1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_X87
6 
7 #include "src/codegen.h"
8 #include "src/ic/ic.h"
9 #include "src/ic/ic-compiler.h"
10 #include "src/ic/stub-cache.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // ----------------------------------------------------------------------------
16 // Static IC stub generators.
17 //
18 
19 #define __ ACCESS_MASM(masm)
20 
21 // Helper function used to load a property from a dictionary backing
22 // storage. This function may fail to load a property even though it is
23 // in the dictionary, so code at miss_label must always call a backup
24 // property load that is complete. This function is safe to call if
25 // name is not internalized, and will jump to the miss_label in that
26 // case. The generated code assumes that the receiver has slow
27 // properties, is not a global object and does not have interceptors.
GenerateDictionaryLoad(MacroAssembler * masm,Label * miss_label,Register elements,Register name,Register r0,Register r1,Register result)28 static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label,
29                                    Register elements, Register name,
30                                    Register r0, Register r1, Register result) {
31   // Register use:
32   //
33   // elements - holds the property dictionary on entry and is unchanged.
34   //
35   // name - holds the name of the property on entry and is unchanged.
36   //
37   // Scratch registers:
38   //
39   // r0   - used for the index into the property dictionary
40   //
41   // r1   - used to hold the capacity of the property dictionary.
42   //
43   // result - holds the result on exit.
44 
45   Label done;
46 
47   // Probe the dictionary.
48   NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
49                                                    elements, name, r0, r1);
50 
51   // If probing finds an entry in the dictionary, r0 contains the
52   // index into the dictionary. Check that the value is a normal
53   // property.
54   __ bind(&done);
55   const int kElementsStartOffset =
56       NameDictionary::kHeaderSize +
57       NameDictionary::kElementsStartIndex * kPointerSize;
58   const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
59   __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
60           Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
61   __ j(not_zero, miss_label);
62 
63   // Get the value at the masked, scaled index.
64   const int kValueOffset = kElementsStartOffset + kPointerSize;
65   __ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
66 }
67 
68 
69 // Helper function used to store a property to a dictionary backing
70 // storage. This function may fail to store a property eventhough it
71 // is in the dictionary, so code at miss_label must always call a
72 // backup property store that is complete. This function is safe to
73 // call if name is not internalized, and will jump to the miss_label in
74 // that case. The generated code assumes that the receiver has slow
75 // properties, is not a global object and does not have interceptors.
GenerateDictionaryStore(MacroAssembler * masm,Label * miss_label,Register elements,Register name,Register value,Register r0,Register r1)76 static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label,
77                                     Register elements, Register name,
78                                     Register value, Register r0, Register r1) {
79   // Register use:
80   //
81   // elements - holds the property dictionary on entry and is clobbered.
82   //
83   // name - holds the name of the property on entry and is unchanged.
84   //
85   // value - holds the value to store and is unchanged.
86   //
87   // r0 - used for index into the property dictionary and is clobbered.
88   //
89   // r1 - used to hold the capacity of the property dictionary and is clobbered.
90   Label done;
91 
92 
93   // Probe the dictionary.
94   NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
95                                                    elements, name, r0, r1);
96 
97   // If probing finds an entry in the dictionary, r0 contains the
98   // index into the dictionary. Check that the value is a normal
99   // property that is not read only.
100   __ bind(&done);
101   const int kElementsStartOffset =
102       NameDictionary::kHeaderSize +
103       NameDictionary::kElementsStartIndex * kPointerSize;
104   const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
105   const int kTypeAndReadOnlyMask =
106       (PropertyDetails::TypeField::kMask |
107        PropertyDetails::AttributesField::encode(READ_ONLY))
108       << kSmiTagSize;
109   __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
110           Immediate(kTypeAndReadOnlyMask));
111   __ j(not_zero, miss_label);
112 
113   // Store the value at the masked, scaled index.
114   const int kValueOffset = kElementsStartOffset + kPointerSize;
115   __ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
116   __ mov(Operand(r0, 0), value);
117 
118   // Update write barrier. Make sure not to clobber the value.
119   __ mov(r1, value);
120   __ RecordWrite(elements, r0, r1, kDontSaveFPRegs);
121 }
122 
KeyedStoreGenerateMegamorphicHelper(MacroAssembler * masm,Label * fast_object,Label * fast_double,Label * slow,KeyedStoreCheckMap check_map,KeyedStoreIncrementLength increment_length)123 static void KeyedStoreGenerateMegamorphicHelper(
124     MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
125     KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) {
126   Label transition_smi_elements;
127   Label finish_object_store, non_double_value, transition_double_elements;
128   Label fast_double_without_map_check;
129   Register receiver = StoreDescriptor::ReceiverRegister();
130   Register key = StoreDescriptor::NameRegister();
131   Register value = StoreDescriptor::ValueRegister();
132   DCHECK(receiver.is(edx));
133   DCHECK(key.is(ecx));
134   DCHECK(value.is(eax));
135   // key is a smi.
136   // ebx: FixedArray receiver->elements
137   // edi: receiver map
138   // Fast case: Do the store, could either Object or double.
139   __ bind(fast_object);
140   if (check_map == kCheckMap) {
141     __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
142     __ cmp(edi, masm->isolate()->factory()->fixed_array_map());
143     __ j(not_equal, fast_double);
144   }
145 
146   // HOLECHECK: guards "A[i] = V"
147   // We have to go to the runtime if the current value is the hole because
148   // there may be a callback on the element
149   Label holecheck_passed1;
150   __ cmp(FixedArrayElementOperand(ebx, key),
151          masm->isolate()->factory()->the_hole_value());
152   __ j(not_equal, &holecheck_passed1);
153   __ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
154   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
155 
156   __ bind(&holecheck_passed1);
157 
158   // Smi stores don't require further checks.
159   Label non_smi_value;
160   __ JumpIfNotSmi(value, &non_smi_value);
161   if (increment_length == kIncrementLength) {
162     // Add 1 to receiver->length.
163     __ add(FieldOperand(receiver, JSArray::kLengthOffset),
164            Immediate(Smi::FromInt(1)));
165   }
166   // It's irrelevant whether array is smi-only or not when writing a smi.
167   __ mov(FixedArrayElementOperand(ebx, key), value);
168   __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
169 
170   __ bind(&non_smi_value);
171   // Escape to elements kind transition case.
172   __ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
173   __ CheckFastObjectElements(edi, &transition_smi_elements);
174 
175   // Fast elements array, store the value to the elements backing store.
176   __ bind(&finish_object_store);
177   if (increment_length == kIncrementLength) {
178     // Add 1 to receiver->length.
179     __ add(FieldOperand(receiver, JSArray::kLengthOffset),
180            Immediate(Smi::FromInt(1)));
181   }
182   __ mov(FixedArrayElementOperand(ebx, key), value);
183   // Update write barrier for the elements array address.
184   __ mov(edx, value);  // Preserve the value which is returned.
185   __ RecordWriteArray(ebx, edx, key, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
186                       OMIT_SMI_CHECK);
187   __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
188 
189   __ bind(fast_double);
190   if (check_map == kCheckMap) {
191     // Check for fast double array case. If this fails, call through to the
192     // runtime.
193     __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
194     __ j(not_equal, slow);
195     // If the value is a number, store it as a double in the FastDoubleElements
196     // array.
197   }
198 
199   // HOLECHECK: guards "A[i] double hole?"
200   // We have to see if the double version of the hole is present. If so
201   // go to the runtime.
202   uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
203   __ cmp(FieldOperand(ebx, key, times_4, offset), Immediate(kHoleNanUpper32));
204   __ j(not_equal, &fast_double_without_map_check);
205   __ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
206   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
207 
208   __ bind(&fast_double_without_map_check);
209   __ StoreNumberToDoubleElements(value, ebx, key, edi,
210                                  &transition_double_elements, false);
211   if (increment_length == kIncrementLength) {
212     // Add 1 to receiver->length.
213     __ add(FieldOperand(receiver, JSArray::kLengthOffset),
214            Immediate(Smi::FromInt(1)));
215   }
216   __ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
217 
218   __ bind(&transition_smi_elements);
219   __ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
220 
221   // Transition the array appropriately depending on the value type.
222   __ CheckMap(value, masm->isolate()->factory()->heap_number_map(),
223               &non_double_value, DONT_DO_SMI_CHECK);
224 
225   // Value is a double. Transition FAST_SMI_ELEMENTS -> FAST_DOUBLE_ELEMENTS
226   // and complete the store.
227   __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
228                                          FAST_DOUBLE_ELEMENTS, ebx, edi, slow);
229   AllocationSiteMode mode =
230       AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
231   ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
232                                                    ebx, mode, slow);
233   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
234   __ jmp(&fast_double_without_map_check);
235 
236   __ bind(&non_double_value);
237   // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
238   __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, ebx,
239                                          edi, slow);
240   mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
241   ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
242       masm, receiver, key, value, ebx, mode, slow);
243   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
244   __ jmp(&finish_object_store);
245 
246   __ bind(&transition_double_elements);
247   // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
248   // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
249   // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
250   __ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
251   __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
252                                          ebx, edi, slow);
253   mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
254   ElementsTransitionGenerator::GenerateDoubleToObject(masm, receiver, key,
255                                                       value, ebx, mode, slow);
256   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
257   __ jmp(&finish_object_store);
258 }
259 
260 
GenerateMegamorphic(MacroAssembler * masm,LanguageMode language_mode)261 void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
262                                        LanguageMode language_mode) {
263   typedef StoreWithVectorDescriptor Descriptor;
264   // Return address is on the stack.
265   Label slow, fast_object, fast_object_grow;
266   Label fast_double, fast_double_grow;
267   Label array, extra, check_if_double_array, maybe_name_key, miss;
268   Register receiver = Descriptor::ReceiverRegister();
269   Register key = Descriptor::NameRegister();
270   DCHECK(receiver.is(edx));
271   DCHECK(key.is(ecx));
272 
273   // Check that the object isn't a smi.
274   __ JumpIfSmi(receiver, &slow);
275   // Get the map from the receiver.
276   __ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
277   // Check that the receiver does not require access checks.
278   // The generic stub does not perform map checks.
279   __ test_b(FieldOperand(edi, Map::kBitFieldOffset),
280             Immediate(1 << Map::kIsAccessCheckNeeded));
281   __ j(not_zero, &slow);
282 
283   __ LoadParameterFromStack<Descriptor>(Descriptor::ValueRegister(),
284                                         Descriptor::kValue);
285 
286   // Check that the key is a smi.
287   __ JumpIfNotSmi(key, &maybe_name_key);
288   __ CmpInstanceType(edi, JS_ARRAY_TYPE);
289   __ j(equal, &array);
290   // Check that the object is some kind of JS object EXCEPT JS Value type. In
291   // the case that the object is a value-wrapper object, we enter the runtime
292   // system to make sure that indexing into string objects works as intended.
293   STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
294   __ CmpInstanceType(edi, JS_OBJECT_TYPE);
295   __ j(below, &slow);
296 
297   // Object case: Check key against length in the elements array.
298   // Key is a smi.
299   // edi: receiver map
300   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
301   // Check array bounds. Both the key and the length of FixedArray are smis.
302   __ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
303   __ j(below, &fast_object);
304 
305   // Slow case: call runtime.
306   __ bind(&slow);
307   PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
308   // Never returns to here.
309 
310   __ bind(&maybe_name_key);
311   __ mov(ebx, FieldOperand(key, HeapObject::kMapOffset));
312   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
313   __ JumpIfNotUniqueNameInstanceType(ebx, &slow);
314 
315   masm->isolate()->store_stub_cache()->GenerateProbe(masm, receiver, key, edi,
316                                                      no_reg);
317 
318   // Cache miss.
319   __ jmp(&miss);
320 
321   // Extra capacity case: Check if there is extra capacity to
322   // perform the store and update the length. Used for adding one
323   // element to the array by writing to array[array.length].
324   __ bind(&extra);
325   // receiver is a JSArray.
326   // key is a smi.
327   // ebx: receiver->elements, a FixedArray
328   // edi: receiver map
329   // flags: compare (key, receiver.length())
330   // do not leave holes in the array:
331   __ j(not_equal, &slow);
332   __ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
333   __ j(above_equal, &slow);
334   __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
335   __ cmp(edi, masm->isolate()->factory()->fixed_array_map());
336   __ j(not_equal, &check_if_double_array);
337   __ jmp(&fast_object_grow);
338 
339   __ bind(&check_if_double_array);
340   __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
341   __ j(not_equal, &slow);
342   __ jmp(&fast_double_grow);
343 
344   // Array case: Get the length and the elements array from the JS
345   // array. Check that the array is in fast mode (and writable); if it
346   // is the length is always a smi.
347   __ bind(&array);
348   // receiver is a JSArray.
349   // key is a smi.
350   // edi: receiver map
351   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
352 
353   // Check the key against the length in the array and fall through to the
354   // common store code.
355   __ cmp(key, FieldOperand(receiver, JSArray::kLengthOffset));  // Compare smis.
356   __ j(above_equal, &extra);
357 
358   KeyedStoreGenerateMegamorphicHelper(masm, &fast_object, &fast_double, &slow,
359                                       kCheckMap, kDontIncrementLength);
360   KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
361                                       &fast_double_grow, &slow, kDontCheckMap,
362                                       kIncrementLength);
363 
364   __ bind(&miss);
365   GenerateMiss(masm);
366 }
367 
GenerateNormal(MacroAssembler * masm)368 void LoadIC::GenerateNormal(MacroAssembler* masm) {
369   Register dictionary = eax;
370   DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
371   DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
372 
373   Label slow;
374 
375   __ mov(dictionary, FieldOperand(LoadDescriptor::ReceiverRegister(),
376                                   JSObject::kPropertiesOffset));
377   GenerateDictionaryLoad(masm, &slow, dictionary,
378                          LoadDescriptor::NameRegister(), edi, ebx, eax);
379   __ ret(0);
380 
381   // Dictionary load failed, go slow (but don't miss).
382   __ bind(&slow);
383   GenerateRuntimeGetProperty(masm);
384 }
385 
386 
LoadIC_PushArgs(MacroAssembler * masm)387 static void LoadIC_PushArgs(MacroAssembler* masm) {
388   Register receiver = LoadDescriptor::ReceiverRegister();
389   Register name = LoadDescriptor::NameRegister();
390 
391   Register slot = LoadDescriptor::SlotRegister();
392   Register vector = LoadWithVectorDescriptor::VectorRegister();
393   DCHECK(!edi.is(receiver) && !edi.is(name) && !edi.is(slot) &&
394          !edi.is(vector));
395 
396   __ pop(edi);
397   __ push(receiver);
398   __ push(name);
399   __ push(slot);
400   __ push(vector);
401   __ push(edi);
402 }
403 
404 
GenerateMiss(MacroAssembler * masm)405 void LoadIC::GenerateMiss(MacroAssembler* masm) {
406   // Return address is on the stack.
407   __ IncrementCounter(masm->isolate()->counters()->ic_load_miss(), 1);
408   LoadIC_PushArgs(masm);
409 
410   // Perform tail call to the entry.
411   __ TailCallRuntime(Runtime::kLoadIC_Miss);
412 }
413 
GenerateRuntimeGetProperty(MacroAssembler * masm)414 void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
415   // Return address is on the stack.
416   Register receiver = LoadDescriptor::ReceiverRegister();
417   Register name = LoadDescriptor::NameRegister();
418   DCHECK(!ebx.is(receiver) && !ebx.is(name));
419 
420   __ pop(ebx);
421   __ push(receiver);
422   __ push(name);
423   __ push(ebx);
424 
425   // Do tail-call to runtime routine.
426   __ TailCallRuntime(Runtime::kGetProperty);
427 }
428 
429 
GenerateMiss(MacroAssembler * masm)430 void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
431   // Return address is on the stack.
432   __ IncrementCounter(masm->isolate()->counters()->ic_keyed_load_miss(), 1);
433 
434   LoadIC_PushArgs(masm);
435 
436   // Perform tail call to the entry.
437   __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
438 }
439 
GenerateRuntimeGetProperty(MacroAssembler * masm)440 void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
441   // Return address is on the stack.
442   Register receiver = LoadDescriptor::ReceiverRegister();
443   Register name = LoadDescriptor::NameRegister();
444   DCHECK(!ebx.is(receiver) && !ebx.is(name));
445 
446   __ pop(ebx);
447   __ push(receiver);
448   __ push(name);
449   __ push(ebx);
450 
451   // Do tail-call to runtime routine.
452   __ TailCallRuntime(Runtime::kKeyedGetProperty);
453 }
454 
StoreIC_PushArgs(MacroAssembler * masm)455 static void StoreIC_PushArgs(MacroAssembler* masm) {
456   Register receiver = StoreWithVectorDescriptor::ReceiverRegister();
457   Register name = StoreWithVectorDescriptor::NameRegister();
458 
459   STATIC_ASSERT(StoreWithVectorDescriptor::kStackArgumentsCount == 3);
460   // Current stack layout:
461   // - esp[12]   -- value
462   // - esp[8]    -- slot
463   // - esp[4]    -- vector
464   // - esp[0]    -- return address
465 
466   Register return_address = StoreWithVectorDescriptor::SlotRegister();
467   __ pop(return_address);
468   __ push(receiver);
469   __ push(name);
470   __ push(return_address);
471 }
472 
473 
GenerateMiss(MacroAssembler * masm)474 void StoreIC::GenerateMiss(MacroAssembler* masm) {
475   // Return address is on the stack.
476   StoreIC_PushArgs(masm);
477 
478   // Perform tail call to the entry.
479   __ TailCallRuntime(Runtime::kStoreIC_Miss);
480 }
481 
482 
GenerateNormal(MacroAssembler * masm)483 void StoreIC::GenerateNormal(MacroAssembler* masm) {
484   typedef StoreWithVectorDescriptor Descriptor;
485   Label restore_miss;
486   Register receiver = Descriptor::ReceiverRegister();
487   Register name = Descriptor::NameRegister();
488   Register value = Descriptor::ValueRegister();
489   // Since the slot and vector values are passed on the stack we can use
490   // respective registers as scratch registers.
491   Register scratch1 = Descriptor::VectorRegister();
492   Register scratch2 = Descriptor::SlotRegister();
493 
494   __ LoadParameterFromStack<Descriptor>(value, Descriptor::kValue);
495 
496   // A lot of registers are needed for storing to slow case objects.
497   // Push and restore receiver but rely on GenerateDictionaryStore preserving
498   // the value and name.
499   __ push(receiver);
500 
501   Register dictionary = receiver;
502   __ mov(dictionary, FieldOperand(receiver, JSObject::kPropertiesOffset));
503   GenerateDictionaryStore(masm, &restore_miss, dictionary, name, value,
504                           scratch1, scratch2);
505   __ Drop(1);
506   Counters* counters = masm->isolate()->counters();
507   __ IncrementCounter(counters->ic_store_normal_hit(), 1);
508   __ ret(Descriptor::kStackArgumentsCount * kPointerSize);
509 
510   __ bind(&restore_miss);
511   __ pop(receiver);
512   __ IncrementCounter(counters->ic_store_normal_miss(), 1);
513   GenerateMiss(masm);
514 }
515 
516 
GenerateMiss(MacroAssembler * masm)517 void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
518   // Return address is on the stack.
519   StoreIC_PushArgs(masm);
520 
521   // Do tail-call to runtime routine.
522   __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
523 }
524 
GenerateSlow(MacroAssembler * masm)525 void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
526   // Return address is on the stack.
527   StoreIC_PushArgs(masm);
528 
529   // Do tail-call to runtime routine.
530   __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
531 }
532 
533 #undef __
534 
535 
ComputeCondition(Token::Value op)536 Condition CompareIC::ComputeCondition(Token::Value op) {
537   switch (op) {
538     case Token::EQ_STRICT:
539     case Token::EQ:
540       return equal;
541     case Token::LT:
542       return less;
543     case Token::GT:
544       return greater;
545     case Token::LTE:
546       return less_equal;
547     case Token::GTE:
548       return greater_equal;
549     default:
550       UNREACHABLE();
551       return no_condition;
552   }
553 }
554 
555 
HasInlinedSmiCode(Address address)556 bool CompareIC::HasInlinedSmiCode(Address address) {
557   // The address of the instruction following the call.
558   Address test_instruction_address =
559       address + Assembler::kCallTargetAddressOffset;
560 
561   // If the instruction following the call is not a test al, nothing
562   // was inlined.
563   return *test_instruction_address == Assembler::kTestAlByte;
564 }
565 
566 
PatchInlinedSmiCode(Isolate * isolate,Address address,InlinedSmiCheck check)567 void PatchInlinedSmiCode(Isolate* isolate, Address address,
568                          InlinedSmiCheck check) {
569   // The address of the instruction following the call.
570   Address test_instruction_address =
571       address + Assembler::kCallTargetAddressOffset;
572 
573   // If the instruction following the call is not a test al, nothing
574   // was inlined.
575   if (*test_instruction_address != Assembler::kTestAlByte) {
576     DCHECK(*test_instruction_address == Assembler::kNopByte);
577     return;
578   }
579 
580   Address delta_address = test_instruction_address + 1;
581   // The delta to the start of the map check instruction and the
582   // condition code uses at the patched jump.
583   uint8_t delta = *reinterpret_cast<uint8_t*>(delta_address);
584   if (FLAG_trace_ic) {
585     PrintF("[  patching ic at %p, test=%p, delta=%d\n",
586            static_cast<void*>(address),
587            static_cast<void*>(test_instruction_address), delta);
588   }
589 
590   // Patch with a short conditional jump. Enabling means switching from a short
591   // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
592   // reverse operation of that.
593   Address jmp_address = test_instruction_address - delta;
594   DCHECK((check == ENABLE_INLINED_SMI_CHECK)
595              ? (*jmp_address == Assembler::kJncShortOpcode ||
596                 *jmp_address == Assembler::kJcShortOpcode)
597              : (*jmp_address == Assembler::kJnzShortOpcode ||
598                 *jmp_address == Assembler::kJzShortOpcode));
599   Condition cc =
600       (check == ENABLE_INLINED_SMI_CHECK)
601           ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
602           : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
603   *jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
604 }
605 }  // namespace internal
606 }  // namespace v8
607 
608 #endif  // V8_TARGET_ARCH_X87
609