1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <limits.h>
6 #include <stdarg.h>
7 #include <stdlib.h>
8 #include <cmath>
9 
10 #if V8_TARGET_ARCH_MIPS64
11 
12 #include "src/assembler.h"
13 #include "src/base/bits.h"
14 #include "src/codegen.h"
15 #include "src/disasm.h"
16 #include "src/mips64/constants-mips64.h"
17 #include "src/mips64/simulator-mips64.h"
18 #include "src/ostreams.h"
19 #include "src/runtime/runtime-utils.h"
20 
21 // Only build the simulator if not compiling for real MIPS hardware.
22 #if defined(USE_SIMULATOR)
23 
24 namespace v8 {
25 namespace internal {
26 
27 // Util functions.
HaveSameSign(int64_t a,int64_t b)28 inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); }
29 
get_fcsr_condition_bit(uint32_t cc)30 uint32_t get_fcsr_condition_bit(uint32_t cc) {
31   if (cc == 0) {
32     return 23;
33   } else {
34     return 24 + cc;
35   }
36 }
37 
38 
MultiplyHighSigned(int64_t u,int64_t v)39 static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
40   uint64_t u0, v0, w0;
41   int64_t u1, v1, w1, w2, t;
42 
43   u0 = u & 0xffffffffL;
44   u1 = u >> 32;
45   v0 = v & 0xffffffffL;
46   v1 = v >> 32;
47 
48   w0 = u0 * v0;
49   t = u1 * v0 + (w0 >> 32);
50   w1 = t & 0xffffffffL;
51   w2 = t >> 32;
52   w1 = u0 * v1 + w1;
53 
54   return u1 * v1 + w2 + (w1 >> 32);
55 }
56 
57 
58 // This macro provides a platform independent use of sscanf. The reason for
59 // SScanF not being implemented in a platform independent was through
60 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
61 // Library does not provide vsscanf.
62 #define SScanF sscanf  // NOLINT
63 
64 // The MipsDebugger class is used by the simulator while debugging simulated
65 // code.
66 class MipsDebugger {
67  public:
MipsDebugger(Simulator * sim)68   explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
69 
70   void Stop(Instruction* instr);
71   void Debug();
72   // Print all registers with a nice formatting.
73   void PrintAllRegs();
74   void PrintAllRegsIncludingFPU();
75 
76  private:
77   // We set the breakpoint code to 0xfffff to easily recognize it.
78   static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
79   static const Instr kNopInstr =  0x0;
80 
81   Simulator* sim_;
82 
83   int64_t GetRegisterValue(int regnum);
84   int64_t GetFPURegisterValue(int regnum);
85   float GetFPURegisterValueFloat(int regnum);
86   double GetFPURegisterValueDouble(int regnum);
87   bool GetValue(const char* desc, int64_t* value);
88 
89   // Set or delete a breakpoint. Returns true if successful.
90   bool SetBreakpoint(Instruction* breakpc);
91   bool DeleteBreakpoint(Instruction* breakpc);
92 
93   // Undo and redo all breakpoints. This is needed to bracket disassembly and
94   // execution to skip past breakpoints when run from the debugger.
95   void UndoBreakpoints();
96   void RedoBreakpoints();
97 };
98 
UNSUPPORTED()99 inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); }
100 
Stop(Instruction * instr)101 void MipsDebugger::Stop(Instruction* instr) {
102   // Get the stop code.
103   uint32_t code = instr->Bits(25, 6);
104   PrintF("Simulator hit (%u)\n", code);
105   // TODO(yuyin): 2 -> 3?
106   sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize);
107   Debug();
108 }
109 
GetRegisterValue(int regnum)110 int64_t MipsDebugger::GetRegisterValue(int regnum) {
111   if (regnum == kNumSimuRegisters) {
112     return sim_->get_pc();
113   } else {
114     return sim_->get_register(regnum);
115   }
116 }
117 
118 
GetFPURegisterValue(int regnum)119 int64_t MipsDebugger::GetFPURegisterValue(int regnum) {
120   if (regnum == kNumFPURegisters) {
121     return sim_->get_pc();
122   } else {
123     return sim_->get_fpu_register(regnum);
124   }
125 }
126 
127 
GetFPURegisterValueFloat(int regnum)128 float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
129   if (regnum == kNumFPURegisters) {
130     return sim_->get_pc();
131   } else {
132     return sim_->get_fpu_register_float(regnum);
133   }
134 }
135 
136 
GetFPURegisterValueDouble(int regnum)137 double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
138   if (regnum == kNumFPURegisters) {
139     return sim_->get_pc();
140   } else {
141     return sim_->get_fpu_register_double(regnum);
142   }
143 }
144 
145 
GetValue(const char * desc,int64_t * value)146 bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
147   int regnum = Registers::Number(desc);
148   int fpuregnum = FPURegisters::Number(desc);
149 
150   if (regnum != kInvalidRegister) {
151     *value = GetRegisterValue(regnum);
152     return true;
153   } else if (fpuregnum != kInvalidFPURegister) {
154     *value = GetFPURegisterValue(fpuregnum);
155     return true;
156   } else if (strncmp(desc, "0x", 2) == 0) {
157     return SScanF(desc + 2, "%" SCNx64,
158                   reinterpret_cast<uint64_t*>(value)) == 1;
159   } else {
160     return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
161   }
162   return false;
163 }
164 
165 
SetBreakpoint(Instruction * breakpc)166 bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
167   // Check if a breakpoint can be set. If not return without any side-effects.
168   if (sim_->break_pc_ != NULL) {
169     return false;
170   }
171 
172   // Set the breakpoint.
173   sim_->break_pc_ = breakpc;
174   sim_->break_instr_ = breakpc->InstructionBits();
175   // Not setting the breakpoint instruction in the code itself. It will be set
176   // when the debugger shell continues.
177   return true;
178 }
179 
180 
DeleteBreakpoint(Instruction * breakpc)181 bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
182   if (sim_->break_pc_ != NULL) {
183     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
184   }
185 
186   sim_->break_pc_ = NULL;
187   sim_->break_instr_ = 0;
188   return true;
189 }
190 
191 
UndoBreakpoints()192 void MipsDebugger::UndoBreakpoints() {
193   if (sim_->break_pc_ != NULL) {
194     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
195   }
196 }
197 
198 
RedoBreakpoints()199 void MipsDebugger::RedoBreakpoints() {
200   if (sim_->break_pc_ != NULL) {
201     sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
202   }
203 }
204 
205 
PrintAllRegs()206 void MipsDebugger::PrintAllRegs() {
207 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
208 
209   PrintF("\n");
210   // at, v0, a0.
211   PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64
212          "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n",
213          REG_INFO(1), REG_INFO(2), REG_INFO(4));
214   // v1, a1.
215   PrintF("%34s\t%3s: 0x%016" PRIx64 "  %14" PRId64 " \t%3s: 0x%016" PRIx64
216          "  %14" PRId64 " \n",
217          "", REG_INFO(3), REG_INFO(5));
218   // a2.
219   PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 "  %14" PRId64 " \n", "", "",
220          REG_INFO(6));
221   // a3.
222   PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 "  %14" PRId64 " \n", "", "",
223          REG_INFO(7));
224   PrintF("\n");
225   // a4-t3, s0-s7
226   for (int i = 0; i < 8; i++) {
227     PrintF("%3s: 0x%016" PRIx64 "  %14" PRId64 " \t%3s: 0x%016" PRIx64
228            "  %14" PRId64 " \n",
229            REG_INFO(8 + i), REG_INFO(16 + i));
230   }
231   PrintF("\n");
232   // t8, k0, LO.
233   PrintF("%3s: 0x%016" PRIx64 "  %14" PRId64 " \t%3s: 0x%016" PRIx64
234          "  %14" PRId64 " \t%3s: 0x%016" PRIx64 "  %14" PRId64 " \n",
235          REG_INFO(24), REG_INFO(26), REG_INFO(32));
236   // t9, k1, HI.
237   PrintF("%3s: 0x%016" PRIx64 "  %14" PRId64 " \t%3s: 0x%016" PRIx64
238          "  %14" PRId64 " \t%3s: 0x%016" PRIx64 "  %14" PRId64 " \n",
239          REG_INFO(25), REG_INFO(27), REG_INFO(33));
240   // sp, fp, gp.
241   PrintF("%3s: 0x%016" PRIx64 "  %14" PRId64 " \t%3s: 0x%016" PRIx64
242          "  %14" PRId64 " \t%3s: 0x%016" PRIx64 "  %14" PRId64 " \n",
243          REG_INFO(29), REG_INFO(30), REG_INFO(28));
244   // pc.
245   PrintF("%3s: 0x%016" PRIx64 "  %14" PRId64 " \t%3s: 0x%016" PRIx64
246          "  %14" PRId64 " \n",
247          REG_INFO(31), REG_INFO(34));
248 
249 #undef REG_INFO
250 #undef FPU_REG_INFO
251 }
252 
253 
PrintAllRegsIncludingFPU()254 void MipsDebugger::PrintAllRegsIncludingFPU() {
255 #define FPU_REG_INFO(n) FPURegisters::Name(n), \
256         GetFPURegisterValue(n), \
257         GetFPURegisterValueDouble(n)
258 
259   PrintAllRegs();
260 
261   PrintF("\n\n");
262   // f0, f1, f2, ... f31.
263   // TODO(plind): consider printing 2 columns for space efficiency.
264   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(0));
265   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(1));
266   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(2));
267   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(3));
268   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(4));
269   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(5));
270   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(6));
271   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(7));
272   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(8));
273   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(9));
274   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(10));
275   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(11));
276   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(12));
277   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(13));
278   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(14));
279   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(15));
280   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(16));
281   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(17));
282   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(18));
283   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(19));
284   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(20));
285   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(21));
286   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(22));
287   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(23));
288   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(24));
289   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(25));
290   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(26));
291   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(27));
292   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(28));
293   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(29));
294   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(30));
295   PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n", FPU_REG_INFO(31));
296 
297 #undef REG_INFO
298 #undef FPU_REG_INFO
299 }
300 
301 
Debug()302 void MipsDebugger::Debug() {
303   intptr_t last_pc = -1;
304   bool done = false;
305 
306 #define COMMAND_SIZE 63
307 #define ARG_SIZE 255
308 
309 #define STR(a) #a
310 #define XSTR(a) STR(a)
311 
312   char cmd[COMMAND_SIZE + 1];
313   char arg1[ARG_SIZE + 1];
314   char arg2[ARG_SIZE + 1];
315   char* argv[3] = { cmd, arg1, arg2 };
316 
317   // Make sure to have a proper terminating character if reaching the limit.
318   cmd[COMMAND_SIZE] = 0;
319   arg1[ARG_SIZE] = 0;
320   arg2[ARG_SIZE] = 0;
321 
322   // Undo all set breakpoints while running in the debugger shell. This will
323   // make them invisible to all commands.
324   UndoBreakpoints();
325 
326   while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
327     if (last_pc != sim_->get_pc()) {
328       disasm::NameConverter converter;
329       disasm::Disassembler dasm(converter);
330       // Use a reasonably large buffer.
331       v8::internal::EmbeddedVector<char, 256> buffer;
332       dasm.InstructionDecode(buffer,
333                              reinterpret_cast<byte*>(sim_->get_pc()));
334       PrintF("  0x%016" PRIx64 "   %s\n", sim_->get_pc(), buffer.start());
335       last_pc = sim_->get_pc();
336     }
337     char* line = ReadLine("sim> ");
338     if (line == NULL) {
339       break;
340     } else {
341       char* last_input = sim_->last_debugger_input();
342       if (strcmp(line, "\n") == 0 && last_input != NULL) {
343         line = last_input;
344       } else {
345         // Ownership is transferred to sim_;
346         sim_->set_last_debugger_input(line);
347       }
348       // Use sscanf to parse the individual parts of the command line. At the
349       // moment no command expects more than two parameters.
350       int argc = SScanF(line,
351                         "%" XSTR(COMMAND_SIZE) "s "
352                         "%" XSTR(ARG_SIZE) "s "
353                         "%" XSTR(ARG_SIZE) "s",
354                         cmd, arg1, arg2);
355       if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
356         Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
357         if (!(instr->IsTrap()) ||
358             instr->InstructionBits() == rtCallRedirInstr) {
359           sim_->InstructionDecode(
360               reinterpret_cast<Instruction*>(sim_->get_pc()));
361         } else {
362           // Allow si to jump over generated breakpoints.
363           PrintF("/!\\ Jumping over generated breakpoint.\n");
364           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
365         }
366       } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
367         // Execute the one instruction we broke at with breakpoints disabled.
368         sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
369         // Leave the debugger shell.
370         done = true;
371       } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
372         if (argc == 2) {
373           int64_t value;
374           double dvalue;
375           if (strcmp(arg1, "all") == 0) {
376             PrintAllRegs();
377           } else if (strcmp(arg1, "allf") == 0) {
378             PrintAllRegsIncludingFPU();
379           } else {
380             int regnum = Registers::Number(arg1);
381             int fpuregnum = FPURegisters::Number(arg1);
382 
383             if (regnum != kInvalidRegister) {
384               value = GetRegisterValue(regnum);
385               PrintF("%s: 0x%08" PRIx64 "  %" PRId64 "  \n", arg1, value,
386                      value);
387             } else if (fpuregnum != kInvalidFPURegister) {
388               value = GetFPURegisterValue(fpuregnum);
389               dvalue = GetFPURegisterValueDouble(fpuregnum);
390               PrintF("%3s: 0x%016" PRIx64 "  %16.4e\n",
391                      FPURegisters::Name(fpuregnum), value, dvalue);
392             } else {
393               PrintF("%s unrecognized\n", arg1);
394             }
395           }
396         } else {
397           if (argc == 3) {
398             if (strcmp(arg2, "single") == 0) {
399               int64_t value;
400               float fvalue;
401               int fpuregnum = FPURegisters::Number(arg1);
402 
403               if (fpuregnum != kInvalidFPURegister) {
404                 value = GetFPURegisterValue(fpuregnum);
405                 value &= 0xffffffffUL;
406                 fvalue = GetFPURegisterValueFloat(fpuregnum);
407                 PrintF("%s: 0x%08" PRIx64 "  %11.4e\n", arg1, value, fvalue);
408               } else {
409                 PrintF("%s unrecognized\n", arg1);
410               }
411             } else {
412               PrintF("print <fpu register> single\n");
413             }
414           } else {
415             PrintF("print <register> or print <fpu register> single\n");
416           }
417         }
418       } else if ((strcmp(cmd, "po") == 0)
419                  || (strcmp(cmd, "printobject") == 0)) {
420         if (argc == 2) {
421           int64_t value;
422           OFStream os(stdout);
423           if (GetValue(arg1, &value)) {
424             Object* obj = reinterpret_cast<Object*>(value);
425             os << arg1 << ": \n";
426 #ifdef DEBUG
427             obj->Print(os);
428             os << "\n";
429 #else
430             os << Brief(obj) << "\n";
431 #endif
432           } else {
433             os << arg1 << " unrecognized\n";
434           }
435         } else {
436           PrintF("printobject <value>\n");
437         }
438       } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
439         int64_t* cur = NULL;
440         int64_t* end = NULL;
441         int next_arg = 1;
442 
443         if (strcmp(cmd, "stack") == 0) {
444           cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp));
445         } else {  // Command "mem".
446           int64_t value;
447           if (!GetValue(arg1, &value)) {
448             PrintF("%s unrecognized\n", arg1);
449             continue;
450           }
451           cur = reinterpret_cast<int64_t*>(value);
452           next_arg++;
453         }
454 
455         int64_t words;
456         if (argc == next_arg) {
457           words = 10;
458         } else {
459           if (!GetValue(argv[next_arg], &words)) {
460             words = 10;
461           }
462         }
463         end = cur + words;
464 
465         while (cur < end) {
466           PrintF("  0x%012" PRIxPTR " :  0x%016" PRIx64 "  %14" PRId64 " ",
467                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
468           HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
469           int64_t value = *cur;
470           Heap* current_heap = sim_->isolate_->heap();
471           if (((value & 1) == 0) ||
472               current_heap->ContainsSlow(obj->address())) {
473             PrintF(" (");
474             if ((value & 1) == 0) {
475               PrintF("smi %d", static_cast<int>(value >> 32));
476             } else {
477               obj->ShortPrint();
478             }
479             PrintF(")");
480           }
481           PrintF("\n");
482           cur++;
483         }
484 
485       } else if ((strcmp(cmd, "disasm") == 0) ||
486                  (strcmp(cmd, "dpc") == 0) ||
487                  (strcmp(cmd, "di") == 0)) {
488         disasm::NameConverter converter;
489         disasm::Disassembler dasm(converter);
490         // Use a reasonably large buffer.
491         v8::internal::EmbeddedVector<char, 256> buffer;
492 
493         byte* cur = NULL;
494         byte* end = NULL;
495 
496         if (argc == 1) {
497           cur = reinterpret_cast<byte*>(sim_->get_pc());
498           end = cur + (10 * Instruction::kInstrSize);
499         } else if (argc == 2) {
500           int regnum = Registers::Number(arg1);
501           if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
502             // The argument is an address or a register name.
503             int64_t value;
504             if (GetValue(arg1, &value)) {
505               cur = reinterpret_cast<byte*>(value);
506               // Disassemble 10 instructions at <arg1>.
507               end = cur + (10 * Instruction::kInstrSize);
508             }
509           } else {
510             // The argument is the number of instructions.
511             int64_t value;
512             if (GetValue(arg1, &value)) {
513               cur = reinterpret_cast<byte*>(sim_->get_pc());
514               // Disassemble <arg1> instructions.
515               end = cur + (value * Instruction::kInstrSize);
516             }
517           }
518         } else {
519           int64_t value1;
520           int64_t value2;
521           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
522             cur = reinterpret_cast<byte*>(value1);
523             end = cur + (value2 * Instruction::kInstrSize);
524           }
525         }
526 
527         while (cur < end) {
528           dasm.InstructionDecode(buffer, cur);
529           PrintF("  0x%08" PRIxPTR "   %s\n", reinterpret_cast<intptr_t>(cur),
530                  buffer.start());
531           cur += Instruction::kInstrSize;
532         }
533       } else if (strcmp(cmd, "gdb") == 0) {
534         PrintF("relinquishing control to gdb\n");
535         v8::base::OS::DebugBreak();
536         PrintF("regaining control from gdb\n");
537       } else if (strcmp(cmd, "break") == 0) {
538         if (argc == 2) {
539           int64_t value;
540           if (GetValue(arg1, &value)) {
541             if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
542               PrintF("setting breakpoint failed\n");
543             }
544           } else {
545             PrintF("%s unrecognized\n", arg1);
546           }
547         } else {
548           PrintF("break <address>\n");
549         }
550       } else if (strcmp(cmd, "del") == 0) {
551         if (!DeleteBreakpoint(NULL)) {
552           PrintF("deleting breakpoint failed\n");
553         }
554       } else if (strcmp(cmd, "flags") == 0) {
555         PrintF("No flags on MIPS !\n");
556       } else if (strcmp(cmd, "stop") == 0) {
557         int64_t value;
558         intptr_t stop_pc = sim_->get_pc() -
559             2 * Instruction::kInstrSize;
560         Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
561         Instruction* msg_address =
562           reinterpret_cast<Instruction*>(stop_pc +
563               Instruction::kInstrSize);
564         if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
565           // Remove the current stop.
566           if (sim_->IsStopInstruction(stop_instr)) {
567             stop_instr->SetInstructionBits(kNopInstr);
568             msg_address->SetInstructionBits(kNopInstr);
569           } else {
570             PrintF("Not at debugger stop.\n");
571           }
572         } else if (argc == 3) {
573           // Print information about all/the specified breakpoint(s).
574           if (strcmp(arg1, "info") == 0) {
575             if (strcmp(arg2, "all") == 0) {
576               PrintF("Stop information:\n");
577               for (uint32_t i = kMaxWatchpointCode + 1;
578                    i <= kMaxStopCode;
579                    i++) {
580                 sim_->PrintStopInfo(i);
581               }
582             } else if (GetValue(arg2, &value)) {
583               sim_->PrintStopInfo(value);
584             } else {
585               PrintF("Unrecognized argument.\n");
586             }
587           } else if (strcmp(arg1, "enable") == 0) {
588             // Enable all/the specified breakpoint(s).
589             if (strcmp(arg2, "all") == 0) {
590               for (uint32_t i = kMaxWatchpointCode + 1;
591                    i <= kMaxStopCode;
592                    i++) {
593                 sim_->EnableStop(i);
594               }
595             } else if (GetValue(arg2, &value)) {
596               sim_->EnableStop(value);
597             } else {
598               PrintF("Unrecognized argument.\n");
599             }
600           } else if (strcmp(arg1, "disable") == 0) {
601             // Disable all/the specified breakpoint(s).
602             if (strcmp(arg2, "all") == 0) {
603               for (uint32_t i = kMaxWatchpointCode + 1;
604                    i <= kMaxStopCode;
605                    i++) {
606                 sim_->DisableStop(i);
607               }
608             } else if (GetValue(arg2, &value)) {
609               sim_->DisableStop(value);
610             } else {
611               PrintF("Unrecognized argument.\n");
612             }
613           }
614         } else {
615           PrintF("Wrong usage. Use help command for more information.\n");
616         }
617       } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
618         // Print registers and disassemble.
619         PrintAllRegs();
620         PrintF("\n");
621 
622         disasm::NameConverter converter;
623         disasm::Disassembler dasm(converter);
624         // Use a reasonably large buffer.
625         v8::internal::EmbeddedVector<char, 256> buffer;
626 
627         byte* cur = NULL;
628         byte* end = NULL;
629 
630         if (argc == 1) {
631           cur = reinterpret_cast<byte*>(sim_->get_pc());
632           end = cur + (10 * Instruction::kInstrSize);
633         } else if (argc == 2) {
634           int64_t value;
635           if (GetValue(arg1, &value)) {
636             cur = reinterpret_cast<byte*>(value);
637             // no length parameter passed, assume 10 instructions
638             end = cur + (10 * Instruction::kInstrSize);
639           }
640         } else {
641           int64_t value1;
642           int64_t value2;
643           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
644             cur = reinterpret_cast<byte*>(value1);
645             end = cur + (value2 * Instruction::kInstrSize);
646           }
647         }
648 
649         while (cur < end) {
650           dasm.InstructionDecode(buffer, cur);
651           PrintF("  0x%08" PRIxPTR "   %s\n", reinterpret_cast<intptr_t>(cur),
652                  buffer.start());
653           cur += Instruction::kInstrSize;
654         }
655       } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
656         PrintF("cont\n");
657         PrintF("  continue execution (alias 'c')\n");
658         PrintF("stepi\n");
659         PrintF("  step one instruction (alias 'si')\n");
660         PrintF("print <register>\n");
661         PrintF("  print register content (alias 'p')\n");
662         PrintF("  use register name 'all' to print all registers\n");
663         PrintF("printobject <register>\n");
664         PrintF("  print an object from a register (alias 'po')\n");
665         PrintF("stack [<words>]\n");
666         PrintF("  dump stack content, default dump 10 words)\n");
667         PrintF("mem <address> [<words>]\n");
668         PrintF("  dump memory content, default dump 10 words)\n");
669         PrintF("flags\n");
670         PrintF("  print flags\n");
671         PrintF("disasm [<instructions>]\n");
672         PrintF("disasm [<address/register>]\n");
673         PrintF("disasm [[<address/register>] <instructions>]\n");
674         PrintF("  disassemble code, default is 10 instructions\n");
675         PrintF("  from pc (alias 'di')\n");
676         PrintF("gdb\n");
677         PrintF("  enter gdb\n");
678         PrintF("break <address>\n");
679         PrintF("  set a break point on the address\n");
680         PrintF("del\n");
681         PrintF("  delete the breakpoint\n");
682         PrintF("stop feature:\n");
683         PrintF("  Description:\n");
684         PrintF("    Stops are debug instructions inserted by\n");
685         PrintF("    the Assembler::stop() function.\n");
686         PrintF("    When hitting a stop, the Simulator will\n");
687         PrintF("    stop and and give control to the Debugger.\n");
688         PrintF("    All stop codes are watched:\n");
689         PrintF("    - They can be enabled / disabled: the Simulator\n");
690         PrintF("       will / won't stop when hitting them.\n");
691         PrintF("    - The Simulator keeps track of how many times they \n");
692         PrintF("      are met. (See the info command.) Going over a\n");
693         PrintF("      disabled stop still increases its counter. \n");
694         PrintF("  Commands:\n");
695         PrintF("    stop info all/<code> : print infos about number <code>\n");
696         PrintF("      or all stop(s).\n");
697         PrintF("    stop enable/disable all/<code> : enables / disables\n");
698         PrintF("      all or number <code> stop(s)\n");
699         PrintF("    stop unstop\n");
700         PrintF("      ignore the stop instruction at the current location\n");
701         PrintF("      from now on\n");
702       } else {
703         PrintF("Unknown command: %s\n", cmd);
704       }
705     }
706   }
707 
708   // Add all the breakpoints back to stop execution and enter the debugger
709   // shell when hit.
710   RedoBreakpoints();
711 
712 #undef COMMAND_SIZE
713 #undef ARG_SIZE
714 
715 #undef STR
716 #undef XSTR
717 }
718 
719 
ICacheMatch(void * one,void * two)720 static bool ICacheMatch(void* one, void* two) {
721   DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
722   DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
723   return one == two;
724 }
725 
726 
ICacheHash(void * key)727 static uint32_t ICacheHash(void* key) {
728   return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
729 }
730 
731 
AllOnOnePage(uintptr_t start,size_t size)732 static bool AllOnOnePage(uintptr_t start, size_t size) {
733   intptr_t start_page = (start & ~CachePage::kPageMask);
734   intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
735   return start_page == end_page;
736 }
737 
738 
set_last_debugger_input(char * input)739 void Simulator::set_last_debugger_input(char* input) {
740   DeleteArray(last_debugger_input_);
741   last_debugger_input_ = input;
742 }
743 
FlushICache(base::CustomMatcherHashMap * i_cache,void * start_addr,size_t size)744 void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
745                             void* start_addr, size_t size) {
746   int64_t start = reinterpret_cast<int64_t>(start_addr);
747   int64_t intra_line = (start & CachePage::kLineMask);
748   start -= intra_line;
749   size += intra_line;
750   size = ((size - 1) | CachePage::kLineMask) + 1;
751   int offset = (start & CachePage::kPageMask);
752   while (!AllOnOnePage(start, size - 1)) {
753     int bytes_to_flush = CachePage::kPageSize - offset;
754     FlushOnePage(i_cache, start, bytes_to_flush);
755     start += bytes_to_flush;
756     size -= bytes_to_flush;
757     DCHECK_EQ((int64_t)0, start & CachePage::kPageMask);
758     offset = 0;
759   }
760   if (size != 0) {
761     FlushOnePage(i_cache, start, size);
762   }
763 }
764 
GetCachePage(base::CustomMatcherHashMap * i_cache,void * page)765 CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
766                                    void* page) {
767   base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
768   if (entry->value == NULL) {
769     CachePage* new_page = new CachePage();
770     entry->value = new_page;
771   }
772   return reinterpret_cast<CachePage*>(entry->value);
773 }
774 
775 
776 // Flush from start up to and not including start + size.
FlushOnePage(base::CustomMatcherHashMap * i_cache,intptr_t start,size_t size)777 void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
778                              intptr_t start, size_t size) {
779   DCHECK(size <= CachePage::kPageSize);
780   DCHECK(AllOnOnePage(start, size - 1));
781   DCHECK((start & CachePage::kLineMask) == 0);
782   DCHECK((size & CachePage::kLineMask) == 0);
783   void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
784   int offset = (start & CachePage::kPageMask);
785   CachePage* cache_page = GetCachePage(i_cache, page);
786   char* valid_bytemap = cache_page->ValidityByte(offset);
787   memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
788 }
789 
CheckICache(base::CustomMatcherHashMap * i_cache,Instruction * instr)790 void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
791                             Instruction* instr) {
792   int64_t address = reinterpret_cast<int64_t>(instr);
793   void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
794   void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
795   int offset = (address & CachePage::kPageMask);
796   CachePage* cache_page = GetCachePage(i_cache, page);
797   char* cache_valid_byte = cache_page->ValidityByte(offset);
798   bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
799   char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
800   if (cache_hit) {
801     // Check that the data in memory matches the contents of the I-cache.
802     CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
803                        cache_page->CachedData(offset),
804                        Instruction::kInstrSize));
805   } else {
806     // Cache miss.  Load memory into the cache.
807     memcpy(cached_line, line, CachePage::kLineLength);
808     *cache_valid_byte = CachePage::LINE_VALID;
809   }
810 }
811 
812 
Initialize(Isolate * isolate)813 void Simulator::Initialize(Isolate* isolate) {
814   if (isolate->simulator_initialized()) return;
815   isolate->set_simulator_initialized(true);
816   ::v8::internal::ExternalReference::set_redirector(isolate,
817                                                     &RedirectExternalReference);
818 }
819 
820 
Simulator(Isolate * isolate)821 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
822   i_cache_ = isolate_->simulator_i_cache();
823   if (i_cache_ == NULL) {
824     i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
825     isolate_->set_simulator_i_cache(i_cache_);
826   }
827   Initialize(isolate);
828   // Set up simulator support first. Some of this information is needed to
829   // setup the architecture state.
830   stack_size_ = FLAG_sim_stack_size * KB;
831   stack_ = reinterpret_cast<char*>(malloc(stack_size_));
832   pc_modified_ = false;
833   icount_ = 0;
834   break_count_ = 0;
835   break_pc_ = NULL;
836   break_instr_ = 0;
837 
838   // Set up architecture state.
839   // All registers are initialized to zero to start with.
840   for (int i = 0; i < kNumSimuRegisters; i++) {
841     registers_[i] = 0;
842   }
843   for (int i = 0; i < kNumFPURegisters; i++) {
844     FPUregisters_[i] = 0;
845   }
846 
847   if (kArchVariant == kMips64r6) {
848     FCSR_ = kFCSRNaN2008FlagMask;
849   } else {
850     FCSR_ = 0;
851   }
852 
853   // The sp is initialized to point to the bottom (high address) of the
854   // allocated stack area. To be safe in potential stack underflows we leave
855   // some buffer below.
856   registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64;
857   // The ra and pc are initialized to a known bad value that will cause an
858   // access violation if the simulator ever tries to execute it.
859   registers_[pc] = bad_ra;
860   registers_[ra] = bad_ra;
861 
862   last_debugger_input_ = NULL;
863 }
864 
865 
~Simulator()866 Simulator::~Simulator() { free(stack_); }
867 
868 
869 // When the generated code calls an external reference we need to catch that in
870 // the simulator.  The external reference will be a function compiled for the
871 // host architecture.  We need to call that function instead of trying to
872 // execute it with the simulator.  We do that by redirecting the external
873 // reference to a swi (software-interrupt) instruction that is handled by
874 // the simulator.  We write the original destination of the jump just at a known
875 // offset from the swi instruction so the simulator knows what to call.
876 class Redirection {
877  public:
Redirection(Isolate * isolate,void * external_function,ExternalReference::Type type)878   Redirection(Isolate* isolate, void* external_function,
879               ExternalReference::Type type)
880       : external_function_(external_function),
881         swi_instruction_(rtCallRedirInstr),
882         type_(type),
883         next_(NULL) {
884     next_ = isolate->simulator_redirection();
885     Simulator::current(isolate)->
886         FlushICache(isolate->simulator_i_cache(),
887                     reinterpret_cast<void*>(&swi_instruction_),
888                     Instruction::kInstrSize);
889     isolate->set_simulator_redirection(this);
890   }
891 
address_of_swi_instruction()892   void* address_of_swi_instruction() {
893     return reinterpret_cast<void*>(&swi_instruction_);
894   }
895 
external_function()896   void* external_function() { return external_function_; }
type()897   ExternalReference::Type type() { return type_; }
898 
Get(Isolate * isolate,void * external_function,ExternalReference::Type type)899   static Redirection* Get(Isolate* isolate, void* external_function,
900                           ExternalReference::Type type) {
901     Redirection* current = isolate->simulator_redirection();
902     for (; current != NULL; current = current->next_) {
903       if (current->external_function_ == external_function) return current;
904     }
905     return new Redirection(isolate, external_function, type);
906   }
907 
FromSwiInstruction(Instruction * swi_instruction)908   static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
909     char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
910     char* addr_of_redirection =
911         addr_of_swi - offsetof(Redirection, swi_instruction_);
912     return reinterpret_cast<Redirection*>(addr_of_redirection);
913   }
914 
ReverseRedirection(int64_t reg)915   static void* ReverseRedirection(int64_t reg) {
916     Redirection* redirection = FromSwiInstruction(
917         reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
918     return redirection->external_function();
919   }
920 
DeleteChain(Redirection * redirection)921   static void DeleteChain(Redirection* redirection) {
922     while (redirection != nullptr) {
923       Redirection* next = redirection->next_;
924       delete redirection;
925       redirection = next;
926     }
927   }
928 
929  private:
930   void* external_function_;
931   uint32_t swi_instruction_;
932   ExternalReference::Type type_;
933   Redirection* next_;
934 };
935 
936 
937 // static
TearDown(base::CustomMatcherHashMap * i_cache,Redirection * first)938 void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
939                          Redirection* first) {
940   Redirection::DeleteChain(first);
941   if (i_cache != nullptr) {
942     for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
943          entry = i_cache->Next(entry)) {
944       delete static_cast<CachePage*>(entry->value);
945     }
946     delete i_cache;
947   }
948 }
949 
950 
RedirectExternalReference(Isolate * isolate,void * external_function,ExternalReference::Type type)951 void* Simulator::RedirectExternalReference(Isolate* isolate,
952                                            void* external_function,
953                                            ExternalReference::Type type) {
954   Redirection* redirection = Redirection::Get(isolate, external_function, type);
955   return redirection->address_of_swi_instruction();
956 }
957 
958 
959 // Get the active Simulator for the current thread.
current(Isolate * isolate)960 Simulator* Simulator::current(Isolate* isolate) {
961   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
962        isolate->FindOrAllocatePerThreadDataForThisThread();
963   DCHECK(isolate_data != NULL);
964   DCHECK(isolate_data != NULL);
965 
966   Simulator* sim = isolate_data->simulator();
967   if (sim == NULL) {
968     // TODO(146): delete the simulator object when a thread/isolate goes away.
969     sim = new Simulator(isolate);
970     isolate_data->set_simulator(sim);
971   }
972   return sim;
973 }
974 
975 
976 // Sets the register in the architecture state. It will also deal with updating
977 // Simulator internal state for special registers such as PC.
set_register(int reg,int64_t value)978 void Simulator::set_register(int reg, int64_t value) {
979   DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
980   if (reg == pc) {
981     pc_modified_ = true;
982   }
983 
984   // Zero register always holds 0.
985   registers_[reg] = (reg == 0) ? 0 : value;
986 }
987 
988 
set_dw_register(int reg,const int * dbl)989 void Simulator::set_dw_register(int reg, const int* dbl) {
990   DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
991   registers_[reg] = dbl[1];
992   registers_[reg] = registers_[reg] << 32;
993   registers_[reg] += dbl[0];
994 }
995 
996 
set_fpu_register(int fpureg,int64_t value)997 void Simulator::set_fpu_register(int fpureg, int64_t value) {
998   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
999   FPUregisters_[fpureg] = value;
1000 }
1001 
1002 
set_fpu_register_word(int fpureg,int32_t value)1003 void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
1004   // Set ONLY lower 32-bits, leaving upper bits untouched.
1005   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1006   int32_t* pword;
1007   if (kArchEndian == kLittle) {
1008     pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
1009   } else {
1010     pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1;
1011   }
1012   *pword = value;
1013 }
1014 
1015 
set_fpu_register_hi_word(int fpureg,int32_t value)1016 void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
1017   // Set ONLY upper 32-bits, leaving lower bits untouched.
1018   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1019   int32_t* phiword;
1020   if (kArchEndian == kLittle) {
1021     phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1;
1022   } else {
1023     phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
1024   }
1025   *phiword = value;
1026 }
1027 
1028 
set_fpu_register_float(int fpureg,float value)1029 void Simulator::set_fpu_register_float(int fpureg, float value) {
1030   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1031   *bit_cast<float*>(&FPUregisters_[fpureg]) = value;
1032 }
1033 
1034 
set_fpu_register_double(int fpureg,double value)1035 void Simulator::set_fpu_register_double(int fpureg, double value) {
1036   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1037   *bit_cast<double*>(&FPUregisters_[fpureg]) = value;
1038 }
1039 
1040 
1041 // Get the register from the architecture state. This function does handle
1042 // the special case of accessing the PC register.
get_register(int reg) const1043 int64_t Simulator::get_register(int reg) const {
1044   DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
1045   if (reg == 0)
1046     return 0;
1047   else
1048     return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
1049 }
1050 
1051 
get_double_from_register_pair(int reg)1052 double Simulator::get_double_from_register_pair(int reg) {
1053   // TODO(plind): bad ABI stuff, refactor or remove.
1054   DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
1055 
1056   double dm_val = 0.0;
1057   // Read the bits from the unsigned integer register_[] array
1058   // into the double precision floating point value and return it.
1059   char buffer[sizeof(registers_[0])];
1060   memcpy(buffer, &registers_[reg], sizeof(registers_[0]));
1061   memcpy(&dm_val, buffer, sizeof(registers_[0]));
1062   return(dm_val);
1063 }
1064 
1065 
get_fpu_register(int fpureg) const1066 int64_t Simulator::get_fpu_register(int fpureg) const {
1067   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1068   return FPUregisters_[fpureg];
1069 }
1070 
1071 
get_fpu_register_word(int fpureg) const1072 int32_t Simulator::get_fpu_register_word(int fpureg) const {
1073   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1074   return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
1075 }
1076 
1077 
get_fpu_register_signed_word(int fpureg) const1078 int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
1079   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1080   return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
1081 }
1082 
1083 
get_fpu_register_hi_word(int fpureg) const1084 int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
1085   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1086   return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff);
1087 }
1088 
1089 
get_fpu_register_float(int fpureg) const1090 float Simulator::get_fpu_register_float(int fpureg) const {
1091   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1092   return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg]));
1093 }
1094 
1095 
get_fpu_register_double(int fpureg) const1096 double Simulator::get_fpu_register_double(int fpureg) const {
1097   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1098   return *bit_cast<double*>(&FPUregisters_[fpureg]);
1099 }
1100 
1101 
1102 // Runtime FP routines take up to two double arguments and zero
1103 // or one integer arguments. All are constructed here,
1104 // from a0-a3 or f12 and f13 (n64), or f14 (O32).
GetFpArgs(double * x,double * y,int32_t * z)1105 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1106   if (!IsMipsSoftFloatABI) {
1107     const int fparg2 = 13;
1108     *x = get_fpu_register_double(12);
1109     *y = get_fpu_register_double(fparg2);
1110     *z = static_cast<int32_t>(get_register(a2));
1111   } else {
1112   // TODO(plind): bad ABI stuff, refactor or remove.
1113     // We use a char buffer to get around the strict-aliasing rules which
1114     // otherwise allow the compiler to optimize away the copy.
1115     char buffer[sizeof(*x)];
1116     int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
1117 
1118     // Registers a0 and a1 -> x.
1119     reg_buffer[0] = get_register(a0);
1120     reg_buffer[1] = get_register(a1);
1121     memcpy(x, buffer, sizeof(buffer));
1122     // Registers a2 and a3 -> y.
1123     reg_buffer[0] = get_register(a2);
1124     reg_buffer[1] = get_register(a3);
1125     memcpy(y, buffer, sizeof(buffer));
1126     // Register 2 -> z.
1127     reg_buffer[0] = get_register(a2);
1128     memcpy(z, buffer, sizeof(*z));
1129   }
1130 }
1131 
1132 
1133 // The return value is either in v0/v1 or f0.
SetFpResult(const double & result)1134 void Simulator::SetFpResult(const double& result) {
1135   if (!IsMipsSoftFloatABI) {
1136     set_fpu_register_double(0, result);
1137   } else {
1138     char buffer[2 * sizeof(registers_[0])];
1139     int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer);
1140     memcpy(buffer, &result, sizeof(buffer));
1141     // Copy result to v0 and v1.
1142     set_register(v0, reg_buffer[0]);
1143     set_register(v1, reg_buffer[1]);
1144   }
1145 }
1146 
1147 
1148 // Helper functions for setting and testing the FCSR register's bits.
set_fcsr_bit(uint32_t cc,bool value)1149 void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
1150   if (value) {
1151     FCSR_ |= (1 << cc);
1152   } else {
1153     FCSR_ &= ~(1 << cc);
1154   }
1155 }
1156 
1157 
test_fcsr_bit(uint32_t cc)1158 bool Simulator::test_fcsr_bit(uint32_t cc) {
1159   return FCSR_ & (1 << cc);
1160 }
1161 
1162 
set_fcsr_rounding_mode(FPURoundingMode mode)1163 void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
1164   FCSR_ |= mode & kFPURoundingModeMask;
1165 }
1166 
1167 
get_fcsr_rounding_mode()1168 unsigned int Simulator::get_fcsr_rounding_mode() {
1169   return FCSR_ & kFPURoundingModeMask;
1170 }
1171 
1172 
1173 // Sets the rounding error codes in FCSR based on the result of the rounding.
1174 // Returns true if the operation was invalid.
set_fcsr_round_error(double original,double rounded)1175 bool Simulator::set_fcsr_round_error(double original, double rounded) {
1176   bool ret = false;
1177   double max_int32 = std::numeric_limits<int32_t>::max();
1178   double min_int32 = std::numeric_limits<int32_t>::min();
1179 
1180   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1181     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1182     ret = true;
1183   }
1184 
1185   if (original != rounded) {
1186     set_fcsr_bit(kFCSRInexactFlagBit, true);
1187   }
1188 
1189   if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1190     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1191     ret = true;
1192   }
1193 
1194   if (rounded > max_int32 || rounded < min_int32) {
1195     set_fcsr_bit(kFCSROverflowFlagBit, true);
1196     // The reference is not really clear but it seems this is required:
1197     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1198     ret = true;
1199   }
1200 
1201   return ret;
1202 }
1203 
1204 
1205 // Sets the rounding error codes in FCSR based on the result of the rounding.
1206 // Returns true if the operation was invalid.
set_fcsr_round64_error(double original,double rounded)1207 bool Simulator::set_fcsr_round64_error(double original, double rounded) {
1208   bool ret = false;
1209   // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1210   // loading the most accurate representation into max_int64, which is 2^63.
1211   double max_int64 = std::numeric_limits<int64_t>::max();
1212   double min_int64 = std::numeric_limits<int64_t>::min();
1213 
1214   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1215     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1216     ret = true;
1217   }
1218 
1219   if (original != rounded) {
1220     set_fcsr_bit(kFCSRInexactFlagBit, true);
1221   }
1222 
1223   if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1224     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1225     ret = true;
1226   }
1227 
1228   if (rounded >= max_int64 || rounded < min_int64) {
1229     set_fcsr_bit(kFCSROverflowFlagBit, true);
1230     // The reference is not really clear but it seems this is required:
1231     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1232     ret = true;
1233   }
1234 
1235   return ret;
1236 }
1237 
1238 
1239 // Sets the rounding error codes in FCSR based on the result of the rounding.
1240 // Returns true if the operation was invalid.
set_fcsr_round_error(float original,float rounded)1241 bool Simulator::set_fcsr_round_error(float original, float rounded) {
1242   bool ret = false;
1243   double max_int32 = std::numeric_limits<int32_t>::max();
1244   double min_int32 = std::numeric_limits<int32_t>::min();
1245 
1246   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1247     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1248     ret = true;
1249   }
1250 
1251   if (original != rounded) {
1252     set_fcsr_bit(kFCSRInexactFlagBit, true);
1253   }
1254 
1255   if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1256     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1257     ret = true;
1258   }
1259 
1260   if (rounded > max_int32 || rounded < min_int32) {
1261     set_fcsr_bit(kFCSROverflowFlagBit, true);
1262     // The reference is not really clear but it seems this is required:
1263     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1264     ret = true;
1265   }
1266 
1267   return ret;
1268 }
1269 
set_fpu_register_word_invalid_result(float original,float rounded)1270 void Simulator::set_fpu_register_word_invalid_result(float original,
1271                                                      float rounded) {
1272   if (FCSR_ & kFCSRNaN2008FlagMask) {
1273     double max_int32 = std::numeric_limits<int32_t>::max();
1274     double min_int32 = std::numeric_limits<int32_t>::min();
1275     if (std::isnan(original)) {
1276       set_fpu_register_word(fd_reg(), 0);
1277     } else if (rounded > max_int32) {
1278       set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1279     } else if (rounded < min_int32) {
1280       set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1281     } else {
1282       UNREACHABLE();
1283     }
1284   } else {
1285     set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1286   }
1287 }
1288 
1289 
set_fpu_register_invalid_result(float original,float rounded)1290 void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
1291   if (FCSR_ & kFCSRNaN2008FlagMask) {
1292     double max_int32 = std::numeric_limits<int32_t>::max();
1293     double min_int32 = std::numeric_limits<int32_t>::min();
1294     if (std::isnan(original)) {
1295       set_fpu_register(fd_reg(), 0);
1296     } else if (rounded > max_int32) {
1297       set_fpu_register(fd_reg(), kFPUInvalidResult);
1298     } else if (rounded < min_int32) {
1299       set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1300     } else {
1301       UNREACHABLE();
1302     }
1303   } else {
1304     set_fpu_register(fd_reg(), kFPUInvalidResult);
1305   }
1306 }
1307 
1308 
set_fpu_register_invalid_result64(float original,float rounded)1309 void Simulator::set_fpu_register_invalid_result64(float original,
1310                                                   float rounded) {
1311   if (FCSR_ & kFCSRNaN2008FlagMask) {
1312     // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1313     // loading the most accurate representation into max_int64, which is 2^63.
1314     double max_int64 = std::numeric_limits<int64_t>::max();
1315     double min_int64 = std::numeric_limits<int64_t>::min();
1316     if (std::isnan(original)) {
1317       set_fpu_register(fd_reg(), 0);
1318     } else if (rounded >= max_int64) {
1319       set_fpu_register(fd_reg(), kFPU64InvalidResult);
1320     } else if (rounded < min_int64) {
1321       set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1322     } else {
1323       UNREACHABLE();
1324     }
1325   } else {
1326     set_fpu_register(fd_reg(), kFPU64InvalidResult);
1327   }
1328 }
1329 
1330 
set_fpu_register_word_invalid_result(double original,double rounded)1331 void Simulator::set_fpu_register_word_invalid_result(double original,
1332                                                      double rounded) {
1333   if (FCSR_ & kFCSRNaN2008FlagMask) {
1334     double max_int32 = std::numeric_limits<int32_t>::max();
1335     double min_int32 = std::numeric_limits<int32_t>::min();
1336     if (std::isnan(original)) {
1337       set_fpu_register_word(fd_reg(), 0);
1338     } else if (rounded > max_int32) {
1339       set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1340     } else if (rounded < min_int32) {
1341       set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1342     } else {
1343       UNREACHABLE();
1344     }
1345   } else {
1346     set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1347   }
1348 }
1349 
1350 
set_fpu_register_invalid_result(double original,double rounded)1351 void Simulator::set_fpu_register_invalid_result(double original,
1352                                                 double rounded) {
1353   if (FCSR_ & kFCSRNaN2008FlagMask) {
1354     double max_int32 = std::numeric_limits<int32_t>::max();
1355     double min_int32 = std::numeric_limits<int32_t>::min();
1356     if (std::isnan(original)) {
1357       set_fpu_register(fd_reg(), 0);
1358     } else if (rounded > max_int32) {
1359       set_fpu_register(fd_reg(), kFPUInvalidResult);
1360     } else if (rounded < min_int32) {
1361       set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1362     } else {
1363       UNREACHABLE();
1364     }
1365   } else {
1366     set_fpu_register(fd_reg(), kFPUInvalidResult);
1367   }
1368 }
1369 
1370 
set_fpu_register_invalid_result64(double original,double rounded)1371 void Simulator::set_fpu_register_invalid_result64(double original,
1372                                                   double rounded) {
1373   if (FCSR_ & kFCSRNaN2008FlagMask) {
1374     // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1375     // loading the most accurate representation into max_int64, which is 2^63.
1376     double max_int64 = std::numeric_limits<int64_t>::max();
1377     double min_int64 = std::numeric_limits<int64_t>::min();
1378     if (std::isnan(original)) {
1379       set_fpu_register(fd_reg(), 0);
1380     } else if (rounded >= max_int64) {
1381       set_fpu_register(fd_reg(), kFPU64InvalidResult);
1382     } else if (rounded < min_int64) {
1383       set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1384     } else {
1385       UNREACHABLE();
1386     }
1387   } else {
1388     set_fpu_register(fd_reg(), kFPU64InvalidResult);
1389   }
1390 }
1391 
1392 
1393 // Sets the rounding error codes in FCSR based on the result of the rounding.
1394 // Returns true if the operation was invalid.
set_fcsr_round64_error(float original,float rounded)1395 bool Simulator::set_fcsr_round64_error(float original, float rounded) {
1396   bool ret = false;
1397   // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1398   // loading the most accurate representation into max_int64, which is 2^63.
1399   double max_int64 = std::numeric_limits<int64_t>::max();
1400   double min_int64 = std::numeric_limits<int64_t>::min();
1401 
1402   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1403     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1404     ret = true;
1405   }
1406 
1407   if (original != rounded) {
1408     set_fcsr_bit(kFCSRInexactFlagBit, true);
1409   }
1410 
1411   if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1412     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1413     ret = true;
1414   }
1415 
1416   if (rounded >= max_int64 || rounded < min_int64) {
1417     set_fcsr_bit(kFCSROverflowFlagBit, true);
1418     // The reference is not really clear but it seems this is required:
1419     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1420     ret = true;
1421   }
1422 
1423   return ret;
1424 }
1425 
1426 
1427 // For cvt instructions only
round_according_to_fcsr(double toRound,double & rounded,int32_t & rounded_int,double fs)1428 void Simulator::round_according_to_fcsr(double toRound, double& rounded,
1429                                         int32_t& rounded_int, double fs) {
1430   // 0 RN (round to nearest): Round a result to the nearest
1431   // representable value; if the result is exactly halfway between
1432   // two representable values, round to zero. Behave like round_w_d.
1433 
1434   // 1 RZ (round toward zero): Round a result to the closest
1435   // representable value whose absolute value is less than or
1436   // equal to the infinitely accurate result. Behave like trunc_w_d.
1437 
1438   // 2 RP (round up, or toward +infinity): Round a result to the
1439   // next representable value up. Behave like ceil_w_d.
1440 
1441   // 3 RN (round down, or toward −infinity): Round a result to
1442   // the next representable value down. Behave like floor_w_d.
1443   switch (FCSR_ & 3) {
1444     case kRoundToNearest:
1445       rounded = std::floor(fs + 0.5);
1446       rounded_int = static_cast<int32_t>(rounded);
1447       if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1448         // If the number is halfway between two integers,
1449         // round to the even one.
1450         rounded_int--;
1451       }
1452       break;
1453     case kRoundToZero:
1454       rounded = trunc(fs);
1455       rounded_int = static_cast<int32_t>(rounded);
1456       break;
1457     case kRoundToPlusInf:
1458       rounded = std::ceil(fs);
1459       rounded_int = static_cast<int32_t>(rounded);
1460       break;
1461     case kRoundToMinusInf:
1462       rounded = std::floor(fs);
1463       rounded_int = static_cast<int32_t>(rounded);
1464       break;
1465   }
1466 }
1467 
1468 
round64_according_to_fcsr(double toRound,double & rounded,int64_t & rounded_int,double fs)1469 void Simulator::round64_according_to_fcsr(double toRound, double& rounded,
1470                                           int64_t& rounded_int, double fs) {
1471   // 0 RN (round to nearest): Round a result to the nearest
1472   // representable value; if the result is exactly halfway between
1473   // two representable values, round to zero. Behave like round_w_d.
1474 
1475   // 1 RZ (round toward zero): Round a result to the closest
1476   // representable value whose absolute value is less than or.
1477   // equal to the infinitely accurate result. Behave like trunc_w_d.
1478 
1479   // 2 RP (round up, or toward +infinity): Round a result to the
1480   // next representable value up. Behave like ceil_w_d.
1481 
1482   // 3 RN (round down, or toward −infinity): Round a result to
1483   // the next representable value down. Behave like floor_w_d.
1484   switch (FCSR_ & 3) {
1485     case kRoundToNearest:
1486       rounded = std::floor(fs + 0.5);
1487       rounded_int = static_cast<int64_t>(rounded);
1488       if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1489         // If the number is halfway between two integers,
1490         // round to the even one.
1491         rounded_int--;
1492       }
1493       break;
1494     case kRoundToZero:
1495       rounded = trunc(fs);
1496       rounded_int = static_cast<int64_t>(rounded);
1497       break;
1498     case kRoundToPlusInf:
1499       rounded = std::ceil(fs);
1500       rounded_int = static_cast<int64_t>(rounded);
1501       break;
1502     case kRoundToMinusInf:
1503       rounded = std::floor(fs);
1504       rounded_int = static_cast<int64_t>(rounded);
1505       break;
1506   }
1507 }
1508 
1509 
1510 // for cvt instructions only
round_according_to_fcsr(float toRound,float & rounded,int32_t & rounded_int,float fs)1511 void Simulator::round_according_to_fcsr(float toRound, float& rounded,
1512                                         int32_t& rounded_int, float fs) {
1513   // 0 RN (round to nearest): Round a result to the nearest
1514   // representable value; if the result is exactly halfway between
1515   // two representable values, round to zero. Behave like round_w_d.
1516 
1517   // 1 RZ (round toward zero): Round a result to the closest
1518   // representable value whose absolute value is less than or
1519   // equal to the infinitely accurate result. Behave like trunc_w_d.
1520 
1521   // 2 RP (round up, or toward +infinity): Round a result to the
1522   // next representable value up. Behave like ceil_w_d.
1523 
1524   // 3 RN (round down, or toward −infinity): Round a result to
1525   // the next representable value down. Behave like floor_w_d.
1526   switch (FCSR_ & 3) {
1527     case kRoundToNearest:
1528       rounded = std::floor(fs + 0.5);
1529       rounded_int = static_cast<int32_t>(rounded);
1530       if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1531         // If the number is halfway between two integers,
1532         // round to the even one.
1533         rounded_int--;
1534       }
1535       break;
1536     case kRoundToZero:
1537       rounded = trunc(fs);
1538       rounded_int = static_cast<int32_t>(rounded);
1539       break;
1540     case kRoundToPlusInf:
1541       rounded = std::ceil(fs);
1542       rounded_int = static_cast<int32_t>(rounded);
1543       break;
1544     case kRoundToMinusInf:
1545       rounded = std::floor(fs);
1546       rounded_int = static_cast<int32_t>(rounded);
1547       break;
1548   }
1549 }
1550 
1551 
round64_according_to_fcsr(float toRound,float & rounded,int64_t & rounded_int,float fs)1552 void Simulator::round64_according_to_fcsr(float toRound, float& rounded,
1553                                           int64_t& rounded_int, float fs) {
1554   // 0 RN (round to nearest): Round a result to the nearest
1555   // representable value; if the result is exactly halfway between
1556   // two representable values, round to zero. Behave like round_w_d.
1557 
1558   // 1 RZ (round toward zero): Round a result to the closest
1559   // representable value whose absolute value is less than or.
1560   // equal to the infinitely accurate result. Behave like trunc_w_d.
1561 
1562   // 2 RP (round up, or toward +infinity): Round a result to the
1563   // next representable value up. Behave like ceil_w_d.
1564 
1565   // 3 RN (round down, or toward −infinity): Round a result to
1566   // the next representable value down. Behave like floor_w_d.
1567   switch (FCSR_ & 3) {
1568     case kRoundToNearest:
1569       rounded = std::floor(fs + 0.5);
1570       rounded_int = static_cast<int64_t>(rounded);
1571       if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1572         // If the number is halfway between two integers,
1573         // round to the even one.
1574         rounded_int--;
1575       }
1576       break;
1577     case kRoundToZero:
1578       rounded = trunc(fs);
1579       rounded_int = static_cast<int64_t>(rounded);
1580       break;
1581     case kRoundToPlusInf:
1582       rounded = std::ceil(fs);
1583       rounded_int = static_cast<int64_t>(rounded);
1584       break;
1585     case kRoundToMinusInf:
1586       rounded = std::floor(fs);
1587       rounded_int = static_cast<int64_t>(rounded);
1588       break;
1589   }
1590 }
1591 
1592 
1593 // Raw access to the PC register.
set_pc(int64_t value)1594 void Simulator::set_pc(int64_t value) {
1595   pc_modified_ = true;
1596   registers_[pc] = value;
1597 }
1598 
1599 
has_bad_pc() const1600 bool Simulator::has_bad_pc() const {
1601   return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
1602 }
1603 
1604 
1605 // Raw access to the PC register without the special adjustment when reading.
get_pc() const1606 int64_t Simulator::get_pc() const {
1607   return registers_[pc];
1608 }
1609 
1610 
1611 // The MIPS cannot do unaligned reads and writes.  On some MIPS platforms an
1612 // interrupt is caused.  On others it does a funky rotation thing.  For now we
1613 // simply disallow unaligned reads, but at some point we may want to move to
1614 // emulating the rotate behaviour.  Note that simulator runs have the runtime
1615 // system running directly on the host system and only generated code is
1616 // executed in the simulator.  Since the host is typically IA32 we will not
1617 // get the correct MIPS-like behaviour on unaligned accesses.
1618 
1619 // TODO(plind): refactor this messy debug code when we do unaligned access.
DieOrDebug()1620 void Simulator::DieOrDebug() {
1621   if (1) {  // Flag for this was removed.
1622     MipsDebugger dbg(this);
1623     dbg.Debug();
1624   } else {
1625     base::OS::Abort();
1626   }
1627 }
1628 
1629 
TraceRegWr(int64_t value)1630 void Simulator::TraceRegWr(int64_t value) {
1631   if (::v8::internal::FLAG_trace_sim) {
1632     SNPrintF(trace_buf_, "%016" PRIx64 " ", value);
1633   }
1634 }
1635 
1636 
1637 // TODO(plind): consider making icount_ printing a flag option.
TraceMemRd(int64_t addr,int64_t value)1638 void Simulator::TraceMemRd(int64_t addr, int64_t value) {
1639   if (::v8::internal::FLAG_trace_sim) {
1640     SNPrintF(trace_buf_,
1641              "%016" PRIx64 "  <-- [%016" PRIx64 " ]    (%" PRId64 " )", value,
1642              addr, icount_);
1643   }
1644 }
1645 
1646 
TraceMemWr(int64_t addr,int64_t value,TraceType t)1647 void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) {
1648   if (::v8::internal::FLAG_trace_sim) {
1649     switch (t) {
1650       case BYTE:
1651         SNPrintF(trace_buf_, "               %02x --> [%016" PRIx64 " ]",
1652                  static_cast<int8_t>(value), addr);
1653         break;
1654       case HALF:
1655         SNPrintF(trace_buf_, "            %04x --> [%016" PRIx64 " ]",
1656                  static_cast<int16_t>(value), addr);
1657         break;
1658       case WORD:
1659         SNPrintF(trace_buf_, "        %08x --> [%016" PRIx64 " ]",
1660                  static_cast<int32_t>(value), addr);
1661         break;
1662       case DWORD:
1663         SNPrintF(trace_buf_,
1664                  "%016" PRIx64 "  --> [%016" PRIx64 " ]    (%" PRId64 " )",
1665                  value, addr, icount_);
1666         break;
1667     }
1668   }
1669 }
1670 
1671 
1672 // TODO(plind): sign-extend and zero-extend not implmented properly
1673 // on all the ReadXX functions, I don't think re-interpret cast does it.
ReadW(int64_t addr,Instruction * instr)1674 int32_t Simulator::ReadW(int64_t addr, Instruction* instr) {
1675   if (addr >=0 && addr < 0x400) {
1676     // This has to be a NULL-dereference, drop into debugger.
1677     PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1678            " \n",
1679            addr, reinterpret_cast<intptr_t>(instr));
1680     DieOrDebug();
1681   }
1682   if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
1683     int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1684     TraceMemRd(addr, static_cast<int64_t>(*ptr));
1685     return *ptr;
1686   }
1687   PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1688          reinterpret_cast<intptr_t>(instr));
1689   DieOrDebug();
1690   return 0;
1691 }
1692 
1693 
ReadWU(int64_t addr,Instruction * instr)1694 uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) {
1695   if (addr >=0 && addr < 0x400) {
1696     // This has to be a NULL-dereference, drop into debugger.
1697     PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1698            " \n",
1699            addr, reinterpret_cast<intptr_t>(instr));
1700     DieOrDebug();
1701   }
1702   if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
1703     uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1704     TraceMemRd(addr, static_cast<int64_t>(*ptr));
1705     return *ptr;
1706   }
1707   PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1708          reinterpret_cast<intptr_t>(instr));
1709   DieOrDebug();
1710   return 0;
1711 }
1712 
1713 
WriteW(int64_t addr,int32_t value,Instruction * instr)1714 void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) {
1715   if (addr >= 0 && addr < 0x400) {
1716     // This has to be a NULL-dereference, drop into debugger.
1717     PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1718            " \n",
1719            addr, reinterpret_cast<intptr_t>(instr));
1720     DieOrDebug();
1721   }
1722   if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
1723     TraceMemWr(addr, value, WORD);
1724     int* ptr = reinterpret_cast<int*>(addr);
1725     *ptr = value;
1726     return;
1727   }
1728   PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1729          reinterpret_cast<intptr_t>(instr));
1730   DieOrDebug();
1731 }
1732 
1733 
Read2W(int64_t addr,Instruction * instr)1734 int64_t Simulator::Read2W(int64_t addr, Instruction* instr) {
1735   if (addr >=0 && addr < 0x400) {
1736     // This has to be a NULL-dereference, drop into debugger.
1737     PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1738            " \n",
1739            addr, reinterpret_cast<intptr_t>(instr));
1740     DieOrDebug();
1741   }
1742   if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1743     int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1744     TraceMemRd(addr, *ptr);
1745     return *ptr;
1746   }
1747   PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1748          reinterpret_cast<intptr_t>(instr));
1749   DieOrDebug();
1750   return 0;
1751 }
1752 
1753 
Write2W(int64_t addr,int64_t value,Instruction * instr)1754 void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) {
1755   if (addr >= 0 && addr < 0x400) {
1756     // This has to be a NULL-dereference, drop into debugger.
1757     PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1758            "\n",
1759            addr, reinterpret_cast<intptr_t>(instr));
1760     DieOrDebug();
1761   }
1762   if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1763     TraceMemWr(addr, value, DWORD);
1764     int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1765     *ptr = value;
1766     return;
1767   }
1768   PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1769          reinterpret_cast<intptr_t>(instr));
1770   DieOrDebug();
1771 }
1772 
1773 
ReadD(int64_t addr,Instruction * instr)1774 double Simulator::ReadD(int64_t addr, Instruction* instr) {
1775   if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1776     double* ptr = reinterpret_cast<double*>(addr);
1777     return *ptr;
1778   }
1779   PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n",
1780          addr, reinterpret_cast<intptr_t>(instr));
1781   base::OS::Abort();
1782   return 0;
1783 }
1784 
1785 
WriteD(int64_t addr,double value,Instruction * instr)1786 void Simulator::WriteD(int64_t addr, double value, Instruction* instr) {
1787   if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1788     double* ptr = reinterpret_cast<double*>(addr);
1789     *ptr = value;
1790     return;
1791   }
1792   PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR
1793          "\n",
1794          addr, reinterpret_cast<intptr_t>(instr));
1795   DieOrDebug();
1796 }
1797 
1798 
ReadHU(int64_t addr,Instruction * instr)1799 uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) {
1800   if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1801     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1802     TraceMemRd(addr, static_cast<int64_t>(*ptr));
1803     return *ptr;
1804   }
1805   PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64
1806          " , pc=0x%08" V8PRIxPTR "\n",
1807          addr, reinterpret_cast<intptr_t>(instr));
1808   DieOrDebug();
1809   return 0;
1810 }
1811 
1812 
ReadH(int64_t addr,Instruction * instr)1813 int16_t Simulator::ReadH(int64_t addr, Instruction* instr) {
1814   if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1815     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1816     TraceMemRd(addr, static_cast<int64_t>(*ptr));
1817     return *ptr;
1818   }
1819   PrintF("Unaligned signed halfword read at 0x%08" PRIx64
1820          " , pc=0x%08" V8PRIxPTR "\n",
1821          addr, reinterpret_cast<intptr_t>(instr));
1822   DieOrDebug();
1823   return 0;
1824 }
1825 
1826 
WriteH(int64_t addr,uint16_t value,Instruction * instr)1827 void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) {
1828   if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1829     TraceMemWr(addr, value, HALF);
1830     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1831     *ptr = value;
1832     return;
1833   }
1834   PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64
1835          " , pc=0x%08" V8PRIxPTR "\n",
1836          addr, reinterpret_cast<intptr_t>(instr));
1837   DieOrDebug();
1838 }
1839 
1840 
WriteH(int64_t addr,int16_t value,Instruction * instr)1841 void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) {
1842   if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1843     TraceMemWr(addr, value, HALF);
1844     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1845     *ptr = value;
1846     return;
1847   }
1848   PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR
1849          "\n",
1850          addr, reinterpret_cast<intptr_t>(instr));
1851   DieOrDebug();
1852 }
1853 
1854 
ReadBU(int64_t addr)1855 uint32_t Simulator::ReadBU(int64_t addr) {
1856   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1857   TraceMemRd(addr, static_cast<int64_t>(*ptr));
1858   return *ptr & 0xff;
1859 }
1860 
1861 
ReadB(int64_t addr)1862 int32_t Simulator::ReadB(int64_t addr) {
1863   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1864   TraceMemRd(addr, static_cast<int64_t>(*ptr));
1865   return *ptr;
1866 }
1867 
1868 
WriteB(int64_t addr,uint8_t value)1869 void Simulator::WriteB(int64_t addr, uint8_t value) {
1870   TraceMemWr(addr, value, BYTE);
1871   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1872   *ptr = value;
1873 }
1874 
1875 
WriteB(int64_t addr,int8_t value)1876 void Simulator::WriteB(int64_t addr, int8_t value) {
1877   TraceMemWr(addr, value, BYTE);
1878   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1879   *ptr = value;
1880 }
1881 
1882 
1883 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit(uintptr_t c_limit) const1884 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1885   // The simulator uses a separate JS stack. If we have exhausted the C stack,
1886   // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1887   if (GetCurrentStackPosition() < c_limit) {
1888     return reinterpret_cast<uintptr_t>(get_sp());
1889   }
1890 
1891   // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
1892   // to prevent overrunning the stack when pushing values.
1893   return reinterpret_cast<uintptr_t>(stack_) + 1024;
1894 }
1895 
1896 
1897 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1898 void Simulator::Format(Instruction* instr, const char* format) {
1899   PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n",
1900          reinterpret_cast<intptr_t>(instr), format);
1901   UNIMPLEMENTED_MIPS();
1902 }
1903 
1904 
1905 // Calls into the V8 runtime are based on this very simple interface.
1906 // Note: To be able to return two values from some calls the code in runtime.cc
1907 // uses the ObjectPair which is essentially two 32-bit values stuffed into a
1908 // 64-bit value. With the code below we assume that all runtime calls return
1909 // 64 bits of result. If they don't, the v1 result register contains a bogus
1910 // value, which is fine because it is caller-saved.
1911 
1912 typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
1913                                         int64_t arg1,
1914                                         int64_t arg2,
1915                                         int64_t arg3,
1916                                         int64_t arg4,
1917                                         int64_t arg5);
1918 
1919 typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int64_t arg0, int64_t arg1,
1920                                                    int64_t arg2, int64_t arg3,
1921                                                    int64_t arg4);
1922 
1923 // These prototypes handle the four types of FP calls.
1924 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1925 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1926 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1927 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
1928 
1929 // This signature supports direct call in to API function native callback
1930 // (refer to InvocationCallback in v8.h).
1931 typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
1932 typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
1933 
1934 // This signature supports direct call to accessor getter callback.
1935 typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
1936 typedef void (*SimulatorRuntimeProfilingGetterCall)(
1937     int64_t arg0, int64_t arg1, void* arg2);
1938 
1939 // Software interrupt instructions are used by the simulator to call into the
1940 // C-based V8 runtime. They are also used for debugging with simulator.
SoftwareInterrupt()1941 void Simulator::SoftwareInterrupt() {
1942   // There are several instructions that could get us here,
1943   // the break_ instruction, or several variants of traps. All
1944   // Are "SPECIAL" class opcode, and are distinuished by function.
1945   int32_t func = instr_.FunctionFieldRaw();
1946   uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
1947   // We first check if we met a call_rt_redirected.
1948   if (instr_.InstructionBits() == rtCallRedirInstr) {
1949     Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
1950     int64_t arg0 = get_register(a0);
1951     int64_t arg1 = get_register(a1);
1952     int64_t arg2 = get_register(a2);
1953     int64_t arg3 = get_register(a3);
1954     int64_t arg4, arg5;
1955 
1956     arg4 = get_register(a4);  // Abi n64 register a4.
1957     arg5 = get_register(a5);  // Abi n64 register a5.
1958 
1959     bool fp_call =
1960          (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1961          (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1962          (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1963          (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1964 
1965     if (!IsMipsSoftFloatABI) {
1966       // With the hard floating point calling convention, double
1967       // arguments are passed in FPU registers. Fetch the arguments
1968       // from there and call the builtin using soft floating point
1969       // convention.
1970       switch (redirection->type()) {
1971       case ExternalReference::BUILTIN_FP_FP_CALL:
1972       case ExternalReference::BUILTIN_COMPARE_CALL:
1973         arg0 = get_fpu_register(f12);
1974         arg1 = get_fpu_register(f13);
1975         arg2 = get_fpu_register(f14);
1976         arg3 = get_fpu_register(f15);
1977         break;
1978       case ExternalReference::BUILTIN_FP_CALL:
1979         arg0 = get_fpu_register(f12);
1980         arg1 = get_fpu_register(f13);
1981         break;
1982       case ExternalReference::BUILTIN_FP_INT_CALL:
1983         arg0 = get_fpu_register(f12);
1984         arg1 = get_fpu_register(f13);
1985         arg2 = get_register(a2);
1986         break;
1987       default:
1988         break;
1989       }
1990     }
1991 
1992     // This is dodgy but it works because the C entry stubs are never moved.
1993     // See comment in codegen-arm.cc and bug 1242173.
1994     int64_t saved_ra = get_register(ra);
1995 
1996     intptr_t external =
1997           reinterpret_cast<intptr_t>(redirection->external_function());
1998 
1999     // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
2000     // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
2001     // simulator. Soft-float has additional abstraction of ExternalReference,
2002     // to support serialization.
2003     if (fp_call) {
2004       double dval0, dval1;  // one or two double parameters
2005       int32_t ival;         // zero or one integer parameters
2006       int64_t iresult = 0;  // integer return value
2007       double dresult = 0;   // double return value
2008       GetFpArgs(&dval0, &dval1, &ival);
2009       SimulatorRuntimeCall generic_target =
2010           reinterpret_cast<SimulatorRuntimeCall>(external);
2011       if (::v8::internal::FLAG_trace_sim) {
2012         switch (redirection->type()) {
2013           case ExternalReference::BUILTIN_FP_FP_CALL:
2014           case ExternalReference::BUILTIN_COMPARE_CALL:
2015             PrintF("Call to host function at %p with args %f, %f",
2016                    static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
2017                    dval1);
2018             break;
2019           case ExternalReference::BUILTIN_FP_CALL:
2020             PrintF("Call to host function at %p with arg %f",
2021                    static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0);
2022             break;
2023           case ExternalReference::BUILTIN_FP_INT_CALL:
2024             PrintF("Call to host function at %p with args %f, %d",
2025                    static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
2026                    ival);
2027             break;
2028           default:
2029             UNREACHABLE();
2030             break;
2031         }
2032       }
2033       switch (redirection->type()) {
2034       case ExternalReference::BUILTIN_COMPARE_CALL: {
2035         SimulatorRuntimeCompareCall target =
2036           reinterpret_cast<SimulatorRuntimeCompareCall>(external);
2037         iresult = target(dval0, dval1);
2038         set_register(v0, static_cast<int64_t>(iresult));
2039       //  set_register(v1, static_cast<int64_t>(iresult >> 32));
2040         break;
2041       }
2042       case ExternalReference::BUILTIN_FP_FP_CALL: {
2043         SimulatorRuntimeFPFPCall target =
2044           reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
2045         dresult = target(dval0, dval1);
2046         SetFpResult(dresult);
2047         break;
2048       }
2049       case ExternalReference::BUILTIN_FP_CALL: {
2050         SimulatorRuntimeFPCall target =
2051           reinterpret_cast<SimulatorRuntimeFPCall>(external);
2052         dresult = target(dval0);
2053         SetFpResult(dresult);
2054         break;
2055       }
2056       case ExternalReference::BUILTIN_FP_INT_CALL: {
2057         SimulatorRuntimeFPIntCall target =
2058           reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
2059         dresult = target(dval0, ival);
2060         SetFpResult(dresult);
2061         break;
2062       }
2063       default:
2064         UNREACHABLE();
2065         break;
2066       }
2067       if (::v8::internal::FLAG_trace_sim) {
2068         switch (redirection->type()) {
2069         case ExternalReference::BUILTIN_COMPARE_CALL:
2070           PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
2071           break;
2072         case ExternalReference::BUILTIN_FP_FP_CALL:
2073         case ExternalReference::BUILTIN_FP_CALL:
2074         case ExternalReference::BUILTIN_FP_INT_CALL:
2075           PrintF("Returned %f\n", dresult);
2076           break;
2077         default:
2078           UNREACHABLE();
2079           break;
2080         }
2081       }
2082     } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
2083       if (::v8::internal::FLAG_trace_sim) {
2084         PrintF("Call to host function at %p args %08" PRIx64 " \n",
2085                reinterpret_cast<void*>(external), arg0);
2086       }
2087       SimulatorRuntimeDirectApiCall target =
2088           reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
2089       target(arg0);
2090     } else if (
2091         redirection->type() == ExternalReference::PROFILING_API_CALL) {
2092       if (::v8::internal::FLAG_trace_sim) {
2093         PrintF("Call to host function at %p args %08" PRIx64 "  %08" PRIx64
2094                " \n",
2095                reinterpret_cast<void*>(external), arg0, arg1);
2096       }
2097       SimulatorRuntimeProfilingApiCall target =
2098           reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
2099       target(arg0, Redirection::ReverseRedirection(arg1));
2100     } else if (
2101         redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
2102       if (::v8::internal::FLAG_trace_sim) {
2103         PrintF("Call to host function at %p args %08" PRIx64 "  %08" PRIx64
2104                " \n",
2105                reinterpret_cast<void*>(external), arg0, arg1);
2106       }
2107       SimulatorRuntimeDirectGetterCall target =
2108           reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
2109       target(arg0, arg1);
2110     } else if (
2111         redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
2112       if (::v8::internal::FLAG_trace_sim) {
2113         PrintF("Call to host function at %p args %08" PRIx64 "  %08" PRIx64
2114                "  %08" PRIx64 " \n",
2115                reinterpret_cast<void*>(external), arg0, arg1, arg2);
2116       }
2117       SimulatorRuntimeProfilingGetterCall target =
2118           reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
2119       target(arg0, arg1, Redirection::ReverseRedirection(arg2));
2120     } else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
2121       // builtin call returning ObjectTriple.
2122       SimulatorRuntimeTripleCall target =
2123           reinterpret_cast<SimulatorRuntimeTripleCall>(external);
2124       if (::v8::internal::FLAG_trace_sim) {
2125         PrintF(
2126             "Call to host triple returning runtime function %p "
2127             "args %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64
2128             ", %016" PRIx64 "\n",
2129             static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4,
2130             arg5);
2131       }
2132       // arg0 is a hidden argument pointing to the return location, so don't
2133       // pass it to the target function.
2134       ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5);
2135       if (::v8::internal::FLAG_trace_sim) {
2136         PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x),
2137                static_cast<void*>(result.y), static_cast<void*>(result.z));
2138       }
2139       // Return is passed back in address pointed to by hidden first argument.
2140       ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0);
2141       *sim_result = result;
2142       set_register(v0, arg0);
2143     } else {
2144       DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
2145              redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
2146       SimulatorRuntimeCall target =
2147                   reinterpret_cast<SimulatorRuntimeCall>(external);
2148       if (::v8::internal::FLAG_trace_sim) {
2149         PrintF(
2150             "Call to host function at %p "
2151             "args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64
2152             " , %08" PRIx64 " , %08" PRIx64 " \n",
2153             static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3,
2154             arg4, arg5);
2155       }
2156       // int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
2157       // set_register(v0, static_cast<int32_t>(result));
2158       // set_register(v1, static_cast<int32_t>(result >> 32));
2159       ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5);
2160       set_register(v0, (int64_t)(result.x));
2161       set_register(v1, (int64_t)(result.y));
2162     }
2163      if (::v8::internal::FLAG_trace_sim) {
2164        PrintF("Returned %08" PRIx64 "  : %08" PRIx64 " \n", get_register(v1),
2165               get_register(v0));
2166     }
2167     set_register(ra, saved_ra);
2168     set_pc(get_register(ra));
2169 
2170   } else if (func == BREAK && code <= kMaxStopCode) {
2171     if (IsWatchpoint(code)) {
2172       PrintWatchpoint(code);
2173     } else {
2174       IncreaseStopCounter(code);
2175       HandleStop(code, instr_.instr());
2176     }
2177   } else {
2178     // All remaining break_ codes, and all traps are handled here.
2179     MipsDebugger dbg(this);
2180     dbg.Debug();
2181   }
2182 }
2183 
2184 
2185 // Stop helper functions.
IsWatchpoint(uint64_t code)2186 bool Simulator::IsWatchpoint(uint64_t code) {
2187   return (code <= kMaxWatchpointCode);
2188 }
2189 
2190 
PrintWatchpoint(uint64_t code)2191 void Simulator::PrintWatchpoint(uint64_t code) {
2192   MipsDebugger dbg(this);
2193   ++break_count_;
2194   PrintF("\n---- break %" PRId64 "  marker: %3d  (instr count: %8" PRId64
2195          " ) ----------"
2196          "----------------------------------",
2197          code, break_count_, icount_);
2198   dbg.PrintAllRegs();  // Print registers and continue running.
2199 }
2200 
2201 
HandleStop(uint64_t code,Instruction * instr)2202 void Simulator::HandleStop(uint64_t code, Instruction* instr) {
2203   // Stop if it is enabled, otherwise go on jumping over the stop
2204   // and the message address.
2205   if (IsEnabledStop(code)) {
2206     MipsDebugger dbg(this);
2207     dbg.Stop(instr);
2208   } else {
2209     set_pc(get_pc() + 2 * Instruction::kInstrSize);
2210   }
2211 }
2212 
2213 
IsStopInstruction(Instruction * instr)2214 bool Simulator::IsStopInstruction(Instruction* instr) {
2215   int32_t func = instr->FunctionFieldRaw();
2216   uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
2217   return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
2218 }
2219 
2220 
IsEnabledStop(uint64_t code)2221 bool Simulator::IsEnabledStop(uint64_t code) {
2222   DCHECK(code <= kMaxStopCode);
2223   DCHECK(code > kMaxWatchpointCode);
2224   return !(watched_stops_[code].count & kStopDisabledBit);
2225 }
2226 
2227 
EnableStop(uint64_t code)2228 void Simulator::EnableStop(uint64_t code) {
2229   if (!IsEnabledStop(code)) {
2230     watched_stops_[code].count &= ~kStopDisabledBit;
2231   }
2232 }
2233 
2234 
DisableStop(uint64_t code)2235 void Simulator::DisableStop(uint64_t code) {
2236   if (IsEnabledStop(code)) {
2237     watched_stops_[code].count |= kStopDisabledBit;
2238   }
2239 }
2240 
2241 
IncreaseStopCounter(uint64_t code)2242 void Simulator::IncreaseStopCounter(uint64_t code) {
2243   DCHECK(code <= kMaxStopCode);
2244   if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
2245     PrintF("Stop counter for code %" PRId64
2246            "  has overflowed.\n"
2247            "Enabling this code and reseting the counter to 0.\n",
2248            code);
2249     watched_stops_[code].count = 0;
2250     EnableStop(code);
2251   } else {
2252     watched_stops_[code].count++;
2253   }
2254 }
2255 
2256 
2257 // Print a stop status.
PrintStopInfo(uint64_t code)2258 void Simulator::PrintStopInfo(uint64_t code) {
2259   if (code <= kMaxWatchpointCode) {
2260     PrintF("That is a watchpoint, not a stop.\n");
2261     return;
2262   } else if (code > kMaxStopCode) {
2263     PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
2264     return;
2265   }
2266   const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
2267   int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
2268   // Don't print the state of unused breakpoints.
2269   if (count != 0) {
2270     if (watched_stops_[code].desc) {
2271       PrintF("stop %" PRId64 "  - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n",
2272              code, code, state, count, watched_stops_[code].desc);
2273     } else {
2274       PrintF("stop %" PRId64 "  - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code,
2275              code, state, count);
2276     }
2277   }
2278 }
2279 
2280 
SignalException(Exception e)2281 void Simulator::SignalException(Exception e) {
2282   V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
2283            static_cast<int>(e));
2284 }
2285 
2286 // Min/Max template functions for Double and Single arguments.
2287 
2288 template <typename T>
2289 static T FPAbs(T a);
2290 
2291 template <>
FPAbs(double a)2292 double FPAbs<double>(double a) {
2293   return fabs(a);
2294 }
2295 
2296 template <>
FPAbs(float a)2297 float FPAbs<float>(float a) {
2298   return fabsf(a);
2299 }
2300 
2301 template <typename T>
FPUProcessNaNsAndZeros(T a,T b,MaxMinKind kind,T & result)2302 static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) {
2303   if (std::isnan(a) && std::isnan(b)) {
2304     result = a;
2305   } else if (std::isnan(a)) {
2306     result = b;
2307   } else if (std::isnan(b)) {
2308     result = a;
2309   } else if (b == a) {
2310     // Handle -0.0 == 0.0 case.
2311     // std::signbit() returns int 0 or 1 so substracting MaxMinKind::kMax
2312     // negates the result.
2313     result = std::signbit(b) - static_cast<int>(kind) ? b : a;
2314   } else {
2315     return false;
2316   }
2317   return true;
2318 }
2319 
2320 template <typename T>
FPUMin(T a,T b)2321 static T FPUMin(T a, T b) {
2322   T result;
2323   if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
2324     return result;
2325   } else {
2326     return b < a ? b : a;
2327   }
2328 }
2329 
2330 template <typename T>
FPUMax(T a,T b)2331 static T FPUMax(T a, T b) {
2332   T result;
2333   if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) {
2334     return result;
2335   } else {
2336     return b > a ? b : a;
2337   }
2338 }
2339 
2340 template <typename T>
FPUMinA(T a,T b)2341 static T FPUMinA(T a, T b) {
2342   T result;
2343   if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
2344     if (FPAbs(a) < FPAbs(b)) {
2345       result = a;
2346     } else if (FPAbs(b) < FPAbs(a)) {
2347       result = b;
2348     } else {
2349       result = a < b ? a : b;
2350     }
2351   }
2352   return result;
2353 }
2354 
2355 template <typename T>
FPUMaxA(T a,T b)2356 static T FPUMaxA(T a, T b) {
2357   T result;
2358   if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
2359     if (FPAbs(a) > FPAbs(b)) {
2360       result = a;
2361     } else if (FPAbs(b) > FPAbs(a)) {
2362       result = b;
2363     } else {
2364       result = a > b ? a : b;
2365     }
2366   }
2367   return result;
2368 }
2369 
2370 enum class KeepSign : bool { no = false, yes };
2371 
2372 template <typename T, typename std::enable_if<std::is_floating_point<T>::value,
2373                                               int>::type = 0>
FPUCanonalizeNaNArg(T result,T arg,KeepSign keepSign=KeepSign::no)2374 T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) {
2375   DCHECK(std::isnan(arg));
2376   T qNaN = std::numeric_limits<T>::quiet_NaN();
2377   if (keepSign == KeepSign::yes) {
2378     return std::copysign(qNaN, result);
2379   }
2380   return qNaN;
2381 }
2382 
2383 template <typename T>
FPUCanonalizeNaNArgs(T result,KeepSign keepSign,T first)2384 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) {
2385   if (std::isnan(first)) {
2386     return FPUCanonalizeNaNArg(result, first, keepSign);
2387   }
2388   return result;
2389 }
2390 
2391 template <typename T, typename... Args>
FPUCanonalizeNaNArgs(T result,KeepSign keepSign,T first,Args...args)2392 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) {
2393   if (std::isnan(first)) {
2394     return FPUCanonalizeNaNArg(result, first, keepSign);
2395   }
2396   return FPUCanonalizeNaNArgs(result, keepSign, args...);
2397 }
2398 
2399 template <typename Func, typename T, typename... Args>
FPUCanonalizeOperation(Func f,T first,Args...args)2400 T FPUCanonalizeOperation(Func f, T first, Args... args) {
2401   return FPUCanonalizeOperation(f, KeepSign::no, first, args...);
2402 }
2403 
2404 template <typename Func, typename T, typename... Args>
FPUCanonalizeOperation(Func f,KeepSign keepSign,T first,Args...args)2405 T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) {
2406   T result = f(first, args...);
2407   if (std::isnan(result)) {
2408     result = FPUCanonalizeNaNArgs(result, keepSign, first, args...);
2409   }
2410   return result;
2411 }
2412 
2413 // Handle execution based on instruction types.
2414 
DecodeTypeRegisterSRsType()2415 void Simulator::DecodeTypeRegisterSRsType() {
2416   float fs, ft, fd;
2417   fs = get_fpu_register_float(fs_reg());
2418   ft = get_fpu_register_float(ft_reg());
2419   fd = get_fpu_register_float(fd_reg());
2420   int32_t ft_int = bit_cast<int32_t>(ft);
2421   int32_t fd_int = bit_cast<int32_t>(fd);
2422   uint32_t cc, fcsr_cc;
2423   cc = instr_.FCccValue();
2424   fcsr_cc = get_fcsr_condition_bit(cc);
2425   switch (instr_.FunctionFieldRaw()) {
2426     case RINT: {
2427       DCHECK(kArchVariant == kMips64r6);
2428       float result, temp_result;
2429       double temp;
2430       float upper = std::ceil(fs);
2431       float lower = std::floor(fs);
2432       switch (get_fcsr_rounding_mode()) {
2433         case kRoundToNearest:
2434           if (upper - fs < fs - lower) {
2435             result = upper;
2436           } else if (upper - fs > fs - lower) {
2437             result = lower;
2438           } else {
2439             temp_result = upper / 2;
2440             float reminder = modf(temp_result, &temp);
2441             if (reminder == 0) {
2442               result = upper;
2443             } else {
2444               result = lower;
2445             }
2446           }
2447           break;
2448         case kRoundToZero:
2449           result = (fs > 0 ? lower : upper);
2450           break;
2451         case kRoundToPlusInf:
2452           result = upper;
2453           break;
2454         case kRoundToMinusInf:
2455           result = lower;
2456           break;
2457       }
2458       set_fpu_register_float(fd_reg(), result);
2459       if (result != fs) {
2460         set_fcsr_bit(kFCSRInexactFlagBit, true);
2461       }
2462       break;
2463     }
2464     case ADD_S:
2465       set_fpu_register_float(
2466           fd_reg(),
2467           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; },
2468                                  fs, ft));
2469       break;
2470     case SUB_S:
2471       set_fpu_register_float(
2472           fd_reg(),
2473           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; },
2474                                  fs, ft));
2475       break;
2476     case MADDF_S:
2477       DCHECK(kArchVariant == kMips64r6);
2478       set_fpu_register_float(fd_reg(), fd + (fs * ft));
2479       break;
2480     case MSUBF_S:
2481       DCHECK(kArchVariant == kMips64r6);
2482       set_fpu_register_float(fd_reg(), fd - (fs * ft));
2483       break;
2484     case MUL_S:
2485       set_fpu_register_float(
2486           fd_reg(),
2487           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; },
2488                                  fs, ft));
2489       break;
2490     case DIV_S:
2491       set_fpu_register_float(
2492           fd_reg(),
2493           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; },
2494                                  fs, ft));
2495       break;
2496     case ABS_S:
2497       set_fpu_register_float(
2498           fd_reg(),
2499           FPUCanonalizeOperation([](float fs) { return FPAbs(fs); }, fs));
2500       break;
2501     case MOV_S:
2502       set_fpu_register_float(fd_reg(), fs);
2503       break;
2504     case NEG_S:
2505       set_fpu_register_float(
2506           fd_reg(), FPUCanonalizeOperation([](float src) { return -src; },
2507                                            KeepSign::yes, fs));
2508       break;
2509     case SQRT_S:
2510       set_fpu_register_float(
2511           fd_reg(),
2512           FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs));
2513       break;
2514     case RSQRT_S:
2515       set_fpu_register_float(
2516           fd_reg(), FPUCanonalizeOperation(
2517                         [](float src) { return 1.0 / std::sqrt(src); }, fs));
2518       break;
2519     case RECIP_S:
2520       set_fpu_register_float(
2521           fd_reg(),
2522           FPUCanonalizeOperation([](float src) { return 1.0 / src; }, fs));
2523       break;
2524     case C_F_D:
2525       set_fcsr_bit(fcsr_cc, false);
2526       break;
2527     case C_UN_D:
2528       set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2529       break;
2530     case C_EQ_D:
2531       set_fcsr_bit(fcsr_cc, (fs == ft));
2532       break;
2533     case C_UEQ_D:
2534       set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2535       break;
2536     case C_OLT_D:
2537       set_fcsr_bit(fcsr_cc, (fs < ft));
2538       break;
2539     case C_ULT_D:
2540       set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2541       break;
2542     case C_OLE_D:
2543       set_fcsr_bit(fcsr_cc, (fs <= ft));
2544       break;
2545     case C_ULE_D:
2546       set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2547       break;
2548     case CVT_D_S:
2549       set_fpu_register_double(fd_reg(), static_cast<double>(fs));
2550       break;
2551     case CLASS_S: {  // Mips64r6 instruction
2552       // Convert float input to uint32_t for easier bit manipulation
2553       uint32_t classed = bit_cast<uint32_t>(fs);
2554 
2555       // Extracting sign, exponent and mantissa from the input float
2556       uint32_t sign = (classed >> 31) & 1;
2557       uint32_t exponent = (classed >> 23) & 0x000000ff;
2558       uint32_t mantissa = classed & 0x007fffff;
2559       uint32_t result;
2560       float fResult;
2561 
2562       // Setting flags if input float is negative infinity,
2563       // positive infinity, negative zero or positive zero
2564       bool negInf = (classed == 0xFF800000);
2565       bool posInf = (classed == 0x7F800000);
2566       bool negZero = (classed == 0x80000000);
2567       bool posZero = (classed == 0x00000000);
2568 
2569       bool signalingNan;
2570       bool quietNan;
2571       bool negSubnorm;
2572       bool posSubnorm;
2573       bool negNorm;
2574       bool posNorm;
2575 
2576       // Setting flags if float is NaN
2577       signalingNan = false;
2578       quietNan = false;
2579       if (!negInf && !posInf && (exponent == 0xff)) {
2580         quietNan = ((mantissa & 0x00200000) == 0) &&
2581                    ((mantissa & (0x00200000 - 1)) == 0);
2582         signalingNan = !quietNan;
2583       }
2584 
2585       // Setting flags if float is subnormal number
2586       posSubnorm = false;
2587       negSubnorm = false;
2588       if ((exponent == 0) && (mantissa != 0)) {
2589         DCHECK(sign == 0 || sign == 1);
2590         posSubnorm = (sign == 0);
2591         negSubnorm = (sign == 1);
2592       }
2593 
2594       // Setting flags if float is normal number
2595       posNorm = false;
2596       negNorm = false;
2597       if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
2598           !quietNan && !negZero && !posZero) {
2599         DCHECK(sign == 0 || sign == 1);
2600         posNorm = (sign == 0);
2601         negNorm = (sign == 1);
2602       }
2603 
2604       // Calculating result according to description of CLASS.S instruction
2605       result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
2606                (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
2607                (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
2608 
2609       DCHECK(result != 0);
2610 
2611       fResult = bit_cast<float>(result);
2612       set_fpu_register_float(fd_reg(), fResult);
2613 
2614       break;
2615     }
2616     case CVT_L_S: {
2617       float rounded;
2618       int64_t result;
2619       round64_according_to_fcsr(fs, rounded, result, fs);
2620       set_fpu_register(fd_reg(), result);
2621       if (set_fcsr_round64_error(fs, rounded)) {
2622         set_fpu_register_invalid_result64(fs, rounded);
2623       }
2624       break;
2625     }
2626     case CVT_W_S: {
2627       float rounded;
2628       int32_t result;
2629       round_according_to_fcsr(fs, rounded, result, fs);
2630       set_fpu_register_word(fd_reg(), result);
2631       if (set_fcsr_round_error(fs, rounded)) {
2632         set_fpu_register_word_invalid_result(fs, rounded);
2633       }
2634       break;
2635     }
2636     case TRUNC_W_S: {  // Truncate single to word (round towards 0).
2637       float rounded = trunc(fs);
2638       int32_t result = static_cast<int32_t>(rounded);
2639       set_fpu_register_word(fd_reg(), result);
2640       if (set_fcsr_round_error(fs, rounded)) {
2641         set_fpu_register_word_invalid_result(fs, rounded);
2642       }
2643     } break;
2644     case TRUNC_L_S: {  // Mips64r2 instruction.
2645       float rounded = trunc(fs);
2646       int64_t result = static_cast<int64_t>(rounded);
2647       set_fpu_register(fd_reg(), result);
2648       if (set_fcsr_round64_error(fs, rounded)) {
2649         set_fpu_register_invalid_result64(fs, rounded);
2650       }
2651       break;
2652     }
2653     case ROUND_W_S: {
2654       float rounded = std::floor(fs + 0.5);
2655       int32_t result = static_cast<int32_t>(rounded);
2656       if ((result & 1) != 0 && result - fs == 0.5) {
2657         // If the number is halfway between two integers,
2658         // round to the even one.
2659         result--;
2660       }
2661       set_fpu_register_word(fd_reg(), result);
2662       if (set_fcsr_round_error(fs, rounded)) {
2663         set_fpu_register_word_invalid_result(fs, rounded);
2664       }
2665       break;
2666     }
2667     case ROUND_L_S: {  // Mips64r2 instruction.
2668       float rounded = std::floor(fs + 0.5);
2669       int64_t result = static_cast<int64_t>(rounded);
2670       if ((result & 1) != 0 && result - fs == 0.5) {
2671         // If the number is halfway between two integers,
2672         // round to the even one.
2673         result--;
2674       }
2675       int64_t i64 = static_cast<int64_t>(result);
2676       set_fpu_register(fd_reg(), i64);
2677       if (set_fcsr_round64_error(fs, rounded)) {
2678         set_fpu_register_invalid_result64(fs, rounded);
2679       }
2680       break;
2681     }
2682     case FLOOR_L_S: {  // Mips64r2 instruction.
2683       float rounded = floor(fs);
2684       int64_t result = static_cast<int64_t>(rounded);
2685       set_fpu_register(fd_reg(), result);
2686       if (set_fcsr_round64_error(fs, rounded)) {
2687         set_fpu_register_invalid_result64(fs, rounded);
2688       }
2689       break;
2690     }
2691     case FLOOR_W_S:  // Round double to word towards negative infinity.
2692     {
2693       float rounded = std::floor(fs);
2694       int32_t result = static_cast<int32_t>(rounded);
2695       set_fpu_register_word(fd_reg(), result);
2696       if (set_fcsr_round_error(fs, rounded)) {
2697         set_fpu_register_word_invalid_result(fs, rounded);
2698       }
2699     } break;
2700     case CEIL_W_S:  // Round double to word towards positive infinity.
2701     {
2702       float rounded = std::ceil(fs);
2703       int32_t result = static_cast<int32_t>(rounded);
2704       set_fpu_register_word(fd_reg(), result);
2705       if (set_fcsr_round_error(fs, rounded)) {
2706         set_fpu_register_invalid_result(fs, rounded);
2707       }
2708     } break;
2709     case CEIL_L_S: {  // Mips64r2 instruction.
2710       float rounded = ceil(fs);
2711       int64_t result = static_cast<int64_t>(rounded);
2712       set_fpu_register(fd_reg(), result);
2713       if (set_fcsr_round64_error(fs, rounded)) {
2714         set_fpu_register_invalid_result64(fs, rounded);
2715       }
2716       break;
2717     }
2718     case MINA:
2719       DCHECK(kArchVariant == kMips64r6);
2720       set_fpu_register_float(fd_reg(), FPUMinA(ft, fs));
2721       break;
2722     case MAXA:
2723       DCHECK(kArchVariant == kMips64r6);
2724       set_fpu_register_float(fd_reg(), FPUMaxA(ft, fs));
2725       break;
2726     case MIN:
2727       DCHECK(kArchVariant == kMips64r6);
2728       set_fpu_register_float(fd_reg(), FPUMin(ft, fs));
2729       break;
2730     case MAX:
2731       DCHECK(kArchVariant == kMips64r6);
2732       set_fpu_register_float(fd_reg(), FPUMax(ft, fs));
2733       break;
2734     case SEL:
2735       DCHECK(kArchVariant == kMips64r6);
2736       set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2737       break;
2738     case SELEQZ_C:
2739       DCHECK(kArchVariant == kMips64r6);
2740       set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0
2741                                            ? get_fpu_register_float(fs_reg())
2742                                            : 0.0);
2743       break;
2744     case SELNEZ_C:
2745       DCHECK(kArchVariant == kMips64r6);
2746       set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0
2747                                            ? get_fpu_register_float(fs_reg())
2748                                            : 0.0);
2749       break;
2750     case MOVZ_C: {
2751       DCHECK(kArchVariant == kMips64r2);
2752       if (rt() == 0) {
2753         set_fpu_register_float(fd_reg(), fs);
2754       }
2755       break;
2756     }
2757     case MOVN_C: {
2758       DCHECK(kArchVariant == kMips64r2);
2759       if (rt() != 0) {
2760         set_fpu_register_float(fd_reg(), fs);
2761       }
2762       break;
2763     }
2764     case MOVF: {
2765       // Same function field for MOVT.D and MOVF.D
2766       uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2767       ft_cc = get_fcsr_condition_bit(ft_cc);
2768 
2769       if (instr_.Bit(16)) {  // Read Tf bit.
2770         // MOVT.D
2771         if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
2772       } else {
2773         // MOVF.D
2774         if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
2775       }
2776       break;
2777     }
2778     default:
2779       // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
2780       // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
2781       UNREACHABLE();
2782   }
2783 }
2784 
2785 
DecodeTypeRegisterDRsType()2786 void Simulator::DecodeTypeRegisterDRsType() {
2787   double ft, fs, fd;
2788   uint32_t cc, fcsr_cc;
2789   fs = get_fpu_register_double(fs_reg());
2790   ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
2791                                            : 0.0;
2792   fd = get_fpu_register_double(fd_reg());
2793   cc = instr_.FCccValue();
2794   fcsr_cc = get_fcsr_condition_bit(cc);
2795   int64_t ft_int = bit_cast<int64_t>(ft);
2796   int64_t fd_int = bit_cast<int64_t>(fd);
2797   switch (instr_.FunctionFieldRaw()) {
2798     case RINT: {
2799       DCHECK(kArchVariant == kMips64r6);
2800       double result, temp, temp_result;
2801       double upper = std::ceil(fs);
2802       double lower = std::floor(fs);
2803       switch (get_fcsr_rounding_mode()) {
2804         case kRoundToNearest:
2805           if (upper - fs < fs - lower) {
2806             result = upper;
2807           } else if (upper - fs > fs - lower) {
2808             result = lower;
2809           } else {
2810             temp_result = upper / 2;
2811             double reminder = modf(temp_result, &temp);
2812             if (reminder == 0) {
2813               result = upper;
2814             } else {
2815               result = lower;
2816             }
2817           }
2818           break;
2819         case kRoundToZero:
2820           result = (fs > 0 ? lower : upper);
2821           break;
2822         case kRoundToPlusInf:
2823           result = upper;
2824           break;
2825         case kRoundToMinusInf:
2826           result = lower;
2827           break;
2828       }
2829       set_fpu_register_double(fd_reg(), result);
2830       if (result != fs) {
2831         set_fcsr_bit(kFCSRInexactFlagBit, true);
2832       }
2833       break;
2834     }
2835     case SEL:
2836       DCHECK(kArchVariant == kMips64r6);
2837       set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2838       break;
2839     case SELEQZ_C:
2840       DCHECK(kArchVariant == kMips64r6);
2841       set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
2842       break;
2843     case SELNEZ_C:
2844       DCHECK(kArchVariant == kMips64r6);
2845       set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
2846       break;
2847     case MOVZ_C: {
2848       DCHECK(kArchVariant == kMips64r2);
2849       if (rt() == 0) {
2850         set_fpu_register_double(fd_reg(), fs);
2851       }
2852       break;
2853     }
2854     case MOVN_C: {
2855       DCHECK(kArchVariant == kMips64r2);
2856       if (rt() != 0) {
2857         set_fpu_register_double(fd_reg(), fs);
2858       }
2859       break;
2860     }
2861     case MOVF: {
2862       // Same function field for MOVT.D and MOVF.D
2863       uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2864       ft_cc = get_fcsr_condition_bit(ft_cc);
2865       if (instr_.Bit(16)) {  // Read Tf bit.
2866         // MOVT.D
2867         if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2868       } else {
2869         // MOVF.D
2870         if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2871       }
2872       break;
2873     }
2874     case MINA:
2875       DCHECK(kArchVariant == kMips64r6);
2876       set_fpu_register_double(fd_reg(), FPUMinA(ft, fs));
2877       break;
2878     case MAXA:
2879       DCHECK(kArchVariant == kMips64r6);
2880       set_fpu_register_double(fd_reg(), FPUMaxA(ft, fs));
2881       break;
2882     case MIN:
2883       DCHECK(kArchVariant == kMips64r6);
2884       set_fpu_register_double(fd_reg(), FPUMin(ft, fs));
2885       break;
2886     case MAX:
2887       DCHECK(kArchVariant == kMips64r6);
2888       set_fpu_register_double(fd_reg(), FPUMax(ft, fs));
2889       break;
2890     case ADD_D:
2891       set_fpu_register_double(
2892           fd_reg(),
2893           FPUCanonalizeOperation(
2894               [](double lhs, double rhs) { return lhs + rhs; }, fs, ft));
2895       break;
2896     case SUB_D:
2897       set_fpu_register_double(
2898           fd_reg(),
2899           FPUCanonalizeOperation(
2900               [](double lhs, double rhs) { return lhs - rhs; }, fs, ft));
2901       break;
2902     case MADDF_D:
2903       DCHECK(kArchVariant == kMips64r6);
2904       set_fpu_register_double(fd_reg(), fd + (fs * ft));
2905       break;
2906     case MSUBF_D:
2907       DCHECK(kArchVariant == kMips64r6);
2908       set_fpu_register_double(fd_reg(), fd - (fs * ft));
2909       break;
2910     case MUL_D:
2911       set_fpu_register_double(
2912           fd_reg(),
2913           FPUCanonalizeOperation(
2914               [](double lhs, double rhs) { return lhs * rhs; }, fs, ft));
2915       break;
2916     case DIV_D:
2917       set_fpu_register_double(
2918           fd_reg(),
2919           FPUCanonalizeOperation(
2920               [](double lhs, double rhs) { return lhs / rhs; }, fs, ft));
2921       break;
2922     case ABS_D:
2923       set_fpu_register_double(
2924           fd_reg(),
2925           FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs));
2926       break;
2927     case MOV_D:
2928       set_fpu_register_double(fd_reg(), fs);
2929       break;
2930     case NEG_D:
2931       set_fpu_register_double(
2932           fd_reg(), FPUCanonalizeOperation([](double src) { return -src; },
2933                                            KeepSign::yes, fs));
2934       break;
2935     case SQRT_D:
2936       set_fpu_register_double(
2937           fd_reg(),
2938           FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs));
2939       break;
2940     case RSQRT_D:
2941       set_fpu_register_double(
2942           fd_reg(), FPUCanonalizeOperation(
2943                         [](double fs) { return 1.0 / std::sqrt(fs); }, fs));
2944       break;
2945     case RECIP_D:
2946       set_fpu_register_double(
2947           fd_reg(),
2948           FPUCanonalizeOperation([](double fs) { return 1.0 / fs; }, fs));
2949       break;
2950     case C_UN_D:
2951       set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2952       break;
2953     case C_EQ_D:
2954       set_fcsr_bit(fcsr_cc, (fs == ft));
2955       break;
2956     case C_UEQ_D:
2957       set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2958       break;
2959     case C_OLT_D:
2960       set_fcsr_bit(fcsr_cc, (fs < ft));
2961       break;
2962     case C_ULT_D:
2963       set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2964       break;
2965     case C_OLE_D:
2966       set_fcsr_bit(fcsr_cc, (fs <= ft));
2967       break;
2968     case C_ULE_D:
2969       set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2970       break;
2971     case CVT_W_D: {  // Convert double to word.
2972       double rounded;
2973       int32_t result;
2974       round_according_to_fcsr(fs, rounded, result, fs);
2975       set_fpu_register_word(fd_reg(), result);
2976       if (set_fcsr_round_error(fs, rounded)) {
2977         set_fpu_register_word_invalid_result(fs, rounded);
2978       }
2979       break;
2980     }
2981     case ROUND_W_D:  // Round double to word (round half to even).
2982     {
2983       double rounded = std::floor(fs + 0.5);
2984       int32_t result = static_cast<int32_t>(rounded);
2985       if ((result & 1) != 0 && result - fs == 0.5) {
2986         // If the number is halfway between two integers,
2987         // round to the even one.
2988         result--;
2989       }
2990       set_fpu_register_word(fd_reg(), result);
2991       if (set_fcsr_round_error(fs, rounded)) {
2992         set_fpu_register_invalid_result(fs, rounded);
2993       }
2994     } break;
2995     case TRUNC_W_D:  // Truncate double to word (round towards 0).
2996     {
2997       double rounded = trunc(fs);
2998       int32_t result = static_cast<int32_t>(rounded);
2999       set_fpu_register_word(fd_reg(), result);
3000       if (set_fcsr_round_error(fs, rounded)) {
3001         set_fpu_register_invalid_result(fs, rounded);
3002       }
3003     } break;
3004     case FLOOR_W_D:  // Round double to word towards negative infinity.
3005     {
3006       double rounded = std::floor(fs);
3007       int32_t result = static_cast<int32_t>(rounded);
3008       set_fpu_register_word(fd_reg(), result);
3009       if (set_fcsr_round_error(fs, rounded)) {
3010         set_fpu_register_invalid_result(fs, rounded);
3011       }
3012     } break;
3013     case CEIL_W_D:  // Round double to word towards positive infinity.
3014     {
3015       double rounded = std::ceil(fs);
3016       int32_t result = static_cast<int32_t>(rounded);
3017       set_fpu_register_word(fd_reg(), result);
3018       if (set_fcsr_round_error(fs, rounded)) {
3019         set_fpu_register_invalid_result(fs, rounded);
3020       }
3021     } break;
3022     case CVT_S_D:  // Convert double to float (single).
3023       set_fpu_register_float(fd_reg(), static_cast<float>(fs));
3024       break;
3025     case CVT_L_D: {  // Mips64r2: Truncate double to 64-bit long-word.
3026       double rounded;
3027       int64_t result;
3028       round64_according_to_fcsr(fs, rounded, result, fs);
3029       set_fpu_register(fd_reg(), result);
3030       if (set_fcsr_round64_error(fs, rounded)) {
3031         set_fpu_register_invalid_result64(fs, rounded);
3032       }
3033       break;
3034     }
3035     case ROUND_L_D: {  // Mips64r2 instruction.
3036       double rounded = std::floor(fs + 0.5);
3037       int64_t result = static_cast<int64_t>(rounded);
3038       if ((result & 1) != 0 && result - fs == 0.5) {
3039         // If the number is halfway between two integers,
3040         // round to the even one.
3041         result--;
3042       }
3043       int64_t i64 = static_cast<int64_t>(result);
3044       set_fpu_register(fd_reg(), i64);
3045       if (set_fcsr_round64_error(fs, rounded)) {
3046         set_fpu_register_invalid_result64(fs, rounded);
3047       }
3048       break;
3049     }
3050     case TRUNC_L_D: {  // Mips64r2 instruction.
3051       double rounded = trunc(fs);
3052       int64_t result = static_cast<int64_t>(rounded);
3053       set_fpu_register(fd_reg(), result);
3054       if (set_fcsr_round64_error(fs, rounded)) {
3055         set_fpu_register_invalid_result64(fs, rounded);
3056       }
3057       break;
3058     }
3059     case FLOOR_L_D: {  // Mips64r2 instruction.
3060       double rounded = floor(fs);
3061       int64_t result = static_cast<int64_t>(rounded);
3062       set_fpu_register(fd_reg(), result);
3063       if (set_fcsr_round64_error(fs, rounded)) {
3064         set_fpu_register_invalid_result64(fs, rounded);
3065       }
3066       break;
3067     }
3068     case CEIL_L_D: {  // Mips64r2 instruction.
3069       double rounded = ceil(fs);
3070       int64_t result = static_cast<int64_t>(rounded);
3071       set_fpu_register(fd_reg(), result);
3072       if (set_fcsr_round64_error(fs, rounded)) {
3073         set_fpu_register_invalid_result64(fs, rounded);
3074       }
3075       break;
3076     }
3077     case CLASS_D: {  // Mips64r6 instruction
3078       // Convert double input to uint64_t for easier bit manipulation
3079       uint64_t classed = bit_cast<uint64_t>(fs);
3080 
3081       // Extracting sign, exponent and mantissa from the input double
3082       uint32_t sign = (classed >> 63) & 1;
3083       uint32_t exponent = (classed >> 52) & 0x00000000000007ff;
3084       uint64_t mantissa = classed & 0x000fffffffffffff;
3085       uint64_t result;
3086       double dResult;
3087 
3088       // Setting flags if input double is negative infinity,
3089       // positive infinity, negative zero or positive zero
3090       bool negInf = (classed == 0xFFF0000000000000);
3091       bool posInf = (classed == 0x7FF0000000000000);
3092       bool negZero = (classed == 0x8000000000000000);
3093       bool posZero = (classed == 0x0000000000000000);
3094 
3095       bool signalingNan;
3096       bool quietNan;
3097       bool negSubnorm;
3098       bool posSubnorm;
3099       bool negNorm;
3100       bool posNorm;
3101 
3102       // Setting flags if double is NaN
3103       signalingNan = false;
3104       quietNan = false;
3105       if (!negInf && !posInf && exponent == 0x7ff) {
3106         quietNan = ((mantissa & 0x0008000000000000) != 0) &&
3107                    ((mantissa & (0x0008000000000000 - 1)) == 0);
3108         signalingNan = !quietNan;
3109       }
3110 
3111       // Setting flags if double is subnormal number
3112       posSubnorm = false;
3113       negSubnorm = false;
3114       if ((exponent == 0) && (mantissa != 0)) {
3115         DCHECK(sign == 0 || sign == 1);
3116         posSubnorm = (sign == 0);
3117         negSubnorm = (sign == 1);
3118       }
3119 
3120       // Setting flags if double is normal number
3121       posNorm = false;
3122       negNorm = false;
3123       if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
3124           !quietNan && !negZero && !posZero) {
3125         DCHECK(sign == 0 || sign == 1);
3126         posNorm = (sign == 0);
3127         negNorm = (sign == 1);
3128       }
3129 
3130       // Calculating result according to description of CLASS.D instruction
3131       result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
3132                (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
3133                (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
3134 
3135       DCHECK(result != 0);
3136 
3137       dResult = bit_cast<double>(result);
3138       set_fpu_register_double(fd_reg(), dResult);
3139 
3140       break;
3141     }
3142     case C_F_D: {
3143       set_fcsr_bit(fcsr_cc, false);
3144       break;
3145     }
3146     default:
3147       UNREACHABLE();
3148   }
3149 }
3150 
3151 
DecodeTypeRegisterWRsType()3152 void Simulator::DecodeTypeRegisterWRsType() {
3153   float fs = get_fpu_register_float(fs_reg());
3154   float ft = get_fpu_register_float(ft_reg());
3155   int64_t alu_out = 0x12345678;
3156   switch (instr_.FunctionFieldRaw()) {
3157     case CVT_S_W:  // Convert word to float (single).
3158       alu_out = get_fpu_register_signed_word(fs_reg());
3159       set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
3160       break;
3161     case CVT_D_W:  // Convert word to double.
3162       alu_out = get_fpu_register_signed_word(fs_reg());
3163       set_fpu_register_double(fd_reg(), static_cast<double>(alu_out));
3164       break;
3165     case CMP_AF:
3166       set_fpu_register_word(fd_reg(), 0);
3167       break;
3168     case CMP_UN:
3169       if (std::isnan(fs) || std::isnan(ft)) {
3170         set_fpu_register_word(fd_reg(), -1);
3171       } else {
3172         set_fpu_register_word(fd_reg(), 0);
3173       }
3174       break;
3175     case CMP_EQ:
3176       if (fs == ft) {
3177         set_fpu_register_word(fd_reg(), -1);
3178       } else {
3179         set_fpu_register_word(fd_reg(), 0);
3180       }
3181       break;
3182     case CMP_UEQ:
3183       if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3184         set_fpu_register_word(fd_reg(), -1);
3185       } else {
3186         set_fpu_register_word(fd_reg(), 0);
3187       }
3188       break;
3189     case CMP_LT:
3190       if (fs < ft) {
3191         set_fpu_register_word(fd_reg(), -1);
3192       } else {
3193         set_fpu_register_word(fd_reg(), 0);
3194       }
3195       break;
3196     case CMP_ULT:
3197       if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3198         set_fpu_register_word(fd_reg(), -1);
3199       } else {
3200         set_fpu_register_word(fd_reg(), 0);
3201       }
3202       break;
3203     case CMP_LE:
3204       if (fs <= ft) {
3205         set_fpu_register_word(fd_reg(), -1);
3206       } else {
3207         set_fpu_register_word(fd_reg(), 0);
3208       }
3209       break;
3210     case CMP_ULE:
3211       if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3212         set_fpu_register_word(fd_reg(), -1);
3213       } else {
3214         set_fpu_register_word(fd_reg(), 0);
3215       }
3216       break;
3217     case CMP_OR:
3218       if (!std::isnan(fs) && !std::isnan(ft)) {
3219         set_fpu_register_word(fd_reg(), -1);
3220       } else {
3221         set_fpu_register_word(fd_reg(), 0);
3222       }
3223       break;
3224     case CMP_UNE:
3225       if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3226         set_fpu_register_word(fd_reg(), -1);
3227       } else {
3228         set_fpu_register_word(fd_reg(), 0);
3229       }
3230       break;
3231     case CMP_NE:
3232       if (fs != ft) {
3233         set_fpu_register_word(fd_reg(), -1);
3234       } else {
3235         set_fpu_register_word(fd_reg(), 0);
3236       }
3237       break;
3238     default:
3239       UNREACHABLE();
3240   }
3241 }
3242 
3243 
DecodeTypeRegisterLRsType()3244 void Simulator::DecodeTypeRegisterLRsType() {
3245   double fs = get_fpu_register_double(fs_reg());
3246   double ft = get_fpu_register_double(ft_reg());
3247   int64_t i64;
3248   switch (instr_.FunctionFieldRaw()) {
3249     case CVT_D_L:  // Mips32r2 instruction.
3250       i64 = get_fpu_register(fs_reg());
3251       set_fpu_register_double(fd_reg(), static_cast<double>(i64));
3252       break;
3253     case CVT_S_L:
3254       i64 = get_fpu_register(fs_reg());
3255       set_fpu_register_float(fd_reg(), static_cast<float>(i64));
3256       break;
3257     case CMP_AF:
3258       set_fpu_register(fd_reg(), 0);
3259       break;
3260     case CMP_UN:
3261       if (std::isnan(fs) || std::isnan(ft)) {
3262         set_fpu_register(fd_reg(), -1);
3263       } else {
3264         set_fpu_register(fd_reg(), 0);
3265       }
3266       break;
3267     case CMP_EQ:
3268       if (fs == ft) {
3269         set_fpu_register(fd_reg(), -1);
3270       } else {
3271         set_fpu_register(fd_reg(), 0);
3272       }
3273       break;
3274     case CMP_UEQ:
3275       if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3276         set_fpu_register(fd_reg(), -1);
3277       } else {
3278         set_fpu_register(fd_reg(), 0);
3279       }
3280       break;
3281     case CMP_LT:
3282       if (fs < ft) {
3283         set_fpu_register(fd_reg(), -1);
3284       } else {
3285         set_fpu_register(fd_reg(), 0);
3286       }
3287       break;
3288     case CMP_ULT:
3289       if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3290         set_fpu_register(fd_reg(), -1);
3291       } else {
3292         set_fpu_register(fd_reg(), 0);
3293       }
3294       break;
3295     case CMP_LE:
3296       if (fs <= ft) {
3297         set_fpu_register(fd_reg(), -1);
3298       } else {
3299         set_fpu_register(fd_reg(), 0);
3300       }
3301       break;
3302     case CMP_ULE:
3303       if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3304         set_fpu_register(fd_reg(), -1);
3305       } else {
3306         set_fpu_register(fd_reg(), 0);
3307       }
3308       break;
3309     case CMP_OR:
3310       if (!std::isnan(fs) && !std::isnan(ft)) {
3311         set_fpu_register(fd_reg(), -1);
3312       } else {
3313         set_fpu_register(fd_reg(), 0);
3314       }
3315       break;
3316     case CMP_UNE:
3317       if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3318         set_fpu_register(fd_reg(), -1);
3319       } else {
3320         set_fpu_register(fd_reg(), 0);
3321       }
3322       break;
3323     case CMP_NE:
3324       if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
3325         set_fpu_register(fd_reg(), -1);
3326       } else {
3327         set_fpu_register(fd_reg(), 0);
3328       }
3329       break;
3330     default:
3331       UNREACHABLE();
3332   }
3333 }
3334 
3335 
DecodeTypeRegisterCOP1()3336 void Simulator::DecodeTypeRegisterCOP1() {
3337   switch (instr_.RsFieldRaw()) {
3338     case BC1:  // Branch on coprocessor condition.
3339     case BC1EQZ:
3340     case BC1NEZ:
3341       UNREACHABLE();
3342       break;
3343     case CFC1:
3344       // At the moment only FCSR is supported.
3345       DCHECK(fs_reg() == kFCSRRegister);
3346       set_register(rt_reg(), FCSR_);
3347       break;
3348     case MFC1:
3349       set_register(rt_reg(),
3350                    static_cast<int64_t>(get_fpu_register_word(fs_reg())));
3351       break;
3352     case DMFC1:
3353       set_register(rt_reg(), get_fpu_register(fs_reg()));
3354       break;
3355     case MFHC1:
3356       set_register(rt_reg(), get_fpu_register_hi_word(fs_reg()));
3357       break;
3358     case CTC1: {
3359       // At the moment only FCSR is supported.
3360       DCHECK(fs_reg() == kFCSRRegister);
3361       uint32_t reg = static_cast<uint32_t>(rt());
3362       if (kArchVariant == kMips64r6) {
3363         FCSR_ = reg | kFCSRNaN2008FlagMask;
3364       } else {
3365         DCHECK(kArchVariant == kMips64r2);
3366         FCSR_ = reg & ~kFCSRNaN2008FlagMask;
3367       }
3368       break;
3369     }
3370     case MTC1:
3371       // Hardware writes upper 32-bits to zero on mtc1.
3372       set_fpu_register_hi_word(fs_reg(), 0);
3373       set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt()));
3374       break;
3375     case DMTC1:
3376       set_fpu_register(fs_reg(), rt());
3377       break;
3378     case MTHC1:
3379       set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt()));
3380       break;
3381     case S:
3382       DecodeTypeRegisterSRsType();
3383       break;
3384     case D:
3385       DecodeTypeRegisterDRsType();
3386       break;
3387     case W:
3388       DecodeTypeRegisterWRsType();
3389       break;
3390     case L:
3391       DecodeTypeRegisterLRsType();
3392       break;
3393     default:
3394       UNREACHABLE();
3395   }
3396 }
3397 
3398 
DecodeTypeRegisterCOP1X()3399 void Simulator::DecodeTypeRegisterCOP1X() {
3400   switch (instr_.FunctionFieldRaw()) {
3401     case MADD_S: {
3402       DCHECK(kArchVariant == kMips64r2);
3403       float fr, ft, fs;
3404       fr = get_fpu_register_float(fr_reg());
3405       fs = get_fpu_register_float(fs_reg());
3406       ft = get_fpu_register_float(ft_reg());
3407       set_fpu_register_float(fd_reg(), fs * ft + fr);
3408       break;
3409     }
3410     case MSUB_S: {
3411       DCHECK(kArchVariant == kMips64r2);
3412       float fr, ft, fs;
3413       fr = get_fpu_register_float(fr_reg());
3414       fs = get_fpu_register_float(fs_reg());
3415       ft = get_fpu_register_float(ft_reg());
3416       set_fpu_register_float(fd_reg(), fs * ft - fr);
3417       break;
3418     }
3419     case MADD_D: {
3420       DCHECK(kArchVariant == kMips64r2);
3421       double fr, ft, fs;
3422       fr = get_fpu_register_double(fr_reg());
3423       fs = get_fpu_register_double(fs_reg());
3424       ft = get_fpu_register_double(ft_reg());
3425       set_fpu_register_double(fd_reg(), fs * ft + fr);
3426       break;
3427     }
3428     case MSUB_D: {
3429       DCHECK(kArchVariant == kMips64r2);
3430       double fr, ft, fs;
3431       fr = get_fpu_register_double(fr_reg());
3432       fs = get_fpu_register_double(fs_reg());
3433       ft = get_fpu_register_double(ft_reg());
3434       set_fpu_register_double(fd_reg(), fs * ft - fr);
3435       break;
3436     }
3437     default:
3438       UNREACHABLE();
3439   }
3440 }
3441 
3442 
DecodeTypeRegisterSPECIAL()3443 void Simulator::DecodeTypeRegisterSPECIAL() {
3444   int64_t i64hilo;
3445   uint64_t u64hilo;
3446   int64_t alu_out;
3447   bool do_interrupt = false;
3448 
3449   switch (instr_.FunctionFieldRaw()) {
3450     case SELEQZ_S:
3451       DCHECK(kArchVariant == kMips64r6);
3452       set_register(rd_reg(), rt() == 0 ? rs() : 0);
3453       break;
3454     case SELNEZ_S:
3455       DCHECK(kArchVariant == kMips64r6);
3456       set_register(rd_reg(), rt() != 0 ? rs() : 0);
3457       break;
3458     case JR: {
3459       int64_t next_pc = rs();
3460       int64_t current_pc = get_pc();
3461       Instruction* branch_delay_instr =
3462           reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3463       BranchDelayInstructionDecode(branch_delay_instr);
3464       set_pc(next_pc);
3465       pc_modified_ = true;
3466       break;
3467     }
3468     case JALR: {
3469       int64_t next_pc = rs();
3470       int64_t current_pc = get_pc();
3471       int32_t return_addr_reg = rd_reg();
3472       Instruction* branch_delay_instr =
3473           reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3474       BranchDelayInstructionDecode(branch_delay_instr);
3475       set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize);
3476       set_pc(next_pc);
3477       pc_modified_ = true;
3478       break;
3479     }
3480     case SLL:
3481       SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa());
3482       break;
3483     case DSLL:
3484       SetResult(rd_reg(), rt() << sa());
3485       break;
3486     case DSLL32:
3487       SetResult(rd_reg(), rt() << sa() << 32);
3488       break;
3489     case SRL:
3490       if (rs_reg() == 0) {
3491         // Regular logical right shift of a word by a fixed number of
3492         // bits instruction. RS field is always equal to 0.
3493         // Sign-extend the 32-bit result.
3494         alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa());
3495       } else if (rs_reg() == 1) {
3496         // Logical right-rotate of a word by a fixed number of bits. This
3497         // is special case of SRL instruction, added in MIPS32 Release 2.
3498         // RS field is equal to 00001.
3499         alu_out = static_cast<int32_t>(
3500             base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3501                                       static_cast<const uint32_t>(sa())));
3502       } else {
3503         UNREACHABLE();
3504       }
3505       SetResult(rd_reg(), alu_out);
3506       break;
3507     case DSRL:
3508       if (rs_reg() == 0) {
3509         // Regular logical right shift of a word by a fixed number of
3510         // bits instruction. RS field is always equal to 0.
3511         // Sign-extend the 64-bit result.
3512         alu_out = static_cast<int64_t>(rt_u() >> sa());
3513       } else if (rs_reg() == 1) {
3514         // Logical right-rotate of a word by a fixed number of bits. This
3515         // is special case of SRL instruction, added in MIPS32 Release 2.
3516         // RS field is equal to 00001.
3517         alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa()));
3518       } else {
3519         UNREACHABLE();
3520       }
3521       SetResult(rd_reg(), alu_out);
3522       break;
3523     case DSRL32:
3524       if (rs_reg() == 0) {
3525         // Regular logical right shift of a word by a fixed number of
3526         // bits instruction. RS field is always equal to 0.
3527         // Sign-extend the 64-bit result.
3528         alu_out = static_cast<int64_t>(rt_u() >> sa() >> 32);
3529       } else if (rs_reg() == 1) {
3530         // Logical right-rotate of a word by a fixed number of bits. This
3531         // is special case of SRL instruction, added in MIPS32 Release 2.
3532         // RS field is equal to 00001.
3533         alu_out =
3534             static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa() + 32));
3535       } else {
3536         UNREACHABLE();
3537       }
3538       SetResult(rd_reg(), alu_out);
3539       break;
3540     case SRA:
3541       SetResult(rd_reg(), (int32_t)rt() >> sa());
3542       break;
3543     case DSRA:
3544       SetResult(rd_reg(), rt() >> sa());
3545       break;
3546     case DSRA32:
3547       SetResult(rd_reg(), rt() >> sa() >> 32);
3548       break;
3549     case SLLV:
3550       SetResult(rd_reg(), (int32_t)rt() << rs());
3551       break;
3552     case DSLLV:
3553       SetResult(rd_reg(), rt() << rs());
3554       break;
3555     case SRLV:
3556       if (sa() == 0) {
3557         // Regular logical right-shift of a word by a variable number of
3558         // bits instruction. SA field is always equal to 0.
3559         alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs());
3560       } else {
3561         // Logical right-rotate of a word by a variable number of bits.
3562         // This is special case od SRLV instruction, added in MIPS32
3563         // Release 2. SA field is equal to 00001.
3564         alu_out = static_cast<int32_t>(
3565             base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3566                                       static_cast<const uint32_t>(rs_u())));
3567       }
3568       SetResult(rd_reg(), alu_out);
3569       break;
3570     case DSRLV:
3571       if (sa() == 0) {
3572         // Regular logical right-shift of a word by a variable number of
3573         // bits instruction. SA field is always equal to 0.
3574         alu_out = static_cast<int64_t>(rt_u() >> rs());
3575       } else {
3576         // Logical right-rotate of a word by a variable number of bits.
3577         // This is special case od SRLV instruction, added in MIPS32
3578         // Release 2. SA field is equal to 00001.
3579         alu_out =
3580             static_cast<int64_t>(base::bits::RotateRight64(rt_u(), rs_u()));
3581       }
3582       SetResult(rd_reg(), alu_out);
3583       break;
3584     case SRAV:
3585       SetResult(rd_reg(), (int32_t)rt() >> rs());
3586       break;
3587     case DSRAV:
3588       SetResult(rd_reg(), rt() >> rs());
3589       break;
3590     case LSA: {
3591       DCHECK(kArchVariant == kMips64r6);
3592       int8_t sa = lsa_sa() + 1;
3593       int32_t _rt = static_cast<int32_t>(rt());
3594       int32_t _rs = static_cast<int32_t>(rs());
3595       int32_t res = _rs << sa;
3596       res += _rt;
3597       SetResult(rd_reg(), static_cast<int64_t>(res));
3598       break;
3599     }
3600     case DLSA:
3601       DCHECK(kArchVariant == kMips64r6);
3602       SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt());
3603       break;
3604     case MFHI:  // MFHI == CLZ on R6.
3605       if (kArchVariant != kMips64r6) {
3606         DCHECK(sa() == 0);
3607         alu_out = get_register(HI);
3608       } else {
3609         // MIPS spec: If no bits were set in GPR rs(), the result written to
3610         // GPR rd() is 32.
3611         DCHECK(sa() == 1);
3612         alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u()));
3613       }
3614       SetResult(rd_reg(), alu_out);
3615       break;
3616     case MFLO:  // MFLO == DCLZ on R6.
3617       if (kArchVariant != kMips64r6) {
3618         DCHECK(sa() == 0);
3619         alu_out = get_register(LO);
3620       } else {
3621         // MIPS spec: If no bits were set in GPR rs(), the result written to
3622         // GPR rd() is 64.
3623         DCHECK(sa() == 1);
3624         alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u()));
3625       }
3626       SetResult(rd_reg(), alu_out);
3627       break;
3628     // Instructions using HI and LO registers.
3629     case MULT: {  // MULT == D_MUL_MUH.
3630       int32_t rs_lo = static_cast<int32_t>(rs());
3631       int32_t rt_lo = static_cast<int32_t>(rt());
3632       i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo);
3633       if (kArchVariant != kMips64r6) {
3634         set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
3635         set_register(HI, static_cast<int32_t>(i64hilo >> 32));
3636       } else {
3637         switch (sa()) {
3638           case MUL_OP:
3639             set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff));
3640             break;
3641           case MUH_OP:
3642             set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
3643             break;
3644           default:
3645             UNIMPLEMENTED_MIPS();
3646             break;
3647         }
3648       }
3649       break;
3650     }
3651     case MULTU:
3652       u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) *
3653                 static_cast<uint64_t>(rt_u() & 0xffffffff);
3654       if (kArchVariant != kMips64r6) {
3655         set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
3656         set_register(HI, static_cast<int32_t>(u64hilo >> 32));
3657       } else {
3658         switch (sa()) {
3659           case MUL_OP:
3660             set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff));
3661             break;
3662           case MUH_OP:
3663             set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
3664             break;
3665           default:
3666             UNIMPLEMENTED_MIPS();
3667             break;
3668         }
3669       }
3670       break;
3671     case DMULT:  // DMULT == D_MUL_MUH.
3672       if (kArchVariant != kMips64r6) {
3673         set_register(LO, rs() * rt());
3674         set_register(HI, MultiplyHighSigned(rs(), rt()));
3675       } else {
3676         switch (sa()) {
3677           case MUL_OP:
3678             set_register(rd_reg(), rs() * rt());
3679             break;
3680           case MUH_OP:
3681             set_register(rd_reg(), MultiplyHighSigned(rs(), rt()));
3682             break;
3683           default:
3684             UNIMPLEMENTED_MIPS();
3685             break;
3686         }
3687       }
3688       break;
3689     case DMULTU:
3690       UNIMPLEMENTED_MIPS();
3691       break;
3692     case DIV:
3693     case DDIV: {
3694       const int64_t int_min_value =
3695           instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN;
3696       switch (kArchVariant) {
3697         case kMips64r2:
3698           // Divide by zero and overflow was not checked in the
3699           // configuration step - div and divu do not raise exceptions. On
3700           // division by 0 the result will be UNPREDICTABLE. On overflow
3701           // (INT_MIN/-1), return INT_MIN which is what the hardware does.
3702           if (rs() == int_min_value && rt() == -1) {
3703             set_register(LO, int_min_value);
3704             set_register(HI, 0);
3705           } else if (rt() != 0) {
3706             set_register(LO, rs() / rt());
3707             set_register(HI, rs() % rt());
3708           }
3709           break;
3710         case kMips64r6:
3711           switch (sa()) {
3712             case DIV_OP:
3713               if (rs() == int_min_value && rt() == -1) {
3714                 set_register(rd_reg(), int_min_value);
3715               } else if (rt() != 0) {
3716                 set_register(rd_reg(), rs() / rt());
3717               }
3718               break;
3719             case MOD_OP:
3720               if (rs() == int_min_value && rt() == -1) {
3721                 set_register(rd_reg(), 0);
3722               } else if (rt() != 0) {
3723                 set_register(rd_reg(), rs() % rt());
3724               }
3725               break;
3726             default:
3727               UNIMPLEMENTED_MIPS();
3728               break;
3729           }
3730           break;
3731         default:
3732           break;
3733       }
3734       break;
3735     }
3736     case DIVU:
3737       switch (kArchVariant) {
3738         case kMips64r6: {
3739           uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
3740           uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
3741           switch (sa()) {
3742             case DIV_OP:
3743               if (rt_u_32 != 0) {
3744                 set_register(rd_reg(), rs_u_32 / rt_u_32);
3745               }
3746               break;
3747             case MOD_OP:
3748               if (rt_u() != 0) {
3749                 set_register(rd_reg(), rs_u_32 % rt_u_32);
3750               }
3751               break;
3752             default:
3753               UNIMPLEMENTED_MIPS();
3754               break;
3755           }
3756         } break;
3757         default: {
3758           if (rt_u() != 0) {
3759             uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
3760             uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
3761             set_register(LO, rs_u_32 / rt_u_32);
3762             set_register(HI, rs_u_32 % rt_u_32);
3763           }
3764         }
3765       }
3766       break;
3767     case DDIVU:
3768       switch (kArchVariant) {
3769         case kMips64r6: {
3770           switch (instr_.SaValue()) {
3771             case DIV_OP:
3772               if (rt_u() != 0) {
3773                 set_register(rd_reg(), rs_u() / rt_u());
3774               }
3775               break;
3776             case MOD_OP:
3777               if (rt_u() != 0) {
3778                 set_register(rd_reg(), rs_u() % rt_u());
3779               }
3780               break;
3781             default:
3782               UNIMPLEMENTED_MIPS();
3783               break;
3784           }
3785         } break;
3786         default: {
3787           if (rt_u() != 0) {
3788             set_register(LO, rs_u() / rt_u());
3789             set_register(HI, rs_u() % rt_u());
3790           }
3791         }
3792       }
3793       break;
3794     case ADD:
3795     case DADD:
3796       if (HaveSameSign(rs(), rt())) {
3797         if (rs() > 0) {
3798           if (rs() > (Registers::kMaxValue - rt())) {
3799             SignalException(kIntegerOverflow);
3800           }
3801         } else if (rs() < 0) {
3802           if (rs() < (Registers::kMinValue - rt())) {
3803             SignalException(kIntegerUnderflow);
3804           }
3805         }
3806       }
3807       SetResult(rd_reg(), rs() + rt());
3808       break;
3809     case ADDU: {
3810       int32_t alu32_out = static_cast<int32_t>(rs() + rt());
3811       // Sign-extend result of 32bit operation into 64bit register.
3812       SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
3813       break;
3814     }
3815     case DADDU:
3816       SetResult(rd_reg(), rs() + rt());
3817       break;
3818     case SUB:
3819     case DSUB:
3820       if (!HaveSameSign(rs(), rt())) {
3821         if (rs() > 0) {
3822           if (rs() > (Registers::kMaxValue + rt())) {
3823             SignalException(kIntegerOverflow);
3824           }
3825         } else if (rs() < 0) {
3826           if (rs() < (Registers::kMinValue + rt())) {
3827             SignalException(kIntegerUnderflow);
3828           }
3829         }
3830       }
3831       SetResult(rd_reg(), rs() - rt());
3832       break;
3833     case SUBU: {
3834       int32_t alu32_out = static_cast<int32_t>(rs() - rt());
3835       // Sign-extend result of 32bit operation into 64bit register.
3836       SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
3837       break;
3838     }
3839     case DSUBU:
3840       SetResult(rd_reg(), rs() - rt());
3841       break;
3842     case AND:
3843       SetResult(rd_reg(), rs() & rt());
3844       break;
3845     case OR:
3846       SetResult(rd_reg(), rs() | rt());
3847       break;
3848     case XOR:
3849       SetResult(rd_reg(), rs() ^ rt());
3850       break;
3851     case NOR:
3852       SetResult(rd_reg(), ~(rs() | rt()));
3853       break;
3854     case SLT:
3855       SetResult(rd_reg(), rs() < rt() ? 1 : 0);
3856       break;
3857     case SLTU:
3858       SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
3859       break;
3860     // Break and trap instructions.
3861     case BREAK:
3862       do_interrupt = true;
3863       break;
3864     case TGE:
3865       do_interrupt = rs() >= rt();
3866       break;
3867     case TGEU:
3868       do_interrupt = rs_u() >= rt_u();
3869       break;
3870     case TLT:
3871       do_interrupt = rs() < rt();
3872       break;
3873     case TLTU:
3874       do_interrupt = rs_u() < rt_u();
3875       break;
3876     case TEQ:
3877       do_interrupt = rs() == rt();
3878       break;
3879     case TNE:
3880       do_interrupt = rs() != rt();
3881       break;
3882     case SYNC:
3883       // TODO(palfia): Ignore sync instruction for now.
3884       break;
3885     // Conditional moves.
3886     case MOVN:
3887       if (rt()) {
3888         SetResult(rd_reg(), rs());
3889       }
3890       break;
3891     case MOVCI: {
3892       uint32_t cc = instr_.FBccValue();
3893       uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
3894       if (instr_.Bit(16)) {  // Read Tf bit.
3895         if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3896       } else {
3897         if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3898       }
3899       break;
3900     }
3901     case MOVZ:
3902       if (!rt()) {
3903         SetResult(rd_reg(), rs());
3904       }
3905       break;
3906     default:
3907       UNREACHABLE();
3908   }
3909   if (do_interrupt) {
3910     SoftwareInterrupt();
3911   }
3912 }
3913 
3914 
DecodeTypeRegisterSPECIAL2()3915 void Simulator::DecodeTypeRegisterSPECIAL2() {
3916   int64_t alu_out;
3917   switch (instr_.FunctionFieldRaw()) {
3918     case MUL:
3919       alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u());
3920       SetResult(rd_reg(), alu_out);
3921       // HI and LO are UNPREDICTABLE after the operation.
3922       set_register(LO, Unpredictable);
3923       set_register(HI, Unpredictable);
3924       break;
3925     case CLZ:
3926       // MIPS32 spec: If no bits were set in GPR rs(), the result written to
3927       // GPR rd is 32.
3928       alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u()));
3929       SetResult(rd_reg(), alu_out);
3930       break;
3931     case DCLZ:
3932       // MIPS64 spec: If no bits were set in GPR rs(), the result written to
3933       // GPR rd is 64.
3934       alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u()));
3935       SetResult(rd_reg(), alu_out);
3936       break;
3937     default:
3938       alu_out = 0x12345678;
3939       UNREACHABLE();
3940   }
3941 }
3942 
3943 
DecodeTypeRegisterSPECIAL3()3944 void Simulator::DecodeTypeRegisterSPECIAL3() {
3945   int64_t alu_out;
3946   switch (instr_.FunctionFieldRaw()) {
3947     case INS: {  // Mips64r2 instruction.
3948       // Interpret rd field as 5-bit msb of insert.
3949       uint16_t msb = rd_reg();
3950       // Interpret sa field as 5-bit lsb of insert.
3951       uint16_t lsb = sa();
3952       uint16_t size = msb - lsb + 1;
3953       uint64_t mask = (1ULL << size) - 1;
3954       alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) |
3955                                      ((rs_u() & mask) << lsb));
3956       SetResult(rt_reg(), alu_out);
3957       break;
3958     }
3959     case DINS: {  // Mips64r2 instruction.
3960       // Interpret rd field as 5-bit msb of insert.
3961       uint16_t msb = rd_reg();
3962       // Interpret sa field as 5-bit lsb of insert.
3963       uint16_t lsb = sa();
3964       uint16_t size = msb - lsb + 1;
3965       uint64_t mask = (1ULL << size) - 1;
3966       alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
3967       SetResult(rt_reg(), alu_out);
3968       break;
3969     }
3970     case EXT: {  // Mips64r2 instruction.
3971       // Interpret rd field as 5-bit msb of extract.
3972       uint16_t msb = rd_reg();
3973       // Interpret sa field as 5-bit lsb of extract.
3974       uint16_t lsb = sa();
3975       uint16_t size = msb + 1;
3976       uint64_t mask = (1ULL << size) - 1;
3977       alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb);
3978       SetResult(rt_reg(), alu_out);
3979       break;
3980     }
3981     case DEXT: {  // Mips64r2 instruction.
3982       // Interpret rd field as 5-bit msb of extract.
3983       uint16_t msb = rd_reg();
3984       // Interpret sa field as 5-bit lsb of extract.
3985       uint16_t lsb = sa();
3986       uint16_t size = msb + 1;
3987       uint64_t mask = (1ULL << size) - 1;
3988       alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
3989       SetResult(rt_reg(), alu_out);
3990       break;
3991     }
3992     case DEXTM: {
3993       // Interpret rd field as 5-bit msb of extract.
3994       uint16_t msb = rd_reg();
3995       // Interpret sa field as 5-bit lsb of extract.
3996       uint16_t lsb = sa();
3997       uint16_t size = msb + 33;
3998       uint64_t mask = (1ULL << size) - 1;
3999       alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
4000       SetResult(rt_reg(), alu_out);
4001       break;
4002     }
4003     case DEXTU: {
4004       // Interpret rd field as 5-bit msb of extract.
4005       uint16_t msb = rd_reg();
4006       // Interpret sa field as 5-bit lsb of extract.
4007       uint16_t lsb = sa() + 32;
4008       uint16_t size = msb + 1;
4009       uint64_t mask = (1ULL << size) - 1;
4010       alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
4011       SetResult(rt_reg(), alu_out);
4012       break;
4013     }
4014     case BSHFL: {
4015       int32_t sa = instr_.SaFieldRaw() >> kSaShift;
4016       switch (sa) {
4017         case BITSWAP: {
4018           uint32_t input = static_cast<uint32_t>(rt());
4019           uint32_t output = 0;
4020           uint8_t i_byte, o_byte;
4021 
4022           // Reverse the bit in byte for each individual byte
4023           for (int i = 0; i < 4; i++) {
4024             output = output >> 8;
4025             i_byte = input & 0xff;
4026 
4027             // Fast way to reverse bits in byte
4028             // Devised by Sean Anderson, July 13, 2001
4029             o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
4030                                            (i_byte * 0x8020LU & 0x88440LU)) *
4031                                               0x10101LU >>
4032                                           16);
4033 
4034             output = output | (static_cast<uint32_t>(o_byte << 24));
4035             input = input >> 8;
4036           }
4037 
4038           alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
4039           break;
4040         }
4041         case SEB: {
4042           uint8_t input = static_cast<uint8_t>(rt());
4043           uint32_t output = input;
4044           uint32_t mask = 0x00000080;
4045 
4046           // Extending sign
4047           if (mask & input) {
4048             output |= 0xFFFFFF00;
4049           }
4050 
4051           alu_out = static_cast<int32_t>(output);
4052           break;
4053         }
4054         case SEH: {
4055           uint16_t input = static_cast<uint16_t>(rt());
4056           uint32_t output = input;
4057           uint32_t mask = 0x00008000;
4058 
4059           // Extending sign
4060           if (mask & input) {
4061             output |= 0xFFFF0000;
4062           }
4063 
4064           alu_out = static_cast<int32_t>(output);
4065           break;
4066         }
4067         case WSBH: {
4068           uint32_t input = static_cast<uint32_t>(rt());
4069           uint64_t output = 0;
4070 
4071           uint32_t mask = 0xFF000000;
4072           for (int i = 0; i < 4; i++) {
4073             uint32_t tmp = mask & input;
4074             if (i % 2 == 0) {
4075               tmp = tmp >> 8;
4076             } else {
4077               tmp = tmp << 8;
4078             }
4079             output = output | tmp;
4080             mask = mask >> 8;
4081           }
4082           mask = 0x80000000;
4083 
4084           // Extending sign
4085           if (mask & output) {
4086             output |= 0xFFFFFFFF00000000;
4087           }
4088 
4089           alu_out = static_cast<int64_t>(output);
4090           break;
4091         }
4092         default: {
4093           const uint8_t bp2 = instr_.Bp2Value();
4094           sa >>= kBp2Bits;
4095           switch (sa) {
4096             case ALIGN: {
4097               if (bp2 == 0) {
4098                 alu_out = static_cast<int32_t>(rt());
4099               } else {
4100                 uint64_t rt_hi = rt() << (8 * bp2);
4101                 uint64_t rs_lo = rs() >> (8 * (4 - bp2));
4102                 alu_out = static_cast<int32_t>(rt_hi | rs_lo);
4103               }
4104               break;
4105             }
4106             default:
4107               alu_out = 0x12345678;
4108               UNREACHABLE();
4109               break;
4110           }
4111           break;
4112         }
4113       }
4114       SetResult(rd_reg(), alu_out);
4115       break;
4116     }
4117     case DBSHFL: {
4118       int32_t sa = instr_.SaFieldRaw() >> kSaShift;
4119       switch (sa) {
4120         case DBITSWAP: {
4121           switch (sa) {
4122             case DBITSWAP_SA: {  // Mips64r6
4123               uint64_t input = static_cast<uint64_t>(rt());
4124               uint64_t output = 0;
4125               uint8_t i_byte, o_byte;
4126 
4127               // Reverse the bit in byte for each individual byte
4128               for (int i = 0; i < 8; i++) {
4129                 output = output >> 8;
4130                 i_byte = input & 0xff;
4131 
4132                 // Fast way to reverse bits in byte
4133                 // Devised by Sean Anderson, July 13, 2001
4134                 o_byte =
4135                     static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
4136                                           (i_byte * 0x8020LU & 0x88440LU)) *
4137                                              0x10101LU >>
4138                                          16);
4139 
4140                 output = output | ((static_cast<uint64_t>(o_byte) << 56));
4141                 input = input >> 8;
4142               }
4143 
4144               alu_out = static_cast<int64_t>(output);
4145               break;
4146             }
4147           }
4148           break;
4149         }
4150         case DSBH: {
4151           uint64_t input = static_cast<uint64_t>(rt());
4152           uint64_t output = 0;
4153 
4154           uint64_t mask = 0xFF00000000000000;
4155           for (int i = 0; i < 8; i++) {
4156             uint64_t tmp = mask & input;
4157             if (i % 2 == 0)
4158               tmp = tmp >> 8;
4159             else
4160               tmp = tmp << 8;
4161 
4162             output = output | tmp;
4163             mask = mask >> 8;
4164           }
4165 
4166           alu_out = static_cast<int64_t>(output);
4167           break;
4168         }
4169         case DSHD: {
4170           uint64_t input = static_cast<uint64_t>(rt());
4171           uint64_t output = 0;
4172 
4173           uint64_t mask = 0xFFFF000000000000;
4174           for (int i = 0; i < 4; i++) {
4175             uint64_t tmp = mask & input;
4176             if (i == 0)
4177               tmp = tmp >> 48;
4178             else if (i == 1)
4179               tmp = tmp >> 16;
4180             else if (i == 2)
4181               tmp = tmp << 16;
4182             else
4183               tmp = tmp << 48;
4184             output = output | tmp;
4185             mask = mask >> 16;
4186           }
4187 
4188           alu_out = static_cast<int64_t>(output);
4189           break;
4190         }
4191         default: {
4192           const uint8_t bp3 = instr_.Bp3Value();
4193           sa >>= kBp3Bits;
4194           switch (sa) {
4195             case DALIGN: {
4196               if (bp3 == 0) {
4197                 alu_out = static_cast<int64_t>(rt());
4198               } else {
4199                 uint64_t rt_hi = rt() << (8 * bp3);
4200                 uint64_t rs_lo = rs() >> (8 * (8 - bp3));
4201                 alu_out = static_cast<int64_t>(rt_hi | rs_lo);
4202               }
4203               break;
4204             }
4205             default:
4206               alu_out = 0x12345678;
4207               UNREACHABLE();
4208               break;
4209           }
4210           break;
4211         }
4212       }
4213       SetResult(rd_reg(), alu_out);
4214       break;
4215     }
4216     default:
4217       UNREACHABLE();
4218   }
4219 }
4220 
DecodeTypeRegister()4221 void Simulator::DecodeTypeRegister() {
4222   // ---------- Execution.
4223   switch (instr_.OpcodeFieldRaw()) {
4224     case COP1:
4225       DecodeTypeRegisterCOP1();
4226       break;
4227     case COP1X:
4228       DecodeTypeRegisterCOP1X();
4229       break;
4230     case SPECIAL:
4231       DecodeTypeRegisterSPECIAL();
4232       break;
4233     case SPECIAL2:
4234       DecodeTypeRegisterSPECIAL2();
4235       break;
4236     case SPECIAL3:
4237       DecodeTypeRegisterSPECIAL3();
4238       break;
4239     // Unimplemented opcodes raised an error in the configuration step before,
4240     // so we can use the default here to set the destination register in common
4241     // cases.
4242     default:
4243       UNREACHABLE();
4244   }
4245 }
4246 
4247 
4248 // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
DecodeTypeImmediate()4249 void Simulator::DecodeTypeImmediate() {
4250   // Instruction fields.
4251   Opcode op = instr_.OpcodeFieldRaw();
4252   int32_t rs_reg = instr_.RsValue();
4253   int64_t rs = get_register(instr_.RsValue());
4254   uint64_t rs_u = static_cast<uint64_t>(rs);
4255   int32_t rt_reg = instr_.RtValue();  // Destination register.
4256   int64_t rt = get_register(rt_reg);
4257   int16_t imm16 = instr_.Imm16Value();
4258   int32_t imm18 = instr_.Imm18Value();
4259 
4260   int32_t ft_reg = instr_.FtValue();  // Destination register.
4261 
4262   // Zero extended immediate.
4263   uint64_t oe_imm16 = 0xffff & imm16;
4264   // Sign extended immediate.
4265   int64_t se_imm16 = imm16;
4266   int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0);
4267 
4268   // Next pc.
4269   int64_t next_pc = bad_ra;
4270 
4271   // Used for conditional branch instructions.
4272   bool execute_branch_delay_instruction = false;
4273 
4274   // Used for arithmetic instructions.
4275   int64_t alu_out = 0;
4276 
4277   // Used for memory instructions.
4278   int64_t addr = 0x0;
4279   // Alignment for 32-bit integers used in LWL, LWR, etc.
4280   const int kInt32AlignmentMask = sizeof(uint32_t) - 1;
4281   // Alignment for 64-bit integers used in LDL, LDR, etc.
4282   const int kInt64AlignmentMask = sizeof(uint64_t) - 1;
4283 
4284   // Branch instructions common part.
4285   auto BranchAndLinkHelper =
4286       [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
4287         execute_branch_delay_instruction = true;
4288         int64_t current_pc = get_pc();
4289         if (do_branch) {
4290           int16_t imm16 = instr_.Imm16Value();
4291           next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4292           set_register(31, current_pc + 2 * Instruction::kInstrSize);
4293         } else {
4294           next_pc = current_pc + 2 * Instruction::kInstrSize;
4295         }
4296       };
4297 
4298   auto BranchHelper = [this, &next_pc,
4299                        &execute_branch_delay_instruction](bool do_branch) {
4300     execute_branch_delay_instruction = true;
4301     int64_t current_pc = get_pc();
4302     if (do_branch) {
4303       int16_t imm16 = instr_.Imm16Value();
4304       next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4305     } else {
4306       next_pc = current_pc + 2 * Instruction::kInstrSize;
4307     }
4308   };
4309 
4310   auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
4311     int64_t current_pc = get_pc();
4312     CheckForbiddenSlot(current_pc);
4313     if (do_branch) {
4314       int32_t imm = instr_.ImmValue(bits);
4315       imm <<= 32 - bits;
4316       imm >>= 32 - bits;
4317       next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
4318       set_register(31, current_pc + Instruction::kInstrSize);
4319     }
4320   };
4321 
4322   auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
4323     int64_t current_pc = get_pc();
4324     CheckForbiddenSlot(current_pc);
4325     if (do_branch) {
4326       int32_t imm = instr_.ImmValue(bits);
4327       imm <<= 32 - bits;
4328       imm >>= 32 - bits;
4329       next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
4330     }
4331   };
4332 
4333   switch (op) {
4334     // ------------- COP1. Coprocessor instructions.
4335     case COP1:
4336       switch (instr_.RsFieldRaw()) {
4337         case BC1: {  // Branch on coprocessor condition.
4338           uint32_t cc = instr_.FBccValue();
4339           uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
4340           uint32_t cc_value = test_fcsr_bit(fcsr_cc);
4341           bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
4342           BranchHelper(do_branch);
4343           break;
4344         }
4345         case BC1EQZ:
4346           BranchHelper(!(get_fpu_register(ft_reg) & 0x1));
4347           break;
4348         case BC1NEZ:
4349           BranchHelper(get_fpu_register(ft_reg) & 0x1);
4350           break;
4351         default:
4352           UNREACHABLE();
4353       }
4354       break;
4355     // ------------- REGIMM class.
4356     case REGIMM:
4357       switch (instr_.RtFieldRaw()) {
4358         case BLTZ:
4359           BranchHelper(rs < 0);
4360           break;
4361         case BGEZ:
4362           BranchHelper(rs >= 0);
4363           break;
4364         case BLTZAL:
4365           BranchAndLinkHelper(rs < 0);
4366           break;
4367         case BGEZAL:
4368           BranchAndLinkHelper(rs >= 0);
4369           break;
4370         case DAHI:
4371           SetResult(rs_reg, rs + (se_imm16 << 32));
4372           break;
4373         case DATI:
4374           SetResult(rs_reg, rs + (se_imm16 << 48));
4375           break;
4376         default:
4377           UNREACHABLE();
4378       }
4379       break;  // case REGIMM.
4380     // ------------- Branch instructions.
4381     // When comparing to zero, the encoding of rt field is always 0, so we don't
4382     // need to replace rt with zero.
4383     case BEQ:
4384       BranchHelper(rs == rt);
4385       break;
4386     case BNE:
4387       BranchHelper(rs != rt);
4388       break;
4389     case POP06:  // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6)
4390       if (kArchVariant == kMips64r6) {
4391         if (rt_reg != 0) {
4392           if (rs_reg == 0) {  // BLEZALC
4393             BranchAndLinkCompactHelper(rt <= 0, 16);
4394           } else {
4395             if (rs_reg == rt_reg) {  // BGEZALC
4396               BranchAndLinkCompactHelper(rt >= 0, 16);
4397             } else {  // BGEUC
4398               BranchCompactHelper(
4399                   static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16);
4400             }
4401           }
4402         } else {  // BLEZ
4403           BranchHelper(rs <= 0);
4404         }
4405       } else {  // BLEZ
4406         BranchHelper(rs <= 0);
4407       }
4408       break;
4409     case POP07:  // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6)
4410       if (kArchVariant == kMips64r6) {
4411         if (rt_reg != 0) {
4412           if (rs_reg == 0) {  // BGTZALC
4413             BranchAndLinkCompactHelper(rt > 0, 16);
4414           } else {
4415             if (rt_reg == rs_reg) {  // BLTZALC
4416               BranchAndLinkCompactHelper(rt < 0, 16);
4417             } else {  // BLTUC
4418               BranchCompactHelper(
4419                   static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16);
4420             }
4421           }
4422         } else {  // BGTZ
4423           BranchHelper(rs > 0);
4424         }
4425       } else {  // BGTZ
4426         BranchHelper(rs > 0);
4427       }
4428       break;
4429     case POP26:  // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6)
4430       if (kArchVariant == kMips64r6) {
4431         if (rt_reg != 0) {
4432           if (rs_reg == 0) {  // BLEZC
4433             BranchCompactHelper(rt <= 0, 16);
4434           } else {
4435             if (rs_reg == rt_reg) {  // BGEZC
4436               BranchCompactHelper(rt >= 0, 16);
4437             } else {  // BGEC/BLEC
4438               BranchCompactHelper(rs >= rt, 16);
4439             }
4440           }
4441         }
4442       } else {  // BLEZL
4443         BranchAndLinkHelper(rs <= 0);
4444       }
4445       break;
4446     case POP27:  // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6)
4447       if (kArchVariant == kMips64r6) {
4448         if (rt_reg != 0) {
4449           if (rs_reg == 0) {  // BGTZC
4450             BranchCompactHelper(rt > 0, 16);
4451           } else {
4452             if (rs_reg == rt_reg) {  // BLTZC
4453               BranchCompactHelper(rt < 0, 16);
4454             } else {  // BLTC/BGTC
4455               BranchCompactHelper(rs < rt, 16);
4456             }
4457           }
4458         }
4459       } else {  // BGTZL
4460         BranchAndLinkHelper(rs > 0);
4461       }
4462       break;
4463     case POP66:           // BEQZC, JIC
4464       if (rs_reg != 0) {  // BEQZC
4465         BranchCompactHelper(rs == 0, 21);
4466       } else {  // JIC
4467         next_pc = rt + imm16;
4468       }
4469       break;
4470     case POP76:           // BNEZC, JIALC
4471       if (rs_reg != 0) {  // BNEZC
4472         BranchCompactHelper(rs != 0, 21);
4473       } else {  // JIALC
4474         int64_t current_pc = get_pc();
4475         set_register(31, current_pc + Instruction::kInstrSize);
4476         next_pc = rt + imm16;
4477       }
4478       break;
4479     case BC:
4480       BranchCompactHelper(true, 26);
4481       break;
4482     case BALC:
4483       BranchAndLinkCompactHelper(true, 26);
4484       break;
4485     case POP10:  // BOVC, BEQZALC, BEQC / ADDI (pre-r6)
4486       if (kArchVariant == kMips64r6) {
4487         if (rs_reg >= rt_reg) {  // BOVC
4488           bool condition = !is_int32(rs) || !is_int32(rt) || !is_int32(rs + rt);
4489           BranchCompactHelper(condition, 16);
4490         } else {
4491           if (rs_reg == 0) {  // BEQZALC
4492             BranchAndLinkCompactHelper(rt == 0, 16);
4493           } else {  // BEQC
4494             BranchCompactHelper(rt == rs, 16);
4495           }
4496         }
4497       } else {  // ADDI
4498         if (HaveSameSign(rs, se_imm16)) {
4499           if (rs > 0) {
4500             if (rs <= Registers::kMaxValue - se_imm16) {
4501               SignalException(kIntegerOverflow);
4502             }
4503           } else if (rs < 0) {
4504             if (rs >= Registers::kMinValue - se_imm16) {
4505               SignalException(kIntegerUnderflow);
4506             }
4507           }
4508         }
4509         SetResult(rt_reg, rs + se_imm16);
4510       }
4511       break;
4512     case POP30:  // BNVC, BNEZALC, BNEC / DADDI (pre-r6)
4513       if (kArchVariant == kMips64r6) {
4514         if (rs_reg >= rt_reg) {  // BNVC
4515           bool condition = is_int32(rs) && is_int32(rt) && is_int32(rs + rt);
4516           BranchCompactHelper(condition, 16);
4517         } else {
4518           if (rs_reg == 0) {  // BNEZALC
4519             BranchAndLinkCompactHelper(rt != 0, 16);
4520           } else {  // BNEC
4521             BranchCompactHelper(rt != rs, 16);
4522           }
4523         }
4524       }
4525       break;
4526     // ------------- Arithmetic instructions.
4527     case ADDIU: {
4528       DCHECK(is_int32(rs));
4529       int32_t alu32_out = static_cast<int32_t>(rs + se_imm16);
4530       // Sign-extend result of 32bit operation into 64bit register.
4531       SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4532       break;
4533     }
4534     case DADDIU:
4535       SetResult(rt_reg, rs + se_imm16);
4536       break;
4537     case SLTI:
4538       SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
4539       break;
4540     case SLTIU:
4541       SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0);
4542       break;
4543     case ANDI:
4544       SetResult(rt_reg, rs & oe_imm16);
4545       break;
4546     case ORI:
4547       SetResult(rt_reg, rs | oe_imm16);
4548       break;
4549     case XORI:
4550       SetResult(rt_reg, rs ^ oe_imm16);
4551       break;
4552     case LUI:
4553       if (rs_reg != 0) {
4554         // AUI instruction.
4555         DCHECK(kArchVariant == kMips64r6);
4556         int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16));
4557         SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4558       } else {
4559         // LUI instruction.
4560         int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16);
4561         // Sign-extend result of 32bit operation into 64bit register.
4562         SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4563       }
4564       break;
4565     case DAUI:
4566       DCHECK(kArchVariant == kMips64r6);
4567       DCHECK(rs_reg != 0);
4568       SetResult(rt_reg, rs + (se_imm16 << 16));
4569       break;
4570     // ------------- Memory instructions.
4571     case LB:
4572       set_register(rt_reg, ReadB(rs + se_imm16));
4573       break;
4574     case LH:
4575       set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
4576       break;
4577     case LWL: {
4578       // al_offset is offset of the effective address within an aligned word.
4579       uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4580       uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4581       uint32_t mask = (1 << byte_shift * 8) - 1;
4582       addr = rs + se_imm16 - al_offset;
4583       int32_t val = ReadW(addr, instr_.instr());
4584       val <<= byte_shift * 8;
4585       val |= rt & mask;
4586       set_register(rt_reg, static_cast<int64_t>(val));
4587       break;
4588     }
4589     case LW:
4590       set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
4591       break;
4592     case LWU:
4593       set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr()));
4594       break;
4595     case LD:
4596       set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr()));
4597       break;
4598     case LBU:
4599       set_register(rt_reg, ReadBU(rs + se_imm16));
4600       break;
4601     case LHU:
4602       set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
4603       break;
4604     case LWR: {
4605       // al_offset is offset of the effective address within an aligned word.
4606       uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4607       uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4608       uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
4609       addr = rs + se_imm16 - al_offset;
4610       alu_out = ReadW(addr, instr_.instr());
4611       alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
4612       alu_out |= rt & mask;
4613       set_register(rt_reg, alu_out);
4614       break;
4615     }
4616     case LDL: {
4617       // al_offset is offset of the effective address within an aligned word.
4618       uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4619       uint8_t byte_shift = kInt64AlignmentMask - al_offset;
4620       uint64_t mask = (1UL << byte_shift * 8) - 1;
4621       addr = rs + se_imm16 - al_offset;
4622       alu_out = Read2W(addr, instr_.instr());
4623       alu_out <<= byte_shift * 8;
4624       alu_out |= rt & mask;
4625       set_register(rt_reg, alu_out);
4626       break;
4627     }
4628     case LDR: {
4629       // al_offset is offset of the effective address within an aligned word.
4630       uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4631       uint8_t byte_shift = kInt64AlignmentMask - al_offset;
4632       uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL;
4633       addr = rs + se_imm16 - al_offset;
4634       alu_out = Read2W(addr, instr_.instr());
4635       alu_out = alu_out >> al_offset * 8;
4636       alu_out |= rt & mask;
4637       set_register(rt_reg, alu_out);
4638       break;
4639     }
4640     case SB:
4641       WriteB(rs + se_imm16, static_cast<int8_t>(rt));
4642       break;
4643     case SH:
4644       WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
4645       break;
4646     case SWL: {
4647       uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4648       uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4649       uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
4650       addr = rs + se_imm16 - al_offset;
4651       uint64_t mem_value = ReadW(addr, instr_.instr()) & mask;
4652       mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
4653       WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
4654       break;
4655     }
4656     case SW:
4657       WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr_.instr());
4658       break;
4659     case SD:
4660       Write2W(rs + se_imm16, rt, instr_.instr());
4661       break;
4662     case SWR: {
4663       uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4664       uint32_t mask = (1 << al_offset * 8) - 1;
4665       addr = rs + se_imm16 - al_offset;
4666       uint64_t mem_value = ReadW(addr, instr_.instr());
4667       mem_value = (rt << al_offset * 8) | (mem_value & mask);
4668       WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
4669       break;
4670     }
4671     case SDL: {
4672       uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4673       uint8_t byte_shift = kInt64AlignmentMask - al_offset;
4674       uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0;
4675       addr = rs + se_imm16 - al_offset;
4676       uint64_t mem_value = Read2W(addr, instr_.instr()) & mask;
4677       mem_value |= rt >> byte_shift * 8;
4678       Write2W(addr, mem_value, instr_.instr());
4679       break;
4680     }
4681     case SDR: {
4682       uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4683       uint64_t mask = (1UL << al_offset * 8) - 1;
4684       addr = rs + se_imm16 - al_offset;
4685       uint64_t mem_value = Read2W(addr, instr_.instr());
4686       mem_value = (rt << al_offset * 8) | (mem_value & mask);
4687       Write2W(addr, mem_value, instr_.instr());
4688       break;
4689     }
4690     case LWC1:
4691       set_fpu_register(ft_reg, kFPUInvalidResult);  // Trash upper 32 bits.
4692       set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr()));
4693       break;
4694     case LDC1:
4695       set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
4696       break;
4697     case SWC1: {
4698       int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg));
4699       WriteW(rs + se_imm16, alu_out_32, instr_.instr());
4700       break;
4701     }
4702     case SDC1:
4703       WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
4704       break;
4705     // ------------- PC-Relative instructions.
4706     case PCREL: {
4707       // rt field: checking 5-bits.
4708       int32_t imm21 = instr_.Imm21Value();
4709       int64_t current_pc = get_pc();
4710       uint8_t rt = (imm21 >> kImm16Bits);
4711       switch (rt) {
4712         case ALUIPC:
4713           addr = current_pc + (se_imm16 << 16);
4714           alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
4715           break;
4716         case AUIPC:
4717           alu_out = current_pc + (se_imm16 << 16);
4718           break;
4719         default: {
4720           int32_t imm19 = instr_.Imm19Value();
4721           // rt field: checking the most significant 3-bits.
4722           rt = (imm21 >> kImm18Bits);
4723           switch (rt) {
4724             case LDPC:
4725               addr =
4726                   (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3);
4727               alu_out = Read2W(addr, instr_.instr());
4728               break;
4729             default: {
4730               // rt field: checking the most significant 2-bits.
4731               rt = (imm21 >> kImm19Bits);
4732               switch (rt) {
4733                 case LWUPC: {
4734                   // Set sign.
4735                   imm19 <<= (kOpcodeBits + kRsBits + 2);
4736                   imm19 >>= (kOpcodeBits + kRsBits + 2);
4737                   addr = current_pc + (imm19 << 2);
4738                   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
4739                   alu_out = *ptr;
4740                   break;
4741                 }
4742                 case LWPC: {
4743                   // Set sign.
4744                   imm19 <<= (kOpcodeBits + kRsBits + 2);
4745                   imm19 >>= (kOpcodeBits + kRsBits + 2);
4746                   addr = current_pc + (imm19 << 2);
4747                   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
4748                   alu_out = *ptr;
4749                   break;
4750                 }
4751                 case ADDIUPC: {
4752                   int64_t se_imm19 =
4753                       imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0);
4754                   alu_out = current_pc + (se_imm19 << 2);
4755                   break;
4756                 }
4757                 default:
4758                   UNREACHABLE();
4759                   break;
4760               }
4761               break;
4762             }
4763           }
4764           break;
4765         }
4766       }
4767       set_register(rs_reg, alu_out);
4768       break;
4769     }
4770     default:
4771       UNREACHABLE();
4772   }
4773 
4774   if (execute_branch_delay_instruction) {
4775     // Execute branch delay slot
4776     // We don't check for end_sim_pc. First it should not be met as the current
4777     // pc is valid. Secondly a jump should always execute its branch delay slot.
4778     Instruction* branch_delay_instr =
4779         reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize);
4780     BranchDelayInstructionDecode(branch_delay_instr);
4781   }
4782 
4783   // If needed update pc after the branch delay execution.
4784   if (next_pc != bad_ra) {
4785     set_pc(next_pc);
4786   }
4787 }
4788 
4789 
4790 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
DecodeTypeJump()4791 void Simulator::DecodeTypeJump() {
4792   SimInstruction simInstr = instr_;
4793   // Get current pc.
4794   int64_t current_pc = get_pc();
4795   // Get unchanged bits of pc.
4796   int64_t pc_high_bits = current_pc & 0xfffffffff0000000;
4797   // Next pc.
4798   int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
4799 
4800   // Execute branch delay slot.
4801   // We don't check for end_sim_pc. First it should not be met as the current pc
4802   // is valid. Secondly a jump should always execute its branch delay slot.
4803   Instruction* branch_delay_instr =
4804       reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
4805   BranchDelayInstructionDecode(branch_delay_instr);
4806 
4807   // Update pc and ra if necessary.
4808   // Do this after the branch delay execution.
4809   if (simInstr.IsLinkingInstruction()) {
4810     set_register(31, current_pc + 2 * Instruction::kInstrSize);
4811   }
4812   set_pc(next_pc);
4813   pc_modified_ = true;
4814 }
4815 
4816 
4817 // Executes the current instruction.
InstructionDecode(Instruction * instr)4818 void Simulator::InstructionDecode(Instruction* instr) {
4819   if (v8::internal::FLAG_check_icache) {
4820     CheckICache(isolate_->simulator_i_cache(), instr);
4821   }
4822   pc_modified_ = false;
4823 
4824   v8::internal::EmbeddedVector<char, 256> buffer;
4825 
4826   if (::v8::internal::FLAG_trace_sim) {
4827     SNPrintF(trace_buf_, " ");
4828     disasm::NameConverter converter;
4829     disasm::Disassembler dasm(converter);
4830     // Use a reasonably large buffer.
4831     dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
4832   }
4833 
4834   instr_ = instr;
4835   switch (instr_.InstructionType()) {
4836     case Instruction::kRegisterType:
4837       DecodeTypeRegister();
4838       break;
4839     case Instruction::kImmediateType:
4840       DecodeTypeImmediate();
4841       break;
4842     case Instruction::kJumpType:
4843       DecodeTypeJump();
4844       break;
4845     default:
4846       UNSUPPORTED();
4847   }
4848 
4849   if (::v8::internal::FLAG_trace_sim) {
4850     PrintF("  0x%08" PRIxPTR "   %-44s   %s\n",
4851            reinterpret_cast<intptr_t>(instr), buffer.start(),
4852            trace_buf_.start());
4853   }
4854 
4855   if (!pc_modified_) {
4856     set_register(pc, reinterpret_cast<int64_t>(instr) +
4857                  Instruction::kInstrSize);
4858   }
4859 }
4860 
4861 
4862 
Execute()4863 void Simulator::Execute() {
4864   // Get the PC to simulate. Cannot use the accessor here as we need the
4865   // raw PC value and not the one used as input to arithmetic instructions.
4866   int64_t program_counter = get_pc();
4867   if (::v8::internal::FLAG_stop_sim_at == 0) {
4868     // Fast version of the dispatch loop without checking whether the simulator
4869     // should be stopping at a particular executed instruction.
4870     while (program_counter != end_sim_pc) {
4871       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4872       icount_++;
4873       InstructionDecode(instr);
4874       program_counter = get_pc();
4875     }
4876   } else {
4877     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
4878     // we reach the particular instuction count.
4879     while (program_counter != end_sim_pc) {
4880       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4881       icount_++;
4882       if (icount_ == static_cast<int64_t>(::v8::internal::FLAG_stop_sim_at)) {
4883         MipsDebugger dbg(this);
4884         dbg.Debug();
4885       } else {
4886         InstructionDecode(instr);
4887       }
4888       program_counter = get_pc();
4889     }
4890   }
4891 }
4892 
4893 
CallInternal(byte * entry)4894 void Simulator::CallInternal(byte* entry) {
4895   // Adjust JS-based stack limit to C-based stack limit.
4896   isolate_->stack_guard()->AdjustStackLimitForSimulator();
4897 
4898   // Prepare to execute the code at entry.
4899   set_register(pc, reinterpret_cast<int64_t>(entry));
4900   // Put down marker for end of simulation. The simulator will stop simulation
4901   // when the PC reaches this value. By saving the "end simulation" value into
4902   // the LR the simulation stops when returning to this call point.
4903   set_register(ra, end_sim_pc);
4904 
4905   // Remember the values of callee-saved registers.
4906   // The code below assumes that r9 is not used as sb (static base) in
4907   // simulator code and therefore is regarded as a callee-saved register.
4908   int64_t s0_val = get_register(s0);
4909   int64_t s1_val = get_register(s1);
4910   int64_t s2_val = get_register(s2);
4911   int64_t s3_val = get_register(s3);
4912   int64_t s4_val = get_register(s4);
4913   int64_t s5_val = get_register(s5);
4914   int64_t s6_val = get_register(s6);
4915   int64_t s7_val = get_register(s7);
4916   int64_t gp_val = get_register(gp);
4917   int64_t sp_val = get_register(sp);
4918   int64_t fp_val = get_register(fp);
4919 
4920   // Set up the callee-saved registers with a known value. To be able to check
4921   // that they are preserved properly across JS execution.
4922   int64_t callee_saved_value = icount_;
4923   set_register(s0, callee_saved_value);
4924   set_register(s1, callee_saved_value);
4925   set_register(s2, callee_saved_value);
4926   set_register(s3, callee_saved_value);
4927   set_register(s4, callee_saved_value);
4928   set_register(s5, callee_saved_value);
4929   set_register(s6, callee_saved_value);
4930   set_register(s7, callee_saved_value);
4931   set_register(gp, callee_saved_value);
4932   set_register(fp, callee_saved_value);
4933 
4934   // Start the simulation.
4935   Execute();
4936 
4937   // Check that the callee-saved registers have been preserved.
4938   CHECK_EQ(callee_saved_value, get_register(s0));
4939   CHECK_EQ(callee_saved_value, get_register(s1));
4940   CHECK_EQ(callee_saved_value, get_register(s2));
4941   CHECK_EQ(callee_saved_value, get_register(s3));
4942   CHECK_EQ(callee_saved_value, get_register(s4));
4943   CHECK_EQ(callee_saved_value, get_register(s5));
4944   CHECK_EQ(callee_saved_value, get_register(s6));
4945   CHECK_EQ(callee_saved_value, get_register(s7));
4946   CHECK_EQ(callee_saved_value, get_register(gp));
4947   CHECK_EQ(callee_saved_value, get_register(fp));
4948 
4949   // Restore callee-saved registers with the original value.
4950   set_register(s0, s0_val);
4951   set_register(s1, s1_val);
4952   set_register(s2, s2_val);
4953   set_register(s3, s3_val);
4954   set_register(s4, s4_val);
4955   set_register(s5, s5_val);
4956   set_register(s6, s6_val);
4957   set_register(s7, s7_val);
4958   set_register(gp, gp_val);
4959   set_register(sp, sp_val);
4960   set_register(fp, fp_val);
4961 }
4962 
4963 
Call(byte * entry,int argument_count,...)4964 int64_t Simulator::Call(byte* entry, int argument_count, ...) {
4965   const int kRegisterPassedArguments = 8;
4966   va_list parameters;
4967   va_start(parameters, argument_count);
4968   // Set up arguments.
4969 
4970   // First four arguments passed in registers in both ABI's.
4971   DCHECK(argument_count >= 4);
4972   set_register(a0, va_arg(parameters, int64_t));
4973   set_register(a1, va_arg(parameters, int64_t));
4974   set_register(a2, va_arg(parameters, int64_t));
4975   set_register(a3, va_arg(parameters, int64_t));
4976 
4977   // Up to eight arguments passed in registers in N64 ABI.
4978   // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this.
4979   if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t));
4980   if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t));
4981   if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t));
4982   if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t));
4983 
4984   // Remaining arguments passed on stack.
4985   int64_t original_stack = get_register(sp);
4986   // Compute position of stack on entry to generated code.
4987   int stack_args_count = (argument_count > kRegisterPassedArguments) ?
4988                          (argument_count - kRegisterPassedArguments) : 0;
4989   int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize;
4990   int64_t entry_stack = original_stack - stack_args_size;
4991 
4992   if (base::OS::ActivationFrameAlignment() != 0) {
4993     entry_stack &= -base::OS::ActivationFrameAlignment();
4994   }
4995   // Store remaining arguments on stack, from low to high memory.
4996   intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
4997   for (int i = kRegisterPassedArguments; i < argument_count; i++) {
4998     int stack_index = i - kRegisterPassedArguments + kCArgSlotCount;
4999     stack_argument[stack_index] = va_arg(parameters, int64_t);
5000   }
5001   va_end(parameters);
5002   set_register(sp, entry_stack);
5003 
5004   CallInternal(entry);
5005 
5006   // Pop stack passed arguments.
5007   CHECK_EQ(entry_stack, get_register(sp));
5008   set_register(sp, original_stack);
5009 
5010   int64_t result = get_register(v0);
5011   return result;
5012 }
5013 
5014 
CallFP(byte * entry,double d0,double d1)5015 double Simulator::CallFP(byte* entry, double d0, double d1) {
5016   if (!IsMipsSoftFloatABI) {
5017     const FPURegister fparg2 = f13;
5018     set_fpu_register_double(f12, d0);
5019     set_fpu_register_double(fparg2, d1);
5020   } else {
5021     int buffer[2];
5022     DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0));
5023     memcpy(buffer, &d0, sizeof(d0));
5024     set_dw_register(a0, buffer);
5025     memcpy(buffer, &d1, sizeof(d1));
5026     set_dw_register(a2, buffer);
5027   }
5028   CallInternal(entry);
5029   if (!IsMipsSoftFloatABI) {
5030     return get_fpu_register_double(f0);
5031   } else {
5032     return get_double_from_register_pair(v0);
5033   }
5034 }
5035 
5036 
PushAddress(uintptr_t address)5037 uintptr_t Simulator::PushAddress(uintptr_t address) {
5038   int64_t new_sp = get_register(sp) - sizeof(uintptr_t);
5039   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
5040   *stack_slot = address;
5041   set_register(sp, new_sp);
5042   return new_sp;
5043 }
5044 
5045 
PopAddress()5046 uintptr_t Simulator::PopAddress() {
5047   int64_t current_sp = get_register(sp);
5048   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
5049   uintptr_t address = *stack_slot;
5050   set_register(sp, current_sp + sizeof(uintptr_t));
5051   return address;
5052 }
5053 
5054 
5055 #undef UNSUPPORTED
5056 }  // namespace internal
5057 }  // namespace v8
5058 
5059 #endif  // USE_SIMULATOR
5060 
5061 #endif  // V8_TARGET_ARCH_MIPS64
5062