
2964 &ensure_not_white,
2965 Label::kNear);
2966
2967 __ CheckPageFlag(regs_.object(),
2968 regs_.scratch1(), // Scratch.
2969 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
2970 not_zero,
2971 &ensure_not_white,
2972 Label::kNear);
2973
2974 __ jmp(&need_incremental);
2975
2976 __ bind(&ensure_not_white);
2977 }
2978
2979 // We need an extra register for this, so we push the object register
2980 // temporarily.
2981 __ push(regs_.object());
2982 __ JumpIfWhite(regs_.scratch0(), // The value.
2983 regs_.scratch1(), // Scratch.
2984 regs_.object(), // Scratch.
2985 &need_incremental_pop_object, Label::kNear);
2986 __ pop(regs_.object());
2987
2988 regs_.Restore(masm);
2989 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2990 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2991 MacroAssembler::kReturnAtEnd);
2992 } else {
2993 __ ret(0);
2994 }
2995
2996 __ bind(&need_incremental_pop_object);
2997 __ pop(regs_.object());
2998
2999 __ bind(&need_incremental);
3000
3001 // Fall through when we need to inform the incremental marker.
3002 }
3003
3004
Generate(MacroAssembler * masm)3005 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3006 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3007 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
3008 int parameter_count_offset =
3009 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
3010 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
3011 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3012 __ pop(ecx);
3013 int additional_offset =
3014 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
3015 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
3016 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
3017 }
3018
Generate(MacroAssembler * masm)3019 void KeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3020 __ EmitLoadTypeFeedbackVector(StoreWithVectorDescriptor::VectorRegister());
3021 KeyedStoreICStub stub(isolate(), state());
3022 stub.GenerateForTrampoline(masm);
3023 }
3024
3025 // value is on the stack already.
HandlePolymorphicStoreCase(MacroAssembler * masm,Register receiver,Register key,Register vector,Register slot,Register feedback,bool is_polymorphic,Label * miss)3026 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register receiver,
3027 Register key, Register vector,
3028 Register slot, Register feedback,
3029 bool is_polymorphic, Label* miss) {
3030 // feedback initially contains the feedback array
3031 Label next, next_loop, prepare_next;
3032 Label load_smi_map, compare_map;
3033 Label start_polymorphic;
3034 Label pop_and_miss;
3035
3036 __ push(receiver);
3037 // Value, vector and slot are passed on the stack, so no need to save/restore
3038 // them.
3039
3040 Register receiver_map = receiver;
3041 Register cached_map = vector;
3042
3043 // Receiver might not be a heap object.
3044 __ JumpIfSmi(receiver, &load_smi_map);
3045 __ mov(receiver_map, FieldOperand(receiver, 0));
3046 __ bind(&compare_map);
3047 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3048
3049 // A named keyed store might have a 2 element array, all other cases can count
3050 // on an array with at least 2 {map, handler} pairs, so they can go right
3051 // into polymorphic array handling.
3052 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
3053 __ j(not_equal, &start_polymorphic);
3054
3055 // found, now call handler.
3056 Register handler = feedback;
3057 DCHECK(handler.is(StoreWithVectorDescriptor::ValueRegister()));
3058 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3059 __ pop(receiver);
3060 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
3061 __ jmp(handler);
3062
3063 // Polymorphic, we have to loop from 2 to N
3064 __ bind(&start_polymorphic);
3065 __ push(key);
3066 Register counter = key;
3067 __ mov(counter, Immediate(Smi::FromInt(2)));
3068
3069 if (!is_polymorphic) {
3070 // If is_polymorphic is false, we may only have a two element array.
3071 // Check against length now in that case.
3072 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
3073 __ j(greater_equal, &pop_and_miss);
3074 }
3075
3076 __ bind(&next_loop);
3077 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
3078 FixedArray::kHeaderSize));
3079 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
3080 __ j(not_equal, &prepare_next);
3081 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
3082 FixedArray::kHeaderSize + kPointerSize));
3083 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
3084 __ pop(key);
3085 __ pop(receiver);
3086 __ jmp(handler);
3087
3088 __ bind(&prepare_next);
3089 __ add(counter, Immediate(Smi::FromInt(2)));
3090 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
3091 __ j(less, &next_loop);
3092
3093 // We exhausted our array of map handler pairs.
3094 __ bind(&pop_and_miss);
3095 __ pop(key);
3096 __ pop(receiver);
3097 __ jmp(miss);
3098
3099 __ bind(&load_smi_map);
3100 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3101 __ jmp(&compare_map);
3102 }
3103
3104
HandleMonomorphicStoreCase(MacroAssembler * masm,Register receiver,Register key,Register vector,Register slot,Register weak_cell,Label * miss)3105 static void HandleMonomorphicStoreCase(MacroAssembler* masm, Register receiver,
3106 Register key, Register vector,
3107 Register slot, Register weak_cell,
3108 Label* miss) {
3109 // The store ic value is on the stack.
3110 DCHECK(weak_cell.is(StoreWithVectorDescriptor::ValueRegister()));
3111
3112 // feedback initially contains the feedback array
3113 Label compare_smi_map;
3114
3115 // Move the weak map into the weak_cell register.
3116 Register ic_map = weak_cell;
3117 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
3118
3119 // Receiver might not be a heap object.
3120 __ JumpIfSmi(receiver, &compare_smi_map);
3121 __ cmp(ic_map, FieldOperand(receiver, 0));
3122 __ j(not_equal, miss);
3123 __ mov(weak_cell, FieldOperand(vector, slot, times_half_pointer_size,
3124 FixedArray::kHeaderSize + kPointerSize));
3125 __ lea(weak_cell, FieldOperand(weak_cell, Code::kHeaderSize));
3126 // jump to the handler.
3127 __ jmp(weak_cell);
3128
3129 // In microbenchmarks, it made sense to unroll this code so that the call to
3130 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
3131 __ bind(&compare_smi_map);
3132 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
3133 __ j(not_equal, miss);
3134 __ mov(weak_cell, FieldOperand(vector, slot, times_half_pointer_size,
3135 FixedArray::kHeaderSize + kPointerSize));
3136 __ lea(weak_cell, FieldOperand(weak_cell, Code::kHeaderSize));
3137 // jump to the handler.
3138 __ jmp(weak_cell);
3139 }
3140
Generate(MacroAssembler * masm)3141 void KeyedStoreICStub::Generate(MacroAssembler* masm) {
3142 GenerateImpl(masm, false);
3143 }
3144
GenerateForTrampoline(MacroAssembler * masm)3145 void KeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3146 GenerateImpl(masm, true);
3147 }
3148
3149
HandlePolymorphicKeyedStoreCase(MacroAssembler * masm,Register receiver,Register key,Register vector,Register slot,Register feedback,Label * miss)3150 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm,
3151 Register receiver, Register key,
3152 Register vector, Register slot,
3153 Register feedback, Label* miss) {
3154 // feedback initially contains the feedback array
3155 Label next, next_loop, prepare_next;
3156 Label load_smi_map, compare_map;
3157 Label transition_call;
3158 Label pop_and_miss;
3159
3160 __ push(receiver);
3161 // Value, vector and slot are passed on the stack, so no need to save/restore
3162 // them.
3163
3164 Register receiver_map = receiver;
3165 Register cached_map = vector;
3166
3167 // Receiver might not be a heap object.
3168 __ JumpIfSmi(receiver, &load_smi_map);
3169 __ mov(receiver_map, FieldOperand(receiver, 0));
3170 __ bind(&compare_map);
3171
3172 // Polymorphic, we have to loop from 0 to N - 1
3173 __ push(key);
3174 // Current stack layout:
3175 // - esp[0] -- key
3176 // - esp[4] -- receiver
3177 // - esp[8] -- return address
3178 // - esp[12] -- vector
3179 // - esp[16] -- slot
3180 // - esp[20] -- value
3181 //
3182 // Required stack layout for handler call (see StoreWithVectorDescriptor):
3183 // - esp[0] -- return address
3184 // - esp[4] -- vector
3185 // - esp[8] -- slot
3186 // - esp[12] -- value
3187 // - receiver, key, handler in registers.
3188 Register counter = key;
3189 __ mov(counter, Immediate(Smi::kZero));
3190 __ bind(&next_loop);
3191 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
3192 FixedArray::kHeaderSize));
3193 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
3194 __ j(not_equal, &prepare_next);
3195 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
3196 FixedArray::kHeaderSize + kPointerSize));
3197 __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex);
3198 __ j(not_equal, &transition_call);
3199 __ mov(feedback, FieldOperand(feedback, counter, times_half_pointer_size,
3200 FixedArray::kHeaderSize + 2 * kPointerSize));
3201 __ pop(key);
3202 __ pop(receiver);
3203 __ lea(feedback, FieldOperand(feedback, Code::kHeaderSize));
3204 __ jmp(feedback);
3205
3206 __ bind(&transition_call);
3207 // Current stack layout:
3208 // - esp[0] -- key
3209 // - esp[4] -- receiver
3210 // - esp[8] -- return address
3211 // - esp[12] -- vector
3212 // - esp[16] -- slot
3213 // - esp[20] -- value
3214 //
3215 // Required stack layout for handler call (see StoreTransitionDescriptor):
3216 // - esp[0] -- return address
3217 // - esp[4] -- vector
3218 // - esp[8] -- slot
3219 // - esp[12] -- value
3220 // - receiver, key, map, handler in registers.
3221 __ mov(feedback, FieldOperand(feedback, counter, times_half_pointer_size,
3222 FixedArray::kHeaderSize + 2 * kPointerSize));
3223 __ lea(feedback, FieldOperand(feedback, Code::kHeaderSize));
3224
3225 __ mov(cached_map, FieldOperand(cached_map, WeakCell::kValueOffset));
3226 // The weak cell may have been cleared.
3227 __ JumpIfSmi(cached_map, &pop_and_miss);
3228 DCHECK(!cached_map.is(StoreTransitionDescriptor::MapRegister()));
3229 __ mov(StoreTransitionDescriptor::MapRegister(), cached_map);
3230
3231 // Call store transition handler using StoreTransitionDescriptor calling
3232 // convention.
3233 __ pop(key);
3234 __ pop(receiver);
3235 // Ensure that the transition handler we are going to call has the same
3236 // number of stack arguments which means that we don't have to adapt them
3237 // before the call.
3238 STATIC_ASSERT(StoreWithVectorDescriptor::kStackArgumentsCount == 3);
3239 STATIC_ASSERT(StoreTransitionDescriptor::kStackArgumentsCount == 3);
3240 STATIC_ASSERT(StoreWithVectorDescriptor::kParameterCount -
3241 StoreWithVectorDescriptor::kValue ==
3242 StoreTransitionDescriptor::kParameterCount -
3243 StoreTransitionDescriptor::kValue);
3244 STATIC_ASSERT(StoreWithVectorDescriptor::kParameterCount -
3245 StoreWithVectorDescriptor::kSlot ==
3246 StoreTransitionDescriptor::kParameterCount -
3247 StoreTransitionDescriptor::kSlot);
3248 STATIC_ASSERT(StoreWithVectorDescriptor::kParameterCount -
3249 StoreWithVectorDescriptor::kVector ==
3250 StoreTransitionDescriptor::kParameterCount -
3251 StoreTransitionDescriptor::kVector);
3252 __ jmp(feedback);
3253
3254 __ bind(&prepare_next);
3255 __ add(counter, Immediate(Smi::FromInt(3)));
3256 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
3257 __ j(less, &next_loop);
3258
3259 // We exhausted our array of map handler pairs.
3260 __ bind(&pop_and_miss);
3261 __ pop(key);
3262 __ pop(receiver);
3263 __ jmp(miss);
3264
3265 __ bind(&load_smi_map);
3266 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3267 __ jmp(&compare_map);
3268 }
3269
GenerateImpl(MacroAssembler * masm,bool in_frame)3270 void KeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3271 Register receiver = StoreWithVectorDescriptor::ReceiverRegister(); // edx
3272 Register key = StoreWithVectorDescriptor::NameRegister(); // ecx
3273 Register value = StoreWithVectorDescriptor::ValueRegister(); // eax
3274 Register vector = StoreWithVectorDescriptor::VectorRegister(); // ebx
3275 Register slot = StoreWithVectorDescriptor::SlotRegister(); // edi
3276 Label miss;
3277
3278 if (StoreWithVectorDescriptor::kPassLastArgsOnStack) {
3279 // Current stack layout:
3280 // - esp[8] -- value
3281 // - esp[4] -- slot
3282 // - esp[0] -- return address
3283 STATIC_ASSERT(StoreDescriptor::kStackArgumentsCount == 2);
3284 STATIC_ASSERT(StoreWithVectorDescriptor::kStackArgumentsCount == 3);
3285 if (in_frame) {
3286 __ RecordComment("[ StoreDescriptor -> StoreWithVectorDescriptor");
3287 // If the vector is not on the stack, then insert the vector beneath
3288 // return address in order to prepare for calling handler with
3289 // StoreWithVector calling convention.
3290 __ push(Operand(esp, 0));
3291 __ mov(Operand(esp, 4), StoreWithVectorDescriptor::VectorRegister());
3292 __ RecordComment("]");
3293 } else {
3294 __ mov(vector, Operand(esp, 1 * kPointerSize));
3295 }
3296 __ mov(slot, Operand(esp, 2 * kPointerSize));
3297 }
3298
3299 Register scratch = value;
3300 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
3301 FixedArray::kHeaderSize));
3302
3303 // Is it a weak cell?
3304 Label try_array;
3305 Label not_array, smi_key, key_okay;
3306 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
3307 __ j(not_equal, &try_array);
3308 HandleMonomorphicStoreCase(masm, receiver, key, vector, slot, scratch, &miss);
3309
3310 // Is it a fixed array?
3311 __ bind(&try_array);
3312 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
3313 __ j(not_equal, ¬_array);
3314 HandlePolymorphicKeyedStoreCase(masm, receiver, key, vector, slot, scratch,
3315 &miss);
3316
3317 __ bind(¬_array);
3318 Label try_poly_name;
3319 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
3320 __ j(not_equal, &try_poly_name);
3321
3322 Handle<Code> megamorphic_stub =
3323 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3324 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
3325
3326 __ bind(&try_poly_name);
3327 // We might have a name in feedback, and a fixed array in the next slot.
3328 __ cmp(key, scratch);
3329 __ j(not_equal, &miss);
3330 // If the name comparison succeeded, we know we have a fixed array with
3331 // at least one map/handler pair.
3332 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
3333 FixedArray::kHeaderSize + kPointerSize));
3334 HandlePolymorphicStoreCase(masm, receiver, key, vector, slot, scratch, false,
3335 &miss);
3336
3337 __ bind(&miss);
3338 KeyedStoreIC::GenerateMiss(masm);
3339 }
3340
3341
Generate(MacroAssembler * masm)3342 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3343 __ EmitLoadTypeFeedbackVector(ebx);
3344 CallICStub stub(isolate(), state());
3345 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3346 }
3347
3348
MaybeCallEntryHook(MacroAssembler * masm)3349 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
3350 if (masm->isolate()->function_entry_hook() != NULL) {
3351 ProfileEntryHookStub stub(masm->isolate());
3352 masm->CallStub(&stub);
3353 }
3354 }
3355
3356
Generate(MacroAssembler * masm)3357 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
3358 // Save volatile registers.
3359 const int kNumSavedRegisters = 3;
3360 __ push(eax);
3361 __ push(ecx);
3362 __ push(edx);
3363
3364 // Calculate and push the original stack pointer.
3365 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
3366 __ push(eax);
3367
3368 // Retrieve our return address and use it to calculate the calling
3369 // function's address.
3370 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
3371 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
3372 __ push(eax);
3373
3374 // Call the entry hook.
3375 DCHECK(isolate()->function_entry_hook() != NULL);
3376 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
3377 RelocInfo::RUNTIME_ENTRY);
3378 __ add(esp, Immediate(2 * kPointerSize));
3379
3380 // Restore ecx.
3381 __ pop(edx);
3382 __ pop(ecx);
3383 __ pop(eax);
3384
3385 __ ret(0);
3386 }
3387
3388
3389 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)3390 static void CreateArrayDispatch(MacroAssembler* masm,
3391 AllocationSiteOverrideMode mode) {
3392 if (mode == DISABLE_ALLOCATION_SITES) {
3393 T stub(masm->isolate(),
3394 GetInitialFastElementsKind(),
3395 mode);
3396 __ TailCallStub(&stub);
3397 } else if (mode == DONT_OVERRIDE) {
3398 int last_index = GetSequenceIndexFromFastElementsKind(
3399 TERMINAL_FAST_ELEMENTS_KIND);
3400 for (int i = 0; i <= last_index; ++i) {
3401 Label next;
3402 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3403 __ cmp(edx, kind);
3404 __ j(not_equal, &next);
3405 T stub(masm->isolate(), kind);
3406 __ TailCallStub(&stub);
3407 __ bind(&next);
3408 }
3409
3410 // If we reached this point there is a problem.
3411 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3412 } else {
3413 UNREACHABLE();
3414 }
3415 }
3416
3417
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)3418 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
3419 AllocationSiteOverrideMode mode) {
3420 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
3421 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
3422 // eax - number of arguments
3423 // edi - constructor?
3424 // esp[0] - return address
3425 // esp[4] - last argument
3426 Label normal_sequence;
3427 if (mode == DONT_OVERRIDE) {
3428 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3429 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3430 STATIC_ASSERT(FAST_ELEMENTS == 2);
3431 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3432 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
3433 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
3434
3435 // is the low bit set? If so, we are holey and that is good.
3436 __ test_b(edx, Immediate(1));
3437 __ j(not_zero, &normal_sequence);
3438 }
3439
3440 // look at the first argument
3441 __ mov(ecx, Operand(esp, kPointerSize));
3442 __ test(ecx, ecx);
3443 __ j(zero, &normal_sequence);
3444
3445 if (mode == DISABLE_ALLOCATION_SITES) {
3446 ElementsKind initial = GetInitialFastElementsKind();
3447 ElementsKind holey_initial = GetHoleyElementsKind(initial);
3448
3449 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
3450 holey_initial,
3451 DISABLE_ALLOCATION_SITES);
3452 __ TailCallStub(&stub_holey);
3453
3454 __ bind(&normal_sequence);
3455 ArraySingleArgumentConstructorStub stub(masm->isolate(),
3456 initial,
3457 DISABLE_ALLOCATION_SITES);
3458 __ TailCallStub(&stub);
3459 } else if (mode == DONT_OVERRIDE) {
3460 // We are going to create a holey array, but our kind is non-holey.
3461 // Fix kind and retry.
3462 __ inc(edx);
3463
3464 if (FLAG_debug_code) {
3465 Handle<Map> allocation_site_map =
3466 masm->isolate()->factory()->allocation_site_map();
3467 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
3468 __ Assert(equal, kExpectedAllocationSite);
3469 }
3470
3471 // Save the resulting elements kind in type info. We can't just store r3
3472 // in the AllocationSite::transition_info field because elements kind is
3473 // restricted to a portion of the field...upper bits need to be left alone.
3474 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3475 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
3476 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
3477
3478 __ bind(&normal_sequence);
3479 int last_index = GetSequenceIndexFromFastElementsKind(
3480 TERMINAL_FAST_ELEMENTS_KIND);
3481 for (int i = 0; i <= last_index; ++i) {
3482 Label next;
3483 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3484 __ cmp(edx, kind);
3485 __ j(not_equal, &next);
3486 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
3487 __ TailCallStub(&stub);
3488 __ bind(&next);
3489 }
3490
3491 // If we reached this point there is a problem.
3492 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3493 } else {
3494 UNREACHABLE();
3495 }
3496 }
3497
3498
3499 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)3500 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
3501 int to_index = GetSequenceIndexFromFastElementsKind(
3502 TERMINAL_FAST_ELEMENTS_KIND);
3503 for (int i = 0; i <= to_index; ++i) {
3504 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3505 T stub(isolate, kind);
3506 stub.GetCode();
3507 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
3508 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
3509 stub1.GetCode();
3510 }
3511 }
3512 }
3513
GenerateStubsAheadOfTime(Isolate * isolate)3514 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
3515 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
3516 isolate);
3517 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
3518 isolate);
3519 ArrayNArgumentsConstructorStub stub(isolate);
3520 stub.GetCode();
3521
3522 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
3523 for (int i = 0; i < 2; i++) {
3524 // For internal arrays we only need a few things
3525 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
3526 stubh1.GetCode();
3527 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
3528 stubh2.GetCode();
3529 }
3530 }
3531
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)3532 void ArrayConstructorStub::GenerateDispatchToArrayStub(
3533 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
3534 Label not_zero_case, not_one_case;
3535 __ test(eax, eax);
3536 __ j(not_zero, ¬_zero_case);
3537 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
3538
3539 __ bind(¬_zero_case);
3540 __ cmp(eax, 1);
3541 __ j(greater, ¬_one_case);
3542 CreateArrayDispatchOneArgument(masm, mode);
3543
3544 __ bind(¬_one_case);
3545 ArrayNArgumentsConstructorStub stub(masm->isolate());
3546 __ TailCallStub(&stub);
3547 }
3548
Generate(MacroAssembler * masm)3549 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
3550 // ----------- S t a t e -------------
3551 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
3552 // -- ebx : AllocationSite or undefined
3553 // -- edi : constructor
3554 // -- edx : Original constructor
3555 // -- esp[0] : return address
3556 // -- esp[4] : last argument
3557 // -----------------------------------
3558 if (FLAG_debug_code) {
3559 // The array construct code is only set for the global and natives
3560 // builtin Array functions which always have maps.
3561
3562 // Initial map for the builtin Array function should be a map.
3563 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
3564 // Will both indicate a NULL and a Smi.
3565 __ test(ecx, Immediate(kSmiTagMask));
3566 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
3567 __ CmpObjectType(ecx, MAP_TYPE, ecx);
3568 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
3569
3570 // We should either have undefined in ebx or a valid AllocationSite
3571 __ AssertUndefinedOrAllocationSite(ebx);
3572 }
3573
3574 Label subclassing;
3575
3576 // Enter the context of the Array function.
3577 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3578
3579 __ cmp(edx, edi);
3580 __ j(not_equal, &subclassing);
3581
3582 Label no_info;
3583 // If the feedback vector is the undefined value call an array constructor
3584 // that doesn't use AllocationSites.
3585 __ cmp(ebx, isolate()->factory()->undefined_value());
3586 __ j(equal, &no_info);
3587
3588 // Only look at the lower 16 bits of the transition info.
3589 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
3590 __ SmiUntag(edx);
3591 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3592 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
3593 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
3594
3595 __ bind(&no_info);
3596 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
3597
3598 // Subclassing.
3599 __ bind(&subclassing);
3600 __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
3601 __ add(eax, Immediate(3));
3602 __ PopReturnAddressTo(ecx);
3603 __ Push(edx);
3604 __ Push(ebx);
3605 __ PushReturnAddressFrom(ecx);
3606 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
3607 }
3608
3609
GenerateCase(MacroAssembler * masm,ElementsKind kind)3610 void InternalArrayConstructorStub::GenerateCase(
3611 MacroAssembler* masm, ElementsKind kind) {
3612 Label not_zero_case, not_one_case;
3613 Label normal_sequence;
3614
3615 __ test(eax, eax);
3616 __ j(not_zero, ¬_zero_case);
3617 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
3618 __ TailCallStub(&stub0);
3619
3620 __ bind(¬_zero_case);
3621 __ cmp(eax, 1);
3622 __ j(greater, ¬_one_case);
3623
3624 if (IsFastPackedElementsKind(kind)) {
3625 // We might need to create a holey array
3626 // look at the first argument
3627 __ mov(ecx, Operand(esp, kPointerSize));
3628 __ test(ecx, ecx);
3629 __ j(zero, &normal_sequence);
3630
3631 InternalArraySingleArgumentConstructorStub
3632 stub1_holey(isolate(), GetHoleyElementsKind(kind));
3633 __ TailCallStub(&stub1_holey);
3634 }
3635
3636 __ bind(&normal_sequence);
3637 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
3638 __ TailCallStub(&stub1);
3639
3640 __ bind(¬_one_case);
3641 ArrayNArgumentsConstructorStub stubN(isolate());
3642 __ TailCallStub(&stubN);
3643 }
3644
3645
Generate(MacroAssembler * masm)3646 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
3647 // ----------- S t a t e -------------
3648 // -- eax : argc
3649 // -- edi : constructor
3650 // -- esp[0] : return address
3651 // -- esp[4] : last argument
3652 // -----------------------------------
3653
3654 if (FLAG_debug_code) {
3655 // The array construct code is only set for the global and natives
3656 // builtin Array functions which always have maps.
3657
3658 // Initial map for the builtin Array function should be a map.
3659 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
3660 // Will both indicate a NULL and a Smi.
3661 __ test(ecx, Immediate(kSmiTagMask));
3662 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
3663 __ CmpObjectType(ecx, MAP_TYPE, ecx);
3664 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
3665 }
3666
3667 // Figure out the right elements kind
3668 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
3669
3670 // Load the map's "bit field 2" into |result|. We only need the first byte,
3671 // but the following masking takes care of that anyway.
3672 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
3673 // Retrieve elements_kind from bit field 2.
3674 __ DecodeField<Map::ElementsKindBits>(ecx);
3675
3676 if (FLAG_debug_code) {
3677 Label done;
3678 __ cmp(ecx, Immediate(FAST_ELEMENTS));
3679 __ j(equal, &done);
3680 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
3681 __ Assert(equal,
3682 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
3683 __ bind(&done);
3684 }
3685
3686 Label fast_elements_case;
3687 __ cmp(ecx, Immediate(FAST_ELEMENTS));
3688 __ j(equal, &fast_elements_case);
3689 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3690
3691 __ bind(&fast_elements_case);
3692 GenerateCase(masm, FAST_ELEMENTS);
3693 }
3694
3695
Generate(MacroAssembler * masm)3696 void FastNewObjectStub::Generate(MacroAssembler* masm) {
3697 // ----------- S t a t e -------------
3698 // -- edi : target
3699 // -- edx : new target
3700 // -- esi : context
3701 // -- esp[0] : return address
3702 // -----------------------------------
3703 __ AssertFunction(edi);
3704 __ AssertReceiver(edx);
3705
3706 // Verify that the new target is a JSFunction.
3707 Label new_object;
3708 __ CmpObjectType(edx, JS_FUNCTION_TYPE, ebx);
3709 __ j(not_equal, &new_object);
3710
3711 // Load the initial map and verify that it's in fact a map.
3712 __ mov(ecx, FieldOperand(edx, JSFunction::kPrototypeOrInitialMapOffset));
3713 __ JumpIfSmi(ecx, &new_object);
3714 __ CmpObjectType(ecx, MAP_TYPE, ebx);
3715 __ j(not_equal, &new_object);
3716
3717 // Fall back to runtime if the target differs from the new target's
3718 // initial map constructor.
3719 __ cmp(edi, FieldOperand(ecx, Map::kConstructorOrBackPointerOffset));
3720 __ j(not_equal, &new_object);
3721
3722 // Allocate the JSObject on the heap.
3723 Label allocate, done_allocate;
3724 __ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceSizeOffset));
3725 __ lea(ebx, Operand(ebx, times_pointer_size, 0));
3726 __ Allocate(ebx, eax, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
3727 __ bind(&done_allocate);
3728
3729 // Initialize the JSObject fields.
3730 __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
3731 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
3732 masm->isolate()->factory()->empty_fixed_array());
3733 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
3734 masm->isolate()->factory()->empty_fixed_array());
3735 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
3736 __ lea(ebx, FieldOperand(eax, JSObject::kHeaderSize));
3737
3738 // ----------- S t a t e -------------
3739 // -- eax : result (tagged)
3740 // -- ebx : result fields (untagged)
3741 // -- edi : result end (untagged)
3742 // -- ecx : initial map
3743 // -- esi : context
3744 // -- esp[0] : return address
3745 // -----------------------------------
3746
3747 // Perform in-object slack tracking if requested.
3748 Label slack_tracking;
3749 STATIC_ASSERT(Map::kNoSlackTracking == 0);
3750 __ test(FieldOperand(ecx, Map::kBitField3Offset),
3751 Immediate(Map::ConstructionCounter::kMask));
3752 __ j(not_zero, &slack_tracking, Label::kNear);
3753 {
3754 // Initialize all in-object fields with undefined.
3755 __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
3756 __ InitializeFieldsWithFiller(ebx, edi, edx);
3757 __ Ret();
3758 }
3759 __ bind(&slack_tracking);
3760 {
3761 // Decrease generous allocation count.
3762 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
3763 __ sub(FieldOperand(ecx, Map::kBitField3Offset),
3764 Immediate(1 << Map::ConstructionCounter::kShift));
3765
3766 // Initialize the in-object fields with undefined.
3767 __ movzx_b(edx, FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset));
3768 __ neg(edx);
3769 __ lea(edx, Operand(edi, edx, times_pointer_size, 0));
3770 __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
3771 __ InitializeFieldsWithFiller(ebx, edx, edi);
3772
3773 // Initialize the remaining (reserved) fields with one pointer filler map.
3774 __ movzx_b(edx, FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset));
3775 __ lea(edx, Operand(ebx, edx, times_pointer_size, 0));
3776 __ LoadRoot(edi, Heap::kOnePointerFillerMapRootIndex);
3777 __ InitializeFieldsWithFiller(ebx, edx, edi);
3778
3779 // Check if we can finalize the instance size.
3780 Label finalize;
3781 STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
3782 __ test(FieldOperand(ecx, Map::kBitField3Offset),
3783 Immediate(Map::ConstructionCounter::kMask));
3784 __ j(zero, &finalize, Label::kNear);
3785 __ Ret();
3786
3787 // Finalize the instance size.
3788 __ bind(&finalize);
3789 {
3790 FrameScope scope(masm, StackFrame::INTERNAL);
3791 __ Push(eax);
3792 __ Push(ecx);
3793 __ CallRuntime(Runtime::kFinalizeInstanceSize);
3794 __ Pop(eax);
3795 }
3796 __ Ret();
3797 }
3798
3799 // Fall back to %AllocateInNewSpace.
3800 __ bind(&allocate);
3801 {
3802 FrameScope scope(masm, StackFrame::INTERNAL);
3803 __ SmiTag(ebx);
3804 __ Push(ecx);
3805 __ Push(ebx);
3806 __ CallRuntime(Runtime::kAllocateInNewSpace);
3807 __ Pop(ecx);
3808 }
3809 __ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceSizeOffset));
3810 __ lea(edi, Operand(eax, ebx, times_pointer_size, 0));
3811 STATIC_ASSERT(kHeapObjectTag == 1);
3812 __ dec(edi);
3813 __ jmp(&done_allocate);
3814
3815 // Fall back to %NewObject.
3816 __ bind(&new_object);
3817 __ PopReturnAddressTo(ecx);
3818 __ Push(edi);
3819 __ Push(edx);
3820 __ PushReturnAddressFrom(ecx);
3821 __ TailCallRuntime(Runtime::kNewObject);
3822 }
3823
3824
Generate(MacroAssembler * masm)3825 void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
3826 // ----------- S t a t e -------------
3827 // -- edi : function
3828 // -- esi : context
3829 // -- ebp : frame pointer
3830 // -- esp[0] : return address
3831 // -----------------------------------
3832 __ AssertFunction(edi);
3833
3834 // Make edx point to the JavaScript frame.
3835 __ mov(edx, ebp);
3836 if (skip_stub_frame()) {
3837 // For Ignition we need to skip the handler/stub frame to reach the
3838 // JavaScript frame for the function.
3839 __ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
3840 }
3841 if (FLAG_debug_code) {
3842 Label ok;
3843 __ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
3844 __ j(equal, &ok);
3845 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
3846 __ bind(&ok);
3847 }
3848
3849 // Check if we have rest parameters (only possible if we have an
3850 // arguments adaptor frame below the function frame).
3851 Label no_rest_parameters;
3852 __ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
3853 __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
3854 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3855 __ j(not_equal, &no_rest_parameters, Label::kNear);
3856
3857 // Check if the arguments adaptor frame contains more arguments than
3858 // specified by the function's internal formal parameter count.
3859 Label rest_parameters;
3860 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
3861 __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
3862 __ sub(eax,
3863 FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
3864 __ j(greater, &rest_parameters);
3865
3866 // Return an empty rest parameter array.
3867 __ bind(&no_rest_parameters);
3868 {
3869 // ----------- S t a t e -------------
3870 // -- esi : context
3871 // -- esp[0] : return address
3872 // -----------------------------------
3873
3874 // Allocate an empty rest parameter array.
3875 Label allocate, done_allocate;
3876 __ Allocate(JSArray::kSize, eax, edx, ecx, &allocate, NO_ALLOCATION_FLAGS);
3877 __ bind(&done_allocate);
3878
3879 // Setup the rest parameter array in rax.
3880 __ LoadGlobalFunction(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, ecx);
3881 __ mov(FieldOperand(eax, JSArray::kMapOffset), ecx);
3882 __ mov(ecx, isolate()->factory()->empty_fixed_array());
3883 __ mov(FieldOperand(eax, JSArray::kPropertiesOffset), ecx);
3884 __ mov(FieldOperand(eax, JSArray::kElementsOffset), ecx);
3885 __ mov(FieldOperand(eax, JSArray::kLengthOffset), Immediate(Smi::kZero));
3886 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
3887 __ Ret();
3888
3889 // Fall back to %AllocateInNewSpace.
3890 __ bind(&allocate);
3891 {
3892 FrameScope scope(masm, StackFrame::INTERNAL);
3893 __ Push(Smi::FromInt(JSArray::kSize));
3894 __ CallRuntime(Runtime::kAllocateInNewSpace);
3895 }
3896 __ jmp(&done_allocate);
3897 }
3898
3899 __ bind(&rest_parameters);
3900 {
3901 // Compute the pointer to the first rest parameter (skippping the receiver).
3902 __ lea(ebx,
3903 Operand(ebx, eax, times_half_pointer_size,
3904 StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
3905
3906 // ----------- S t a t e -------------
3907 // -- esi : context
3908 // -- eax : number of rest parameters (tagged)
3909 // -- ebx : pointer to first rest parameters
3910 // -- esp[0] : return address
3911 // -----------------------------------
3912
3913 // Allocate space for the rest parameter array plus the backing store.
3914 Label allocate, done_allocate;
3915 __ lea(ecx, Operand(eax, times_half_pointer_size,
3916 JSArray::kSize + FixedArray::kHeaderSize));
3917 __ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
3918 __ bind(&done_allocate);
3919
3920 // Setup the elements array in edx.
3921 __ mov(FieldOperand(edx, FixedArray::kMapOffset),
3922 isolate()->factory()->fixed_array_map());
3923 __ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
3924 {
3925 Label loop, done_loop;
3926 __ Move(ecx, Smi::kZero);
3927 __ bind(&loop);
3928 __ cmp(ecx, eax);
3929 __ j(equal, &done_loop, Label::kNear);
3930 __ mov(edi, Operand(ebx, 0 * kPointerSize));
3931 __ mov(FieldOperand(edx, ecx, times_half_pointer_size,
3932 FixedArray::kHeaderSize),
3933 edi);
3934 __ sub(ebx, Immediate(1 * kPointerSize));
3935 __ add(ecx, Immediate(Smi::FromInt(1)));
3936 __ jmp(&loop);
3937 __ bind(&done_loop);
3938 }
3939
3940 // Setup the rest parameter array in edi.
3941 __ lea(edi,
3942 Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
3943 __ LoadGlobalFunction(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, ecx);
3944 __ mov(FieldOperand(edi, JSArray::kMapOffset), ecx);
3945 __ mov(FieldOperand(edi, JSArray::kPropertiesOffset),
3946 isolate()->factory()->empty_fixed_array());
3947 __ mov(FieldOperand(edi, JSArray::kElementsOffset), edx);
3948 __ mov(FieldOperand(edi, JSArray::kLengthOffset), eax);
3949 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
3950 __ mov(eax, edi);
3951 __ Ret();
3952
3953 // Fall back to %AllocateInNewSpace (if not too big).
3954 Label too_big_for_new_space;
3955 __ bind(&allocate);
3956 __ cmp(ecx, Immediate(kMaxRegularHeapObjectSize));
3957 __ j(greater, &too_big_for_new_space);
3958 {
3959 FrameScope scope(masm, StackFrame::INTERNAL);
3960 __ SmiTag(ecx);
3961 __ Push(eax);
3962 __ Push(ebx);
3963 __ Push(ecx);
3964 __ CallRuntime(Runtime::kAllocateInNewSpace);
3965 __ mov(edx, eax);
3966 __ Pop(ebx);
3967 __ Pop(eax);
3968 }
3969 __ jmp(&done_allocate);
3970
3971 // Fall back to %NewRestParameter.
3972 __ bind(&too_big_for_new_space);
3973 __ PopReturnAddressTo(ecx);
3974 // We reload the function from the caller frame due to register pressure
3975 // within this stub. This is the slow path, hence reloading is preferable.
3976 if (skip_stub_frame()) {
3977 // For Ignition we need to skip the handler/stub frame to reach the
3978 // JavaScript frame for the function.
3979 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3980 __ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
3981 } else {
3982 __ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
3983 }
3984 __ PushReturnAddressFrom(ecx);
3985 __ TailCallRuntime(Runtime::kNewRestParameter);
3986 }
3987 }
3988
3989
Generate(MacroAssembler * masm)3990 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
3991 // ----------- S t a t e -------------
3992 // -- edi : function
3993 // -- esi : context
3994 // -- ebp : frame pointer
3995 // -- esp[0] : return address
3996 // -----------------------------------
3997 __ AssertFunction(edi);
3998
3999 // Make ecx point to the JavaScript frame.
4000 __ mov(ecx, ebp);
4001 if (skip_stub_frame()) {
4002 // For Ignition we need to skip the handler/stub frame to reach the
4003 // JavaScript frame for the function.
4004 __ mov(ecx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
4005 }
4006 if (FLAG_debug_code) {
4007 Label ok;
4008 __ cmp(edi, Operand(ecx, StandardFrameConstants::kFunctionOffset));
4009 __ j(equal, &ok);
4010 __ Abort(kInvalidFrameForFastNewSloppyArgumentsStub);
4011 __ bind(&ok);
4012 }
4013
4014 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
4015 __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
4016 __ mov(ebx,
4017 FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset));
4018 __ lea(edx, Operand(ecx, ebx, times_half_pointer_size,
4019 StandardFrameConstants::kCallerSPOffset));
4020
4021 // ebx : number of parameters (tagged)
4022 // edx : parameters pointer
4023 // edi : function
4024 // ecx : JavaScript frame pointer.
4025 // esp[0] : return address
4026
4027 // Check if the calling frame is an arguments adaptor frame.
4028 Label adaptor_frame, try_allocate, runtime;
4029 __ mov(eax, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
4030 __ mov(eax, Operand(eax, CommonFrameConstants::kContextOrFrameTypeOffset));
4031 __ cmp(eax, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4032 __ j(equal, &adaptor_frame, Label::kNear);
4033
4034 // No adaptor, parameter count = argument count.
4035 __ mov(ecx, ebx);
4036 __ push(ebx);
4037 __ jmp(&try_allocate, Label::kNear);
4038
4039 // We have an adaptor frame. Patch the parameters pointer.
4040 __ bind(&adaptor_frame);
4041 __ push(ebx);
4042 __ mov(edx, Operand(ecx, StandardFrameConstants::kCallerFPOffset));
4043 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
4044 __ lea(edx, Operand(edx, ecx, times_2,
4045 StandardFrameConstants::kCallerSPOffset));
4046
4047 // ebx = parameter count (tagged)
4048 // ecx = argument count (smi-tagged)
4049 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
4050 __ cmp(ebx, ecx);
4051 __ j(less_equal, &try_allocate, Label::kNear);
4052 __ mov(ebx, ecx);
4053
4054 // Save mapped parameter count and function.
4055 __ bind(&try_allocate);
4056 __ push(edi);
4057 __ push(ebx);
4058
4059 // Compute the sizes of backing store, parameter map, and arguments object.
4060 // 1. Parameter map, has 2 extra words containing context and backing store.
4061 const int kParameterMapHeaderSize =
4062 FixedArray::kHeaderSize + 2 * kPointerSize;
4063 Label no_parameter_map;
4064 __ test(ebx, ebx);
4065 __ j(zero, &no_parameter_map, Label::kNear);
4066 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
4067 __ bind(&no_parameter_map);
4068
4069 // 2. Backing store.
4070 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
4071
4072 // 3. Arguments object.
4073 __ add(ebx, Immediate(JSSloppyArgumentsObject::kSize));
4074
4075 // Do the allocation of all three objects in one go.
4076 __ Allocate(ebx, eax, edi, no_reg, &runtime, NO_ALLOCATION_FLAGS);
4077
4078 // eax = address of new object(s) (tagged)
4079 // ecx = argument count (smi-tagged)
4080 // esp[0] = mapped parameter count (tagged)
4081 // esp[4] = function
4082 // esp[8] = parameter count (tagged)
4083 // Get the arguments map from the current native context into edi.
4084 Label has_mapped_parameters, instantiate;
4085 __ mov(edi, NativeContextOperand());
4086 __ mov(ebx, Operand(esp, 0 * kPointerSize));
4087 __ test(ebx, ebx);
4088 __ j(not_zero, &has_mapped_parameters, Label::kNear);
4089 __ mov(
4090 edi,
4091 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
4092 __ jmp(&instantiate, Label::kNear);
4093
4094 __ bind(&has_mapped_parameters);
4095 __ mov(edi, Operand(edi, Context::SlotOffset(
4096 Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
4097 __ bind(&instantiate);
4098
4099 // eax = address of new object (tagged)
4100 // ebx = mapped parameter count (tagged)
4101 // ecx = argument count (smi-tagged)
4102 // edi = address of arguments map (tagged)
4103 // esp[0] = mapped parameter count (tagged)
4104 // esp[4] = function
4105 // esp[8] = parameter count (tagged)
4106 // Copy the JS object part.
4107 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
4108 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
4109 masm->isolate()->factory()->empty_fixed_array());
4110 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
4111 masm->isolate()->factory()->empty_fixed_array());
4112
4113 // Set up the callee in-object property.
4114 STATIC_ASSERT(JSSloppyArgumentsObject::kCalleeIndex == 1);
4115 __ mov(edi, Operand(esp, 1 * kPointerSize));
4116 __ AssertNotSmi(edi);
4117 __ mov(FieldOperand(eax, JSSloppyArgumentsObject::kCalleeOffset), edi);
4118
4119 // Use the length (smi tagged) and set that as an in-object property too.
4120 __ AssertSmi(ecx);
4121 __ mov(FieldOperand(eax, JSSloppyArgumentsObject::kLengthOffset), ecx);
4122
4123 // Set up the elements pointer in the allocated arguments object.
4124 // If we allocated a parameter map, edi will point there, otherwise to the
4125 // backing store.
4126 __ lea(edi, Operand(eax, JSSloppyArgumentsObject::kSize));
4127 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
4128
4129 // eax = address of new object (tagged)
4130 // ebx = mapped parameter count (tagged)
4131 // ecx = argument count (tagged)
4132 // edx = address of receiver argument
4133 // edi = address of parameter map or backing store (tagged)
4134 // esp[0] = mapped parameter count (tagged)
4135 // esp[4] = function
4136 // esp[8] = parameter count (tagged)
4137 // Free two registers.
4138 __ push(edx);
4139 __ push(eax);
4140
4141 // Initialize parameter map. If there are no mapped arguments, we're done.
4142 Label skip_parameter_map;
4143 __ test(ebx, ebx);
4144 __ j(zero, &skip_parameter_map);
4145
4146 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
4147 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
4148 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
4149 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
4150 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
4151 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
4152 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
4153
4154 // Copy the parameter slots and the holes in the arguments.
4155 // We need to fill in mapped_parameter_count slots. They index the context,
4156 // where parameters are stored in reverse order, at
4157 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4158 // The mapped parameter thus need to get indices
4159 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4160 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4161 // We loop from right to left.
4162 Label parameters_loop, parameters_test;
4163 __ push(ecx);
4164 __ mov(eax, Operand(esp, 3 * kPointerSize));
4165 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4166 __ add(ebx, Operand(esp, 5 * kPointerSize));
4167 __ sub(ebx, eax);
4168 __ mov(ecx, isolate()->factory()->the_hole_value());
4169 __ mov(edx, edi);
4170 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
4171 // eax = loop variable (tagged)
4172 // ebx = mapping index (tagged)
4173 // ecx = the hole value
4174 // edx = address of parameter map (tagged)
4175 // edi = address of backing store (tagged)
4176 // esp[0] = argument count (tagged)
4177 // esp[4] = address of new object (tagged)
4178 // esp[8] = address of receiver argument
4179 // esp[12] = mapped parameter count (tagged)
4180 // esp[16] = function
4181 // esp[20] = parameter count (tagged)
4182 __ jmp(¶meters_test, Label::kNear);
4183
4184 __ bind(¶meters_loop);
4185 __ sub(eax, Immediate(Smi::FromInt(1)));
4186 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
4187 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
4188 __ add(ebx, Immediate(Smi::FromInt(1)));
4189 __ bind(¶meters_test);
4190 __ test(eax, eax);
4191 __ j(not_zero, ¶meters_loop, Label::kNear);
4192 __ pop(ecx);
4193
4194 __ bind(&skip_parameter_map);
4195
4196 // ecx = argument count (tagged)
4197 // edi = address of backing store (tagged)
4198 // esp[0] = address of new object (tagged)
4199 // esp[4] = address of receiver argument
4200 // esp[8] = mapped parameter count (tagged)
4201 // esp[12] = function
4202 // esp[16] = parameter count (tagged)
4203 // Copy arguments header and remaining slots (if there are any).
4204 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
4205 Immediate(isolate()->factory()->fixed_array_map()));
4206 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
4207
4208 Label arguments_loop, arguments_test;
4209 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4210 __ mov(edx, Operand(esp, 1 * kPointerSize));
4211 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
4212 __ sub(edx, ebx);
4213 __ jmp(&arguments_test, Label::kNear);
4214
4215 __ bind(&arguments_loop);
4216 __ sub(edx, Immediate(kPointerSize));
4217 __ mov(eax, Operand(edx, 0));
4218 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
4219 __ add(ebx, Immediate(Smi::FromInt(1)));
4220
4221 __ bind(&arguments_test);
4222 __ cmp(ebx, ecx);
4223 __ j(less, &arguments_loop, Label::kNear);
4224
4225 // Restore.
4226 __ pop(eax); // Address of arguments object.
4227 __ Drop(4);
4228
4229 // Return.
4230 __ ret(0);
4231
4232 // Do the runtime call to allocate the arguments object.
4233 __ bind(&runtime);
4234 __ pop(eax); // Remove saved mapped parameter count.
4235 __ pop(edi); // Pop saved function.
4236 __ pop(eax); // Remove saved parameter count.
4237 __ pop(eax); // Pop return address.
4238 __ push(edi); // Push function.
4239 __ push(edx); // Push parameters pointer.
4240 __ push(ecx); // Push parameter count.
4241 __ push(eax); // Push return address.
4242 __ TailCallRuntime(Runtime::kNewSloppyArguments);
4243 }
4244
4245
Generate(MacroAssembler * masm)4246 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
4247 // ----------- S t a t e -------------
4248 // -- edi : function
4249 // -- esi : context
4250 // -- ebp : frame pointer
4251 // -- esp[0] : return address
4252 // -----------------------------------
4253 __ AssertFunction(edi);
4254
4255 // Make edx point to the JavaScript frame.
4256 __ mov(edx, ebp);
4257 if (skip_stub_frame()) {
4258 // For Ignition we need to skip the handler/stub frame to reach the
4259 // JavaScript frame for the function.
4260 __ mov(edx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
4261 }
4262 if (FLAG_debug_code) {
4263 Label ok;
4264 __ cmp(edi, Operand(edx, StandardFrameConstants::kFunctionOffset));
4265 __ j(equal, &ok);
4266 __ Abort(kInvalidFrameForFastNewStrictArgumentsStub);
4267 __ bind(&ok);
4268 }
4269
4270 // Check if we have an arguments adaptor frame below the function frame.
4271 Label arguments_adaptor, arguments_done;
4272 __ mov(ebx, Operand(edx, StandardFrameConstants::kCallerFPOffset));
4273 __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
4274 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4275 __ j(equal, &arguments_adaptor, Label::kNear);
4276 {
4277 __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
4278 __ mov(eax,
4279 FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
4280 __ lea(ebx,
4281 Operand(edx, eax, times_half_pointer_size,
4282 StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
4283 }
4284 __ jmp(&arguments_done, Label::kNear);
4285 __ bind(&arguments_adaptor);
4286 {
4287 __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
4288 __ lea(ebx,
4289 Operand(ebx, eax, times_half_pointer_size,
4290 StandardFrameConstants::kCallerSPOffset - 1 * kPointerSize));
4291 }
4292 __ bind(&arguments_done);
4293
4294 // ----------- S t a t e -------------
4295 // -- eax : number of arguments (tagged)
4296 // -- ebx : pointer to the first argument
4297 // -- esi : context
4298 // -- esp[0] : return address
4299 // -----------------------------------
4300
4301 // Allocate space for the strict arguments object plus the backing store.
4302 Label allocate, done_allocate;
4303 __ lea(ecx,
4304 Operand(eax, times_half_pointer_size,
4305 JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
4306 __ Allocate(ecx, edx, edi, no_reg, &allocate, NO_ALLOCATION_FLAGS);
4307 __ bind(&done_allocate);
4308
4309 // Setup the elements array in edx.
4310 __ mov(FieldOperand(edx, FixedArray::kMapOffset),
4311 isolate()->factory()->fixed_array_map());
4312 __ mov(FieldOperand(edx, FixedArray::kLengthOffset), eax);
4313 {
4314 Label loop, done_loop;
4315 __ Move(ecx, Smi::kZero);
4316 __ bind(&loop);
4317 __ cmp(ecx, eax);
4318 __ j(equal, &done_loop, Label::kNear);
4319 __ mov(edi, Operand(ebx, 0 * kPointerSize));
4320 __ mov(FieldOperand(edx, ecx, times_half_pointer_size,
4321 FixedArray::kHeaderSize),
4322 edi);
4323 __ sub(ebx, Immediate(1 * kPointerSize));
4324 __ add(ecx, Immediate(Smi::FromInt(1)));
4325 __ jmp(&loop);
4326 __ bind(&done_loop);
4327 }
4328
4329 // Setup the rest parameter array in edi.
4330 __ lea(edi,
4331 Operand(edx, eax, times_half_pointer_size, FixedArray::kHeaderSize));
4332 __ LoadGlobalFunction(Context::STRICT_ARGUMENTS_MAP_INDEX, ecx);
4333 __ mov(FieldOperand(edi, JSStrictArgumentsObject::kMapOffset), ecx);
4334 __ mov(FieldOperand(edi, JSStrictArgumentsObject::kPropertiesOffset),
4335 isolate()->factory()->empty_fixed_array());
4336 __ mov(FieldOperand(edi, JSStrictArgumentsObject::kElementsOffset), edx);
4337 __ mov(FieldOperand(edi, JSStrictArgumentsObject::kLengthOffset), eax);
4338 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
4339 __ mov(eax, edi);
4340 __ Ret();
4341
4342 // Fall back to %AllocateInNewSpace (if not too big).
4343 Label too_big_for_new_space;
4344 __ bind(&allocate);
4345 __ cmp(ecx, Immediate(kMaxRegularHeapObjectSize));
4346 __ j(greater, &too_big_for_new_space);
4347 {
4348 FrameScope scope(masm, StackFrame::INTERNAL);
4349 __ SmiTag(ecx);
4350 __ Push(eax);
4351 __ Push(ebx);
4352 __ Push(ecx);
4353 __ CallRuntime(Runtime::kAllocateInNewSpace);
4354 __ mov(edx, eax);
4355 __ Pop(ebx);
4356 __ Pop(eax);
4357 }
4358 __ jmp(&done_allocate);
4359
4360 // Fall back to %NewStrictArguments.
4361 __ bind(&too_big_for_new_space);
4362 __ PopReturnAddressTo(ecx);
4363 // We reload the function from the caller frame due to register pressure
4364 // within this stub. This is the slow path, hence reloading is preferable.
4365 if (skip_stub_frame()) {
4366 // For Ignition we need to skip the handler/stub frame to reach the
4367 // JavaScript frame for the function.
4368 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
4369 __ Push(Operand(edx, StandardFrameConstants::kFunctionOffset));
4370 } else {
4371 __ Push(Operand(ebp, StandardFrameConstants::kFunctionOffset));
4372 }
4373 __ PushReturnAddressFrom(ecx);
4374 __ TailCallRuntime(Runtime::kNewStrictArguments);
4375 }
4376
4377
4378 // Generates an Operand for saving parameters after PrepareCallApiFunction.
ApiParameterOperand(int index)4379 static Operand ApiParameterOperand(int index) {
4380 return Operand(esp, index * kPointerSize);
4381 }
4382
4383
4384 // Prepares stack to put arguments (aligns and so on). Reserves
4385 // space for return value if needed (assumes the return value is a handle).
4386 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
4387 // etc. Saves context (esi). If space was reserved for return value then
4388 // stores the pointer to the reserved slot into esi.
PrepareCallApiFunction(MacroAssembler * masm,int argc)4389 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
4390 __ EnterApiExitFrame(argc);
4391 if (__ emit_debug_code()) {
4392 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
4393 }
4394 }
4395
4396
4397 // Calls an API function. Allocates HandleScope, extracts returned value
4398 // from handle and propagates exceptions. Clobbers ebx, edi and
4399 // caller-save registers. Restores context. On return removes
4400 // stack_space * kPointerSize (GCed).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,Operand thunk_last_arg,int stack_space,Operand * stack_space_operand,Operand return_value_operand,Operand * context_restore_operand)4401 static void CallApiFunctionAndReturn(MacroAssembler* masm,
4402 Register function_address,
4403 ExternalReference thunk_ref,
4404 Operand thunk_last_arg, int stack_space,
4405 Operand* stack_space_operand,
4406 Operand return_value_operand,
4407 Operand* context_restore_operand) {
4408 Isolate* isolate = masm->isolate();
4409
4410 ExternalReference next_address =
4411 ExternalReference::handle_scope_next_address(isolate);
4412 ExternalReference limit_address =
4413 ExternalReference::handle_scope_limit_address(isolate);
4414 ExternalReference level_address =
4415 ExternalReference::handle_scope_level_address(isolate);
4416
4417 DCHECK(edx.is(function_address));
4418 // Allocate HandleScope in callee-save registers.
4419 __ mov(ebx, Operand::StaticVariable(next_address));
4420 __ mov(edi, Operand::StaticVariable(limit_address));
4421 __ add(Operand::StaticVariable(level_address), Immediate(1));
4422
4423 if (FLAG_log_timer_events) {
4424 FrameScope frame(masm, StackFrame::MANUAL);
4425 __ PushSafepointRegisters();
4426 __ PrepareCallCFunction(1, eax);
4427 __ mov(Operand(esp, 0),
4428 Immediate(ExternalReference::isolate_address(isolate)));
4429 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
4430 1);
4431 __ PopSafepointRegisters();
4432 }
4433
4434
4435 Label profiler_disabled;
4436 Label end_profiler_check;
4437 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
4438 __ cmpb(Operand(eax, 0), Immediate(0));
4439 __ j(zero, &profiler_disabled);
4440
4441 // Additional parameter is the address of the actual getter function.
4442 __ mov(thunk_last_arg, function_address);
4443 // Call the api function.
4444 __ mov(eax, Immediate(thunk_ref));
4445 __ call(eax);
4446 __ jmp(&end_profiler_check);
4447
4448 __ bind(&profiler_disabled);
4449 // Call the api function.
4450 __ call(function_address);
4451 __ bind(&end_profiler_check);
4452
4453 if (FLAG_log_timer_events) {
4454 FrameScope frame(masm, StackFrame::MANUAL);
4455 __ PushSafepointRegisters();
4456 __ PrepareCallCFunction(1, eax);
4457 __ mov(Operand(esp, 0),
4458 Immediate(ExternalReference::isolate_address(isolate)));
4459 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
4460 1);
4461 __ PopSafepointRegisters();
4462 }
4463
4464 Label prologue;
4465 // Load the value from ReturnValue
4466 __ mov(eax, return_value_operand);
4467
4468 Label promote_scheduled_exception;
4469 Label delete_allocated_handles;
4470 Label leave_exit_frame;
4471
4472 __ bind(&prologue);
4473 // No more valid handles (the result handle was the last one). Restore
4474 // previous handle scope.
4475 __ mov(Operand::StaticVariable(next_address), ebx);
4476 __ sub(Operand::StaticVariable(level_address), Immediate(1));
4477 __ Assert(above_equal, kInvalidHandleScopeLevel);
4478 __ cmp(edi, Operand::StaticVariable(limit_address));
4479 __ j(not_equal, &delete_allocated_handles);
4480
4481 // Leave the API exit frame.
4482 __ bind(&leave_exit_frame);
4483 bool restore_context = context_restore_operand != NULL;
4484 if (restore_context) {
4485 __ mov(esi, *context_restore_operand);
4486 }
4487 if (stack_space_operand != nullptr) {
4488 __ mov(ebx, *stack_space_operand);
4489 }
4490 __ LeaveApiExitFrame(!restore_context);
4491
4492 // Check if the function scheduled an exception.
4493 ExternalReference scheduled_exception_address =
4494 ExternalReference::scheduled_exception_address(isolate);
4495 __ cmp(Operand::StaticVariable(scheduled_exception_address),
4496 Immediate(isolate->factory()->the_hole_value()));
4497 __ j(not_equal, &promote_scheduled_exception);
4498
4499 #if DEBUG
4500 // Check if the function returned a valid JavaScript value.
4501 Label ok;
4502 Register return_value = eax;
4503 Register map = ecx;
4504
4505 __ JumpIfSmi(return_value, &ok, Label::kNear);
4506 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
4507
4508 __ CmpInstanceType(map, LAST_NAME_TYPE);
4509 __ j(below_equal, &ok, Label::kNear);
4510
4511 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
4512 __ j(above_equal, &ok, Label::kNear);
4513
4514 __ cmp(map, isolate->factory()->heap_number_map());
4515 __ j(equal, &ok, Label::kNear);
4516
4517 __ cmp(return_value, isolate->factory()->undefined_value());
4518 __ j(equal, &ok, Label::kNear);
4519
4520 __ cmp(return_value, isolate->factory()->true_value());
4521 __ j(equal, &ok, Label::kNear);
4522
4523 __ cmp(return_value, isolate->factory()->false_value());
4524 __ j(equal, &ok, Label::kNear);
4525
4526 __ cmp(return_value, isolate->factory()->null_value());
4527 __ j(equal, &ok, Label::kNear);
4528
4529 __ Abort(kAPICallReturnedInvalidObject);
4530
4531 __ bind(&ok);
4532 #endif
4533
4534 if (stack_space_operand != nullptr) {
4535 DCHECK_EQ(0, stack_space);
4536 __ pop(ecx);
4537 __ add(esp, ebx);
4538 __ jmp(ecx);
4539 } else {
4540 __ ret(stack_space * kPointerSize);
4541 }
4542
4543 // Re-throw by promoting a scheduled exception.
4544 __ bind(&promote_scheduled_exception);
4545 __ TailCallRuntime(Runtime::kPromoteScheduledException);
4546
4547 // HandleScope limit has changed. Delete allocated extensions.
4548 ExternalReference delete_extensions =
4549 ExternalReference::delete_handle_scope_extensions(isolate);
4550 __ bind(&delete_allocated_handles);
4551 __ mov(Operand::StaticVariable(limit_address), edi);
4552 __ mov(edi, eax);
4553 __ mov(Operand(esp, 0),
4554 Immediate(ExternalReference::isolate_address(isolate)));
4555 __ mov(eax, Immediate(delete_extensions));
4556 __ call(eax);
4557 __ mov(eax, edi);
4558 __ jmp(&leave_exit_frame);
4559 }
4560
Generate(MacroAssembler * masm)4561 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
4562 // ----------- S t a t e -------------
4563 // -- edi : callee
4564 // -- ebx : call_data
4565 // -- ecx : holder
4566 // -- edx : api_function_address
4567 // -- esi : context
4568 // --
4569 // -- esp[0] : return address
4570 // -- esp[4] : last argument
4571 // -- ...
4572 // -- esp[argc * 4] : first argument
4573 // -- esp[(argc + 1) * 4] : receiver
4574 // -----------------------------------
4575
4576 Register callee = edi;
4577 Register call_data = ebx;
4578 Register holder = ecx;
4579 Register api_function_address = edx;
4580 Register context = esi;
4581 Register return_address = eax;
4582
4583 typedef FunctionCallbackArguments FCA;
4584
4585 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4586 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4587 STATIC_ASSERT(FCA::kDataIndex == 4);
4588 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4589 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4590 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4591 STATIC_ASSERT(FCA::kHolderIndex == 0);
4592 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
4593 STATIC_ASSERT(FCA::kArgsLength == 8);
4594
4595 __ pop(return_address);
4596
4597 // new target
4598 __ PushRoot(Heap::kUndefinedValueRootIndex);
4599
4600 // context save.
4601 __ push(context);
4602
4603 // callee
4604 __ push(callee);
4605
4606 // call data
4607 __ push(call_data);
4608
4609 Register scratch = call_data;
4610 if (!call_data_undefined()) {
4611 // return value
4612 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
4613 // return value default
4614 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
4615 } else {
4616 // return value
4617 __ push(scratch);
4618 // return value default
4619 __ push(scratch);
4620 }
4621 // isolate
4622 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
4623 // holder
4624 __ push(holder);
4625
4626 __ mov(scratch, esp);
4627
4628 // push return address
4629 __ push(return_address);
4630
4631 if (!is_lazy()) {
4632 // load context from callee
4633 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
4634 }
4635
4636 // API function gets reference to the v8::Arguments. If CPU profiler
4637 // is enabled wrapper function will be called and we need to pass
4638 // address of the callback as additional parameter, always allocate
4639 // space for it.
4640 const int kApiArgc = 1 + 1;
4641
4642 // Allocate the v8::Arguments structure in the arguments' space since
4643 // it's not controlled by GC.
4644 const int kApiStackSpace = 3;
4645
4646 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
4647
4648 // FunctionCallbackInfo::implicit_args_.
4649 __ mov(ApiParameterOperand(2), scratch);
4650 __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
4651 // FunctionCallbackInfo::values_.
4652 __ mov(ApiParameterOperand(3), scratch);
4653 // FunctionCallbackInfo::length_.
4654 __ Move(ApiParameterOperand(4), Immediate(argc()));
4655
4656 // v8::InvocationCallback's argument.
4657 __ lea(scratch, ApiParameterOperand(2));
4658 __ mov(ApiParameterOperand(0), scratch);
4659
4660 ExternalReference thunk_ref =
4661 ExternalReference::invoke_function_callback(masm->isolate());
4662
4663 Operand context_restore_operand(ebp,
4664 (2 + FCA::kContextSaveIndex) * kPointerSize);
4665 // Stores return the first js argument
4666 int return_value_offset = 0;
4667 if (is_store()) {
4668 return_value_offset = 2 + FCA::kArgsLength;
4669 } else {
4670 return_value_offset = 2 + FCA::kReturnValueOffset;
4671 }
4672 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
4673 int stack_space = 0;
4674 Operand length_operand = ApiParameterOperand(4);
4675 Operand* stack_space_operand = &length_operand;
4676 stack_space = argc() + FCA::kArgsLength + 1;
4677 stack_space_operand = nullptr;
4678 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
4679 ApiParameterOperand(1), stack_space,
4680 stack_space_operand, return_value_operand,
4681 &context_restore_operand);
4682 }
4683
4684
Generate(MacroAssembler * masm)4685 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4686 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
4687 // name below the exit frame to make GC aware of them.
4688 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
4689 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
4690 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
4691 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
4692 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
4693 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
4694 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
4695 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
4696
4697 Register receiver = ApiGetterDescriptor::ReceiverRegister();
4698 Register holder = ApiGetterDescriptor::HolderRegister();
4699 Register callback = ApiGetterDescriptor::CallbackRegister();
4700 Register scratch = ebx;
4701 DCHECK(!AreAliased(receiver, holder, callback, scratch));
4702
4703 __ pop(scratch); // Pop return address to extend the frame.
4704 __ push(receiver);
4705 __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
4706 __ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue
4707 // ReturnValue default value
4708 __ PushRoot(Heap::kUndefinedValueRootIndex);
4709 __ push(Immediate(ExternalReference::isolate_address(isolate())));
4710 __ push(holder);
4711 __ push(Immediate(Smi::kZero)); // should_throw_on_error -> false
4712 __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
4713 __ push(scratch); // Restore return address.
4714
4715 // v8::PropertyCallbackInfo::args_ array and name handle.
4716 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4717
4718 // Allocate v8::PropertyCallbackInfo object, arguments for callback and
4719 // space for optional callback address parameter (in case CPU profiler is
4720 // active) in non-GCed stack space.
4721 const int kApiArgc = 3 + 1;
4722
4723 // Load address of v8::PropertyAccessorInfo::args_ array.
4724 __ lea(scratch, Operand(esp, 2 * kPointerSize));
4725
4726 PrepareCallApiFunction(masm, kApiArgc);
4727 // Create v8::PropertyCallbackInfo object on the stack and initialize
4728 // it's args_ field.
4729 Operand info_object = ApiParameterOperand(3);
4730 __ mov(info_object, scratch);
4731
4732 // Name as handle.
4733 __ sub(scratch, Immediate(kPointerSize));
4734 __ mov(ApiParameterOperand(0), scratch);
4735 // Arguments pointer.
4736 __ lea(scratch, info_object);
4737 __ mov(ApiParameterOperand(1), scratch);
4738 // Reserve space for optional callback address parameter.
4739 Operand thunk_last_arg = ApiParameterOperand(2);
4740
4741 ExternalReference thunk_ref =
4742 ExternalReference::invoke_accessor_getter_callback(isolate());
4743
4744 __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
4745 Register function_address = edx;
4746 __ mov(function_address,
4747 FieldOperand(scratch, Foreign::kForeignAddressOffset));
4748 // +3 is to skip prolog, return address and name handle.
4749 Operand return_value_operand(
4750 ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
4751 CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
4752 kStackUnwindSpace, nullptr, return_value_operand,
4753 NULL);
4754 }
4755
4756 #undef __
4757
4758 } // namespace internal
4759 } // namespace v8
4760
4761 #endif // V8_TARGET_ARCH_IA32
4762