1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_MIPS64
6
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/ic/handler-compiler.h"
12 #include "src/ic/ic.h"
13 #include "src/ic/stub-cache.h"
14 #include "src/isolate.h"
15 #include "src/mips64/code-stubs-mips64.h"
16 #include "src/regexp/jsregexp.h"
17 #include "src/regexp/regexp-macro-assembler.h"
18 #include "src/runtime/runtime.h"
19
20 namespace v8 {
21 namespace internal {
22
23 #define __ ACCESS_MASM(masm)
24
Generate(MacroAssembler * masm)25 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
26 __ dsll(t9, a0, kPointerSizeLog2);
27 __ Daddu(t9, sp, t9);
28 __ sd(a1, MemOperand(t9, 0));
29 __ Push(a1);
30 __ Push(a2);
31 __ Daddu(a0, a0, 3);
32 __ TailCallRuntime(Runtime::kNewArray);
33 }
34
InitializeDescriptor(CodeStubDescriptor * descriptor)35 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
36 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
37 descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
38 }
39
InitializeDescriptor(CodeStubDescriptor * descriptor)40 void FastFunctionBindStub::InitializeDescriptor(
41 CodeStubDescriptor* descriptor) {
42 Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
43 descriptor->Initialize(a0, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
44 }
45
46 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
47 Condition cc);
48 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
49 Register lhs,
50 Register rhs,
51 Label* rhs_not_nan,
52 Label* slow,
53 bool strict);
54 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
55 Register lhs,
56 Register rhs);
57
58
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)59 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
60 ExternalReference miss) {
61 // Update the static counter each time a new code stub is generated.
62 isolate()->counters()->code_stubs()->Increment();
63
64 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
65 int param_count = descriptor.GetRegisterParameterCount();
66 {
67 // Call the runtime system in a fresh internal frame.
68 FrameScope scope(masm, StackFrame::INTERNAL);
69 DCHECK((param_count == 0) ||
70 a0.is(descriptor.GetRegisterParameter(param_count - 1)));
71 // Push arguments, adjust sp.
72 __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
73 for (int i = 0; i < param_count; ++i) {
74 // Store argument to stack.
75 __ sd(descriptor.GetRegisterParameter(i),
76 MemOperand(sp, (param_count - 1 - i) * kPointerSize));
77 }
78 __ CallExternalReference(miss, param_count);
79 }
80
81 __ Ret();
82 }
83
84
Generate(MacroAssembler * masm)85 void DoubleToIStub::Generate(MacroAssembler* masm) {
86 Label out_of_range, only_low, negate, done;
87 Register input_reg = source();
88 Register result_reg = destination();
89
90 int double_offset = offset();
91 // Account for saved regs if input is sp.
92 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
93
94 Register scratch =
95 GetRegisterThatIsNotOneOf(input_reg, result_reg);
96 Register scratch2 =
97 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
98 Register scratch3 =
99 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
100 DoubleRegister double_scratch = kLithiumScratchDouble;
101
102 __ Push(scratch, scratch2, scratch3);
103 if (!skip_fastpath()) {
104 // Load double input.
105 __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
106
107 // Clear cumulative exception flags and save the FCSR.
108 __ cfc1(scratch2, FCSR);
109 __ ctc1(zero_reg, FCSR);
110
111 // Try a conversion to a signed integer.
112 __ Trunc_w_d(double_scratch, double_scratch);
113 // Move the converted value into the result register.
114 __ mfc1(scratch3, double_scratch);
115
116 // Retrieve and restore the FCSR.
117 __ cfc1(scratch, FCSR);
118 __ ctc1(scratch2, FCSR);
119
120 // Check for overflow and NaNs.
121 __ And(
122 scratch, scratch,
123 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
124 | kFCSRInvalidOpFlagMask);
125 // If we had no exceptions then set result_reg and we are done.
126 Label error;
127 __ Branch(&error, ne, scratch, Operand(zero_reg));
128 __ Move(result_reg, scratch3);
129 __ Branch(&done);
130 __ bind(&error);
131 }
132
133 // Load the double value and perform a manual truncation.
134 Register input_high = scratch2;
135 Register input_low = scratch3;
136
137 __ lw(input_low,
138 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
139 __ lw(input_high,
140 MemOperand(input_reg, double_offset + Register::kExponentOffset));
141
142 Label normal_exponent, restore_sign;
143 // Extract the biased exponent in result.
144 __ Ext(result_reg,
145 input_high,
146 HeapNumber::kExponentShift,
147 HeapNumber::kExponentBits);
148
149 // Check for Infinity and NaNs, which should return 0.
150 __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
151 __ Movz(result_reg, zero_reg, scratch);
152 __ Branch(&done, eq, scratch, Operand(zero_reg));
153
154 // Express exponent as delta to (number of mantissa bits + 31).
155 __ Subu(result_reg,
156 result_reg,
157 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
158
159 // If the delta is strictly positive, all bits would be shifted away,
160 // which means that we can return 0.
161 __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
162 __ mov(result_reg, zero_reg);
163 __ Branch(&done);
164
165 __ bind(&normal_exponent);
166 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
167 // Calculate shift.
168 __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
169
170 // Save the sign.
171 Register sign = result_reg;
172 result_reg = no_reg;
173 __ And(sign, input_high, Operand(HeapNumber::kSignMask));
174
175 // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
176 // to check for this specific case.
177 Label high_shift_needed, high_shift_done;
178 __ Branch(&high_shift_needed, lt, scratch, Operand(32));
179 __ mov(input_high, zero_reg);
180 __ Branch(&high_shift_done);
181 __ bind(&high_shift_needed);
182
183 // Set the implicit 1 before the mantissa part in input_high.
184 __ Or(input_high,
185 input_high,
186 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
187 // Shift the mantissa bits to the correct position.
188 // We don't need to clear non-mantissa bits as they will be shifted away.
189 // If they weren't, it would mean that the answer is in the 32bit range.
190 __ sllv(input_high, input_high, scratch);
191
192 __ bind(&high_shift_done);
193
194 // Replace the shifted bits with bits from the lower mantissa word.
195 Label pos_shift, shift_done;
196 __ li(at, 32);
197 __ subu(scratch, at, scratch);
198 __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
199
200 // Negate scratch.
201 __ Subu(scratch, zero_reg, scratch);
202 __ sllv(input_low, input_low, scratch);
203 __ Branch(&shift_done);
204
205 __ bind(&pos_shift);
206 __ srlv(input_low, input_low, scratch);
207
208 __ bind(&shift_done);
209 __ Or(input_high, input_high, Operand(input_low));
210 // Restore sign if necessary.
211 __ mov(scratch, sign);
212 result_reg = sign;
213 sign = no_reg;
214 __ Subu(result_reg, zero_reg, input_high);
215 __ Movz(result_reg, input_high, scratch);
216
217 __ bind(&done);
218
219 __ Pop(scratch, scratch2, scratch3);
220 __ Ret();
221 }
222
223
224 // Handle the case where the lhs and rhs are the same object.
225 // Equality is almost reflexive (everything but NaN), so this is a test
226 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cc)227 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
228 Condition cc) {
229 Label not_identical;
230 Label heap_number, return_equal;
231 Register exp_mask_reg = t1;
232
233 __ Branch(¬_identical, ne, a0, Operand(a1));
234
235 __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
236
237 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
238 // so we do the second best thing - test it ourselves.
239 // They are both equal and they are not both Smis so both of them are not
240 // Smis. If it's not a heap number, then return equal.
241 __ GetObjectType(a0, t0, t0);
242 if (cc == less || cc == greater) {
243 // Call runtime on identical JSObjects.
244 __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
245 // Call runtime on identical symbols since we need to throw a TypeError.
246 __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
247 // Call runtime on identical SIMD values since we must throw a TypeError.
248 __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
249 } else {
250 __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
251 // Comparing JS objects with <=, >= is complicated.
252 if (cc != eq) {
253 __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE));
254 // Call runtime on identical symbols since we need to throw a TypeError.
255 __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE));
256 // Call runtime on identical SIMD values since we must throw a TypeError.
257 __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE));
258 // Normally here we fall through to return_equal, but undefined is
259 // special: (undefined == undefined) == true, but
260 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
261 if (cc == less_equal || cc == greater_equal) {
262 __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
263 __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
264 __ Branch(&return_equal, ne, a0, Operand(a6));
265 DCHECK(is_int16(GREATER) && is_int16(LESS));
266 __ Ret(USE_DELAY_SLOT);
267 if (cc == le) {
268 // undefined <= undefined should fail.
269 __ li(v0, Operand(GREATER));
270 } else {
271 // undefined >= undefined should fail.
272 __ li(v0, Operand(LESS));
273 }
274 }
275 }
276 }
277
278 __ bind(&return_equal);
279 DCHECK(is_int16(GREATER) && is_int16(LESS));
280 __ Ret(USE_DELAY_SLOT);
281 if (cc == less) {
282 __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
283 } else if (cc == greater) {
284 __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
285 } else {
286 __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
287 }
288 // For less and greater we don't have to check for NaN since the result of
289 // x < x is false regardless. For the others here is some code to check
290 // for NaN.
291 if (cc != lt && cc != gt) {
292 __ bind(&heap_number);
293 // It is a heap number, so return non-equal if it's NaN and equal if it's
294 // not NaN.
295
296 // The representation of NaN values has all exponent bits (52..62) set,
297 // and not all mantissa bits (0..51) clear.
298 // Read top bits of double representation (second word of value).
299 __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
300 // Test that exponent bits are all set.
301 __ And(a7, a6, Operand(exp_mask_reg));
302 // If all bits not set (ne cond), then not a NaN, objects are equal.
303 __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
304
305 // Shift out flag and all exponent bits, retaining only mantissa.
306 __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
307 // Or with all low-bits of mantissa.
308 __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
309 __ Or(v0, a7, Operand(a6));
310 // For equal we already have the right value in v0: Return zero (equal)
311 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
312 // not (it's a NaN). For <= and >= we need to load v0 with the failing
313 // value if it's a NaN.
314 if (cc != eq) {
315 // All-zero means Infinity means equal.
316 __ Ret(eq, v0, Operand(zero_reg));
317 DCHECK(is_int16(GREATER) && is_int16(LESS));
318 __ Ret(USE_DELAY_SLOT);
319 if (cc == le) {
320 __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
321 } else {
322 __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
323 }
324 }
325 }
326 // No fall through here.
327
328 __ bind(¬_identical);
329 }
330
331
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * slow,bool strict)332 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
333 Register lhs,
334 Register rhs,
335 Label* both_loaded_as_doubles,
336 Label* slow,
337 bool strict) {
338 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
339 (lhs.is(a1) && rhs.is(a0)));
340
341 Label lhs_is_smi;
342 __ JumpIfSmi(lhs, &lhs_is_smi);
343 // Rhs is a Smi.
344 // Check whether the non-smi is a heap number.
345 __ GetObjectType(lhs, t0, t0);
346 if (strict) {
347 // If lhs was not a number and rhs was a Smi then strict equality cannot
348 // succeed. Return non-equal (lhs is already not zero).
349 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
350 __ mov(v0, lhs);
351 } else {
352 // Smi compared non-strictly with a non-Smi non-heap-number. Call
353 // the runtime.
354 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
355 }
356 // Rhs is a smi, lhs is a number.
357 // Convert smi rhs to double.
358 __ SmiUntag(at, rhs);
359 __ mtc1(at, f14);
360 __ cvt_d_w(f14, f14);
361 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
362
363 // We now have both loaded as doubles.
364 __ jmp(both_loaded_as_doubles);
365
366 __ bind(&lhs_is_smi);
367 // Lhs is a Smi. Check whether the non-smi is a heap number.
368 __ GetObjectType(rhs, t0, t0);
369 if (strict) {
370 // If lhs was not a number and rhs was a Smi then strict equality cannot
371 // succeed. Return non-equal.
372 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
373 __ li(v0, Operand(1));
374 } else {
375 // Smi compared non-strictly with a non-Smi non-heap-number. Call
376 // the runtime.
377 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
378 }
379
380 // Lhs is a smi, rhs is a number.
381 // Convert smi lhs to double.
382 __ SmiUntag(at, lhs);
383 __ mtc1(at, f12);
384 __ cvt_d_w(f12, f12);
385 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
386 // Fall through to both_loaded_as_doubles.
387 }
388
389
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)390 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
391 Register lhs,
392 Register rhs) {
393 // If either operand is a JS object or an oddball value, then they are
394 // not equal since their pointers are different.
395 // There is no test for undetectability in strict equality.
396 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
397 Label first_non_object;
398 // Get the type of the first operand into a2 and compare it with
399 // FIRST_JS_RECEIVER_TYPE.
400 __ GetObjectType(lhs, a2, a2);
401 __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
402
403 // Return non-zero.
404 Label return_not_equal;
405 __ bind(&return_not_equal);
406 __ Ret(USE_DELAY_SLOT);
407 __ li(v0, Operand(1));
408
409 __ bind(&first_non_object);
410 // Check for oddballs: true, false, null, undefined.
411 __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
412
413 __ GetObjectType(rhs, a3, a3);
414 __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
415
416 // Check for oddballs: true, false, null, undefined.
417 __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
418
419 // Now that we have the types we might as well check for
420 // internalized-internalized.
421 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
422 __ Or(a2, a2, Operand(a3));
423 __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
424 __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
425 }
426
427
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)428 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
429 Register lhs,
430 Register rhs,
431 Label* both_loaded_as_doubles,
432 Label* not_heap_numbers,
433 Label* slow) {
434 __ GetObjectType(lhs, a3, a2);
435 __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
436 __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
437 // If first was a heap number & second wasn't, go to slow case.
438 __ Branch(slow, ne, a3, Operand(a2));
439
440 // Both are heap numbers. Load them up then jump to the code we have
441 // for that.
442 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
443 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
444
445 __ jmp(both_loaded_as_doubles);
446 }
447
448
449 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * runtime_call)450 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
451 Register lhs, Register rhs,
452 Label* possible_strings,
453 Label* runtime_call) {
454 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
455 (lhs.is(a1) && rhs.is(a0)));
456
457 // a2 is object type of rhs.
458 Label object_test, return_equal, return_unequal, undetectable;
459 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
460 __ And(at, a2, Operand(kIsNotStringMask));
461 __ Branch(&object_test, ne, at, Operand(zero_reg));
462 __ And(at, a2, Operand(kIsNotInternalizedMask));
463 __ Branch(possible_strings, ne, at, Operand(zero_reg));
464 __ GetObjectType(rhs, a3, a3);
465 __ Branch(runtime_call, ge, a3, Operand(FIRST_NONSTRING_TYPE));
466 __ And(at, a3, Operand(kIsNotInternalizedMask));
467 __ Branch(possible_strings, ne, at, Operand(zero_reg));
468
469 // Both are internalized. We already checked they weren't the same pointer so
470 // they are not equal. Return non-equal by returning the non-zero object
471 // pointer in v0.
472 __ Ret(USE_DELAY_SLOT);
473 __ mov(v0, a0); // In delay slot.
474
475 __ bind(&object_test);
476 __ ld(a2, FieldMemOperand(lhs, HeapObject::kMapOffset));
477 __ ld(a3, FieldMemOperand(rhs, HeapObject::kMapOffset));
478 __ lbu(t0, FieldMemOperand(a2, Map::kBitFieldOffset));
479 __ lbu(t1, FieldMemOperand(a3, Map::kBitFieldOffset));
480 __ And(at, t0, Operand(1 << Map::kIsUndetectable));
481 __ Branch(&undetectable, ne, at, Operand(zero_reg));
482 __ And(at, t1, Operand(1 << Map::kIsUndetectable));
483 __ Branch(&return_unequal, ne, at, Operand(zero_reg));
484
485 __ GetInstanceType(a2, a2);
486 __ Branch(runtime_call, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
487 __ GetInstanceType(a3, a3);
488 __ Branch(runtime_call, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
489
490 __ bind(&return_unequal);
491 // Return non-equal by returning the non-zero object pointer in v0.
492 __ Ret(USE_DELAY_SLOT);
493 __ mov(v0, a0); // In delay slot.
494
495 __ bind(&undetectable);
496 __ And(at, t1, Operand(1 << Map::kIsUndetectable));
497 __ Branch(&return_unequal, eq, at, Operand(zero_reg));
498
499 // If both sides are JSReceivers, then the result is false according to
500 // the HTML specification, which says that only comparisons with null or
501 // undefined are affected by special casing for document.all.
502 __ GetInstanceType(a2, a2);
503 __ Branch(&return_equal, eq, a2, Operand(ODDBALL_TYPE));
504 __ GetInstanceType(a3, a3);
505 __ Branch(&return_unequal, ne, a3, Operand(ODDBALL_TYPE));
506
507 __ bind(&return_equal);
508 __ Ret(USE_DELAY_SLOT);
509 __ li(v0, Operand(EQUAL)); // In delay slot.
510 }
511
512
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)513 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
514 Register scratch,
515 CompareICState::State expected,
516 Label* fail) {
517 Label ok;
518 if (expected == CompareICState::SMI) {
519 __ JumpIfNotSmi(input, fail);
520 } else if (expected == CompareICState::NUMBER) {
521 __ JumpIfSmi(input, &ok);
522 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
523 DONT_DO_SMI_CHECK);
524 }
525 // We could be strict about internalized/string here, but as long as
526 // hydrogen doesn't care, the stub doesn't have to care either.
527 __ bind(&ok);
528 }
529
530
531 // On entry a1 and a2 are the values to be compared.
532 // On exit a0 is 0, positive or negative to indicate the result of
533 // the comparison.
GenerateGeneric(MacroAssembler * masm)534 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
535 Register lhs = a1;
536 Register rhs = a0;
537 Condition cc = GetCondition();
538
539 Label miss;
540 CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
541 CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
542
543 Label slow; // Call builtin.
544 Label not_smis, both_loaded_as_doubles;
545
546 Label not_two_smis, smi_done;
547 __ Or(a2, a1, a0);
548 __ JumpIfNotSmi(a2, ¬_two_smis);
549 __ SmiUntag(a1);
550 __ SmiUntag(a0);
551
552 __ Ret(USE_DELAY_SLOT);
553 __ dsubu(v0, a1, a0);
554 __ bind(¬_two_smis);
555
556 // NOTICE! This code is only reached after a smi-fast-case check, so
557 // it is certain that at least one operand isn't a smi.
558
559 // Handle the case where the objects are identical. Either returns the answer
560 // or goes to slow. Only falls through if the objects were not identical.
561 EmitIdenticalObjectComparison(masm, &slow, cc);
562
563 // If either is a Smi (we know that not both are), then they can only
564 // be strictly equal if the other is a HeapNumber.
565 STATIC_ASSERT(kSmiTag == 0);
566 DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
567 __ And(a6, lhs, Operand(rhs));
568 __ JumpIfNotSmi(a6, ¬_smis, a4);
569 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
570 // 1) Return the answer.
571 // 2) Go to slow.
572 // 3) Fall through to both_loaded_as_doubles.
573 // 4) Jump to rhs_not_nan.
574 // In cases 3 and 4 we have found out we were dealing with a number-number
575 // comparison and the numbers have been loaded into f12 and f14 as doubles,
576 // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
577 EmitSmiNonsmiComparison(masm, lhs, rhs,
578 &both_loaded_as_doubles, &slow, strict());
579
580 __ bind(&both_loaded_as_doubles);
581 // f12, f14 are the double representations of the left hand side
582 // and the right hand side if we have FPU. Otherwise a2, a3 represent
583 // left hand side and a0, a1 represent right hand side.
584
585 Label nan;
586 __ li(a4, Operand(LESS));
587 __ li(a5, Operand(GREATER));
588 __ li(a6, Operand(EQUAL));
589
590 // Check if either rhs or lhs is NaN.
591 __ BranchF(NULL, &nan, eq, f12, f14);
592
593 // Check if LESS condition is satisfied. If true, move conditionally
594 // result to v0.
595 if (kArchVariant != kMips64r6) {
596 __ c(OLT, D, f12, f14);
597 __ Movt(v0, a4);
598 // Use previous check to store conditionally to v0 oposite condition
599 // (GREATER). If rhs is equal to lhs, this will be corrected in next
600 // check.
601 __ Movf(v0, a5);
602 // Check if EQUAL condition is satisfied. If true, move conditionally
603 // result to v0.
604 __ c(EQ, D, f12, f14);
605 __ Movt(v0, a6);
606 } else {
607 Label skip;
608 __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
609 __ mov(v0, a4); // Return LESS as result.
610
611 __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
612 __ mov(v0, a6); // Return EQUAL as result.
613
614 __ mov(v0, a5); // Return GREATER as result.
615 __ bind(&skip);
616 }
617 __ Ret();
618
619 __ bind(&nan);
620 // NaN comparisons always fail.
621 // Load whatever we need in v0 to make the comparison fail.
622 DCHECK(is_int16(GREATER) && is_int16(LESS));
623 __ Ret(USE_DELAY_SLOT);
624 if (cc == lt || cc == le) {
625 __ li(v0, Operand(GREATER));
626 } else {
627 __ li(v0, Operand(LESS));
628 }
629
630
631 __ bind(¬_smis);
632 // At this point we know we are dealing with two different objects,
633 // and neither of them is a Smi. The objects are in lhs_ and rhs_.
634 if (strict()) {
635 // This returns non-equal for some object types, or falls through if it
636 // was not lucky.
637 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
638 }
639
640 Label check_for_internalized_strings;
641 Label flat_string_check;
642 // Check for heap-number-heap-number comparison. Can jump to slow case,
643 // or load both doubles and jump to the code that handles
644 // that case. If the inputs are not doubles then jumps to
645 // check_for_internalized_strings.
646 // In this case a2 will contain the type of lhs_.
647 EmitCheckForTwoHeapNumbers(masm,
648 lhs,
649 rhs,
650 &both_loaded_as_doubles,
651 &check_for_internalized_strings,
652 &flat_string_check);
653
654 __ bind(&check_for_internalized_strings);
655 if (cc == eq && !strict()) {
656 // Returns an answer for two internalized strings or two
657 // detectable objects.
658 // Otherwise jumps to string case or not both strings case.
659 // Assumes that a2 is the type of lhs_ on entry.
660 EmitCheckForInternalizedStringsOrObjects(
661 masm, lhs, rhs, &flat_string_check, &slow);
662 }
663
664 // Check for both being sequential one-byte strings,
665 // and inline if that is the case.
666 __ bind(&flat_string_check);
667
668 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
669
670 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
671 a3);
672 if (cc == eq) {
673 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
674 } else {
675 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
676 a5);
677 }
678 // Never falls through to here.
679
680 __ bind(&slow);
681 if (cc == eq) {
682 {
683 FrameScope scope(masm, StackFrame::INTERNAL);
684 __ Push(lhs, rhs);
685 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
686 }
687 // Turn true into 0 and false into some non-zero value.
688 STATIC_ASSERT(EQUAL == 0);
689 __ LoadRoot(a0, Heap::kTrueValueRootIndex);
690 __ Ret(USE_DELAY_SLOT);
691 __ subu(v0, v0, a0); // In delay slot.
692 } else {
693 // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
694 // a1 (rhs) second.
695 __ Push(lhs, rhs);
696 int ncr; // NaN compare result.
697 if (cc == lt || cc == le) {
698 ncr = GREATER;
699 } else {
700 DCHECK(cc == gt || cc == ge); // Remaining cases.
701 ncr = LESS;
702 }
703 __ li(a0, Operand(Smi::FromInt(ncr)));
704 __ push(a0);
705
706 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
707 // tagged as a small integer.
708 __ TailCallRuntime(Runtime::kCompare);
709 }
710
711 __ bind(&miss);
712 GenerateMiss(masm);
713 }
714
715
Generate(MacroAssembler * masm)716 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
717 __ mov(t9, ra);
718 __ pop(ra);
719 __ PushSafepointRegisters();
720 __ Jump(t9);
721 }
722
723
Generate(MacroAssembler * masm)724 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
725 __ mov(t9, ra);
726 __ pop(ra);
727 __ PopSafepointRegisters();
728 __ Jump(t9);
729 }
730
731
Generate(MacroAssembler * masm)732 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
733 // We don't allow a GC during a store buffer overflow so there is no need to
734 // store the registers in any particular way, but we do have to store and
735 // restore them.
736 __ MultiPush(kJSCallerSaved | ra.bit());
737 if (save_doubles()) {
738 __ MultiPushFPU(kCallerSavedFPU);
739 }
740 const int argument_count = 1;
741 const int fp_argument_count = 0;
742 const Register scratch = a1;
743
744 AllowExternalCallThatCantCauseGC scope(masm);
745 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
746 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
747 __ CallCFunction(
748 ExternalReference::store_buffer_overflow_function(isolate()),
749 argument_count);
750 if (save_doubles()) {
751 __ MultiPopFPU(kCallerSavedFPU);
752 }
753
754 __ MultiPop(kJSCallerSaved | ra.bit());
755 __ Ret();
756 }
757
758
Generate(MacroAssembler * masm)759 void MathPowStub::Generate(MacroAssembler* masm) {
760 const Register exponent = MathPowTaggedDescriptor::exponent();
761 DCHECK(exponent.is(a2));
762 const DoubleRegister double_base = f2;
763 const DoubleRegister double_exponent = f4;
764 const DoubleRegister double_result = f0;
765 const DoubleRegister double_scratch = f6;
766 const FPURegister single_scratch = f8;
767 const Register scratch = t1;
768 const Register scratch2 = a7;
769
770 Label call_runtime, done, int_exponent;
771 if (exponent_type() == TAGGED) {
772 // Base is already in double_base.
773 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
774
775 __ ldc1(double_exponent,
776 FieldMemOperand(exponent, HeapNumber::kValueOffset));
777 }
778
779 if (exponent_type() != INTEGER) {
780 Label int_exponent_convert;
781 // Detect integer exponents stored as double.
782 __ EmitFPUTruncate(kRoundToMinusInf,
783 scratch,
784 double_exponent,
785 at,
786 double_scratch,
787 scratch2,
788 kCheckForInexactConversion);
789 // scratch2 == 0 means there was no conversion error.
790 __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
791
792 __ push(ra);
793 {
794 AllowExternalCallThatCantCauseGC scope(masm);
795 __ PrepareCallCFunction(0, 2, scratch2);
796 __ MovToFloatParameters(double_base, double_exponent);
797 __ CallCFunction(
798 ExternalReference::power_double_double_function(isolate()),
799 0, 2);
800 }
801 __ pop(ra);
802 __ MovFromFloatResult(double_result);
803 __ jmp(&done);
804
805 __ bind(&int_exponent_convert);
806 }
807
808 // Calculate power with integer exponent.
809 __ bind(&int_exponent);
810
811 // Get two copies of exponent in the registers scratch and exponent.
812 if (exponent_type() == INTEGER) {
813 __ mov(scratch, exponent);
814 } else {
815 // Exponent has previously been stored into scratch as untagged integer.
816 __ mov(exponent, scratch);
817 }
818
819 __ mov_d(double_scratch, double_base); // Back up base.
820 __ Move(double_result, 1.0);
821
822 // Get absolute value of exponent.
823 Label positive_exponent, bail_out;
824 __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
825 __ Dsubu(scratch, zero_reg, scratch);
826 // Check when Dsubu overflows and we get negative result
827 // (happens only when input is MIN_INT).
828 __ Branch(&bail_out, gt, zero_reg, Operand(scratch));
829 __ bind(&positive_exponent);
830 __ Assert(ge, kUnexpectedNegativeValue, scratch, Operand(zero_reg));
831
832 Label while_true, no_carry, loop_end;
833 __ bind(&while_true);
834
835 __ And(scratch2, scratch, 1);
836
837 __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
838 __ mul_d(double_result, double_result, double_scratch);
839 __ bind(&no_carry);
840
841 __ dsra(scratch, scratch, 1);
842
843 __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
844 __ mul_d(double_scratch, double_scratch, double_scratch);
845
846 __ Branch(&while_true);
847
848 __ bind(&loop_end);
849
850 __ Branch(&done, ge, exponent, Operand(zero_reg));
851 __ Move(double_scratch, 1.0);
852 __ div_d(double_result, double_scratch, double_result);
853 // Test whether result is zero. Bail out to check for subnormal result.
854 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
855 __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
856
857 // double_exponent may not contain the exponent value if the input was a
858 // smi. We set it with exponent value before bailing out.
859 __ bind(&bail_out);
860 __ mtc1(exponent, single_scratch);
861 __ cvt_d_w(double_exponent, single_scratch);
862
863 // Returning or bailing out.
864 __ push(ra);
865 {
866 AllowExternalCallThatCantCauseGC scope(masm);
867 __ PrepareCallCFunction(0, 2, scratch);
868 __ MovToFloatParameters(double_base, double_exponent);
869 __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
870 0, 2);
871 }
872 __ pop(ra);
873 __ MovFromFloatResult(double_result);
874
875 __ bind(&done);
876 __ Ret();
877 }
878
NeedsImmovableCode()879 bool CEntryStub::NeedsImmovableCode() {
880 return true;
881 }
882
883
GenerateStubsAheadOfTime(Isolate * isolate)884 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
885 CEntryStub::GenerateAheadOfTime(isolate);
886 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
887 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
888 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
889 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
890 CreateWeakCellStub::GenerateAheadOfTime(isolate);
891 BinaryOpICStub::GenerateAheadOfTime(isolate);
892 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
893 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
894 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
895 StoreFastElementStub::GenerateAheadOfTime(isolate);
896 }
897
898
GenerateAheadOfTime(Isolate * isolate)899 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
900 StoreRegistersStateStub stub(isolate);
901 stub.GetCode();
902 }
903
904
GenerateAheadOfTime(Isolate * isolate)905 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
906 RestoreRegistersStateStub stub(isolate);
907 stub.GetCode();
908 }
909
910
GenerateFPStubs(Isolate * isolate)911 void CodeStub::GenerateFPStubs(Isolate* isolate) {
912 // Generate if not already in cache.
913 SaveFPRegsMode mode = kSaveFPRegs;
914 CEntryStub(isolate, 1, mode).GetCode();
915 StoreBufferOverflowStub(isolate, mode).GetCode();
916 isolate->set_fp_stubs_generated(true);
917 }
918
919
GenerateAheadOfTime(Isolate * isolate)920 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
921 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
922 stub.GetCode();
923 }
924
925
Generate(MacroAssembler * masm)926 void CEntryStub::Generate(MacroAssembler* masm) {
927 // Called from JavaScript; parameters are on stack as if calling JS function
928 // a0: number of arguments including receiver
929 // a1: pointer to builtin function
930 // fp: frame pointer (restored after C call)
931 // sp: stack pointer (restored as callee's sp after C call)
932 // cp: current context (C callee-saved)
933 //
934 // If argv_in_register():
935 // a2: pointer to the first argument
936
937 ProfileEntryHookStub::MaybeCallEntryHook(masm);
938
939 if (argv_in_register()) {
940 // Move argv into the correct register.
941 __ mov(s1, a2);
942 } else {
943 // Compute the argv pointer in a callee-saved register.
944 __ Dlsa(s1, sp, a0, kPointerSizeLog2);
945 __ Dsubu(s1, s1, kPointerSize);
946 }
947
948 // Enter the exit frame that transitions from JavaScript to C++.
949 FrameScope scope(masm, StackFrame::MANUAL);
950 __ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
951 ? StackFrame::BUILTIN_EXIT
952 : StackFrame::EXIT);
953
954 // s0: number of arguments including receiver (C callee-saved)
955 // s1: pointer to first argument (C callee-saved)
956 // s2: pointer to builtin function (C callee-saved)
957
958 // Prepare arguments for C routine.
959 // a0 = argc
960 __ mov(s0, a0);
961 __ mov(s2, a1);
962
963 // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
964 // also need to reserve the 4 argument slots on the stack.
965
966 __ AssertStackIsAligned();
967
968 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
969 int frame_alignment_mask = frame_alignment - 1;
970 int result_stack_size;
971 if (result_size() <= 2) {
972 // a0 = argc, a1 = argv, a2 = isolate
973 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
974 __ mov(a1, s1);
975 result_stack_size = 0;
976 } else {
977 DCHECK_EQ(3, result_size());
978 // Allocate additional space for the result.
979 result_stack_size =
980 ((result_size() * kPointerSize) + frame_alignment_mask) &
981 ~frame_alignment_mask;
982 __ Dsubu(sp, sp, Operand(result_stack_size));
983
984 // a0 = hidden result argument, a1 = argc, a2 = argv, a3 = isolate.
985 __ li(a3, Operand(ExternalReference::isolate_address(isolate())));
986 __ mov(a2, s1);
987 __ mov(a1, a0);
988 __ mov(a0, sp);
989 }
990
991 // To let the GC traverse the return address of the exit frames, we need to
992 // know where the return address is. The CEntryStub is unmovable, so
993 // we can store the address on the stack to be able to find it again and
994 // we never have to restore it, because it will not change.
995 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
996 int kNumInstructionsToJump = 4;
997 Label find_ra;
998 // Adjust the value in ra to point to the correct return location, 2nd
999 // instruction past the real call into C code (the jalr(t9)), and push it.
1000 // This is the return address of the exit frame.
1001 if (kArchVariant >= kMips64r6) {
1002 __ addiupc(ra, kNumInstructionsToJump + 1);
1003 } else {
1004 // This branch-and-link sequence is needed to find the current PC on mips
1005 // before r6, saved to the ra register.
1006 __ bal(&find_ra); // bal exposes branch delay slot.
1007 __ Daddu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
1008 }
1009 __ bind(&find_ra);
1010
1011 // This spot was reserved in EnterExitFrame.
1012 __ sd(ra, MemOperand(sp, result_stack_size));
1013 // Stack space reservation moved to the branch delay slot below.
1014 // Stack is still aligned.
1015
1016 // Call the C routine.
1017 __ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
1018 __ jalr(t9);
1019 // Set up sp in the delay slot.
1020 __ daddiu(sp, sp, -kCArgsSlotsSize);
1021 // Make sure the stored 'ra' points to this position.
1022 DCHECK_EQ(kNumInstructionsToJump,
1023 masm->InstructionsGeneratedSince(&find_ra));
1024 }
1025 if (result_size() > 2) {
1026 DCHECK_EQ(3, result_size());
1027 // Read result values stored on stack.
1028 __ ld(a0, MemOperand(v0, 2 * kPointerSize));
1029 __ ld(v1, MemOperand(v0, 1 * kPointerSize));
1030 __ ld(v0, MemOperand(v0, 0 * kPointerSize));
1031 }
1032 // Result returned in v0, v1:v0 or a0:v1:v0 - do not destroy these registers!
1033
1034 // Check result for exception sentinel.
1035 Label exception_returned;
1036 __ LoadRoot(a4, Heap::kExceptionRootIndex);
1037 __ Branch(&exception_returned, eq, a4, Operand(v0));
1038
1039 // Check that there is no pending exception, otherwise we
1040 // should have returned the exception sentinel.
1041 if (FLAG_debug_code) {
1042 Label okay;
1043 ExternalReference pending_exception_address(
1044 Isolate::kPendingExceptionAddress, isolate());
1045 __ li(a2, Operand(pending_exception_address));
1046 __ ld(a2, MemOperand(a2));
1047 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1048 // Cannot use check here as it attempts to generate call into runtime.
1049 __ Branch(&okay, eq, a4, Operand(a2));
1050 __ stop("Unexpected pending exception");
1051 __ bind(&okay);
1052 }
1053
1054 // Exit C frame and return.
1055 // v0:v1: result
1056 // sp: stack pointer
1057 // fp: frame pointer
1058 Register argc;
1059 if (argv_in_register()) {
1060 // We don't want to pop arguments so set argc to no_reg.
1061 argc = no_reg;
1062 } else {
1063 // s0: still holds argc (callee-saved).
1064 argc = s0;
1065 }
1066 __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
1067
1068 // Handling of exception.
1069 __ bind(&exception_returned);
1070
1071 ExternalReference pending_handler_context_address(
1072 Isolate::kPendingHandlerContextAddress, isolate());
1073 ExternalReference pending_handler_code_address(
1074 Isolate::kPendingHandlerCodeAddress, isolate());
1075 ExternalReference pending_handler_offset_address(
1076 Isolate::kPendingHandlerOffsetAddress, isolate());
1077 ExternalReference pending_handler_fp_address(
1078 Isolate::kPendingHandlerFPAddress, isolate());
1079 ExternalReference pending_handler_sp_address(
1080 Isolate::kPendingHandlerSPAddress, isolate());
1081
1082 // Ask the runtime for help to determine the handler. This will set v0 to
1083 // contain the current pending exception, don't clobber it.
1084 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1085 isolate());
1086 {
1087 FrameScope scope(masm, StackFrame::MANUAL);
1088 __ PrepareCallCFunction(3, 0, a0);
1089 __ mov(a0, zero_reg);
1090 __ mov(a1, zero_reg);
1091 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1092 __ CallCFunction(find_handler, 3);
1093 }
1094
1095 // Retrieve the handler context, SP and FP.
1096 __ li(cp, Operand(pending_handler_context_address));
1097 __ ld(cp, MemOperand(cp));
1098 __ li(sp, Operand(pending_handler_sp_address));
1099 __ ld(sp, MemOperand(sp));
1100 __ li(fp, Operand(pending_handler_fp_address));
1101 __ ld(fp, MemOperand(fp));
1102
1103 // If the handler is a JS frame, restore the context to the frame. Note that
1104 // the context will be set to (cp == 0) for non-JS frames.
1105 Label zero;
1106 __ Branch(&zero, eq, cp, Operand(zero_reg));
1107 __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1108 __ bind(&zero);
1109
1110 // Compute the handler entry address and jump to it.
1111 __ li(a1, Operand(pending_handler_code_address));
1112 __ ld(a1, MemOperand(a1));
1113 __ li(a2, Operand(pending_handler_offset_address));
1114 __ ld(a2, MemOperand(a2));
1115 __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
1116 __ Daddu(t9, a1, a2);
1117 __ Jump(t9);
1118 }
1119
1120
Generate(MacroAssembler * masm)1121 void JSEntryStub::Generate(MacroAssembler* masm) {
1122 Label invoke, handler_entry, exit;
1123 Isolate* isolate = masm->isolate();
1124
1125 // TODO(plind): unify the ABI description here.
1126 // Registers:
1127 // a0: entry address
1128 // a1: function
1129 // a2: receiver
1130 // a3: argc
1131 // a4 (a4): on mips64
1132
1133 // Stack:
1134 // 0 arg slots on mips64 (4 args slots on mips)
1135 // args -- in a4/a4 on mips64, on stack on mips
1136
1137 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1138
1139 // Save callee saved registers on the stack.
1140 __ MultiPush(kCalleeSaved | ra.bit());
1141
1142 // Save callee-saved FPU registers.
1143 __ MultiPushFPU(kCalleeSavedFPU);
1144 // Set up the reserved register for 0.0.
1145 __ Move(kDoubleRegZero, 0.0);
1146
1147 // Load argv in s0 register.
1148 __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register.
1149
1150 __ InitializeRootRegister();
1151
1152 // We build an EntryFrame.
1153 __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1154 int marker = type();
1155 __ li(a6, Operand(Smi::FromInt(marker)));
1156 __ li(a5, Operand(Smi::FromInt(marker)));
1157 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
1158 __ li(a4, Operand(c_entry_fp));
1159 __ ld(a4, MemOperand(a4));
1160 __ Push(a7, a6, a5, a4);
1161 // Set up frame pointer for the frame to be pushed.
1162 __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1163
1164 // Registers:
1165 // a0: entry_address
1166 // a1: function
1167 // a2: receiver_pointer
1168 // a3: argc
1169 // s0: argv
1170 //
1171 // Stack:
1172 // caller fp |
1173 // function slot | entry frame
1174 // context slot |
1175 // bad fp (0xff...f) |
1176 // callee saved registers + ra
1177 // [ O32: 4 args slots]
1178 // args
1179
1180 // If this is the outermost JS call, set js_entry_sp value.
1181 Label non_outermost_js;
1182 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1183 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1184 __ ld(a6, MemOperand(a5));
1185 __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
1186 __ sd(fp, MemOperand(a5));
1187 __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1188 Label cont;
1189 __ b(&cont);
1190 __ nop(); // Branch delay slot nop.
1191 __ bind(&non_outermost_js);
1192 __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1193 __ bind(&cont);
1194 __ push(a4);
1195
1196 // Jump to a faked try block that does the invoke, with a faked catch
1197 // block that sets the pending exception.
1198 __ jmp(&invoke);
1199 __ bind(&handler_entry);
1200 handler_offset_ = handler_entry.pos();
1201 // Caught exception: Store result (exception) in the pending exception
1202 // field in the JSEnv and return a failure sentinel. Coming in here the
1203 // fp will be invalid because the PushStackHandler below sets it to 0 to
1204 // signal the existence of the JSEntry frame.
1205 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1206 isolate)));
1207 __ sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0.
1208 __ LoadRoot(v0, Heap::kExceptionRootIndex);
1209 __ b(&exit); // b exposes branch delay slot.
1210 __ nop(); // Branch delay slot nop.
1211
1212 // Invoke: Link this frame into the handler chain.
1213 __ bind(&invoke);
1214 __ PushStackHandler();
1215 // If an exception not caught by another handler occurs, this handler
1216 // returns control to the code after the bal(&invoke) above, which
1217 // restores all kCalleeSaved registers (including cp and fp) to their
1218 // saved values before returning a failure to C.
1219
1220 // Invoke the function by calling through JS entry trampoline builtin.
1221 // Notice that we cannot store a reference to the trampoline code directly in
1222 // this stub, because runtime stubs are not traversed when doing GC.
1223
1224 // Registers:
1225 // a0: entry_address
1226 // a1: function
1227 // a2: receiver_pointer
1228 // a3: argc
1229 // s0: argv
1230 //
1231 // Stack:
1232 // handler frame
1233 // entry frame
1234 // callee saved registers + ra
1235 // [ O32: 4 args slots]
1236 // args
1237
1238 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1239 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1240 isolate);
1241 __ li(a4, Operand(construct_entry));
1242 } else {
1243 ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1244 __ li(a4, Operand(entry));
1245 }
1246 __ ld(t9, MemOperand(a4)); // Deref address.
1247 // Call JSEntryTrampoline.
1248 __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1249 __ Call(t9);
1250
1251 // Unlink this frame from the handler chain.
1252 __ PopStackHandler();
1253
1254 __ bind(&exit); // v0 holds result
1255 // Check if the current stack frame is marked as the outermost JS frame.
1256 Label non_outermost_js_2;
1257 __ pop(a5);
1258 __ Branch(&non_outermost_js_2,
1259 ne,
1260 a5,
1261 Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1262 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1263 __ sd(zero_reg, MemOperand(a5));
1264 __ bind(&non_outermost_js_2);
1265
1266 // Restore the top frame descriptors from the stack.
1267 __ pop(a5);
1268 __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1269 isolate)));
1270 __ sd(a5, MemOperand(a4));
1271
1272 // Reset the stack to the callee saved registers.
1273 __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1274
1275 // Restore callee-saved fpu registers.
1276 __ MultiPopFPU(kCalleeSavedFPU);
1277
1278 // Restore callee saved registers from the stack.
1279 __ MultiPop(kCalleeSaved | ra.bit());
1280 // Return.
1281 __ Jump(ra);
1282 }
1283
1284
Generate(MacroAssembler * masm)1285 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1286 // Return address is in ra.
1287 Label miss;
1288
1289 Register receiver = LoadDescriptor::ReceiverRegister();
1290 Register index = LoadDescriptor::NameRegister();
1291 Register scratch = a5;
1292 Register result = v0;
1293 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1294 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
1295
1296 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1297 &miss, // When not a string.
1298 &miss, // When not a number.
1299 &miss, // When index out of range.
1300 RECEIVER_IS_STRING);
1301 char_at_generator.GenerateFast(masm);
1302 __ Ret();
1303
1304 StubRuntimeCallHelper call_helper;
1305 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1306
1307 __ bind(&miss);
1308 PropertyAccessCompiler::TailCallBuiltin(
1309 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1310 }
1311
1312
Generate(MacroAssembler * masm)1313 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1314 Label miss;
1315 Register receiver = LoadDescriptor::ReceiverRegister();
1316 // Ensure that the vector and slot registers won't be clobbered before
1317 // calling the miss handler.
1318 DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::VectorRegister(),
1319 LoadWithVectorDescriptor::SlotRegister()));
1320
1321 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a4,
1322 a5, &miss);
1323 __ bind(&miss);
1324 PropertyAccessCompiler::TailCallBuiltin(
1325 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1326 }
1327
1328
Generate(MacroAssembler * masm)1329 void RegExpExecStub::Generate(MacroAssembler* masm) {
1330 // Just jump directly to runtime if native RegExp is not selected at compile
1331 // time or if regexp entry in generated code is turned off runtime switch or
1332 // at compilation.
1333 #ifdef V8_INTERPRETED_REGEXP
1334 __ TailCallRuntime(Runtime::kRegExpExec);
1335 #else // V8_INTERPRETED_REGEXP
1336
1337 // Stack frame on entry.
1338 // sp[0]: last_match_info (expected JSArray)
1339 // sp[4]: previous index
1340 // sp[8]: subject string
1341 // sp[12]: JSRegExp object
1342
1343 const int kLastMatchInfoOffset = 0 * kPointerSize;
1344 const int kPreviousIndexOffset = 1 * kPointerSize;
1345 const int kSubjectOffset = 2 * kPointerSize;
1346 const int kJSRegExpOffset = 3 * kPointerSize;
1347
1348 Label runtime;
1349 // Allocation of registers for this function. These are in callee save
1350 // registers and will be preserved by the call to the native RegExp code, as
1351 // this code is called using the normal C calling convention. When calling
1352 // directly from generated code the native RegExp code will not do a GC and
1353 // therefore the content of these registers are safe to use after the call.
1354 // MIPS - using s0..s2, since we are not using CEntry Stub.
1355 Register subject = s0;
1356 Register regexp_data = s1;
1357 Register last_match_info_elements = s2;
1358
1359 // Ensure that a RegExp stack is allocated.
1360 ExternalReference address_of_regexp_stack_memory_address =
1361 ExternalReference::address_of_regexp_stack_memory_address(
1362 isolate());
1363 ExternalReference address_of_regexp_stack_memory_size =
1364 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1365 __ li(a0, Operand(address_of_regexp_stack_memory_size));
1366 __ ld(a0, MemOperand(a0, 0));
1367 __ Branch(&runtime, eq, a0, Operand(zero_reg));
1368
1369 // Check that the first argument is a JSRegExp object.
1370 __ ld(a0, MemOperand(sp, kJSRegExpOffset));
1371 STATIC_ASSERT(kSmiTag == 0);
1372 __ JumpIfSmi(a0, &runtime);
1373 __ GetObjectType(a0, a1, a1);
1374 __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
1375
1376 // Check that the RegExp has been compiled (data contains a fixed array).
1377 __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
1378 if (FLAG_debug_code) {
1379 __ SmiTst(regexp_data, a4);
1380 __ Check(nz,
1381 kUnexpectedTypeForRegExpDataFixedArrayExpected,
1382 a4,
1383 Operand(zero_reg));
1384 __ GetObjectType(regexp_data, a0, a0);
1385 __ Check(eq,
1386 kUnexpectedTypeForRegExpDataFixedArrayExpected,
1387 a0,
1388 Operand(FIXED_ARRAY_TYPE));
1389 }
1390
1391 // regexp_data: RegExp data (FixedArray)
1392 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1393 __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1394 __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
1395
1396 // regexp_data: RegExp data (FixedArray)
1397 // Check that the number of captures fit in the static offsets vector buffer.
1398 __ ld(a2,
1399 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1400 // Check (number_of_captures + 1) * 2 <= offsets vector size
1401 // Or number_of_captures * 2 <= offsets vector size - 2
1402 // Or number_of_captures <= offsets vector size / 2 - 1
1403 // Multiplying by 2 comes for free since a2 is smi-tagged.
1404 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1405 int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
1406 __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
1407
1408 // Reset offset for possibly sliced string.
1409 __ mov(t0, zero_reg);
1410 __ ld(subject, MemOperand(sp, kSubjectOffset));
1411 __ JumpIfSmi(subject, &runtime);
1412 __ mov(a3, subject); // Make a copy of the original subject string.
1413
1414 // subject: subject string
1415 // a3: subject string
1416 // regexp_data: RegExp data (FixedArray)
1417 // Handle subject string according to its encoding and representation:
1418 // (1) Sequential string? If yes, go to (4).
1419 // (2) Sequential or cons? If not, go to (5).
1420 // (3) Cons string. If the string is flat, replace subject with first string
1421 // and go to (1). Otherwise bail out to runtime.
1422 // (4) Sequential string. Load regexp code according to encoding.
1423 // (E) Carry on.
1424 /// [...]
1425
1426 // Deferred code at the end of the stub:
1427 // (5) Long external string? If not, go to (7).
1428 // (6) External string. Make it, offset-wise, look like a sequential string.
1429 // Go to (4).
1430 // (7) Short external string or not a string? If yes, bail out to runtime.
1431 // (8) Sliced string. Replace subject with parent. Go to (1).
1432
1433 Label check_underlying; // (1)
1434 Label seq_string; // (4)
1435 Label not_seq_nor_cons; // (5)
1436 Label external_string; // (6)
1437 Label not_long_external; // (7)
1438
1439 __ bind(&check_underlying);
1440 __ ld(a2, FieldMemOperand(subject, HeapObject::kMapOffset));
1441 __ lbu(a0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
1442
1443 // (1) Sequential string? If yes, go to (4).
1444 __ And(a1,
1445 a0,
1446 Operand(kIsNotStringMask |
1447 kStringRepresentationMask |
1448 kShortExternalStringMask));
1449 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1450 __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (4).
1451
1452 // (2) Sequential or cons? If not, go to (5).
1453 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1454 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1455 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1456 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1457 // Go to (5).
1458 __ Branch(¬_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
1459
1460 // (3) Cons string. Check that it's flat.
1461 // Replace subject with first string and reload instance type.
1462 __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
1463 __ LoadRoot(a1, Heap::kempty_stringRootIndex);
1464 __ Branch(&runtime, ne, a0, Operand(a1));
1465 __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1466 __ jmp(&check_underlying);
1467
1468 // (4) Sequential string. Load regexp code according to encoding.
1469 __ bind(&seq_string);
1470 // subject: sequential subject string (or look-alike, external string)
1471 // a3: original subject string
1472 // Load previous index and check range before a3 is overwritten. We have to
1473 // use a3 instead of subject here because subject might have been only made
1474 // to look like a sequential string when it actually is an external string.
1475 __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
1476 __ JumpIfNotSmi(a1, &runtime);
1477 __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
1478 __ Branch(&runtime, ls, a3, Operand(a1));
1479 __ SmiUntag(a1);
1480
1481 STATIC_ASSERT(kStringEncodingMask == 4);
1482 STATIC_ASSERT(kOneByteStringTag == 4);
1483 STATIC_ASSERT(kTwoByteStringTag == 0);
1484 __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one_byte.
1485 __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1486 __ dsra(a3, a0, 2); // a3 is 1 for one_byte, 0 for UC16 (used below).
1487 __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1488 __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
1489
1490 // (E) Carry on. String handling is done.
1491 // t9: irregexp code
1492 // Check that the irregexp code has been generated for the actual string
1493 // encoding. If it has, the field contains a code object otherwise it contains
1494 // a smi (code flushing support).
1495 __ JumpIfSmi(t9, &runtime);
1496
1497 // a1: previous index
1498 // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
1499 // t9: code
1500 // subject: Subject string
1501 // regexp_data: RegExp data (FixedArray)
1502 // All checks done. Now push arguments for native regexp code.
1503 __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
1504 1, a0, a2);
1505
1506 // Isolates: note we add an additional parameter here (isolate pointer).
1507 const int kRegExpExecuteArguments = 9;
1508 const int kParameterRegisters = 8;
1509 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1510
1511 // Stack pointer now points to cell where return address is to be written.
1512 // Arguments are before that on the stack or in registers, meaning we
1513 // treat the return address as argument 5. Thus every argument after that
1514 // needs to be shifted back by 1. Since DirectCEntryStub will handle
1515 // allocating space for the c argument slots, we don't need to calculate
1516 // that into the argument positions on the stack. This is how the stack will
1517 // look (sp meaning the value of sp at this moment):
1518 // Abi n64:
1519 // [sp + 1] - Argument 9
1520 // [sp + 0] - saved ra
1521 // Abi O32:
1522 // [sp + 5] - Argument 9
1523 // [sp + 4] - Argument 8
1524 // [sp + 3] - Argument 7
1525 // [sp + 2] - Argument 6
1526 // [sp + 1] - Argument 5
1527 // [sp + 0] - saved ra
1528
1529 // Argument 9: Pass current isolate address.
1530 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
1531 __ sd(a0, MemOperand(sp, 1 * kPointerSize));
1532
1533 // Argument 8: Indicate that this is a direct call from JavaScript.
1534 __ li(a7, Operand(1));
1535
1536 // Argument 7: Start (high end) of backtracking stack memory area.
1537 __ li(a0, Operand(address_of_regexp_stack_memory_address));
1538 __ ld(a0, MemOperand(a0, 0));
1539 __ li(a2, Operand(address_of_regexp_stack_memory_size));
1540 __ ld(a2, MemOperand(a2, 0));
1541 __ daddu(a6, a0, a2);
1542
1543 // Argument 6: Set the number of capture registers to zero to force global
1544 // regexps to behave as non-global. This does not affect non-global regexps.
1545 __ mov(a5, zero_reg);
1546
1547 // Argument 5: static offsets vector buffer.
1548 __ li(
1549 a4,
1550 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
1551
1552 // For arguments 4 and 3 get string length, calculate start of string data
1553 // and calculate the shift of the index (0 for one_byte and 1 for two byte).
1554 __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1555 __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
1556 // Load the length from the original subject string from the previous stack
1557 // frame. Therefore we have to use fp, which points exactly to two pointer
1558 // sizes below the previous sp. (Because creating a new stack frame pushes
1559 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1560 __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1561 // If slice offset is not 0, load the length from the original sliced string.
1562 // Argument 4, a3: End of string data
1563 // Argument 3, a2: Start of string data
1564 // Prepare start and end index of the input.
1565 __ dsllv(t1, t0, a3);
1566 __ daddu(t0, t2, t1);
1567 __ dsllv(t1, a1, a3);
1568 __ daddu(a2, t0, t1);
1569
1570 __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
1571
1572 __ SmiUntag(t2);
1573 __ dsllv(t1, t2, a3);
1574 __ daddu(a3, t0, t1);
1575 // Argument 2 (a1): Previous index.
1576 // Already there
1577
1578 // Argument 1 (a0): Subject string.
1579 __ mov(a0, subject);
1580
1581 // Locate the code entry and call it.
1582 __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
1583 DirectCEntryStub stub(isolate());
1584 stub.GenerateCall(masm, t9);
1585
1586 __ LeaveExitFrame(false, no_reg, true);
1587
1588 // v0: result
1589 // subject: subject string (callee saved)
1590 // regexp_data: RegExp data (callee saved)
1591 // last_match_info_elements: Last match info elements (callee saved)
1592 // Check the result.
1593 Label success;
1594 __ Branch(&success, eq, v0, Operand(1));
1595 // We expect exactly one result since we force the called regexp to behave
1596 // as non-global.
1597 Label failure;
1598 __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
1599 // If not exception it can only be retry. Handle that in the runtime system.
1600 __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1601 // Result must now be exception. If there is no pending exception already a
1602 // stack overflow (on the backtrack stack) was detected in RegExp code but
1603 // haven't created the exception yet. Handle that in the runtime system.
1604 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1605 __ li(a1, Operand(isolate()->factory()->the_hole_value()));
1606 __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1607 isolate())));
1608 __ ld(v0, MemOperand(a2, 0));
1609 __ Branch(&runtime, eq, v0, Operand(a1));
1610
1611 // For exception, throw the exception again.
1612 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1613
1614 __ bind(&failure);
1615 // For failure and exception return null.
1616 __ li(v0, Operand(isolate()->factory()->null_value()));
1617 __ DropAndRet(4);
1618
1619 // Process the result from the native regexp code.
1620 __ bind(&success);
1621
1622 __ lw(a1, UntagSmiFieldMemOperand(
1623 regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1624 // Calculate number of capture registers (number_of_captures + 1) * 2.
1625 __ Daddu(a1, a1, Operand(1));
1626 __ dsll(a1, a1, 1); // Multiply by 2.
1627
1628 // Check that the last match info is a FixedArray.
1629 __ ld(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
1630 __ JumpIfSmi(last_match_info_elements, &runtime);
1631 // Check that the object has fast elements.
1632 __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1633 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
1634 __ Branch(&runtime, ne, a0, Operand(at));
1635 // Check that the last match info has space for the capture registers and the
1636 // additional information.
1637 __ ld(a0,
1638 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1639 __ Daddu(a2, a1, Operand(RegExpMatchInfo::kLastMatchOverhead));
1640
1641 __ SmiUntag(at, a0);
1642 __ Branch(&runtime, gt, a2, Operand(at));
1643
1644 // a1: number of capture registers
1645 // subject: subject string
1646 // Store the capture count.
1647 __ SmiTag(a2, a1); // To smi.
1648 __ sd(a2, FieldMemOperand(last_match_info_elements,
1649 RegExpMatchInfo::kNumberOfCapturesOffset));
1650 // Store last subject and last input.
1651 __ sd(subject, FieldMemOperand(last_match_info_elements,
1652 RegExpMatchInfo::kLastSubjectOffset));
1653 __ mov(a2, subject);
1654 __ RecordWriteField(last_match_info_elements,
1655 RegExpMatchInfo::kLastSubjectOffset, subject, a7,
1656 kRAHasNotBeenSaved, kDontSaveFPRegs);
1657 __ mov(subject, a2);
1658 __ sd(subject, FieldMemOperand(last_match_info_elements,
1659 RegExpMatchInfo::kLastInputOffset));
1660 __ RecordWriteField(last_match_info_elements,
1661 RegExpMatchInfo::kLastInputOffset, subject, a7,
1662 kRAHasNotBeenSaved, kDontSaveFPRegs);
1663
1664 // Get the static offsets vector filled by the native regexp code.
1665 ExternalReference address_of_static_offsets_vector =
1666 ExternalReference::address_of_static_offsets_vector(isolate());
1667 __ li(a2, Operand(address_of_static_offsets_vector));
1668
1669 // a1: number of capture registers
1670 // a2: offsets vector
1671 Label next_capture, done;
1672 // Capture register counter starts from number of capture registers and
1673 // counts down until wrapping after zero.
1674 __ Daddu(a0, last_match_info_elements,
1675 Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
1676 __ bind(&next_capture);
1677 __ Dsubu(a1, a1, Operand(1));
1678 __ Branch(&done, lt, a1, Operand(zero_reg));
1679 // Read the value from the static offsets vector buffer.
1680 __ lw(a3, MemOperand(a2, 0));
1681 __ daddiu(a2, a2, kIntSize);
1682 // Store the smi value in the last match info.
1683 __ SmiTag(a3);
1684 __ sd(a3, MemOperand(a0, 0));
1685 __ Branch(&next_capture, USE_DELAY_SLOT);
1686 __ daddiu(a0, a0, kPointerSize); // In branch delay slot.
1687
1688 __ bind(&done);
1689
1690 // Return last match info.
1691 __ mov(v0, last_match_info_elements);
1692 __ DropAndRet(4);
1693
1694 // Do the runtime call to execute the regexp.
1695 __ bind(&runtime);
1696 __ TailCallRuntime(Runtime::kRegExpExec);
1697
1698 // Deferred code for string handling.
1699 // (5) Long external string? If not, go to (7).
1700 __ bind(¬_seq_nor_cons);
1701 // Go to (7).
1702 __ Branch(¬_long_external, gt, a1, Operand(kExternalStringTag));
1703
1704 // (6) External string. Make it, offset-wise, look like a sequential string.
1705 __ bind(&external_string);
1706 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
1707 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
1708 if (FLAG_debug_code) {
1709 // Assert that we do not have a cons or slice (indirect strings) here.
1710 // Sequential strings have already been ruled out.
1711 __ And(at, a0, Operand(kIsIndirectStringMask));
1712 __ Assert(eq,
1713 kExternalStringExpectedButNotFound,
1714 at,
1715 Operand(zero_reg));
1716 }
1717 __ ld(subject,
1718 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1719 // Move the pointer so that offset-wise, it looks like a sequential string.
1720 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1721 __ Dsubu(subject,
1722 subject,
1723 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
1724 __ jmp(&seq_string); // Go to (4).
1725
1726 // (7) Short external string or not a string? If yes, bail out to runtime.
1727 __ bind(¬_long_external);
1728 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1729 __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
1730 __ Branch(&runtime, ne, at, Operand(zero_reg));
1731
1732 // (8) Sliced string. Replace subject with parent. Go to (4).
1733 // Load offset into t0 and replace subject string with parent.
1734 __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1735 __ SmiUntag(t0);
1736 __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1737 __ jmp(&check_underlying); // Go to (1).
1738 #endif // V8_INTERPRETED_REGEXP
1739 }
1740
1741
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1742 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1743 // a0 : number of arguments to the construct function
1744 // a2 : feedback vector
1745 // a3 : slot in feedback vector (Smi)
1746 // a1 : the function to call
1747 FrameScope scope(masm, StackFrame::INTERNAL);
1748 const RegList kSavedRegs = 1 << 4 | // a0
1749 1 << 5 | // a1
1750 1 << 6 | // a2
1751 1 << 7 | // a3
1752 1 << cp.code();
1753
1754 // Number-of-arguments register must be smi-tagged to call out.
1755 __ SmiTag(a0);
1756 __ MultiPush(kSavedRegs);
1757
1758 __ CallStub(stub);
1759
1760 __ MultiPop(kSavedRegs);
1761 __ SmiUntag(a0);
1762 }
1763
1764
GenerateRecordCallTarget(MacroAssembler * masm)1765 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1766 // Cache the called function in a feedback vector slot. Cache states
1767 // are uninitialized, monomorphic (indicated by a JSFunction), and
1768 // megamorphic.
1769 // a0 : number of arguments to the construct function
1770 // a1 : the function to call
1771 // a2 : feedback vector
1772 // a3 : slot in feedback vector (Smi)
1773 Label initialize, done, miss, megamorphic, not_array_function;
1774
1775 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
1776 masm->isolate()->heap()->megamorphic_symbol());
1777 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
1778 masm->isolate()->heap()->uninitialized_symbol());
1779
1780 // Load the cache state into a5.
1781 __ dsrl(a5, a3, 32 - kPointerSizeLog2);
1782 __ Daddu(a5, a2, Operand(a5));
1783 __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize));
1784
1785 // A monomorphic cache hit or an already megamorphic state: invoke the
1786 // function without changing the state.
1787 // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at
1788 // this position in a symbol (see static asserts in type-feedback-vector.h).
1789 Label check_allocation_site;
1790 Register feedback_map = a6;
1791 Register weak_value = t0;
1792 __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset));
1793 __ Branch(&done, eq, a1, Operand(weak_value));
1794 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
1795 __ Branch(&done, eq, a5, Operand(at));
1796 __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset));
1797 __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
1798 __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
1799
1800 // If the weak cell is cleared, we have a new chance to become monomorphic.
1801 __ JumpIfSmi(weak_value, &initialize);
1802 __ jmp(&megamorphic);
1803
1804 __ bind(&check_allocation_site);
1805 // If we came here, we need to see if we are the array function.
1806 // If we didn't have a matching function, and we didn't find the megamorph
1807 // sentinel, then we have in the slot either some other function or an
1808 // AllocationSite.
1809 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
1810 __ Branch(&miss, ne, feedback_map, Operand(at));
1811
1812 // Make sure the function is the Array() function
1813 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
1814 __ Branch(&megamorphic, ne, a1, Operand(a5));
1815 __ jmp(&done);
1816
1817 __ bind(&miss);
1818
1819 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1820 // megamorphic.
1821 __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
1822 __ Branch(&initialize, eq, a5, Operand(at));
1823 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1824 // write-barrier is needed.
1825 __ bind(&megamorphic);
1826 __ dsrl(a5, a3, 32 - kPointerSizeLog2);
1827 __ Daddu(a5, a2, Operand(a5));
1828 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
1829 __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize));
1830 __ jmp(&done);
1831
1832 // An uninitialized cache is patched with the function.
1833 __ bind(&initialize);
1834 // Make sure the function is the Array() function.
1835 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5);
1836 __ Branch(¬_array_function, ne, a1, Operand(a5));
1837
1838 // The target function is the Array constructor,
1839 // Create an AllocationSite if we don't already have it, store it in the
1840 // slot.
1841 CreateAllocationSiteStub create_stub(masm->isolate());
1842 CallStubInRecordCallTarget(masm, &create_stub);
1843 __ Branch(&done);
1844
1845 __ bind(¬_array_function);
1846
1847 CreateWeakCellStub weak_cell_stub(masm->isolate());
1848 CallStubInRecordCallTarget(masm, &weak_cell_stub);
1849
1850 __ bind(&done);
1851
1852 // Increment the call count for all function calls.
1853 __ SmiScale(a4, a3, kPointerSizeLog2);
1854 __ Daddu(a5, a2, Operand(a4));
1855 __ ld(a4, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
1856 __ Daddu(a4, a4, Operand(Smi::FromInt(1)));
1857 __ sd(a4, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
1858 }
1859
1860
Generate(MacroAssembler * masm)1861 void CallConstructStub::Generate(MacroAssembler* masm) {
1862 // a0 : number of arguments
1863 // a1 : the function to call
1864 // a2 : feedback vector
1865 // a3 : slot in feedback vector (Smi, for RecordCallTarget)
1866
1867 Label non_function;
1868 // Check that the function is not a smi.
1869 __ JumpIfSmi(a1, &non_function);
1870 // Check that the function is a JSFunction.
1871 __ GetObjectType(a1, a5, a5);
1872 __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE));
1873
1874 GenerateRecordCallTarget(masm);
1875
1876 __ dsrl(at, a3, 32 - kPointerSizeLog2);
1877 __ Daddu(a5, a2, at);
1878 Label feedback_register_initialized;
1879 // Put the AllocationSite from the feedback vector into a2, or undefined.
1880 __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
1881 __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
1882 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
1883 __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
1884 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1885 __ bind(&feedback_register_initialized);
1886
1887 __ AssertUndefinedOrAllocationSite(a2, a5);
1888
1889 // Pass function as new target.
1890 __ mov(a3, a1);
1891
1892 // Tail call to the function-specific construct stub (still in the caller
1893 // context at this point).
1894 __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1895 __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
1896 __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
1897 __ Jump(at);
1898
1899 __ bind(&non_function);
1900 __ mov(a3, a1);
1901 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1902 }
1903
1904
1905 // StringCharCodeAtGenerator.
GenerateFast(MacroAssembler * masm)1906 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1907 DCHECK(!a4.is(index_));
1908 DCHECK(!a4.is(result_));
1909 DCHECK(!a4.is(object_));
1910
1911 // If the receiver is a smi trigger the non-string case.
1912 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1913 __ JumpIfSmi(object_, receiver_not_string_);
1914
1915 // Fetch the instance type of the receiver into result register.
1916 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1917 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1918 // If the receiver is not a string trigger the non-string case.
1919 __ And(a4, result_, Operand(kIsNotStringMask));
1920 __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
1921 }
1922
1923 // If the index is non-smi trigger the non-smi case.
1924 __ JumpIfNotSmi(index_, &index_not_smi_);
1925
1926 __ bind(&got_smi_index_);
1927
1928 // Check for index out of range.
1929 __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
1930 __ Branch(index_out_of_range_, ls, a4, Operand(index_));
1931
1932 __ SmiUntag(index_);
1933
1934 StringCharLoadGenerator::Generate(masm,
1935 object_,
1936 index_,
1937 result_,
1938 &call_runtime_);
1939
1940 __ SmiTag(result_);
1941 __ bind(&exit_);
1942 }
1943
1944 // Note: feedback_vector and slot are clobbered after the call.
IncrementCallCount(MacroAssembler * masm,Register feedback_vector,Register slot)1945 static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector,
1946 Register slot) {
1947 __ dsrl(t0, slot, 32 - kPointerSizeLog2);
1948 __ Daddu(slot, feedback_vector, Operand(t0));
1949 __ ld(t0, FieldMemOperand(slot, FixedArray::kHeaderSize + kPointerSize));
1950 __ Daddu(t0, t0, Operand(Smi::FromInt(1)));
1951 __ sd(t0, FieldMemOperand(slot, FixedArray::kHeaderSize + kPointerSize));
1952 }
1953
HandleArrayCase(MacroAssembler * masm,Label * miss)1954 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
1955 // a0 - number of arguments
1956 // a1 - function
1957 // a3 - slot id
1958 // a2 - vector
1959 // a4 - allocation site (loaded from vector[slot])
1960 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
1961 __ Branch(miss, ne, a1, Operand(at));
1962
1963 // Increment the call count for monomorphic function calls.
1964 IncrementCallCount(masm, a2, a3);
1965
1966 __ mov(a2, a4);
1967 __ mov(a3, a1);
1968 ArrayConstructorStub stub(masm->isolate());
1969 __ TailCallStub(&stub);
1970 }
1971
1972
Generate(MacroAssembler * masm)1973 void CallICStub::Generate(MacroAssembler* masm) {
1974 // a0 - number of arguments
1975 // a1 - function
1976 // a3 - slot id (Smi)
1977 // a2 - vector
1978 Label extra_checks_or_miss, call, call_function, call_count_incremented;
1979
1980 // The checks. First, does r1 match the recorded monomorphic target?
1981 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
1982 __ Daddu(a4, a2, Operand(a4));
1983 __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
1984
1985 // We don't know that we have a weak cell. We might have a private symbol
1986 // or an AllocationSite, but the memory is safe to examine.
1987 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
1988 // FixedArray.
1989 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
1990 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
1991 // computed, meaning that it can't appear to be a pointer. If the low bit is
1992 // 0, then hash is computed, but the 0 bit prevents the field from appearing
1993 // to be a pointer.
1994 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
1995 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
1996 WeakCell::kValueOffset &&
1997 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
1998
1999 __ ld(a5, FieldMemOperand(a4, WeakCell::kValueOffset));
2000 __ Branch(&extra_checks_or_miss, ne, a1, Operand(a5));
2001
2002 // The compare above could have been a SMI/SMI comparison. Guard against this
2003 // convincing us that we have a monomorphic JSFunction.
2004 __ JumpIfSmi(a1, &extra_checks_or_miss);
2005
2006 __ bind(&call_function);
2007 // Increment the call count for monomorphic function calls.
2008 IncrementCallCount(masm, a2, a3);
2009
2010 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
2011 tail_call_mode()),
2012 RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg));
2013
2014 __ bind(&extra_checks_or_miss);
2015 Label uninitialized, miss, not_allocation_site;
2016
2017 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2018 __ Branch(&call, eq, a4, Operand(at));
2019
2020 // Verify that a4 contains an AllocationSite
2021 __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
2022 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2023 __ Branch(¬_allocation_site, ne, a5, Operand(at));
2024
2025 HandleArrayCase(masm, &miss);
2026
2027 __ bind(¬_allocation_site);
2028
2029 // The following cases attempt to handle MISS cases without going to the
2030 // runtime.
2031 if (FLAG_trace_ic) {
2032 __ Branch(&miss);
2033 }
2034
2035 __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
2036 __ Branch(&uninitialized, eq, a4, Operand(at));
2037
2038 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2039 // to handle it here. More complex cases are dealt with in the runtime.
2040 __ AssertNotSmi(a4);
2041 __ GetObjectType(a4, a5, a5);
2042 __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
2043 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2044 __ Daddu(a4, a2, Operand(a4));
2045 __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
2046 __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
2047
2048 __ bind(&call);
2049 IncrementCallCount(masm, a2, a3);
2050
2051 __ bind(&call_count_incremented);
2052
2053 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
2054 RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg));
2055
2056 __ bind(&uninitialized);
2057
2058 // We are going monomorphic, provided we actually have a JSFunction.
2059 __ JumpIfSmi(a1, &miss);
2060
2061 // Goto miss case if we do not have a function.
2062 __ GetObjectType(a1, a4, a4);
2063 __ Branch(&miss, ne, a4, Operand(JS_FUNCTION_TYPE));
2064
2065 // Make sure the function is not the Array() function, which requires special
2066 // behavior on MISS.
2067 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a4);
2068 __ Branch(&miss, eq, a1, Operand(a4));
2069
2070 // Make sure the function belongs to the same native context.
2071 __ ld(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
2072 __ ld(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
2073 __ ld(t1, NativeContextMemOperand());
2074 __ Branch(&miss, ne, t0, Operand(t1));
2075
2076 // Store the function. Use a stub since we need a frame for allocation.
2077 // a2 - vector
2078 // a3 - slot
2079 // a1 - function
2080 {
2081 FrameScope scope(masm, StackFrame::INTERNAL);
2082 CreateWeakCellStub create_stub(masm->isolate());
2083 __ SmiTag(a0);
2084 __ Push(a0);
2085 __ Push(a2, a3);
2086 __ Push(cp, a1);
2087 __ CallStub(&create_stub);
2088 __ Pop(cp, a1);
2089 __ Pop(a2, a3);
2090 __ Pop(a0);
2091 __ SmiUntag(a0);
2092 }
2093
2094 __ Branch(&call_function);
2095
2096 // We are here because tracing is on or we encountered a MISS case we can't
2097 // handle here.
2098 __ bind(&miss);
2099 GenerateMiss(masm);
2100
2101 __ Branch(&call_count_incremented);
2102 }
2103
2104
GenerateMiss(MacroAssembler * masm)2105 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2106 FrameScope scope(masm, StackFrame::INTERNAL);
2107
2108 // Preserve number of arguments as Smi.
2109 __ SmiTag(a0);
2110 __ Push(a0);
2111
2112 // Push the receiver and the function and feedback info.
2113 __ Push(a1, a2, a3);
2114
2115 // Call the entry.
2116 __ CallRuntime(Runtime::kCallIC_Miss);
2117
2118 // Move result to a1 and exit the internal frame.
2119 __ mov(a1, v0);
2120
2121 // Restore number of arguments.
2122 __ Pop(a0);
2123 __ SmiUntag(a0);
2124 }
2125
2126
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)2127 void StringCharCodeAtGenerator::GenerateSlow(
2128 MacroAssembler* masm, EmbedMode embed_mode,
2129 const RuntimeCallHelper& call_helper) {
2130 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2131
2132 // Index is not a smi.
2133 __ bind(&index_not_smi_);
2134 // If index is a heap number, try converting it to an integer.
2135 __ CheckMap(index_,
2136 result_,
2137 Heap::kHeapNumberMapRootIndex,
2138 index_not_number_,
2139 DONT_DO_SMI_CHECK);
2140 call_helper.BeforeCall(masm);
2141 // Consumed by runtime conversion function:
2142 if (embed_mode == PART_OF_IC_HANDLER) {
2143 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2144 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2145 } else {
2146 __ Push(object_, index_);
2147 }
2148 __ CallRuntime(Runtime::kNumberToSmi);
2149
2150 // Save the conversion result before the pop instructions below
2151 // have a chance to overwrite it.
2152
2153 __ Move(index_, v0);
2154 if (embed_mode == PART_OF_IC_HANDLER) {
2155 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2156 LoadWithVectorDescriptor::SlotRegister(), object_);
2157 } else {
2158 __ pop(object_);
2159 }
2160 // Reload the instance type.
2161 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2162 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2163 call_helper.AfterCall(masm);
2164 // If index is still not a smi, it must be out of range.
2165 __ JumpIfNotSmi(index_, index_out_of_range_);
2166 // Otherwise, return to the fast path.
2167 __ Branch(&got_smi_index_);
2168
2169 // Call runtime. We get here when the receiver is a string and the
2170 // index is a number, but the code of getting the actual character
2171 // is too complex (e.g., when the string needs to be flattened).
2172 __ bind(&call_runtime_);
2173 call_helper.BeforeCall(masm);
2174 __ SmiTag(index_);
2175 __ Push(object_, index_);
2176 __ CallRuntime(Runtime::kStringCharCodeAtRT);
2177
2178 __ Move(result_, v0);
2179
2180 call_helper.AfterCall(masm);
2181 __ jmp(&exit_);
2182
2183 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2184 }
2185
2186
2187 // -------------------------------------------------------------------------
2188 // StringCharFromCodeGenerator
2189
GenerateFast(MacroAssembler * masm)2190 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2191 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2192 __ JumpIfNotSmi(code_, &slow_case_);
2193 __ Branch(&slow_case_, hi, code_,
2194 Operand(Smi::FromInt(String::kMaxOneByteCharCode)));
2195
2196 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2197 // At this point code register contains smi tagged one_byte char code.
2198 __ SmiScale(at, code_, kPointerSizeLog2);
2199 __ Daddu(result_, result_, at);
2200 __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2201 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2202 __ Branch(&slow_case_, eq, result_, Operand(at));
2203 __ bind(&exit_);
2204 }
2205
2206
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2207 void StringCharFromCodeGenerator::GenerateSlow(
2208 MacroAssembler* masm,
2209 const RuntimeCallHelper& call_helper) {
2210 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2211
2212 __ bind(&slow_case_);
2213 call_helper.BeforeCall(masm);
2214 __ push(code_);
2215 __ CallRuntime(Runtime::kStringCharFromCode);
2216 __ Move(result_, v0);
2217
2218 call_helper.AfterCall(masm);
2219 __ Branch(&exit_);
2220
2221 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2222 }
2223
2224
2225 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2226
2227
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)2228 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2229 Register dest,
2230 Register src,
2231 Register count,
2232 Register scratch,
2233 String::Encoding encoding) {
2234 if (FLAG_debug_code) {
2235 // Check that destination is word aligned.
2236 __ And(scratch, dest, Operand(kPointerAlignmentMask));
2237 __ Check(eq,
2238 kDestinationOfCopyNotAligned,
2239 scratch,
2240 Operand(zero_reg));
2241 }
2242
2243 // Assumes word reads and writes are little endian.
2244 // Nothing to do for zero characters.
2245 Label done;
2246
2247 if (encoding == String::TWO_BYTE_ENCODING) {
2248 __ Daddu(count, count, count);
2249 }
2250
2251 Register limit = count; // Read until dest equals this.
2252 __ Daddu(limit, dest, Operand(count));
2253
2254 Label loop_entry, loop;
2255 // Copy bytes from src to dest until dest hits limit.
2256 __ Branch(&loop_entry);
2257 __ bind(&loop);
2258 __ lbu(scratch, MemOperand(src));
2259 __ daddiu(src, src, 1);
2260 __ sb(scratch, MemOperand(dest));
2261 __ daddiu(dest, dest, 1);
2262 __ bind(&loop_entry);
2263 __ Branch(&loop, lt, dest, Operand(limit));
2264
2265 __ bind(&done);
2266 }
2267
2268
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)2269 void StringHelper::GenerateFlatOneByteStringEquals(
2270 MacroAssembler* masm, Register left, Register right, Register scratch1,
2271 Register scratch2, Register scratch3) {
2272 Register length = scratch1;
2273
2274 // Compare lengths.
2275 Label strings_not_equal, check_zero_length;
2276 __ ld(length, FieldMemOperand(left, String::kLengthOffset));
2277 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
2278 __ Branch(&check_zero_length, eq, length, Operand(scratch2));
2279 __ bind(&strings_not_equal);
2280 // Can not put li in delayslot, it has multi instructions.
2281 __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
2282 __ Ret();
2283
2284 // Check if the length is zero.
2285 Label compare_chars;
2286 __ bind(&check_zero_length);
2287 STATIC_ASSERT(kSmiTag == 0);
2288 __ Branch(&compare_chars, ne, length, Operand(zero_reg));
2289 DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
2290 __ Ret(USE_DELAY_SLOT);
2291 __ li(v0, Operand(Smi::FromInt(EQUAL)));
2292
2293 // Compare characters.
2294 __ bind(&compare_chars);
2295
2296 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
2297 v0, &strings_not_equal);
2298
2299 // Characters are equal.
2300 __ Ret(USE_DELAY_SLOT);
2301 __ li(v0, Operand(Smi::FromInt(EQUAL)));
2302 }
2303
2304
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)2305 void StringHelper::GenerateCompareFlatOneByteStrings(
2306 MacroAssembler* masm, Register left, Register right, Register scratch1,
2307 Register scratch2, Register scratch3, Register scratch4) {
2308 Label result_not_equal, compare_lengths;
2309 // Find minimum length and length difference.
2310 __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
2311 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
2312 __ Dsubu(scratch3, scratch1, Operand(scratch2));
2313 Register length_delta = scratch3;
2314 __ slt(scratch4, scratch2, scratch1);
2315 __ Movn(scratch1, scratch2, scratch4);
2316 Register min_length = scratch1;
2317 STATIC_ASSERT(kSmiTag == 0);
2318 __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
2319
2320 // Compare loop.
2321 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2322 scratch4, v0, &result_not_equal);
2323
2324 // Compare lengths - strings up to min-length are equal.
2325 __ bind(&compare_lengths);
2326 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2327 // Use length_delta as result if it's zero.
2328 __ mov(scratch2, length_delta);
2329 __ mov(scratch4, zero_reg);
2330 __ mov(v0, zero_reg);
2331
2332 __ bind(&result_not_equal);
2333 // Conditionally update the result based either on length_delta or
2334 // the last comparion performed in the loop above.
2335 Label ret;
2336 __ Branch(&ret, eq, scratch2, Operand(scratch4));
2337 __ li(v0, Operand(Smi::FromInt(GREATER)));
2338 __ Branch(&ret, gt, scratch2, Operand(scratch4));
2339 __ li(v0, Operand(Smi::FromInt(LESS)));
2340 __ bind(&ret);
2341 __ Ret();
2342 }
2343
2344
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Register scratch3,Label * chars_not_equal)2345 void StringHelper::GenerateOneByteCharsCompareLoop(
2346 MacroAssembler* masm, Register left, Register right, Register length,
2347 Register scratch1, Register scratch2, Register scratch3,
2348 Label* chars_not_equal) {
2349 // Change index to run from -length to -1 by adding length to string
2350 // start. This means that loop ends when index reaches zero, which
2351 // doesn't need an additional compare.
2352 __ SmiUntag(length);
2353 __ Daddu(scratch1, length,
2354 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2355 __ Daddu(left, left, Operand(scratch1));
2356 __ Daddu(right, right, Operand(scratch1));
2357 __ Dsubu(length, zero_reg, length);
2358 Register index = length; // index = -length;
2359
2360
2361 // Compare loop.
2362 Label loop;
2363 __ bind(&loop);
2364 __ Daddu(scratch3, left, index);
2365 __ lbu(scratch1, MemOperand(scratch3));
2366 __ Daddu(scratch3, right, index);
2367 __ lbu(scratch2, MemOperand(scratch3));
2368 __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
2369 __ Daddu(index, index, 1);
2370 __ Branch(&loop, ne, index, Operand(zero_reg));
2371 }
2372
2373
Generate(MacroAssembler * masm)2374 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2375 // ----------- S t a t e -------------
2376 // -- a1 : left
2377 // -- a0 : right
2378 // -- ra : return address
2379 // -----------------------------------
2380
2381 // Load a2 with the allocation site. We stick an undefined dummy value here
2382 // and replace it with the real allocation site later when we instantiate this
2383 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2384 __ li(a2, isolate()->factory()->undefined_value());
2385
2386 // Make sure that we actually patched the allocation site.
2387 if (FLAG_debug_code) {
2388 __ And(at, a2, Operand(kSmiTagMask));
2389 __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
2390 __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
2391 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2392 __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
2393 }
2394
2395 // Tail call into the stub that handles binary operations with allocation
2396 // sites.
2397 BinaryOpWithAllocationSiteStub stub(isolate(), state());
2398 __ TailCallStub(&stub);
2399 }
2400
2401
GenerateBooleans(MacroAssembler * masm)2402 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2403 DCHECK_EQ(CompareICState::BOOLEAN, state());
2404 Label miss;
2405
2406 __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2407 __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2408 if (!Token::IsEqualityOp(op())) {
2409 __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
2410 __ AssertSmi(a1);
2411 __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
2412 __ AssertSmi(a0);
2413 }
2414 __ Ret(USE_DELAY_SLOT);
2415 __ Dsubu(v0, a1, a0);
2416
2417 __ bind(&miss);
2418 GenerateMiss(masm);
2419 }
2420
2421
GenerateSmis(MacroAssembler * masm)2422 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2423 DCHECK(state() == CompareICState::SMI);
2424 Label miss;
2425 __ Or(a2, a1, a0);
2426 __ JumpIfNotSmi(a2, &miss);
2427
2428 if (GetCondition() == eq) {
2429 // For equality we do not care about the sign of the result.
2430 __ Ret(USE_DELAY_SLOT);
2431 __ Dsubu(v0, a0, a1);
2432 } else {
2433 // Untag before subtracting to avoid handling overflow.
2434 __ SmiUntag(a1);
2435 __ SmiUntag(a0);
2436 __ Ret(USE_DELAY_SLOT);
2437 __ Dsubu(v0, a1, a0);
2438 }
2439
2440 __ bind(&miss);
2441 GenerateMiss(masm);
2442 }
2443
2444
GenerateNumbers(MacroAssembler * masm)2445 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2446 DCHECK(state() == CompareICState::NUMBER);
2447
2448 Label generic_stub;
2449 Label unordered, maybe_undefined1, maybe_undefined2;
2450 Label miss;
2451
2452 if (left() == CompareICState::SMI) {
2453 __ JumpIfNotSmi(a1, &miss);
2454 }
2455 if (right() == CompareICState::SMI) {
2456 __ JumpIfNotSmi(a0, &miss);
2457 }
2458
2459 // Inlining the double comparison and falling back to the general compare
2460 // stub if NaN is involved.
2461 // Load left and right operand.
2462 Label done, left, left_smi, right_smi;
2463 __ JumpIfSmi(a0, &right_smi);
2464 __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
2465 DONT_DO_SMI_CHECK);
2466 __ Dsubu(a2, a0, Operand(kHeapObjectTag));
2467 __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
2468 __ Branch(&left);
2469 __ bind(&right_smi);
2470 __ SmiUntag(a2, a0); // Can't clobber a0 yet.
2471 FPURegister single_scratch = f6;
2472 __ mtc1(a2, single_scratch);
2473 __ cvt_d_w(f2, single_scratch);
2474
2475 __ bind(&left);
2476 __ JumpIfSmi(a1, &left_smi);
2477 __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
2478 DONT_DO_SMI_CHECK);
2479 __ Dsubu(a2, a1, Operand(kHeapObjectTag));
2480 __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
2481 __ Branch(&done);
2482 __ bind(&left_smi);
2483 __ SmiUntag(a2, a1); // Can't clobber a1 yet.
2484 single_scratch = f8;
2485 __ mtc1(a2, single_scratch);
2486 __ cvt_d_w(f0, single_scratch);
2487
2488 __ bind(&done);
2489
2490 // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
2491 Label fpu_eq, fpu_lt;
2492 // Test if equal, and also handle the unordered/NaN case.
2493 __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
2494
2495 // Test if less (unordered case is already handled).
2496 __ BranchF(&fpu_lt, NULL, lt, f0, f2);
2497
2498 // Otherwise it's greater, so just fall thru, and return.
2499 DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
2500 __ Ret(USE_DELAY_SLOT);
2501 __ li(v0, Operand(GREATER));
2502
2503 __ bind(&fpu_eq);
2504 __ Ret(USE_DELAY_SLOT);
2505 __ li(v0, Operand(EQUAL));
2506
2507 __ bind(&fpu_lt);
2508 __ Ret(USE_DELAY_SLOT);
2509 __ li(v0, Operand(LESS));
2510
2511 __ bind(&unordered);
2512 __ bind(&generic_stub);
2513 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2514 CompareICState::GENERIC, CompareICState::GENERIC);
2515 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2516
2517 __ bind(&maybe_undefined1);
2518 if (Token::IsOrderedRelationalCompareOp(op())) {
2519 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2520 __ Branch(&miss, ne, a0, Operand(at));
2521 __ JumpIfSmi(a1, &unordered);
2522 __ GetObjectType(a1, a2, a2);
2523 __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
2524 __ jmp(&unordered);
2525 }
2526
2527 __ bind(&maybe_undefined2);
2528 if (Token::IsOrderedRelationalCompareOp(op())) {
2529 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2530 __ Branch(&unordered, eq, a1, Operand(at));
2531 }
2532
2533 __ bind(&miss);
2534 GenerateMiss(masm);
2535 }
2536
2537
GenerateInternalizedStrings(MacroAssembler * masm)2538 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2539 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2540 Label miss;
2541
2542 // Registers containing left and right operands respectively.
2543 Register left = a1;
2544 Register right = a0;
2545 Register tmp1 = a2;
2546 Register tmp2 = a3;
2547
2548 // Check that both operands are heap objects.
2549 __ JumpIfEitherSmi(left, right, &miss);
2550
2551 // Check that both operands are internalized strings.
2552 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2553 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2554 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2555 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2556 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2557 __ Or(tmp1, tmp1, Operand(tmp2));
2558 __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2559 __ Branch(&miss, ne, at, Operand(zero_reg));
2560
2561 // Make sure a0 is non-zero. At this point input operands are
2562 // guaranteed to be non-zero.
2563 DCHECK(right.is(a0));
2564 STATIC_ASSERT(EQUAL == 0);
2565 STATIC_ASSERT(kSmiTag == 0);
2566 __ mov(v0, right);
2567 // Internalized strings are compared by identity.
2568 __ Ret(ne, left, Operand(right));
2569 DCHECK(is_int16(EQUAL));
2570 __ Ret(USE_DELAY_SLOT);
2571 __ li(v0, Operand(Smi::FromInt(EQUAL)));
2572
2573 __ bind(&miss);
2574 GenerateMiss(masm);
2575 }
2576
2577
GenerateUniqueNames(MacroAssembler * masm)2578 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2579 DCHECK(state() == CompareICState::UNIQUE_NAME);
2580 DCHECK(GetCondition() == eq);
2581 Label miss;
2582
2583 // Registers containing left and right operands respectively.
2584 Register left = a1;
2585 Register right = a0;
2586 Register tmp1 = a2;
2587 Register tmp2 = a3;
2588
2589 // Check that both operands are heap objects.
2590 __ JumpIfEitherSmi(left, right, &miss);
2591
2592 // Check that both operands are unique names. This leaves the instance
2593 // types loaded in tmp1 and tmp2.
2594 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2595 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2596 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2597 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2598
2599 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2600 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2601
2602 // Use a0 as result
2603 __ mov(v0, a0);
2604
2605 // Unique names are compared by identity.
2606 Label done;
2607 __ Branch(&done, ne, left, Operand(right));
2608 // Make sure a0 is non-zero. At this point input operands are
2609 // guaranteed to be non-zero.
2610 DCHECK(right.is(a0));
2611 STATIC_ASSERT(EQUAL == 0);
2612 STATIC_ASSERT(kSmiTag == 0);
2613 __ li(v0, Operand(Smi::FromInt(EQUAL)));
2614 __ bind(&done);
2615 __ Ret();
2616
2617 __ bind(&miss);
2618 GenerateMiss(masm);
2619 }
2620
2621
GenerateStrings(MacroAssembler * masm)2622 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2623 DCHECK(state() == CompareICState::STRING);
2624 Label miss;
2625
2626 bool equality = Token::IsEqualityOp(op());
2627
2628 // Registers containing left and right operands respectively.
2629 Register left = a1;
2630 Register right = a0;
2631 Register tmp1 = a2;
2632 Register tmp2 = a3;
2633 Register tmp3 = a4;
2634 Register tmp4 = a5;
2635 Register tmp5 = a6;
2636
2637 // Check that both operands are heap objects.
2638 __ JumpIfEitherSmi(left, right, &miss);
2639
2640 // Check that both operands are strings. This leaves the instance
2641 // types loaded in tmp1 and tmp2.
2642 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2643 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2644 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2645 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2646 STATIC_ASSERT(kNotStringTag != 0);
2647 __ Or(tmp3, tmp1, tmp2);
2648 __ And(tmp5, tmp3, Operand(kIsNotStringMask));
2649 __ Branch(&miss, ne, tmp5, Operand(zero_reg));
2650
2651 // Fast check for identical strings.
2652 Label left_ne_right;
2653 STATIC_ASSERT(EQUAL == 0);
2654 STATIC_ASSERT(kSmiTag == 0);
2655 __ Branch(&left_ne_right, ne, left, Operand(right));
2656 __ Ret(USE_DELAY_SLOT);
2657 __ mov(v0, zero_reg); // In the delay slot.
2658 __ bind(&left_ne_right);
2659
2660 // Handle not identical strings.
2661
2662 // Check that both strings are internalized strings. If they are, we're done
2663 // because we already know they are not identical. We know they are both
2664 // strings.
2665 if (equality) {
2666 DCHECK(GetCondition() == eq);
2667 STATIC_ASSERT(kInternalizedTag == 0);
2668 __ Or(tmp3, tmp1, Operand(tmp2));
2669 __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
2670 Label is_symbol;
2671 __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
2672 // Make sure a0 is non-zero. At this point input operands are
2673 // guaranteed to be non-zero.
2674 DCHECK(right.is(a0));
2675 __ Ret(USE_DELAY_SLOT);
2676 __ mov(v0, a0); // In the delay slot.
2677 __ bind(&is_symbol);
2678 }
2679
2680 // Check that both strings are sequential one_byte.
2681 Label runtime;
2682 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
2683 &runtime);
2684
2685 // Compare flat one_byte strings. Returns when done.
2686 if (equality) {
2687 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
2688 tmp3);
2689 } else {
2690 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2691 tmp2, tmp3, tmp4);
2692 }
2693
2694 // Handle more complex cases in runtime.
2695 __ bind(&runtime);
2696 if (equality) {
2697 {
2698 FrameScope scope(masm, StackFrame::INTERNAL);
2699 __ Push(left, right);
2700 __ CallRuntime(Runtime::kStringEqual);
2701 }
2702 __ LoadRoot(a0, Heap::kTrueValueRootIndex);
2703 __ Ret(USE_DELAY_SLOT);
2704 __ Subu(v0, v0, a0); // In delay slot.
2705 } else {
2706 __ Push(left, right);
2707 __ TailCallRuntime(Runtime::kStringCompare);
2708 }
2709
2710 __ bind(&miss);
2711 GenerateMiss(masm);
2712 }
2713
2714
GenerateReceivers(MacroAssembler * masm)2715 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2716 DCHECK_EQ(CompareICState::RECEIVER, state());
2717 Label miss;
2718 __ And(a2, a1, Operand(a0));
2719 __ JumpIfSmi(a2, &miss);
2720
2721 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2722 __ GetObjectType(a0, a2, a2);
2723 __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
2724 __ GetObjectType(a1, a2, a2);
2725 __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
2726
2727 DCHECK_EQ(eq, GetCondition());
2728 __ Ret(USE_DELAY_SLOT);
2729 __ dsubu(v0, a0, a1);
2730
2731 __ bind(&miss);
2732 GenerateMiss(masm);
2733 }
2734
2735
GenerateKnownReceivers(MacroAssembler * masm)2736 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2737 Label miss;
2738 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2739 __ And(a2, a1, a0);
2740 __ JumpIfSmi(a2, &miss);
2741 __ GetWeakValue(a4, cell);
2742 __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
2743 __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
2744 __ Branch(&miss, ne, a2, Operand(a4));
2745 __ Branch(&miss, ne, a3, Operand(a4));
2746
2747 if (Token::IsEqualityOp(op())) {
2748 __ Ret(USE_DELAY_SLOT);
2749 __ dsubu(v0, a0, a1);
2750 } else {
2751 if (op() == Token::LT || op() == Token::LTE) {
2752 __ li(a2, Operand(Smi::FromInt(GREATER)));
2753 } else {
2754 __ li(a2, Operand(Smi::FromInt(LESS)));
2755 }
2756 __ Push(a1, a0, a2);
2757 __ TailCallRuntime(Runtime::kCompare);
2758 }
2759
2760 __ bind(&miss);
2761 GenerateMiss(masm);
2762 }
2763
2764
GenerateMiss(MacroAssembler * masm)2765 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2766 {
2767 // Call the runtime system in a fresh internal frame.
2768 FrameScope scope(masm, StackFrame::INTERNAL);
2769 __ Push(a1, a0);
2770 __ Push(ra, a1, a0);
2771 __ li(a4, Operand(Smi::FromInt(op())));
2772 __ daddiu(sp, sp, -kPointerSize);
2773 __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
2774 USE_DELAY_SLOT);
2775 __ sd(a4, MemOperand(sp)); // In the delay slot.
2776 // Compute the entry point of the rewritten stub.
2777 __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
2778 // Restore registers.
2779 __ Pop(a1, a0, ra);
2780 }
2781 __ Jump(a2);
2782 }
2783
2784
Generate(MacroAssembler * masm)2785 void DirectCEntryStub::Generate(MacroAssembler* masm) {
2786 // Make place for arguments to fit C calling convention. Most of the callers
2787 // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
2788 // so they handle stack restoring and we don't have to do that here.
2789 // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
2790 // kCArgsSlotsSize stack space after the call.
2791 __ daddiu(sp, sp, -kCArgsSlotsSize);
2792 // Place the return address on the stack, making the call
2793 // GC safe. The RegExp backend also relies on this.
2794 __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
2795 __ Call(t9); // Call the C++ function.
2796 __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
2797
2798 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
2799 // In case of an error the return address may point to a memory area
2800 // filled with kZapValue by the GC.
2801 // Dereference the address and check for this.
2802 __ Uld(a4, MemOperand(t9));
2803 __ Assert(ne, kReceivedInvalidReturnAddress, a4,
2804 Operand(reinterpret_cast<uint64_t>(kZapValue)));
2805 }
2806 __ Jump(t9);
2807 }
2808
2809
GenerateCall(MacroAssembler * masm,Register target)2810 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
2811 Register target) {
2812 intptr_t loc =
2813 reinterpret_cast<intptr_t>(GetCode().location());
2814 __ Move(t9, target);
2815 __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
2816 __ Call(at);
2817 }
2818
2819
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)2820 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
2821 Label* miss,
2822 Label* done,
2823 Register receiver,
2824 Register properties,
2825 Handle<Name> name,
2826 Register scratch0) {
2827 DCHECK(name->IsUniqueName());
2828 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2829 // not equal to the name and kProbes-th slot is not used (its name is the
2830 // undefined value), it guarantees the hash table doesn't contain the
2831 // property. It's true even if some slots represent deleted properties
2832 // (their names are the hole value).
2833 for (int i = 0; i < kInlinedProbes; i++) {
2834 // scratch0 points to properties hash.
2835 // Compute the masked index: (hash + i + i * i) & mask.
2836 Register index = scratch0;
2837 // Capacity is smi 2^n.
2838 __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
2839 __ Dsubu(index, index, Operand(1));
2840 __ And(index, index,
2841 Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
2842
2843 // Scale the index by multiplying by the entry size.
2844 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2845 __ Dlsa(index, index, index, 1); // index *= 3.
2846
2847 Register entity_name = scratch0;
2848 // Having undefined at this place means the name is not contained.
2849 STATIC_ASSERT(kSmiTagSize == 1);
2850 Register tmp = properties;
2851
2852 __ Dlsa(tmp, properties, index, kPointerSizeLog2);
2853 __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
2854
2855 DCHECK(!tmp.is(entity_name));
2856 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
2857 __ Branch(done, eq, entity_name, Operand(tmp));
2858
2859 // Load the hole ready for use below:
2860 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
2861
2862 // Stop if found the property.
2863 __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
2864
2865 Label good;
2866 __ Branch(&good, eq, entity_name, Operand(tmp));
2867
2868 // Check if the entry name is not a unique name.
2869 __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
2870 __ lbu(entity_name,
2871 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
2872 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
2873 __ bind(&good);
2874
2875 // Restore the properties.
2876 __ ld(properties,
2877 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2878 }
2879
2880 const int spill_mask =
2881 (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
2882 a2.bit() | a1.bit() | a0.bit() | v0.bit());
2883
2884 __ MultiPush(spill_mask);
2885 __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2886 __ li(a1, Operand(Handle<Name>(name)));
2887 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
2888 __ CallStub(&stub);
2889 __ mov(at, v0);
2890 __ MultiPop(spill_mask);
2891
2892 __ Branch(done, eq, at, Operand(zero_reg));
2893 __ Branch(miss, ne, at, Operand(zero_reg));
2894 }
2895
2896
2897 // Probe the name dictionary in the |elements| register. Jump to the
2898 // |done| label if a property with the given name is found. Jump to
2899 // the |miss| label otherwise.
2900 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)2901 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
2902 Label* miss,
2903 Label* done,
2904 Register elements,
2905 Register name,
2906 Register scratch1,
2907 Register scratch2) {
2908 DCHECK(!elements.is(scratch1));
2909 DCHECK(!elements.is(scratch2));
2910 DCHECK(!name.is(scratch1));
2911 DCHECK(!name.is(scratch2));
2912
2913 __ AssertName(name);
2914
2915 // Compute the capacity mask.
2916 __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
2917 __ SmiUntag(scratch1);
2918 __ Dsubu(scratch1, scratch1, Operand(1));
2919
2920 // Generate an unrolled loop that performs a few probes before
2921 // giving up. Measurements done on Gmail indicate that 2 probes
2922 // cover ~93% of loads from dictionaries.
2923 for (int i = 0; i < kInlinedProbes; i++) {
2924 // Compute the masked index: (hash + i + i * i) & mask.
2925 __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
2926 if (i > 0) {
2927 // Add the probe offset (i + i * i) left shifted to avoid right shifting
2928 // the hash in a separate instruction. The value hash + i + i * i is right
2929 // shifted in the following and instruction.
2930 DCHECK(NameDictionary::GetProbeOffset(i) <
2931 1 << (32 - Name::kHashFieldOffset));
2932 __ Daddu(scratch2, scratch2, Operand(
2933 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2934 }
2935 __ dsrl(scratch2, scratch2, Name::kHashShift);
2936 __ And(scratch2, scratch1, scratch2);
2937
2938 // Scale the index by multiplying by the entry size.
2939 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2940 // scratch2 = scratch2 * 3.
2941 __ Dlsa(scratch2, scratch2, scratch2, 1);
2942
2943 // Check if the key is identical to the name.
2944 __ Dlsa(scratch2, elements, scratch2, kPointerSizeLog2);
2945 __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
2946 __ Branch(done, eq, name, Operand(at));
2947 }
2948
2949 const int spill_mask =
2950 (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
2951 a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
2952 ~(scratch1.bit() | scratch2.bit());
2953
2954 __ MultiPush(spill_mask);
2955 if (name.is(a0)) {
2956 DCHECK(!elements.is(a1));
2957 __ Move(a1, name);
2958 __ Move(a0, elements);
2959 } else {
2960 __ Move(a0, elements);
2961 __ Move(a1, name);
2962 }
2963 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
2964 __ CallStub(&stub);
2965 __ mov(scratch2, a2);
2966 __ mov(at, v0);
2967 __ MultiPop(spill_mask);
2968
2969 __ Branch(done, ne, at, Operand(zero_reg));
2970 __ Branch(miss, eq, at, Operand(zero_reg));
2971 }
2972
2973
Generate(MacroAssembler * masm)2974 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2975 // This stub overrides SometimesSetsUpAFrame() to return false. That means
2976 // we cannot call anything that could cause a GC from this stub.
2977 // Registers:
2978 // result: NameDictionary to probe
2979 // a1: key
2980 // dictionary: NameDictionary to probe.
2981 // index: will hold an index of entry if lookup is successful.
2982 // might alias with result_.
2983 // Returns:
2984 // result_ is zero if lookup failed, non zero otherwise.
2985
2986 Register result = v0;
2987 Register dictionary = a0;
2988 Register key = a1;
2989 Register index = a2;
2990 Register mask = a3;
2991 Register hash = a4;
2992 Register undefined = a5;
2993 Register entry_key = a6;
2994
2995 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2996
2997 __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
2998 __ SmiUntag(mask);
2999 __ Dsubu(mask, mask, Operand(1));
3000
3001 __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3002
3003 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3004
3005 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3006 // Compute the masked index: (hash + i + i * i) & mask.
3007 // Capacity is smi 2^n.
3008 if (i > 0) {
3009 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3010 // the hash in a separate instruction. The value hash + i + i * i is right
3011 // shifted in the following and instruction.
3012 DCHECK(NameDictionary::GetProbeOffset(i) <
3013 1 << (32 - Name::kHashFieldOffset));
3014 __ Daddu(index, hash, Operand(
3015 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3016 } else {
3017 __ mov(index, hash);
3018 }
3019 __ dsrl(index, index, Name::kHashShift);
3020 __ And(index, mask, index);
3021
3022 // Scale the index by multiplying by the entry size.
3023 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3024 // index *= 3.
3025 __ Dlsa(index, index, index, 1);
3026
3027 STATIC_ASSERT(kSmiTagSize == 1);
3028 __ Dlsa(index, dictionary, index, kPointerSizeLog2);
3029 __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
3030
3031 // Having undefined at this place means the name is not contained.
3032 __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined));
3033
3034 // Stop if found the property.
3035 __ Branch(&in_dictionary, eq, entry_key, Operand(key));
3036
3037 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3038 // Check if the entry name is not a unique name.
3039 __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3040 __ lbu(entry_key,
3041 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3042 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
3043 }
3044 }
3045
3046 __ bind(&maybe_in_dictionary);
3047 // If we are doing negative lookup then probing failure should be
3048 // treated as a lookup success. For positive lookup probing failure
3049 // should be treated as lookup failure.
3050 if (mode() == POSITIVE_LOOKUP) {
3051 __ Ret(USE_DELAY_SLOT);
3052 __ mov(result, zero_reg);
3053 }
3054
3055 __ bind(&in_dictionary);
3056 __ Ret(USE_DELAY_SLOT);
3057 __ li(result, 1);
3058
3059 __ bind(¬_in_dictionary);
3060 __ Ret(USE_DELAY_SLOT);
3061 __ mov(result, zero_reg);
3062 }
3063
3064
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)3065 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3066 Isolate* isolate) {
3067 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3068 stub1.GetCode();
3069 // Hydrogen code stubs need stub2 at snapshot time.
3070 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3071 stub2.GetCode();
3072 }
3073
3074
3075 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
3076 // the value has just been written into the object, now this stub makes sure
3077 // we keep the GC informed. The word in the object where the value has been
3078 // written is in the address register.
Generate(MacroAssembler * masm)3079 void RecordWriteStub::Generate(MacroAssembler* masm) {
3080 Label skip_to_incremental_noncompacting;
3081 Label skip_to_incremental_compacting;
3082
3083 // The first two branch+nop instructions are generated with labels so as to
3084 // get the offset fixed up correctly by the bind(Label*) call. We patch it
3085 // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
3086 // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
3087 // incremental heap marking.
3088 // See RecordWriteStub::Patch for details.
3089 __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
3090 __ nop();
3091 __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
3092 __ nop();
3093
3094 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3095 __ RememberedSetHelper(object(),
3096 address(),
3097 value(),
3098 save_fp_regs_mode(),
3099 MacroAssembler::kReturnAtEnd);
3100 }
3101 __ Ret();
3102
3103 __ bind(&skip_to_incremental_noncompacting);
3104 GenerateIncremental(masm, INCREMENTAL);
3105
3106 __ bind(&skip_to_incremental_compacting);
3107 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3108
3109 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3110 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3111
3112 PatchBranchIntoNop(masm, 0);
3113 PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
3114 }
3115
3116
GenerateIncremental(MacroAssembler * masm,Mode mode)3117 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3118 regs_.Save(masm);
3119
3120 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3121 Label dont_need_remembered_set;
3122
3123 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
3124 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3125 regs_.scratch0(),
3126 &dont_need_remembered_set);
3127
3128 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
3129 &dont_need_remembered_set);
3130
3131 // First notify the incremental marker if necessary, then update the
3132 // remembered set.
3133 CheckNeedsToInformIncrementalMarker(
3134 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3135 InformIncrementalMarker(masm);
3136 regs_.Restore(masm);
3137 __ RememberedSetHelper(object(),
3138 address(),
3139 value(),
3140 save_fp_regs_mode(),
3141 MacroAssembler::kReturnAtEnd);
3142
3143 __ bind(&dont_need_remembered_set);
3144 }
3145
3146 CheckNeedsToInformIncrementalMarker(
3147 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3148 InformIncrementalMarker(masm);
3149 regs_.Restore(masm);
3150 __ Ret();
3151 }
3152
3153
InformIncrementalMarker(MacroAssembler * masm)3154 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3155 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3156 int argument_count = 3;
3157 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3158 Register address =
3159 a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3160 DCHECK(!address.is(regs_.object()));
3161 DCHECK(!address.is(a0));
3162 __ Move(address, regs_.address());
3163 __ Move(a0, regs_.object());
3164 __ Move(a1, address);
3165 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
3166
3167 AllowExternalCallThatCantCauseGC scope(masm);
3168 __ CallCFunction(
3169 ExternalReference::incremental_marking_record_write_function(isolate()),
3170 argument_count);
3171 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3172 }
3173
3174
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)3175 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3176 MacroAssembler* masm,
3177 OnNoNeedToInformIncrementalMarker on_no_need,
3178 Mode mode) {
3179 Label on_black;
3180 Label need_incremental;
3181 Label need_incremental_pop_scratch;
3182
3183 // Let's look at the color of the object: If it is not black we don't have
3184 // to inform the incremental marker.
3185 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3186
3187 regs_.Restore(masm);
3188 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3189 __ RememberedSetHelper(object(),
3190 address(),
3191 value(),
3192 save_fp_regs_mode(),
3193 MacroAssembler::kReturnAtEnd);
3194 } else {
3195 __ Ret();
3196 }
3197
3198 __ bind(&on_black);
3199
3200 // Get the value from the slot.
3201 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
3202
3203 if (mode == INCREMENTAL_COMPACTION) {
3204 Label ensure_not_white;
3205
3206 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3207 regs_.scratch1(), // Scratch.
3208 MemoryChunk::kEvacuationCandidateMask,
3209 eq,
3210 &ensure_not_white);
3211
3212 __ CheckPageFlag(regs_.object(),
3213 regs_.scratch1(), // Scratch.
3214 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3215 eq,
3216 &need_incremental);
3217
3218 __ bind(&ensure_not_white);
3219 }
3220
3221 // We need extra registers for this, so we push the object and the address
3222 // register temporarily.
3223 __ Push(regs_.object(), regs_.address());
3224 __ JumpIfWhite(regs_.scratch0(), // The value.
3225 regs_.scratch1(), // Scratch.
3226 regs_.object(), // Scratch.
3227 regs_.address(), // Scratch.
3228 &need_incremental_pop_scratch);
3229 __ Pop(regs_.object(), regs_.address());
3230
3231 regs_.Restore(masm);
3232 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3233 __ RememberedSetHelper(object(),
3234 address(),
3235 value(),
3236 save_fp_regs_mode(),
3237 MacroAssembler::kReturnAtEnd);
3238 } else {
3239 __ Ret();
3240 }
3241
3242 __ bind(&need_incremental_pop_scratch);
3243 __ Pop(regs_.object(), regs_.address());
3244
3245 __ bind(&need_incremental);
3246
3247 // Fall through when we need to inform the incremental marker.
3248 }
3249
3250
Generate(MacroAssembler * masm)3251 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3252 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3253 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3254 int parameter_count_offset =
3255 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
3256 __ ld(a1, MemOperand(fp, parameter_count_offset));
3257 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3258 __ Daddu(a1, a1, Operand(1));
3259 }
3260 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3261 __ dsll(a1, a1, kPointerSizeLog2);
3262 __ Ret(USE_DELAY_SLOT);
3263 __ Daddu(sp, sp, a1);
3264 }
3265
Generate(MacroAssembler * masm)3266 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3267 __ EmitLoadTypeFeedbackVector(a2);
3268 CallICStub stub(isolate(), state());
3269 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3270 }
3271
3272
HandleArrayCases(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,bool is_polymorphic,Label * miss)3273 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3274 Register receiver_map, Register scratch1,
3275 Register scratch2, bool is_polymorphic,
3276 Label* miss) {
3277 // feedback initially contains the feedback array
3278 Label next_loop, prepare_next;
3279 Label start_polymorphic;
3280
3281 Register cached_map = scratch1;
3282
3283 __ ld(cached_map,
3284 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3285 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3286 __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map));
3287 // found, now call handler.
3288 Register handler = feedback;
3289 __ ld(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3290 __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3291 __ Jump(t9);
3292
3293 Register length = scratch2;
3294 __ bind(&start_polymorphic);
3295 __ ld(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3296 if (!is_polymorphic) {
3297 // If the IC could be monomorphic we have to make sure we don't go past the
3298 // end of the feedback array.
3299 __ Branch(miss, eq, length, Operand(Smi::FromInt(2)));
3300 }
3301
3302 Register too_far = length;
3303 Register pointer_reg = feedback;
3304
3305 // +-----+------+------+-----+-----+ ... ----+
3306 // | map | len | wm0 | h0 | wm1 | hN |
3307 // +-----+------+------+-----+-----+ ... ----+
3308 // 0 1 2 len-1
3309 // ^ ^
3310 // | |
3311 // pointer_reg too_far
3312 // aka feedback scratch2
3313 // also need receiver_map
3314 // use cached_map (scratch1) to look in the weak map values.
3315 __ SmiScale(too_far, length, kPointerSizeLog2);
3316 __ Daddu(too_far, feedback, Operand(too_far));
3317 __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3318 __ Daddu(pointer_reg, feedback,
3319 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
3320
3321 __ bind(&next_loop);
3322 __ ld(cached_map, MemOperand(pointer_reg));
3323 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3324 __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
3325 __ ld(handler, MemOperand(pointer_reg, kPointerSize));
3326 __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3327 __ Jump(t9);
3328
3329 __ bind(&prepare_next);
3330 __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
3331 __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
3332
3333 // We exhausted our array of map handler pairs.
3334 __ Branch(miss);
3335 }
3336
3337
HandleMonomorphicCase(MacroAssembler * masm,Register receiver,Register receiver_map,Register feedback,Register vector,Register slot,Register scratch,Label * compare_map,Label * load_smi_map,Label * try_array)3338 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3339 Register receiver_map, Register feedback,
3340 Register vector, Register slot,
3341 Register scratch, Label* compare_map,
3342 Label* load_smi_map, Label* try_array) {
3343 __ JumpIfSmi(receiver, load_smi_map);
3344 __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
3345 __ bind(compare_map);
3346 Register cached_map = scratch;
3347 // Move the weak map into the weak_cell register.
3348 __ ld(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
3349 __ Branch(try_array, ne, cached_map, Operand(receiver_map));
3350 Register handler = feedback;
3351 __ SmiScale(handler, slot, kPointerSizeLog2);
3352 __ Daddu(handler, vector, Operand(handler));
3353 __ ld(handler,
3354 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
3355 __ Daddu(t9, handler, Code::kHeaderSize - kHeapObjectTag);
3356 __ Jump(t9);
3357 }
3358
Generate(MacroAssembler * masm)3359 void KeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3360 __ EmitLoadTypeFeedbackVector(StoreWithVectorDescriptor::VectorRegister());
3361 KeyedStoreICStub stub(isolate(), state());
3362 stub.GenerateForTrampoline(masm);
3363 }
3364
Generate(MacroAssembler * masm)3365 void KeyedStoreICStub::Generate(MacroAssembler* masm) {
3366 GenerateImpl(masm, false);
3367 }
3368
GenerateForTrampoline(MacroAssembler * masm)3369 void KeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3370 GenerateImpl(masm, true);
3371 }
3372
3373
HandlePolymorphicStoreCase(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,Label * miss)3374 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
3375 Register receiver_map, Register scratch1,
3376 Register scratch2, Label* miss) {
3377 // feedback initially contains the feedback array
3378 Label next_loop, prepare_next;
3379 Label start_polymorphic;
3380 Label transition_call;
3381
3382 Register cached_map = scratch1;
3383 Register too_far = scratch2;
3384 Register pointer_reg = feedback;
3385
3386 __ ld(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3387
3388 // +-----+------+------+-----+-----+-----+ ... ----+
3389 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
3390 // +-----+------+------+-----+-----+ ----+ ... ----+
3391 // 0 1 2 len-1
3392 // ^ ^
3393 // | |
3394 // pointer_reg too_far
3395 // aka feedback scratch2
3396 // also need receiver_map
3397 // use cached_map (scratch1) to look in the weak map values.
3398 __ SmiScale(too_far, too_far, kPointerSizeLog2);
3399 __ Daddu(too_far, feedback, Operand(too_far));
3400 __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3401 __ Daddu(pointer_reg, feedback,
3402 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
3403
3404 __ bind(&next_loop);
3405 __ ld(cached_map, MemOperand(pointer_reg));
3406 __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3407 __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
3408 // Is it a transitioning store?
3409 __ ld(too_far, MemOperand(pointer_reg, kPointerSize));
3410 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3411 __ Branch(&transition_call, ne, too_far, Operand(at));
3412
3413 __ ld(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
3414 __ Daddu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
3415 __ Jump(t9);
3416
3417 __ bind(&transition_call);
3418 __ ld(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
3419 __ JumpIfSmi(too_far, miss);
3420
3421 __ ld(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
3422 // Load the map into the correct register.
3423 DCHECK(feedback.is(StoreTransitionDescriptor::MapRegister()));
3424 __ Move(feedback, too_far);
3425 __ Daddu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
3426 __ Jump(t9);
3427
3428 __ bind(&prepare_next);
3429 __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
3430 __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
3431
3432 // We exhausted our array of map handler pairs.
3433 __ Branch(miss);
3434 }
3435
GenerateImpl(MacroAssembler * masm,bool in_frame)3436 void KeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3437 Register receiver = StoreWithVectorDescriptor::ReceiverRegister(); // a1
3438 Register key = StoreWithVectorDescriptor::NameRegister(); // a2
3439 Register vector = StoreWithVectorDescriptor::VectorRegister(); // a3
3440 Register slot = StoreWithVectorDescriptor::SlotRegister(); // a4
3441 DCHECK(StoreWithVectorDescriptor::ValueRegister().is(a0)); // a0
3442 Register feedback = a5;
3443 Register receiver_map = a6;
3444 Register scratch1 = a7;
3445
3446 __ SmiScale(scratch1, slot, kPointerSizeLog2);
3447 __ Daddu(feedback, vector, Operand(scratch1));
3448 __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3449
3450 // Try to quickly handle the monomorphic case without knowing for sure
3451 // if we have a weak cell in feedback. We do know it's safe to look
3452 // at WeakCell::kValueOffset.
3453 Label try_array, load_smi_map, compare_map;
3454 Label not_array, miss;
3455 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3456 scratch1, &compare_map, &load_smi_map, &try_array);
3457
3458 __ bind(&try_array);
3459 // Is it a fixed array?
3460 __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3461 __ Branch(¬_array, ne, scratch1, Heap::kFixedArrayMapRootIndex);
3462
3463 // We have a polymorphic element handler.
3464 Label try_poly_name;
3465
3466 Register scratch2 = t0;
3467
3468 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
3469 &miss);
3470
3471 __ bind(¬_array);
3472 // Is it generic?
3473 __ Branch(&try_poly_name, ne, feedback, Heap::kmegamorphic_symbolRootIndex);
3474 Handle<Code> megamorphic_stub =
3475 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3476 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
3477
3478 __ bind(&try_poly_name);
3479 // We might have a name in feedback, and a fixed array in the next slot.
3480 __ Branch(&miss, ne, key, Operand(feedback));
3481 // If the name comparison succeeded, we know we have a fixed array with
3482 // at least one map/handler pair.
3483 __ SmiScale(scratch1, slot, kPointerSizeLog2);
3484 __ Daddu(feedback, vector, Operand(scratch1));
3485 __ ld(feedback,
3486 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
3487 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
3488 &miss);
3489
3490 __ bind(&miss);
3491 KeyedStoreIC::GenerateMiss(masm);
3492
3493 __ bind(&load_smi_map);
3494 __ Branch(USE_DELAY_SLOT, &compare_map);
3495 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot.
3496 }
3497
3498
MaybeCallEntryHook(MacroAssembler * masm)3499 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
3500 if (masm->isolate()->function_entry_hook() != NULL) {
3501 ProfileEntryHookStub stub(masm->isolate());
3502 __ push(ra);
3503 __ CallStub(&stub);
3504 __ pop(ra);
3505 }
3506 }
3507
3508
Generate(MacroAssembler * masm)3509 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
3510 // The entry hook is a "push ra" instruction, followed by a call.
3511 // Note: on MIPS "push" is 2 instruction
3512 const int32_t kReturnAddressDistanceFromFunctionStart =
3513 Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
3514
3515 // This should contain all kJSCallerSaved registers.
3516 const RegList kSavedRegs =
3517 kJSCallerSaved | // Caller saved registers.
3518 s5.bit(); // Saved stack pointer.
3519
3520 // We also save ra, so the count here is one higher than the mask indicates.
3521 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
3522
3523 // Save all caller-save registers as this may be called from anywhere.
3524 __ MultiPush(kSavedRegs | ra.bit());
3525
3526 // Compute the function's address for the first argument.
3527 __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
3528
3529 // The caller's return address is above the saved temporaries.
3530 // Grab that for the second argument to the hook.
3531 __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
3532
3533 // Align the stack if necessary.
3534 int frame_alignment = masm->ActivationFrameAlignment();
3535 if (frame_alignment > kPointerSize) {
3536 __ mov(s5, sp);
3537 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
3538 __ And(sp, sp, Operand(-frame_alignment));
3539 }
3540
3541 __ Dsubu(sp, sp, kCArgsSlotsSize);
3542 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
3543 int64_t entry_hook =
3544 reinterpret_cast<int64_t>(isolate()->function_entry_hook());
3545 __ li(t9, Operand(entry_hook));
3546 #else
3547 // Under the simulator we need to indirect the entry hook through a
3548 // trampoline function at a known address.
3549 // It additionally takes an isolate as a third parameter.
3550 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
3551
3552 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
3553 __ li(t9, Operand(ExternalReference(&dispatcher,
3554 ExternalReference::BUILTIN_CALL,
3555 isolate())));
3556 #endif
3557 // Call C function through t9 to conform ABI for PIC.
3558 __ Call(t9);
3559
3560 // Restore the stack pointer if needed.
3561 if (frame_alignment > kPointerSize) {
3562 __ mov(sp, s5);
3563 } else {
3564 __ Daddu(sp, sp, kCArgsSlotsSize);
3565 }
3566
3567 // Also pop ra to get Ret(0).
3568 __ MultiPop(kSavedRegs | ra.bit());
3569 __ Ret();
3570 }
3571
3572
3573 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)3574 static void CreateArrayDispatch(MacroAssembler* masm,
3575 AllocationSiteOverrideMode mode) {
3576 if (mode == DISABLE_ALLOCATION_SITES) {
3577 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
3578 __ TailCallStub(&stub);
3579 } else if (mode == DONT_OVERRIDE) {
3580 int last_index = GetSequenceIndexFromFastElementsKind(
3581 TERMINAL_FAST_ELEMENTS_KIND);
3582 for (int i = 0; i <= last_index; ++i) {
3583 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3584 T stub(masm->isolate(), kind);
3585 __ TailCallStub(&stub, eq, a3, Operand(kind));
3586 }
3587
3588 // If we reached this point there is a problem.
3589 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3590 } else {
3591 UNREACHABLE();
3592 }
3593 }
3594
3595
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)3596 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
3597 AllocationSiteOverrideMode mode) {
3598 // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
3599 // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
3600 // a0 - number of arguments
3601 // a1 - constructor?
3602 // sp[0] - last argument
3603 Label normal_sequence;
3604 if (mode == DONT_OVERRIDE) {
3605 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3606 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3607 STATIC_ASSERT(FAST_ELEMENTS == 2);
3608 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3609 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
3610 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
3611
3612 // is the low bit set? If so, we are holey and that is good.
3613 __ And(at, a3, Operand(1));
3614 __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
3615 }
3616 // look at the first argument
3617 __ ld(a5, MemOperand(sp, 0));
3618 __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
3619
3620 if (mode == DISABLE_ALLOCATION_SITES) {
3621 ElementsKind initial = GetInitialFastElementsKind();
3622 ElementsKind holey_initial = GetHoleyElementsKind(initial);
3623
3624 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
3625 holey_initial,
3626 DISABLE_ALLOCATION_SITES);
3627 __ TailCallStub(&stub_holey);
3628
3629 __ bind(&normal_sequence);
3630 ArraySingleArgumentConstructorStub stub(masm->isolate(),
3631 initial,
3632 DISABLE_ALLOCATION_SITES);
3633 __ TailCallStub(&stub);
3634 } else if (mode == DONT_OVERRIDE) {
3635 // We are going to create a holey array, but our kind is non-holey.
3636 // Fix kind and retry (only if we have an allocation site in the slot).
3637 __ Daddu(a3, a3, Operand(1));
3638
3639 if (FLAG_debug_code) {
3640 __ ld(a5, FieldMemOperand(a2, 0));
3641 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3642 __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
3643 }
3644
3645 // Save the resulting elements kind in type info. We can't just store a3
3646 // in the AllocationSite::transition_info field because elements kind is
3647 // restricted to a portion of the field...upper bits need to be left alone.
3648 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3649 __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
3650 __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
3651 __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
3652
3653
3654 __ bind(&normal_sequence);
3655 int last_index = GetSequenceIndexFromFastElementsKind(
3656 TERMINAL_FAST_ELEMENTS_KIND);
3657 for (int i = 0; i <= last_index; ++i) {
3658 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3659 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
3660 __ TailCallStub(&stub, eq, a3, Operand(kind));
3661 }
3662
3663 // If we reached this point there is a problem.
3664 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3665 } else {
3666 UNREACHABLE();
3667 }
3668 }
3669
3670
3671 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)3672 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
3673 int to_index = GetSequenceIndexFromFastElementsKind(
3674 TERMINAL_FAST_ELEMENTS_KIND);
3675 for (int i = 0; i <= to_index; ++i) {
3676 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3677 T stub(isolate, kind);
3678 stub.GetCode();
3679 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
3680 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
3681 stub1.GetCode();
3682 }
3683 }
3684 }
3685
GenerateStubsAheadOfTime(Isolate * isolate)3686 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
3687 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
3688 isolate);
3689 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
3690 isolate);
3691 ArrayNArgumentsConstructorStub stub(isolate);
3692 stub.GetCode();
3693 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
3694 for (int i = 0; i < 2; i++) {
3695 // For internal arrays we only need a few things.
3696 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
3697 stubh1.GetCode();
3698 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
3699 stubh2.GetCode();
3700 }
3701 }
3702
3703
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)3704 void ArrayConstructorStub::GenerateDispatchToArrayStub(
3705 MacroAssembler* masm,
3706 AllocationSiteOverrideMode mode) {
3707 Label not_zero_case, not_one_case;
3708 __ And(at, a0, a0);
3709 __ Branch(¬_zero_case, ne, at, Operand(zero_reg));
3710 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
3711
3712 __ bind(¬_zero_case);
3713 __ Branch(¬_one_case, gt, a0, Operand(1));
3714 CreateArrayDispatchOneArgument(masm, mode);
3715
3716 __ bind(¬_one_case);
3717 ArrayNArgumentsConstructorStub stub(masm->isolate());
3718 __ TailCallStub(&stub);
3719 }
3720
3721
Generate(MacroAssembler * masm)3722 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
3723 // ----------- S t a t e -------------
3724 // -- a0 : argc (only if argument_count() == ANY)
3725 // -- a1 : constructor
3726 // -- a2 : AllocationSite or undefined
3727 // -- a3 : new target
3728 // -- sp[0] : last argument
3729 // -----------------------------------
3730
3731 if (FLAG_debug_code) {
3732 // The array construct code is only set for the global and natives
3733 // builtin Array functions which always have maps.
3734
3735 // Initial map for the builtin Array function should be a map.
3736 __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
3737 // Will both indicate a NULL and a Smi.
3738 __ SmiTst(a4, at);
3739 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
3740 at, Operand(zero_reg));
3741 __ GetObjectType(a4, a4, a5);
3742 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
3743 a5, Operand(MAP_TYPE));
3744
3745 // We should either have undefined in a2 or a valid AllocationSite
3746 __ AssertUndefinedOrAllocationSite(a2, a4);
3747 }
3748
3749 // Enter the context of the Array function.
3750 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3751
3752 Label subclassing;
3753 __ Branch(&subclassing, ne, a1, Operand(a3));
3754
3755 Label no_info;
3756 // Get the elements kind and case on that.
3757 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3758 __ Branch(&no_info, eq, a2, Operand(at));
3759
3760 __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
3761 __ SmiUntag(a3);
3762 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3763 __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
3764 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
3765
3766 __ bind(&no_info);
3767 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
3768
3769 // Subclassing.
3770 __ bind(&subclassing);
3771 __ Dlsa(at, sp, a0, kPointerSizeLog2);
3772 __ sd(a1, MemOperand(at));
3773 __ li(at, Operand(3));
3774 __ Daddu(a0, a0, at);
3775 __ Push(a3, a2);
3776 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
3777 }
3778
3779
GenerateCase(MacroAssembler * masm,ElementsKind kind)3780 void InternalArrayConstructorStub::GenerateCase(
3781 MacroAssembler* masm, ElementsKind kind) {
3782
3783 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
3784 __ TailCallStub(&stub0, lo, a0, Operand(1));
3785
3786 ArrayNArgumentsConstructorStub stubN(isolate());
3787 __ TailCallStub(&stubN, hi, a0, Operand(1));
3788
3789 if (IsFastPackedElementsKind(kind)) {
3790 // We might need to create a holey array
3791 // look at the first argument.
3792 __ ld(at, MemOperand(sp, 0));
3793
3794 InternalArraySingleArgumentConstructorStub
3795 stub1_holey(isolate(), GetHoleyElementsKind(kind));
3796 __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
3797 }
3798
3799 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
3800 __ TailCallStub(&stub1);
3801 }
3802
3803
Generate(MacroAssembler * masm)3804 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
3805 // ----------- S t a t e -------------
3806 // -- a0 : argc
3807 // -- a1 : constructor
3808 // -- sp[0] : return address
3809 // -- sp[4] : last argument
3810 // -----------------------------------
3811
3812 if (FLAG_debug_code) {
3813 // The array construct code is only set for the global and natives
3814 // builtin Array functions which always have maps.
3815
3816 // Initial map for the builtin Array function should be a map.
3817 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
3818 // Will both indicate a NULL and a Smi.
3819 __ SmiTst(a3, at);
3820 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
3821 at, Operand(zero_reg));
3822 __ GetObjectType(a3, a3, a4);
3823 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
3824 a4, Operand(MAP_TYPE));
3825 }
3826
3827 // Figure out the right elements kind.
3828 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
3829
3830 // Load the map's "bit field 2" into a3. We only need the first byte,
3831 // but the following bit field extraction takes care of that anyway.
3832 __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
3833 // Retrieve elements_kind from bit field 2.
3834 __ DecodeField<Map::ElementsKindBits>(a3);
3835
3836 if (FLAG_debug_code) {
3837 Label done;
3838 __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
3839 __ Assert(
3840 eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
3841 a3, Operand(FAST_HOLEY_ELEMENTS));
3842 __ bind(&done);
3843 }
3844
3845 Label fast_elements_case;
3846 __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
3847 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3848
3849 __ bind(&fast_elements_case);
3850 GenerateCase(masm, FAST_ELEMENTS);
3851 }
3852
3853
Generate(MacroAssembler * masm)3854 void FastNewObjectStub::Generate(MacroAssembler* masm) {
3855 // ----------- S t a t e -------------
3856 // -- a1 : target
3857 // -- a3 : new target
3858 // -- cp : context
3859 // -- ra : return address
3860 // -----------------------------------
3861 __ AssertFunction(a1);
3862 __ AssertReceiver(a3);
3863
3864 // Verify that the new target is a JSFunction.
3865 Label new_object;
3866 __ GetObjectType(a3, a2, a2);
3867 __ Branch(&new_object, ne, a2, Operand(JS_FUNCTION_TYPE));
3868
3869 // Load the initial map and verify that it's in fact a map.
3870 __ ld(a2, FieldMemOperand(a3, JSFunction::kPrototypeOrInitialMapOffset));
3871 __ JumpIfSmi(a2, &new_object);
3872 __ GetObjectType(a2, a0, a0);
3873 __ Branch(&new_object, ne, a0, Operand(MAP_TYPE));
3874
3875 // Fall back to runtime if the target differs from the new target's
3876 // initial map constructor.
3877 __ ld(a0, FieldMemOperand(a2, Map::kConstructorOrBackPointerOffset));
3878 __ Branch(&new_object, ne, a0, Operand(a1));
3879
3880 // Allocate the JSObject on the heap.
3881 Label allocate, done_allocate;
3882 __ lbu(a4, FieldMemOperand(a2, Map::kInstanceSizeOffset));
3883 __ Allocate(a4, v0, a5, a0, &allocate, SIZE_IN_WORDS);
3884 __ bind(&done_allocate);
3885
3886 // Initialize the JSObject fields.
3887 __ sd(a2, FieldMemOperand(v0, JSObject::kMapOffset));
3888 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
3889 __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
3890 __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
3891 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
3892 __ Daddu(a1, v0, Operand(JSObject::kHeaderSize - kHeapObjectTag));
3893
3894 // ----------- S t a t e -------------
3895 // -- v0 : result (tagged)
3896 // -- a1 : result fields (untagged)
3897 // -- a5 : result end (untagged)
3898 // -- a2 : initial map
3899 // -- cp : context
3900 // -- ra : return address
3901 // -----------------------------------
3902
3903 // Perform in-object slack tracking if requested.
3904 Label slack_tracking;
3905 STATIC_ASSERT(Map::kNoSlackTracking == 0);
3906 __ lwu(a3, FieldMemOperand(a2, Map::kBitField3Offset));
3907 __ And(at, a3, Operand(Map::ConstructionCounter::kMask));
3908 __ Branch(USE_DELAY_SLOT, &slack_tracking, ne, at, Operand(zero_reg));
3909 __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); // In delay slot.
3910 {
3911 // Initialize all in-object fields with undefined.
3912 __ InitializeFieldsWithFiller(a1, a5, a0);
3913 __ Ret();
3914 }
3915 __ bind(&slack_tracking);
3916 {
3917 // Decrease generous allocation count.
3918 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
3919 __ Subu(a3, a3, Operand(1 << Map::ConstructionCounter::kShift));
3920 __ sw(a3, FieldMemOperand(a2, Map::kBitField3Offset));
3921
3922 // Initialize the in-object fields with undefined.
3923 __ lbu(a4, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
3924 __ dsll(a4, a4, kPointerSizeLog2);
3925 __ Dsubu(a4, a5, a4);
3926 __ InitializeFieldsWithFiller(a1, a4, a0);
3927
3928 // Initialize the remaining (reserved) fields with one pointer filler map.
3929 __ LoadRoot(a0, Heap::kOnePointerFillerMapRootIndex);
3930 __ InitializeFieldsWithFiller(a1, a5, a0);
3931
3932 // Check if we can finalize the instance size.
3933 Label finalize;
3934 STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1);
3935 __ And(a3, a3, Operand(Map::ConstructionCounter::kMask));
3936 __ Branch(&finalize, eq, a3, Operand(zero_reg));
3937 __ Ret();
3938
3939 // Finalize the instance size.
3940 __ bind(&finalize);
3941 {
3942 FrameScope scope(masm, StackFrame::INTERNAL);
3943 __ Push(v0, a2);
3944 __ CallRuntime(Runtime::kFinalizeInstanceSize);
3945 __ Pop(v0);
3946 }
3947 __ Ret();
3948 }
3949
3950 // Fall back to %AllocateInNewSpace.
3951 __ bind(&allocate);
3952 {
3953 FrameScope scope(masm, StackFrame::INTERNAL);
3954 STATIC_ASSERT(kSmiTag == 0);
3955 STATIC_ASSERT(kSmiTagSize == 1);
3956 __ dsll(a4, a4, kPointerSizeLog2 + kSmiShiftSize + kSmiTagSize);
3957 __ SmiTag(a4);
3958 __ Push(a2, a4);
3959 __ CallRuntime(Runtime::kAllocateInNewSpace);
3960 __ Pop(a2);
3961 }
3962 __ lbu(a5, FieldMemOperand(a2, Map::kInstanceSizeOffset));
3963 __ Dlsa(a5, v0, a5, kPointerSizeLog2);
3964 STATIC_ASSERT(kHeapObjectTag == 1);
3965 __ Dsubu(a5, a5, Operand(kHeapObjectTag));
3966 __ jmp(&done_allocate);
3967
3968 // Fall back to %NewObject.
3969 __ bind(&new_object);
3970 __ Push(a1, a3);
3971 __ TailCallRuntime(Runtime::kNewObject);
3972 }
3973
3974
Generate(MacroAssembler * masm)3975 void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
3976 // ----------- S t a t e -------------
3977 // -- a1 : function
3978 // -- cp : context
3979 // -- fp : frame pointer
3980 // -- ra : return address
3981 // -----------------------------------
3982 __ AssertFunction(a1);
3983
3984 // Make a2 point to the JavaScript frame.
3985 __ mov(a2, fp);
3986 if (skip_stub_frame()) {
3987 // For Ignition we need to skip the handler/stub frame to reach the
3988 // JavaScript frame for the function.
3989 __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
3990 }
3991 if (FLAG_debug_code) {
3992 Label ok;
3993 __ ld(a3, MemOperand(a2, StandardFrameConstants::kFunctionOffset));
3994 __ Branch(&ok, eq, a1, Operand(a3));
3995 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
3996 __ bind(&ok);
3997 }
3998
3999 // Check if we have rest parameters (only possible if we have an
4000 // arguments adaptor frame below the function frame).
4001 Label no_rest_parameters;
4002 __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
4003 __ ld(a3, MemOperand(a2, CommonFrameConstants::kContextOrFrameTypeOffset));
4004 __ Branch(&no_rest_parameters, ne, a3,
4005 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4006
4007 // Check if the arguments adaptor frame contains more arguments than
4008 // specified by the function's internal formal parameter count.
4009 Label rest_parameters;
4010 __ SmiLoadUntag(
4011 a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4012 __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
4013 __ lw(a3,
4014 FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
4015 __ Dsubu(a0, a0, Operand(a3));
4016 __ Branch(&rest_parameters, gt, a0, Operand(zero_reg));
4017
4018 // Return an empty rest parameter array.
4019 __ bind(&no_rest_parameters);
4020 {
4021 // ----------- S t a t e -------------
4022 // -- cp : context
4023 // -- ra : return address
4024 // -----------------------------------
4025
4026 // Allocate an empty rest parameter array.
4027 Label allocate, done_allocate;
4028 __ Allocate(JSArray::kSize, v0, a0, a1, &allocate, NO_ALLOCATION_FLAGS);
4029 __ bind(&done_allocate);
4030
4031 // Setup the rest parameter array in v0.
4032 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, a1);
4033 __ sd(a1, FieldMemOperand(v0, JSArray::kMapOffset));
4034 __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
4035 __ sd(a1, FieldMemOperand(v0, JSArray::kPropertiesOffset));
4036 __ sd(a1, FieldMemOperand(v0, JSArray::kElementsOffset));
4037 __ Move(a1, Smi::kZero);
4038 __ Ret(USE_DELAY_SLOT);
4039 __ sd(a1, FieldMemOperand(v0, JSArray::kLengthOffset)); // In delay slot
4040 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4041
4042 // Fall back to %AllocateInNewSpace.
4043 __ bind(&allocate);
4044 {
4045 FrameScope scope(masm, StackFrame::INTERNAL);
4046 __ Push(Smi::FromInt(JSArray::kSize));
4047 __ CallRuntime(Runtime::kAllocateInNewSpace);
4048 }
4049 __ jmp(&done_allocate);
4050 }
4051
4052 __ bind(&rest_parameters);
4053 {
4054 // Compute the pointer to the first rest parameter (skippping the receiver).
4055 __ Dlsa(a2, a2, a0, kPointerSizeLog2);
4056 __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
4057 1 * kPointerSize));
4058
4059 // ----------- S t a t e -------------
4060 // -- cp : context
4061 // -- a0 : number of rest parameters
4062 // -- a1 : function
4063 // -- a2 : pointer to first rest parameters
4064 // -- ra : return address
4065 // -----------------------------------
4066
4067 // Allocate space for the rest parameter array plus the backing store.
4068 Label allocate, done_allocate;
4069 __ li(a5, Operand(JSArray::kSize + FixedArray::kHeaderSize));
4070 __ Dlsa(a5, a5, a0, kPointerSizeLog2);
4071 __ Allocate(a5, v0, a3, a4, &allocate, NO_ALLOCATION_FLAGS);
4072 __ bind(&done_allocate);
4073
4074 // Compute arguments.length in a4.
4075 __ SmiTag(a4, a0);
4076
4077 // Setup the elements array in v0.
4078 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4079 __ sd(at, FieldMemOperand(v0, FixedArray::kMapOffset));
4080 __ sd(a4, FieldMemOperand(v0, FixedArray::kLengthOffset));
4081 __ Daddu(a3, v0, Operand(FixedArray::kHeaderSize));
4082 {
4083 Label loop, done_loop;
4084 __ Dlsa(a1, a3, a0, kPointerSizeLog2);
4085 __ bind(&loop);
4086 __ Branch(&done_loop, eq, a1, Operand(a3));
4087 __ ld(at, MemOperand(a2, 0 * kPointerSize));
4088 __ sd(at, FieldMemOperand(a3, 0 * kPointerSize));
4089 __ Dsubu(a2, a2, Operand(1 * kPointerSize));
4090 __ Daddu(a3, a3, Operand(1 * kPointerSize));
4091 __ Branch(&loop);
4092 __ bind(&done_loop);
4093 }
4094
4095 // Setup the rest parameter array in a3.
4096 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, at);
4097 __ sd(at, FieldMemOperand(a3, JSArray::kMapOffset));
4098 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
4099 __ sd(at, FieldMemOperand(a3, JSArray::kPropertiesOffset));
4100 __ sd(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
4101 __ sd(a4, FieldMemOperand(a3, JSArray::kLengthOffset));
4102 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4103 __ Ret(USE_DELAY_SLOT);
4104 __ mov(v0, a3); // In delay slot
4105
4106 // Fall back to %AllocateInNewSpace (if not too big).
4107 Label too_big_for_new_space;
4108 __ bind(&allocate);
4109 __ Branch(&too_big_for_new_space, gt, a5,
4110 Operand(kMaxRegularHeapObjectSize));
4111 {
4112 FrameScope scope(masm, StackFrame::INTERNAL);
4113 __ SmiTag(a0);
4114 __ SmiTag(a5);
4115 __ Push(a0, a2, a5);
4116 __ CallRuntime(Runtime::kAllocateInNewSpace);
4117 __ Pop(a0, a2);
4118 __ SmiUntag(a0);
4119 }
4120 __ jmp(&done_allocate);
4121
4122 // Fall back to %NewStrictArguments.
4123 __ bind(&too_big_for_new_space);
4124 __ Push(a1);
4125 __ TailCallRuntime(Runtime::kNewStrictArguments);
4126 }
4127 }
4128
4129
Generate(MacroAssembler * masm)4130 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
4131 // ----------- S t a t e -------------
4132 // -- a1 : function
4133 // -- cp : context
4134 // -- fp : frame pointer
4135 // -- ra : return address
4136 // -----------------------------------
4137 __ AssertFunction(a1);
4138
4139 // Make t0 point to the JavaScript frame.
4140 __ mov(t0, fp);
4141 if (skip_stub_frame()) {
4142 // For Ignition we need to skip the handler/stub frame to reach the
4143 // JavaScript frame for the function.
4144 __ ld(t0, MemOperand(t0, StandardFrameConstants::kCallerFPOffset));
4145 }
4146 if (FLAG_debug_code) {
4147 Label ok;
4148 __ ld(a3, MemOperand(t0, StandardFrameConstants::kFunctionOffset));
4149 __ Branch(&ok, eq, a1, Operand(a3));
4150 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4151 __ bind(&ok);
4152 }
4153
4154 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
4155 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
4156 __ lw(a2,
4157 FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
4158 __ Lsa(a3, t0, a2, kPointerSizeLog2);
4159 __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
4160 __ SmiTag(a2);
4161
4162 // a1 : function
4163 // a2 : number of parameters (tagged)
4164 // a3 : parameters pointer
4165 // t0 : Javascript frame pointer
4166 // Registers used over whole function:
4167 // a5 : arguments count (tagged)
4168 // a6 : mapped parameter count (tagged)
4169
4170 // Check if the calling frame is an arguments adaptor frame.
4171 Label adaptor_frame, try_allocate, runtime;
4172 __ ld(a4, MemOperand(t0, StandardFrameConstants::kCallerFPOffset));
4173 __ ld(a0, MemOperand(a4, CommonFrameConstants::kContextOrFrameTypeOffset));
4174 __ Branch(&adaptor_frame, eq, a0,
4175 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4176
4177 // No adaptor, parameter count = argument count.
4178 __ mov(a5, a2);
4179 __ Branch(USE_DELAY_SLOT, &try_allocate);
4180 __ mov(a6, a2); // In delay slot.
4181
4182 // We have an adaptor frame. Patch the parameters pointer.
4183 __ bind(&adaptor_frame);
4184 __ ld(a5, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset));
4185 __ SmiScale(t2, a5, kPointerSizeLog2);
4186 __ Daddu(a4, a4, Operand(t2));
4187 __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset));
4188
4189 // a5 = argument count (tagged)
4190 // a6 = parameter count (tagged)
4191 // Compute the mapped parameter count = min(a6, a5) in a6.
4192 __ mov(a6, a2);
4193 __ Branch(&try_allocate, le, a6, Operand(a5));
4194 __ mov(a6, a5);
4195
4196 __ bind(&try_allocate);
4197
4198 // Compute the sizes of backing store, parameter map, and arguments object.
4199 // 1. Parameter map, has 2 extra words containing context and backing store.
4200 const int kParameterMapHeaderSize =
4201 FixedArray::kHeaderSize + 2 * kPointerSize;
4202 // If there are no mapped parameters, we do not need the parameter_map.
4203 Label param_map_size;
4204 DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
4205 __ Branch(USE_DELAY_SLOT, ¶m_map_size, eq, a6, Operand(zero_reg));
4206 __ mov(t1, zero_reg); // In delay slot: param map size = 0 when a6 == 0.
4207 __ SmiScale(t1, a6, kPointerSizeLog2);
4208 __ daddiu(t1, t1, kParameterMapHeaderSize);
4209 __ bind(¶m_map_size);
4210
4211 // 2. Backing store.
4212 __ SmiScale(t2, a5, kPointerSizeLog2);
4213 __ Daddu(t1, t1, Operand(t2));
4214 __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
4215
4216 // 3. Arguments object.
4217 __ Daddu(t1, t1, Operand(JSSloppyArgumentsObject::kSize));
4218
4219 // Do the allocation of all three objects in one go.
4220 __ Allocate(t1, v0, t1, a4, &runtime, NO_ALLOCATION_FLAGS);
4221
4222 // v0 = address of new object(s) (tagged)
4223 // a2 = argument count (smi-tagged)
4224 // Get the arguments boilerplate from the current native context into a4.
4225 const int kNormalOffset =
4226 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
4227 const int kAliasedOffset =
4228 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
4229
4230 __ ld(a4, NativeContextMemOperand());
4231 Label skip2_ne, skip2_eq;
4232 __ Branch(&skip2_ne, ne, a6, Operand(zero_reg));
4233 __ ld(a4, MemOperand(a4, kNormalOffset));
4234 __ bind(&skip2_ne);
4235
4236 __ Branch(&skip2_eq, eq, a6, Operand(zero_reg));
4237 __ ld(a4, MemOperand(a4, kAliasedOffset));
4238 __ bind(&skip2_eq);
4239
4240 // v0 = address of new object (tagged)
4241 // a2 = argument count (smi-tagged)
4242 // a4 = address of arguments map (tagged)
4243 // a6 = mapped parameter count (tagged)
4244 __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
4245 __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex);
4246 __ sd(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
4247 __ sd(t1, FieldMemOperand(v0, JSObject::kElementsOffset));
4248
4249 // Set up the callee in-object property.
4250 __ AssertNotSmi(a1);
4251 __ sd(a1, FieldMemOperand(v0, JSSloppyArgumentsObject::kCalleeOffset));
4252
4253 // Use the length (smi tagged) and set that as an in-object property too.
4254 __ AssertSmi(a5);
4255 __ sd(a5, FieldMemOperand(v0, JSSloppyArgumentsObject::kLengthOffset));
4256
4257 // Set up the elements pointer in the allocated arguments object.
4258 // If we allocated a parameter map, a4 will point there, otherwise
4259 // it will point to the backing store.
4260 __ Daddu(a4, v0, Operand(JSSloppyArgumentsObject::kSize));
4261 __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
4262
4263 // v0 = address of new object (tagged)
4264 // a2 = argument count (tagged)
4265 // a4 = address of parameter map or backing store (tagged)
4266 // a6 = mapped parameter count (tagged)
4267 // Initialize parameter map. If there are no mapped arguments, we're done.
4268 Label skip_parameter_map;
4269 Label skip3;
4270 __ Branch(&skip3, ne, a6, Operand(Smi::kZero));
4271 // Move backing store address to a1, because it is
4272 // expected there when filling in the unmapped arguments.
4273 __ mov(a1, a4);
4274 __ bind(&skip3);
4275
4276 __ Branch(&skip_parameter_map, eq, a6, Operand(Smi::kZero));
4277
4278 __ LoadRoot(a5, Heap::kSloppyArgumentsElementsMapRootIndex);
4279 __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset));
4280 __ Daddu(a5, a6, Operand(Smi::FromInt(2)));
4281 __ sd(a5, FieldMemOperand(a4, FixedArray::kLengthOffset));
4282 __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
4283 __ SmiScale(t2, a6, kPointerSizeLog2);
4284 __ Daddu(a5, a4, Operand(t2));
4285 __ Daddu(a5, a5, Operand(kParameterMapHeaderSize));
4286 __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
4287
4288 // Copy the parameter slots and the holes in the arguments.
4289 // We need to fill in mapped_parameter_count slots. They index the context,
4290 // where parameters are stored in reverse order, at
4291 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4292 // The mapped parameter thus need to get indices
4293 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4294 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4295 // We loop from right to left.
4296 Label parameters_loop, parameters_test;
4297 __ mov(a5, a6);
4298 __ Daddu(t1, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4299 __ Dsubu(t1, t1, Operand(a6));
4300 __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
4301 __ SmiScale(t2, a5, kPointerSizeLog2);
4302 __ Daddu(a1, a4, Operand(t2));
4303 __ Daddu(a1, a1, Operand(kParameterMapHeaderSize));
4304
4305 // a1 = address of backing store (tagged)
4306 // a4 = address of parameter map (tagged)
4307 // a0 = temporary scratch (a.o., for address calculation)
4308 // t1 = loop variable (tagged)
4309 // a7 = the hole value
4310 __ jmp(¶meters_test);
4311
4312 __ bind(¶meters_loop);
4313 __ Dsubu(a5, a5, Operand(Smi::FromInt(1)));
4314 __ SmiScale(a0, a5, kPointerSizeLog2);
4315 __ Daddu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4316 __ Daddu(t2, a4, a0);
4317 __ sd(t1, MemOperand(t2));
4318 __ Dsubu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4319 __ Daddu(t2, a1, a0);
4320 __ sd(a7, MemOperand(t2));
4321 __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
4322 __ bind(¶meters_test);
4323 __ Branch(¶meters_loop, ne, a5, Operand(Smi::kZero));
4324
4325 // Restore t1 = argument count (tagged).
4326 __ ld(a5, FieldMemOperand(v0, JSSloppyArgumentsObject::kLengthOffset));
4327
4328 __ bind(&skip_parameter_map);
4329 // v0 = address of new object (tagged)
4330 // a1 = address of backing store (tagged)
4331 // a5 = argument count (tagged)
4332 // a6 = mapped parameter count (tagged)
4333 // t1 = scratch
4334 // Copy arguments header and remaining slots (if there are any).
4335 __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
4336 __ sd(t1, FieldMemOperand(a1, FixedArray::kMapOffset));
4337 __ sd(a5, FieldMemOperand(a1, FixedArray::kLengthOffset));
4338
4339 Label arguments_loop, arguments_test;
4340 __ SmiScale(t2, a6, kPointerSizeLog2);
4341 __ Dsubu(a3, a3, Operand(t2));
4342 __ jmp(&arguments_test);
4343
4344 __ bind(&arguments_loop);
4345 __ Dsubu(a3, a3, Operand(kPointerSize));
4346 __ ld(a4, MemOperand(a3, 0));
4347 __ SmiScale(t2, a6, kPointerSizeLog2);
4348 __ Daddu(t1, a1, Operand(t2));
4349 __ sd(a4, FieldMemOperand(t1, FixedArray::kHeaderSize));
4350 __ Daddu(a6, a6, Operand(Smi::FromInt(1)));
4351
4352 __ bind(&arguments_test);
4353 __ Branch(&arguments_loop, lt, a6, Operand(a5));
4354
4355 // Return.
4356 __ Ret();
4357
4358 // Do the runtime call to allocate the arguments object.
4359 // a5 = argument count (tagged)
4360 __ bind(&runtime);
4361 __ Push(a1, a3, a5);
4362 __ TailCallRuntime(Runtime::kNewSloppyArguments);
4363 }
4364
4365
Generate(MacroAssembler * masm)4366 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
4367 // ----------- S t a t e -------------
4368 // -- a1 : function
4369 // -- cp : context
4370 // -- fp : frame pointer
4371 // -- ra : return address
4372 // -----------------------------------
4373 __ AssertFunction(a1);
4374
4375 // Make a2 point to the JavaScript frame.
4376 __ mov(a2, fp);
4377 if (skip_stub_frame()) {
4378 // For Ignition we need to skip the handler/stub frame to reach the
4379 // JavaScript frame for the function.
4380 __ ld(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
4381 }
4382 if (FLAG_debug_code) {
4383 Label ok;
4384 __ ld(a3, MemOperand(a2, StandardFrameConstants::kFunctionOffset));
4385 __ Branch(&ok, eq, a1, Operand(a3));
4386 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4387 __ bind(&ok);
4388 }
4389
4390 // Check if we have an arguments adaptor frame below the function frame.
4391 Label arguments_adaptor, arguments_done;
4392 __ ld(a3, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
4393 __ ld(a0, MemOperand(a3, CommonFrameConstants::kContextOrFrameTypeOffset));
4394 __ Branch(&arguments_adaptor, eq, a0,
4395 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4396 {
4397 __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
4398 __ lw(a0,
4399 FieldMemOperand(a4, SharedFunctionInfo::kFormalParameterCountOffset));
4400 __ Dlsa(a2, a2, a0, kPointerSizeLog2);
4401 __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
4402 1 * kPointerSize));
4403 }
4404 __ Branch(&arguments_done);
4405 __ bind(&arguments_adaptor);
4406 {
4407 __ SmiLoadUntag(
4408 a0, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4409 __ Dlsa(a2, a3, a0, kPointerSizeLog2);
4410 __ Daddu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset -
4411 1 * kPointerSize));
4412 }
4413 __ bind(&arguments_done);
4414
4415 // ----------- S t a t e -------------
4416 // -- cp : context
4417 // -- a0 : number of rest parameters
4418 // -- a1 : function
4419 // -- a2 : pointer to first rest parameters
4420 // -- ra : return address
4421 // -----------------------------------
4422
4423 // Allocate space for the rest parameter array plus the backing store.
4424 Label allocate, done_allocate;
4425 __ li(a5, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
4426 __ Dlsa(a5, a5, a0, kPointerSizeLog2);
4427 __ Allocate(a5, v0, a3, a4, &allocate, NO_ALLOCATION_FLAGS);
4428 __ bind(&done_allocate);
4429
4430 // Compute arguments.length in a4.
4431 __ SmiTag(a4, a0);
4432
4433 // Setup the elements array in v0.
4434 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
4435 __ sd(at, FieldMemOperand(v0, FixedArray::kMapOffset));
4436 __ sd(a4, FieldMemOperand(v0, FixedArray::kLengthOffset));
4437 __ Daddu(a3, v0, Operand(FixedArray::kHeaderSize));
4438 {
4439 Label loop, done_loop;
4440 __ Dlsa(a1, a3, a0, kPointerSizeLog2);
4441 __ bind(&loop);
4442 __ Branch(&done_loop, eq, a1, Operand(a3));
4443 __ ld(at, MemOperand(a2, 0 * kPointerSize));
4444 __ sd(at, FieldMemOperand(a3, 0 * kPointerSize));
4445 __ Dsubu(a2, a2, Operand(1 * kPointerSize));
4446 __ Daddu(a3, a3, Operand(1 * kPointerSize));
4447 __ Branch(&loop);
4448 __ bind(&done_loop);
4449 }
4450
4451 // Setup the strict arguments object in a3.
4452 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, at);
4453 __ sd(at, FieldMemOperand(a3, JSStrictArgumentsObject::kMapOffset));
4454 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
4455 __ sd(at, FieldMemOperand(a3, JSStrictArgumentsObject::kPropertiesOffset));
4456 __ sd(v0, FieldMemOperand(a3, JSStrictArgumentsObject::kElementsOffset));
4457 __ sd(a4, FieldMemOperand(a3, JSStrictArgumentsObject::kLengthOffset));
4458 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
4459 __ Ret(USE_DELAY_SLOT);
4460 __ mov(v0, a3); // In delay slot
4461
4462 // Fall back to %AllocateInNewSpace (if not too big).
4463 Label too_big_for_new_space;
4464 __ bind(&allocate);
4465 __ Branch(&too_big_for_new_space, gt, a5, Operand(kMaxRegularHeapObjectSize));
4466 {
4467 FrameScope scope(masm, StackFrame::INTERNAL);
4468 __ SmiTag(a0);
4469 __ SmiTag(a5);
4470 __ Push(a0, a2, a5);
4471 __ CallRuntime(Runtime::kAllocateInNewSpace);
4472 __ Pop(a0, a2);
4473 __ SmiUntag(a0);
4474 }
4475 __ jmp(&done_allocate);
4476
4477 // Fall back to %NewStrictArguments.
4478 __ bind(&too_big_for_new_space);
4479 __ Push(a1);
4480 __ TailCallRuntime(Runtime::kNewStrictArguments);
4481 }
4482
4483
AddressOffset(ExternalReference ref0,ExternalReference ref1)4484 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
4485 int64_t offset = (ref0.address() - ref1.address());
4486 DCHECK(static_cast<int>(offset) == offset);
4487 return static_cast<int>(offset);
4488 }
4489
4490
4491 // Calls an API function. Allocates HandleScope, extracts returned value
4492 // from handle and propagates exceptions. Restores context. stack_space
4493 // - space to be unwound on exit (includes the call JS arguments space and
4494 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,int32_t stack_space_offset,MemOperand return_value_operand,MemOperand * context_restore_operand)4495 static void CallApiFunctionAndReturn(
4496 MacroAssembler* masm, Register function_address,
4497 ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
4498 MemOperand return_value_operand, MemOperand* context_restore_operand) {
4499 Isolate* isolate = masm->isolate();
4500 ExternalReference next_address =
4501 ExternalReference::handle_scope_next_address(isolate);
4502 const int kNextOffset = 0;
4503 const int kLimitOffset = AddressOffset(
4504 ExternalReference::handle_scope_limit_address(isolate), next_address);
4505 const int kLevelOffset = AddressOffset(
4506 ExternalReference::handle_scope_level_address(isolate), next_address);
4507
4508 DCHECK(function_address.is(a1) || function_address.is(a2));
4509
4510 Label profiler_disabled;
4511 Label end_profiler_check;
4512 __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
4513 __ lb(t9, MemOperand(t9, 0));
4514 __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
4515
4516 // Additional parameter is the address of the actual callback.
4517 __ li(t9, Operand(thunk_ref));
4518 __ jmp(&end_profiler_check);
4519
4520 __ bind(&profiler_disabled);
4521 __ mov(t9, function_address);
4522 __ bind(&end_profiler_check);
4523
4524 // Allocate HandleScope in callee-save registers.
4525 __ li(s3, Operand(next_address));
4526 __ ld(s0, MemOperand(s3, kNextOffset));
4527 __ ld(s1, MemOperand(s3, kLimitOffset));
4528 __ lw(s2, MemOperand(s3, kLevelOffset));
4529 __ Addu(s2, s2, Operand(1));
4530 __ sw(s2, MemOperand(s3, kLevelOffset));
4531
4532 if (FLAG_log_timer_events) {
4533 FrameScope frame(masm, StackFrame::MANUAL);
4534 __ PushSafepointRegisters();
4535 __ PrepareCallCFunction(1, a0);
4536 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
4537 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
4538 1);
4539 __ PopSafepointRegisters();
4540 }
4541
4542 // Native call returns to the DirectCEntry stub which redirects to the
4543 // return address pushed on stack (could have moved after GC).
4544 // DirectCEntry stub itself is generated early and never moves.
4545 DirectCEntryStub stub(isolate);
4546 stub.GenerateCall(masm, t9);
4547
4548 if (FLAG_log_timer_events) {
4549 FrameScope frame(masm, StackFrame::MANUAL);
4550 __ PushSafepointRegisters();
4551 __ PrepareCallCFunction(1, a0);
4552 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
4553 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
4554 1);
4555 __ PopSafepointRegisters();
4556 }
4557
4558 Label promote_scheduled_exception;
4559 Label delete_allocated_handles;
4560 Label leave_exit_frame;
4561 Label return_value_loaded;
4562
4563 // Load value from ReturnValue.
4564 __ ld(v0, return_value_operand);
4565 __ bind(&return_value_loaded);
4566
4567 // No more valid handles (the result handle was the last one). Restore
4568 // previous handle scope.
4569 __ sd(s0, MemOperand(s3, kNextOffset));
4570 if (__ emit_debug_code()) {
4571 __ lw(a1, MemOperand(s3, kLevelOffset));
4572 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
4573 }
4574 __ Subu(s2, s2, Operand(1));
4575 __ sw(s2, MemOperand(s3, kLevelOffset));
4576 __ ld(at, MemOperand(s3, kLimitOffset));
4577 __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
4578
4579 // Leave the API exit frame.
4580 __ bind(&leave_exit_frame);
4581
4582 bool restore_context = context_restore_operand != NULL;
4583 if (restore_context) {
4584 __ ld(cp, *context_restore_operand);
4585 }
4586 if (stack_space_offset != kInvalidStackOffset) {
4587 DCHECK(kCArgsSlotsSize == 0);
4588 __ ld(s0, MemOperand(sp, stack_space_offset));
4589 } else {
4590 __ li(s0, Operand(stack_space));
4591 }
4592 __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
4593 stack_space_offset != kInvalidStackOffset);
4594
4595 // Check if the function scheduled an exception.
4596 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
4597 __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
4598 __ ld(a5, MemOperand(at));
4599 __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
4600
4601 __ Ret();
4602
4603 // Re-throw by promoting a scheduled exception.
4604 __ bind(&promote_scheduled_exception);
4605 __ TailCallRuntime(Runtime::kPromoteScheduledException);
4606
4607 // HandleScope limit has changed. Delete allocated extensions.
4608 __ bind(&delete_allocated_handles);
4609 __ sd(s1, MemOperand(s3, kLimitOffset));
4610 __ mov(s0, v0);
4611 __ mov(a0, v0);
4612 __ PrepareCallCFunction(1, s1);
4613 __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
4614 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
4615 1);
4616 __ mov(v0, s0);
4617 __ jmp(&leave_exit_frame);
4618 }
4619
Generate(MacroAssembler * masm)4620 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
4621 // ----------- S t a t e -------------
4622 // -- a0 : callee
4623 // -- a4 : call_data
4624 // -- a2 : holder
4625 // -- a1 : api_function_address
4626 // -- cp : context
4627 // --
4628 // -- sp[0] : last argument
4629 // -- ...
4630 // -- sp[(argc - 1)* 8] : first argument
4631 // -- sp[argc * 8] : receiver
4632 // -----------------------------------
4633
4634 Register callee = a0;
4635 Register call_data = a4;
4636 Register holder = a2;
4637 Register api_function_address = a1;
4638 Register context = cp;
4639
4640 typedef FunctionCallbackArguments FCA;
4641
4642 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4643 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4644 STATIC_ASSERT(FCA::kDataIndex == 4);
4645 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4646 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4647 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4648 STATIC_ASSERT(FCA::kHolderIndex == 0);
4649 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
4650 STATIC_ASSERT(FCA::kArgsLength == 8);
4651
4652 // new target
4653 __ PushRoot(Heap::kUndefinedValueRootIndex);
4654
4655 // Save context, callee and call data.
4656 __ Push(context, callee, call_data);
4657 if (!is_lazy()) {
4658 // Load context from callee.
4659 __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4660 }
4661
4662 Register scratch = call_data;
4663 if (!call_data_undefined()) {
4664 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4665 }
4666 // Push return value and default return value.
4667 __ Push(scratch, scratch);
4668 __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
4669 // Push isolate and holder.
4670 __ Push(scratch, holder);
4671
4672 // Prepare arguments.
4673 __ mov(scratch, sp);
4674
4675 // Allocate the v8::Arguments structure in the arguments' space since
4676 // it's not controlled by GC.
4677 const int kApiStackSpace = 3;
4678
4679 FrameScope frame_scope(masm, StackFrame::MANUAL);
4680 __ EnterExitFrame(false, kApiStackSpace);
4681
4682 DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
4683 // a0 = FunctionCallbackInfo&
4684 // Arguments is after the return address.
4685 __ Daddu(a0, sp, Operand(1 * kPointerSize));
4686 // FunctionCallbackInfo::implicit_args_
4687 __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
4688 // FunctionCallbackInfo::values_
4689 __ Daddu(at, scratch,
4690 Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
4691 __ sd(at, MemOperand(a0, 1 * kPointerSize));
4692 // FunctionCallbackInfo::length_ = argc
4693 // Stored as int field, 32-bit integers within struct on stack always left
4694 // justified by n64 ABI.
4695 __ li(at, Operand(argc()));
4696 __ sw(at, MemOperand(a0, 2 * kPointerSize));
4697
4698 ExternalReference thunk_ref =
4699 ExternalReference::invoke_function_callback(masm->isolate());
4700
4701 AllowExternalCallThatCantCauseGC scope(masm);
4702 MemOperand context_restore_operand(
4703 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4704 // Stores return the first js argument.
4705 int return_value_offset = 0;
4706 if (is_store()) {
4707 return_value_offset = 2 + FCA::kArgsLength;
4708 } else {
4709 return_value_offset = 2 + FCA::kReturnValueOffset;
4710 }
4711 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4712 int stack_space = 0;
4713 int32_t stack_space_offset = 3 * kPointerSize;
4714 stack_space = argc() + FCA::kArgsLength + 1;
4715 // TODO(adamk): Why are we clobbering this immediately?
4716 stack_space_offset = kInvalidStackOffset;
4717 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
4718 stack_space_offset, return_value_operand,
4719 &context_restore_operand);
4720 }
4721
4722
Generate(MacroAssembler * masm)4723 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4724 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
4725 // name below the exit frame to make GC aware of them.
4726 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
4727 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
4728 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
4729 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
4730 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
4731 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
4732 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
4733 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
4734
4735 Register receiver = ApiGetterDescriptor::ReceiverRegister();
4736 Register holder = ApiGetterDescriptor::HolderRegister();
4737 Register callback = ApiGetterDescriptor::CallbackRegister();
4738 Register scratch = a4;
4739 DCHECK(!AreAliased(receiver, holder, callback, scratch));
4740
4741 Register api_function_address = a2;
4742
4743 // Here and below +1 is for name() pushed after the args_ array.
4744 typedef PropertyCallbackArguments PCA;
4745 __ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
4746 __ sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
4747 __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
4748 __ sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
4749 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4750 __ sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
4751 __ sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
4752 kPointerSize));
4753 __ li(scratch, Operand(ExternalReference::isolate_address(isolate())));
4754 __ sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
4755 __ sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
4756 // should_throw_on_error -> false
4757 DCHECK(Smi::kZero == nullptr);
4758 __ sd(zero_reg,
4759 MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
4760 __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
4761 __ sd(scratch, MemOperand(sp, 0 * kPointerSize));
4762
4763 // v8::PropertyCallbackInfo::args_ array and name handle.
4764 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4765
4766 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
4767 __ mov(a0, sp); // a0 = Handle<Name>
4768 __ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_
4769
4770 const int kApiStackSpace = 1;
4771 FrameScope frame_scope(masm, StackFrame::MANUAL);
4772 __ EnterExitFrame(false, kApiStackSpace);
4773
4774 // Create v8::PropertyCallbackInfo object on the stack and initialize
4775 // it's args_ field.
4776 __ sd(a1, MemOperand(sp, 1 * kPointerSize));
4777 __ Daddu(a1, sp, Operand(1 * kPointerSize));
4778 // a1 = v8::PropertyCallbackInfo&
4779
4780 ExternalReference thunk_ref =
4781 ExternalReference::invoke_accessor_getter_callback(isolate());
4782
4783 __ ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
4784 __ ld(api_function_address,
4785 FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
4786
4787 // +3 is to skip prolog, return address and name handle.
4788 MemOperand return_value_operand(
4789 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
4790 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
4791 kStackUnwindSpace, kInvalidStackOffset,
4792 return_value_operand, NULL);
4793 }
4794
4795 #undef __
4796
4797 } // namespace internal
4798 } // namespace v8
4799
4800 #endif // V8_TARGET_ARCH_MIPS64
4801