1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <limits.h>
6 #include <stdarg.h>
7 #include <stdlib.h>
8 #include <cmath>
9
10 #if V8_TARGET_ARCH_MIPS64
11
12 #include "src/assembler.h"
13 #include "src/base/bits.h"
14 #include "src/codegen.h"
15 #include "src/disasm.h"
16 #include "src/mips64/constants-mips64.h"
17 #include "src/mips64/simulator-mips64.h"
18 #include "src/ostreams.h"
19 #include "src/runtime/runtime-utils.h"
20
21 // Only build the simulator if not compiling for real MIPS hardware.
22 #if defined(USE_SIMULATOR)
23
24 namespace v8 {
25 namespace internal {
26
27 // Util functions.
HaveSameSign(int64_t a,int64_t b)28 inline bool HaveSameSign(int64_t a, int64_t b) { return ((a ^ b) >= 0); }
29
get_fcsr_condition_bit(uint32_t cc)30 uint32_t get_fcsr_condition_bit(uint32_t cc) {
31 if (cc == 0) {
32 return 23;
33 } else {
34 return 24 + cc;
35 }
36 }
37
38
MultiplyHighSigned(int64_t u,int64_t v)39 static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
40 uint64_t u0, v0, w0;
41 int64_t u1, v1, w1, w2, t;
42
43 u0 = u & 0xffffffffL;
44 u1 = u >> 32;
45 v0 = v & 0xffffffffL;
46 v1 = v >> 32;
47
48 w0 = u0 * v0;
49 t = u1 * v0 + (w0 >> 32);
50 w1 = t & 0xffffffffL;
51 w2 = t >> 32;
52 w1 = u0 * v1 + w1;
53
54 return u1 * v1 + w2 + (w1 >> 32);
55 }
56
57
58 // This macro provides a platform independent use of sscanf. The reason for
59 // SScanF not being implemented in a platform independent was through
60 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
61 // Library does not provide vsscanf.
62 #define SScanF sscanf // NOLINT
63
64 // The MipsDebugger class is used by the simulator while debugging simulated
65 // code.
66 class MipsDebugger {
67 public:
MipsDebugger(Simulator * sim)68 explicit MipsDebugger(Simulator* sim) : sim_(sim) { }
69
70 void Stop(Instruction* instr);
71 void Debug();
72 // Print all registers with a nice formatting.
73 void PrintAllRegs();
74 void PrintAllRegsIncludingFPU();
75
76 private:
77 // We set the breakpoint code to 0xfffff to easily recognize it.
78 static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6;
79 static const Instr kNopInstr = 0x0;
80
81 Simulator* sim_;
82
83 int64_t GetRegisterValue(int regnum);
84 int64_t GetFPURegisterValue(int regnum);
85 float GetFPURegisterValueFloat(int regnum);
86 double GetFPURegisterValueDouble(int regnum);
87 bool GetValue(const char* desc, int64_t* value);
88
89 // Set or delete a breakpoint. Returns true if successful.
90 bool SetBreakpoint(Instruction* breakpc);
91 bool DeleteBreakpoint(Instruction* breakpc);
92
93 // Undo and redo all breakpoints. This is needed to bracket disassembly and
94 // execution to skip past breakpoints when run from the debugger.
95 void UndoBreakpoints();
96 void RedoBreakpoints();
97 };
98
UNSUPPORTED()99 inline void UNSUPPORTED() { printf("Sim: Unsupported instruction.\n"); }
100
Stop(Instruction * instr)101 void MipsDebugger::Stop(Instruction* instr) {
102 // Get the stop code.
103 uint32_t code = instr->Bits(25, 6);
104 PrintF("Simulator hit (%u)\n", code);
105 // TODO(yuyin): 2 -> 3?
106 sim_->set_pc(sim_->get_pc() + 3 * Instruction::kInstrSize);
107 Debug();
108 }
109
GetRegisterValue(int regnum)110 int64_t MipsDebugger::GetRegisterValue(int regnum) {
111 if (regnum == kNumSimuRegisters) {
112 return sim_->get_pc();
113 } else {
114 return sim_->get_register(regnum);
115 }
116 }
117
118
GetFPURegisterValue(int regnum)119 int64_t MipsDebugger::GetFPURegisterValue(int regnum) {
120 if (regnum == kNumFPURegisters) {
121 return sim_->get_pc();
122 } else {
123 return sim_->get_fpu_register(regnum);
124 }
125 }
126
127
GetFPURegisterValueFloat(int regnum)128 float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
129 if (regnum == kNumFPURegisters) {
130 return sim_->get_pc();
131 } else {
132 return sim_->get_fpu_register_float(regnum);
133 }
134 }
135
136
GetFPURegisterValueDouble(int regnum)137 double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
138 if (regnum == kNumFPURegisters) {
139 return sim_->get_pc();
140 } else {
141 return sim_->get_fpu_register_double(regnum);
142 }
143 }
144
145
GetValue(const char * desc,int64_t * value)146 bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
147 int regnum = Registers::Number(desc);
148 int fpuregnum = FPURegisters::Number(desc);
149
150 if (regnum != kInvalidRegister) {
151 *value = GetRegisterValue(regnum);
152 return true;
153 } else if (fpuregnum != kInvalidFPURegister) {
154 *value = GetFPURegisterValue(fpuregnum);
155 return true;
156 } else if (strncmp(desc, "0x", 2) == 0) {
157 return SScanF(desc + 2, "%" SCNx64,
158 reinterpret_cast<uint64_t*>(value)) == 1;
159 } else {
160 return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
161 }
162 return false;
163 }
164
165
SetBreakpoint(Instruction * breakpc)166 bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
167 // Check if a breakpoint can be set. If not return without any side-effects.
168 if (sim_->break_pc_ != NULL) {
169 return false;
170 }
171
172 // Set the breakpoint.
173 sim_->break_pc_ = breakpc;
174 sim_->break_instr_ = breakpc->InstructionBits();
175 // Not setting the breakpoint instruction in the code itself. It will be set
176 // when the debugger shell continues.
177 return true;
178 }
179
180
DeleteBreakpoint(Instruction * breakpc)181 bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
182 if (sim_->break_pc_ != NULL) {
183 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
184 }
185
186 sim_->break_pc_ = NULL;
187 sim_->break_instr_ = 0;
188 return true;
189 }
190
191
UndoBreakpoints()192 void MipsDebugger::UndoBreakpoints() {
193 if (sim_->break_pc_ != NULL) {
194 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
195 }
196 }
197
198
RedoBreakpoints()199 void MipsDebugger::RedoBreakpoints() {
200 if (sim_->break_pc_ != NULL) {
201 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
202 }
203 }
204
205
PrintAllRegs()206 void MipsDebugger::PrintAllRegs() {
207 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
208
209 PrintF("\n");
210 // at, v0, a0.
211 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 "\t%3s: 0x%016" PRIx64 " %14" PRId64
212 "\t%3s: 0x%016" PRIx64 " %14" PRId64 "\n",
213 REG_INFO(1), REG_INFO(2), REG_INFO(4));
214 // v1, a1.
215 PrintF("%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
216 " %14" PRId64 " \n",
217 "", REG_INFO(3), REG_INFO(5));
218 // a2.
219 PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "",
220 REG_INFO(6));
221 // a3.
222 PrintF("%34s\t%34s\t%3s: 0x%016" PRIx64 " %14" PRId64 " \n", "", "",
223 REG_INFO(7));
224 PrintF("\n");
225 // a4-t3, s0-s7
226 for (int i = 0; i < 8; i++) {
227 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
228 " %14" PRId64 " \n",
229 REG_INFO(8 + i), REG_INFO(16 + i));
230 }
231 PrintF("\n");
232 // t8, k0, LO.
233 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
234 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n",
235 REG_INFO(24), REG_INFO(26), REG_INFO(32));
236 // t9, k1, HI.
237 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
238 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n",
239 REG_INFO(25), REG_INFO(27), REG_INFO(33));
240 // sp, fp, gp.
241 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
242 " %14" PRId64 " \t%3s: 0x%016" PRIx64 " %14" PRId64 " \n",
243 REG_INFO(29), REG_INFO(30), REG_INFO(28));
244 // pc.
245 PrintF("%3s: 0x%016" PRIx64 " %14" PRId64 " \t%3s: 0x%016" PRIx64
246 " %14" PRId64 " \n",
247 REG_INFO(31), REG_INFO(34));
248
249 #undef REG_INFO
250 #undef FPU_REG_INFO
251 }
252
253
PrintAllRegsIncludingFPU()254 void MipsDebugger::PrintAllRegsIncludingFPU() {
255 #define FPU_REG_INFO(n) FPURegisters::Name(n), \
256 GetFPURegisterValue(n), \
257 GetFPURegisterValueDouble(n)
258
259 PrintAllRegs();
260
261 PrintF("\n\n");
262 // f0, f1, f2, ... f31.
263 // TODO(plind): consider printing 2 columns for space efficiency.
264 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(0));
265 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(1));
266 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(2));
267 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(3));
268 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(4));
269 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(5));
270 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(6));
271 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(7));
272 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(8));
273 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(9));
274 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(10));
275 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(11));
276 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(12));
277 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(13));
278 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(14));
279 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(15));
280 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(16));
281 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(17));
282 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(18));
283 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(19));
284 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(20));
285 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(21));
286 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(22));
287 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(23));
288 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(24));
289 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(25));
290 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(26));
291 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(27));
292 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(28));
293 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(29));
294 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(30));
295 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n", FPU_REG_INFO(31));
296
297 #undef REG_INFO
298 #undef FPU_REG_INFO
299 }
300
301
Debug()302 void MipsDebugger::Debug() {
303 intptr_t last_pc = -1;
304 bool done = false;
305
306 #define COMMAND_SIZE 63
307 #define ARG_SIZE 255
308
309 #define STR(a) #a
310 #define XSTR(a) STR(a)
311
312 char cmd[COMMAND_SIZE + 1];
313 char arg1[ARG_SIZE + 1];
314 char arg2[ARG_SIZE + 1];
315 char* argv[3] = { cmd, arg1, arg2 };
316
317 // Make sure to have a proper terminating character if reaching the limit.
318 cmd[COMMAND_SIZE] = 0;
319 arg1[ARG_SIZE] = 0;
320 arg2[ARG_SIZE] = 0;
321
322 // Undo all set breakpoints while running in the debugger shell. This will
323 // make them invisible to all commands.
324 UndoBreakpoints();
325
326 while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
327 if (last_pc != sim_->get_pc()) {
328 disasm::NameConverter converter;
329 disasm::Disassembler dasm(converter);
330 // Use a reasonably large buffer.
331 v8::internal::EmbeddedVector<char, 256> buffer;
332 dasm.InstructionDecode(buffer,
333 reinterpret_cast<byte*>(sim_->get_pc()));
334 PrintF(" 0x%016" PRIx64 " %s\n", sim_->get_pc(), buffer.start());
335 last_pc = sim_->get_pc();
336 }
337 char* line = ReadLine("sim> ");
338 if (line == NULL) {
339 break;
340 } else {
341 char* last_input = sim_->last_debugger_input();
342 if (strcmp(line, "\n") == 0 && last_input != NULL) {
343 line = last_input;
344 } else {
345 // Ownership is transferred to sim_;
346 sim_->set_last_debugger_input(line);
347 }
348 // Use sscanf to parse the individual parts of the command line. At the
349 // moment no command expects more than two parameters.
350 int argc = SScanF(line,
351 "%" XSTR(COMMAND_SIZE) "s "
352 "%" XSTR(ARG_SIZE) "s "
353 "%" XSTR(ARG_SIZE) "s",
354 cmd, arg1, arg2);
355 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
356 Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
357 if (!(instr->IsTrap()) ||
358 instr->InstructionBits() == rtCallRedirInstr) {
359 sim_->InstructionDecode(
360 reinterpret_cast<Instruction*>(sim_->get_pc()));
361 } else {
362 // Allow si to jump over generated breakpoints.
363 PrintF("/!\\ Jumping over generated breakpoint.\n");
364 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
365 }
366 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
367 // Execute the one instruction we broke at with breakpoints disabled.
368 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
369 // Leave the debugger shell.
370 done = true;
371 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
372 if (argc == 2) {
373 int64_t value;
374 double dvalue;
375 if (strcmp(arg1, "all") == 0) {
376 PrintAllRegs();
377 } else if (strcmp(arg1, "allf") == 0) {
378 PrintAllRegsIncludingFPU();
379 } else {
380 int regnum = Registers::Number(arg1);
381 int fpuregnum = FPURegisters::Number(arg1);
382
383 if (regnum != kInvalidRegister) {
384 value = GetRegisterValue(regnum);
385 PrintF("%s: 0x%08" PRIx64 " %" PRId64 " \n", arg1, value,
386 value);
387 } else if (fpuregnum != kInvalidFPURegister) {
388 value = GetFPURegisterValue(fpuregnum);
389 dvalue = GetFPURegisterValueDouble(fpuregnum);
390 PrintF("%3s: 0x%016" PRIx64 " %16.4e\n",
391 FPURegisters::Name(fpuregnum), value, dvalue);
392 } else {
393 PrintF("%s unrecognized\n", arg1);
394 }
395 }
396 } else {
397 if (argc == 3) {
398 if (strcmp(arg2, "single") == 0) {
399 int64_t value;
400 float fvalue;
401 int fpuregnum = FPURegisters::Number(arg1);
402
403 if (fpuregnum != kInvalidFPURegister) {
404 value = GetFPURegisterValue(fpuregnum);
405 value &= 0xffffffffUL;
406 fvalue = GetFPURegisterValueFloat(fpuregnum);
407 PrintF("%s: 0x%08" PRIx64 " %11.4e\n", arg1, value, fvalue);
408 } else {
409 PrintF("%s unrecognized\n", arg1);
410 }
411 } else {
412 PrintF("print <fpu register> single\n");
413 }
414 } else {
415 PrintF("print <register> or print <fpu register> single\n");
416 }
417 }
418 } else if ((strcmp(cmd, "po") == 0)
419 || (strcmp(cmd, "printobject") == 0)) {
420 if (argc == 2) {
421 int64_t value;
422 OFStream os(stdout);
423 if (GetValue(arg1, &value)) {
424 Object* obj = reinterpret_cast<Object*>(value);
425 os << arg1 << ": \n";
426 #ifdef DEBUG
427 obj->Print(os);
428 os << "\n";
429 #else
430 os << Brief(obj) << "\n";
431 #endif
432 } else {
433 os << arg1 << " unrecognized\n";
434 }
435 } else {
436 PrintF("printobject <value>\n");
437 }
438 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
439 int64_t* cur = NULL;
440 int64_t* end = NULL;
441 int next_arg = 1;
442
443 if (strcmp(cmd, "stack") == 0) {
444 cur = reinterpret_cast<int64_t*>(sim_->get_register(Simulator::sp));
445 } else { // Command "mem".
446 int64_t value;
447 if (!GetValue(arg1, &value)) {
448 PrintF("%s unrecognized\n", arg1);
449 continue;
450 }
451 cur = reinterpret_cast<int64_t*>(value);
452 next_arg++;
453 }
454
455 int64_t words;
456 if (argc == next_arg) {
457 words = 10;
458 } else {
459 if (!GetValue(argv[next_arg], &words)) {
460 words = 10;
461 }
462 }
463 end = cur + words;
464
465 while (cur < end) {
466 PrintF(" 0x%012" PRIxPTR " : 0x%016" PRIx64 " %14" PRId64 " ",
467 reinterpret_cast<intptr_t>(cur), *cur, *cur);
468 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
469 int64_t value = *cur;
470 Heap* current_heap = sim_->isolate_->heap();
471 if (((value & 1) == 0) ||
472 current_heap->ContainsSlow(obj->address())) {
473 PrintF(" (");
474 if ((value & 1) == 0) {
475 PrintF("smi %d", static_cast<int>(value >> 32));
476 } else {
477 obj->ShortPrint();
478 }
479 PrintF(")");
480 }
481 PrintF("\n");
482 cur++;
483 }
484
485 } else if ((strcmp(cmd, "disasm") == 0) ||
486 (strcmp(cmd, "dpc") == 0) ||
487 (strcmp(cmd, "di") == 0)) {
488 disasm::NameConverter converter;
489 disasm::Disassembler dasm(converter);
490 // Use a reasonably large buffer.
491 v8::internal::EmbeddedVector<char, 256> buffer;
492
493 byte* cur = NULL;
494 byte* end = NULL;
495
496 if (argc == 1) {
497 cur = reinterpret_cast<byte*>(sim_->get_pc());
498 end = cur + (10 * Instruction::kInstrSize);
499 } else if (argc == 2) {
500 int regnum = Registers::Number(arg1);
501 if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
502 // The argument is an address or a register name.
503 int64_t value;
504 if (GetValue(arg1, &value)) {
505 cur = reinterpret_cast<byte*>(value);
506 // Disassemble 10 instructions at <arg1>.
507 end = cur + (10 * Instruction::kInstrSize);
508 }
509 } else {
510 // The argument is the number of instructions.
511 int64_t value;
512 if (GetValue(arg1, &value)) {
513 cur = reinterpret_cast<byte*>(sim_->get_pc());
514 // Disassemble <arg1> instructions.
515 end = cur + (value * Instruction::kInstrSize);
516 }
517 }
518 } else {
519 int64_t value1;
520 int64_t value2;
521 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
522 cur = reinterpret_cast<byte*>(value1);
523 end = cur + (value2 * Instruction::kInstrSize);
524 }
525 }
526
527 while (cur < end) {
528 dasm.InstructionDecode(buffer, cur);
529 PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
530 buffer.start());
531 cur += Instruction::kInstrSize;
532 }
533 } else if (strcmp(cmd, "gdb") == 0) {
534 PrintF("relinquishing control to gdb\n");
535 v8::base::OS::DebugBreak();
536 PrintF("regaining control from gdb\n");
537 } else if (strcmp(cmd, "break") == 0) {
538 if (argc == 2) {
539 int64_t value;
540 if (GetValue(arg1, &value)) {
541 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
542 PrintF("setting breakpoint failed\n");
543 }
544 } else {
545 PrintF("%s unrecognized\n", arg1);
546 }
547 } else {
548 PrintF("break <address>\n");
549 }
550 } else if (strcmp(cmd, "del") == 0) {
551 if (!DeleteBreakpoint(NULL)) {
552 PrintF("deleting breakpoint failed\n");
553 }
554 } else if (strcmp(cmd, "flags") == 0) {
555 PrintF("No flags on MIPS !\n");
556 } else if (strcmp(cmd, "stop") == 0) {
557 int64_t value;
558 intptr_t stop_pc = sim_->get_pc() -
559 2 * Instruction::kInstrSize;
560 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
561 Instruction* msg_address =
562 reinterpret_cast<Instruction*>(stop_pc +
563 Instruction::kInstrSize);
564 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
565 // Remove the current stop.
566 if (sim_->IsStopInstruction(stop_instr)) {
567 stop_instr->SetInstructionBits(kNopInstr);
568 msg_address->SetInstructionBits(kNopInstr);
569 } else {
570 PrintF("Not at debugger stop.\n");
571 }
572 } else if (argc == 3) {
573 // Print information about all/the specified breakpoint(s).
574 if (strcmp(arg1, "info") == 0) {
575 if (strcmp(arg2, "all") == 0) {
576 PrintF("Stop information:\n");
577 for (uint32_t i = kMaxWatchpointCode + 1;
578 i <= kMaxStopCode;
579 i++) {
580 sim_->PrintStopInfo(i);
581 }
582 } else if (GetValue(arg2, &value)) {
583 sim_->PrintStopInfo(value);
584 } else {
585 PrintF("Unrecognized argument.\n");
586 }
587 } else if (strcmp(arg1, "enable") == 0) {
588 // Enable all/the specified breakpoint(s).
589 if (strcmp(arg2, "all") == 0) {
590 for (uint32_t i = kMaxWatchpointCode + 1;
591 i <= kMaxStopCode;
592 i++) {
593 sim_->EnableStop(i);
594 }
595 } else if (GetValue(arg2, &value)) {
596 sim_->EnableStop(value);
597 } else {
598 PrintF("Unrecognized argument.\n");
599 }
600 } else if (strcmp(arg1, "disable") == 0) {
601 // Disable all/the specified breakpoint(s).
602 if (strcmp(arg2, "all") == 0) {
603 for (uint32_t i = kMaxWatchpointCode + 1;
604 i <= kMaxStopCode;
605 i++) {
606 sim_->DisableStop(i);
607 }
608 } else if (GetValue(arg2, &value)) {
609 sim_->DisableStop(value);
610 } else {
611 PrintF("Unrecognized argument.\n");
612 }
613 }
614 } else {
615 PrintF("Wrong usage. Use help command for more information.\n");
616 }
617 } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
618 // Print registers and disassemble.
619 PrintAllRegs();
620 PrintF("\n");
621
622 disasm::NameConverter converter;
623 disasm::Disassembler dasm(converter);
624 // Use a reasonably large buffer.
625 v8::internal::EmbeddedVector<char, 256> buffer;
626
627 byte* cur = NULL;
628 byte* end = NULL;
629
630 if (argc == 1) {
631 cur = reinterpret_cast<byte*>(sim_->get_pc());
632 end = cur + (10 * Instruction::kInstrSize);
633 } else if (argc == 2) {
634 int64_t value;
635 if (GetValue(arg1, &value)) {
636 cur = reinterpret_cast<byte*>(value);
637 // no length parameter passed, assume 10 instructions
638 end = cur + (10 * Instruction::kInstrSize);
639 }
640 } else {
641 int64_t value1;
642 int64_t value2;
643 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
644 cur = reinterpret_cast<byte*>(value1);
645 end = cur + (value2 * Instruction::kInstrSize);
646 }
647 }
648
649 while (cur < end) {
650 dasm.InstructionDecode(buffer, cur);
651 PrintF(" 0x%08" PRIxPTR " %s\n", reinterpret_cast<intptr_t>(cur),
652 buffer.start());
653 cur += Instruction::kInstrSize;
654 }
655 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
656 PrintF("cont\n");
657 PrintF(" continue execution (alias 'c')\n");
658 PrintF("stepi\n");
659 PrintF(" step one instruction (alias 'si')\n");
660 PrintF("print <register>\n");
661 PrintF(" print register content (alias 'p')\n");
662 PrintF(" use register name 'all' to print all registers\n");
663 PrintF("printobject <register>\n");
664 PrintF(" print an object from a register (alias 'po')\n");
665 PrintF("stack [<words>]\n");
666 PrintF(" dump stack content, default dump 10 words)\n");
667 PrintF("mem <address> [<words>]\n");
668 PrintF(" dump memory content, default dump 10 words)\n");
669 PrintF("flags\n");
670 PrintF(" print flags\n");
671 PrintF("disasm [<instructions>]\n");
672 PrintF("disasm [<address/register>]\n");
673 PrintF("disasm [[<address/register>] <instructions>]\n");
674 PrintF(" disassemble code, default is 10 instructions\n");
675 PrintF(" from pc (alias 'di')\n");
676 PrintF("gdb\n");
677 PrintF(" enter gdb\n");
678 PrintF("break <address>\n");
679 PrintF(" set a break point on the address\n");
680 PrintF("del\n");
681 PrintF(" delete the breakpoint\n");
682 PrintF("stop feature:\n");
683 PrintF(" Description:\n");
684 PrintF(" Stops are debug instructions inserted by\n");
685 PrintF(" the Assembler::stop() function.\n");
686 PrintF(" When hitting a stop, the Simulator will\n");
687 PrintF(" stop and and give control to the Debugger.\n");
688 PrintF(" All stop codes are watched:\n");
689 PrintF(" - They can be enabled / disabled: the Simulator\n");
690 PrintF(" will / won't stop when hitting them.\n");
691 PrintF(" - The Simulator keeps track of how many times they \n");
692 PrintF(" are met. (See the info command.) Going over a\n");
693 PrintF(" disabled stop still increases its counter. \n");
694 PrintF(" Commands:\n");
695 PrintF(" stop info all/<code> : print infos about number <code>\n");
696 PrintF(" or all stop(s).\n");
697 PrintF(" stop enable/disable all/<code> : enables / disables\n");
698 PrintF(" all or number <code> stop(s)\n");
699 PrintF(" stop unstop\n");
700 PrintF(" ignore the stop instruction at the current location\n");
701 PrintF(" from now on\n");
702 } else {
703 PrintF("Unknown command: %s\n", cmd);
704 }
705 }
706 }
707
708 // Add all the breakpoints back to stop execution and enter the debugger
709 // shell when hit.
710 RedoBreakpoints();
711
712 #undef COMMAND_SIZE
713 #undef ARG_SIZE
714
715 #undef STR
716 #undef XSTR
717 }
718
719
ICacheMatch(void * one,void * two)720 static bool ICacheMatch(void* one, void* two) {
721 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
722 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
723 return one == two;
724 }
725
726
ICacheHash(void * key)727 static uint32_t ICacheHash(void* key) {
728 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
729 }
730
731
AllOnOnePage(uintptr_t start,size_t size)732 static bool AllOnOnePage(uintptr_t start, size_t size) {
733 intptr_t start_page = (start & ~CachePage::kPageMask);
734 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
735 return start_page == end_page;
736 }
737
738
set_last_debugger_input(char * input)739 void Simulator::set_last_debugger_input(char* input) {
740 DeleteArray(last_debugger_input_);
741 last_debugger_input_ = input;
742 }
743
FlushICache(base::CustomMatcherHashMap * i_cache,void * start_addr,size_t size)744 void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
745 void* start_addr, size_t size) {
746 int64_t start = reinterpret_cast<int64_t>(start_addr);
747 int64_t intra_line = (start & CachePage::kLineMask);
748 start -= intra_line;
749 size += intra_line;
750 size = ((size - 1) | CachePage::kLineMask) + 1;
751 int offset = (start & CachePage::kPageMask);
752 while (!AllOnOnePage(start, size - 1)) {
753 int bytes_to_flush = CachePage::kPageSize - offset;
754 FlushOnePage(i_cache, start, bytes_to_flush);
755 start += bytes_to_flush;
756 size -= bytes_to_flush;
757 DCHECK_EQ((int64_t)0, start & CachePage::kPageMask);
758 offset = 0;
759 }
760 if (size != 0) {
761 FlushOnePage(i_cache, start, size);
762 }
763 }
764
GetCachePage(base::CustomMatcherHashMap * i_cache,void * page)765 CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
766 void* page) {
767 base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
768 if (entry->value == NULL) {
769 CachePage* new_page = new CachePage();
770 entry->value = new_page;
771 }
772 return reinterpret_cast<CachePage*>(entry->value);
773 }
774
775
776 // Flush from start up to and not including start + size.
FlushOnePage(base::CustomMatcherHashMap * i_cache,intptr_t start,size_t size)777 void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
778 intptr_t start, size_t size) {
779 DCHECK(size <= CachePage::kPageSize);
780 DCHECK(AllOnOnePage(start, size - 1));
781 DCHECK((start & CachePage::kLineMask) == 0);
782 DCHECK((size & CachePage::kLineMask) == 0);
783 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
784 int offset = (start & CachePage::kPageMask);
785 CachePage* cache_page = GetCachePage(i_cache, page);
786 char* valid_bytemap = cache_page->ValidityByte(offset);
787 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
788 }
789
CheckICache(base::CustomMatcherHashMap * i_cache,Instruction * instr)790 void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
791 Instruction* instr) {
792 int64_t address = reinterpret_cast<int64_t>(instr);
793 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
794 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
795 int offset = (address & CachePage::kPageMask);
796 CachePage* cache_page = GetCachePage(i_cache, page);
797 char* cache_valid_byte = cache_page->ValidityByte(offset);
798 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
799 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
800 if (cache_hit) {
801 // Check that the data in memory matches the contents of the I-cache.
802 CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
803 cache_page->CachedData(offset),
804 Instruction::kInstrSize));
805 } else {
806 // Cache miss. Load memory into the cache.
807 memcpy(cached_line, line, CachePage::kLineLength);
808 *cache_valid_byte = CachePage::LINE_VALID;
809 }
810 }
811
812
Initialize(Isolate * isolate)813 void Simulator::Initialize(Isolate* isolate) {
814 if (isolate->simulator_initialized()) return;
815 isolate->set_simulator_initialized(true);
816 ::v8::internal::ExternalReference::set_redirector(isolate,
817 &RedirectExternalReference);
818 }
819
820
Simulator(Isolate * isolate)821 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
822 i_cache_ = isolate_->simulator_i_cache();
823 if (i_cache_ == NULL) {
824 i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
825 isolate_->set_simulator_i_cache(i_cache_);
826 }
827 Initialize(isolate);
828 // Set up simulator support first. Some of this information is needed to
829 // setup the architecture state.
830 stack_size_ = FLAG_sim_stack_size * KB;
831 stack_ = reinterpret_cast<char*>(malloc(stack_size_));
832 pc_modified_ = false;
833 icount_ = 0;
834 break_count_ = 0;
835 break_pc_ = NULL;
836 break_instr_ = 0;
837
838 // Set up architecture state.
839 // All registers are initialized to zero to start with.
840 for (int i = 0; i < kNumSimuRegisters; i++) {
841 registers_[i] = 0;
842 }
843 for (int i = 0; i < kNumFPURegisters; i++) {
844 FPUregisters_[i] = 0;
845 }
846
847 if (kArchVariant == kMips64r6) {
848 FCSR_ = kFCSRNaN2008FlagMask;
849 } else {
850 FCSR_ = 0;
851 }
852
853 // The sp is initialized to point to the bottom (high address) of the
854 // allocated stack area. To be safe in potential stack underflows we leave
855 // some buffer below.
856 registers_[sp] = reinterpret_cast<int64_t>(stack_) + stack_size_ - 64;
857 // The ra and pc are initialized to a known bad value that will cause an
858 // access violation if the simulator ever tries to execute it.
859 registers_[pc] = bad_ra;
860 registers_[ra] = bad_ra;
861
862 last_debugger_input_ = NULL;
863 }
864
865
~Simulator()866 Simulator::~Simulator() { free(stack_); }
867
868
869 // When the generated code calls an external reference we need to catch that in
870 // the simulator. The external reference will be a function compiled for the
871 // host architecture. We need to call that function instead of trying to
872 // execute it with the simulator. We do that by redirecting the external
873 // reference to a swi (software-interrupt) instruction that is handled by
874 // the simulator. We write the original destination of the jump just at a known
875 // offset from the swi instruction so the simulator knows what to call.
876 class Redirection {
877 public:
Redirection(Isolate * isolate,void * external_function,ExternalReference::Type type)878 Redirection(Isolate* isolate, void* external_function,
879 ExternalReference::Type type)
880 : external_function_(external_function),
881 swi_instruction_(rtCallRedirInstr),
882 type_(type),
883 next_(NULL) {
884 next_ = isolate->simulator_redirection();
885 Simulator::current(isolate)->
886 FlushICache(isolate->simulator_i_cache(),
887 reinterpret_cast<void*>(&swi_instruction_),
888 Instruction::kInstrSize);
889 isolate->set_simulator_redirection(this);
890 }
891
address_of_swi_instruction()892 void* address_of_swi_instruction() {
893 return reinterpret_cast<void*>(&swi_instruction_);
894 }
895
external_function()896 void* external_function() { return external_function_; }
type()897 ExternalReference::Type type() { return type_; }
898
Get(Isolate * isolate,void * external_function,ExternalReference::Type type)899 static Redirection* Get(Isolate* isolate, void* external_function,
900 ExternalReference::Type type) {
901 Redirection* current = isolate->simulator_redirection();
902 for (; current != NULL; current = current->next_) {
903 if (current->external_function_ == external_function) return current;
904 }
905 return new Redirection(isolate, external_function, type);
906 }
907
FromSwiInstruction(Instruction * swi_instruction)908 static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
909 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
910 char* addr_of_redirection =
911 addr_of_swi - offsetof(Redirection, swi_instruction_);
912 return reinterpret_cast<Redirection*>(addr_of_redirection);
913 }
914
ReverseRedirection(int64_t reg)915 static void* ReverseRedirection(int64_t reg) {
916 Redirection* redirection = FromSwiInstruction(
917 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
918 return redirection->external_function();
919 }
920
DeleteChain(Redirection * redirection)921 static void DeleteChain(Redirection* redirection) {
922 while (redirection != nullptr) {
923 Redirection* next = redirection->next_;
924 delete redirection;
925 redirection = next;
926 }
927 }
928
929 private:
930 void* external_function_;
931 uint32_t swi_instruction_;
932 ExternalReference::Type type_;
933 Redirection* next_;
934 };
935
936
937 // static
TearDown(base::CustomMatcherHashMap * i_cache,Redirection * first)938 void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
939 Redirection* first) {
940 Redirection::DeleteChain(first);
941 if (i_cache != nullptr) {
942 for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
943 entry = i_cache->Next(entry)) {
944 delete static_cast<CachePage*>(entry->value);
945 }
946 delete i_cache;
947 }
948 }
949
950
RedirectExternalReference(Isolate * isolate,void * external_function,ExternalReference::Type type)951 void* Simulator::RedirectExternalReference(Isolate* isolate,
952 void* external_function,
953 ExternalReference::Type type) {
954 Redirection* redirection = Redirection::Get(isolate, external_function, type);
955 return redirection->address_of_swi_instruction();
956 }
957
958
959 // Get the active Simulator for the current thread.
current(Isolate * isolate)960 Simulator* Simulator::current(Isolate* isolate) {
961 v8::internal::Isolate::PerIsolateThreadData* isolate_data =
962 isolate->FindOrAllocatePerThreadDataForThisThread();
963 DCHECK(isolate_data != NULL);
964 DCHECK(isolate_data != NULL);
965
966 Simulator* sim = isolate_data->simulator();
967 if (sim == NULL) {
968 // TODO(146): delete the simulator object when a thread/isolate goes away.
969 sim = new Simulator(isolate);
970 isolate_data->set_simulator(sim);
971 }
972 return sim;
973 }
974
975
976 // Sets the register in the architecture state. It will also deal with updating
977 // Simulator internal state for special registers such as PC.
set_register(int reg,int64_t value)978 void Simulator::set_register(int reg, int64_t value) {
979 DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
980 if (reg == pc) {
981 pc_modified_ = true;
982 }
983
984 // Zero register always holds 0.
985 registers_[reg] = (reg == 0) ? 0 : value;
986 }
987
988
set_dw_register(int reg,const int * dbl)989 void Simulator::set_dw_register(int reg, const int* dbl) {
990 DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
991 registers_[reg] = dbl[1];
992 registers_[reg] = registers_[reg] << 32;
993 registers_[reg] += dbl[0];
994 }
995
996
set_fpu_register(int fpureg,int64_t value)997 void Simulator::set_fpu_register(int fpureg, int64_t value) {
998 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
999 FPUregisters_[fpureg] = value;
1000 }
1001
1002
set_fpu_register_word(int fpureg,int32_t value)1003 void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
1004 // Set ONLY lower 32-bits, leaving upper bits untouched.
1005 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1006 int32_t* pword;
1007 if (kArchEndian == kLittle) {
1008 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
1009 } else {
1010 pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]) + 1;
1011 }
1012 *pword = value;
1013 }
1014
1015
set_fpu_register_hi_word(int fpureg,int32_t value)1016 void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
1017 // Set ONLY upper 32-bits, leaving lower bits untouched.
1018 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1019 int32_t* phiword;
1020 if (kArchEndian == kLittle) {
1021 phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1;
1022 } else {
1023 phiword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]);
1024 }
1025 *phiword = value;
1026 }
1027
1028
set_fpu_register_float(int fpureg,float value)1029 void Simulator::set_fpu_register_float(int fpureg, float value) {
1030 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1031 *bit_cast<float*>(&FPUregisters_[fpureg]) = value;
1032 }
1033
1034
set_fpu_register_double(int fpureg,double value)1035 void Simulator::set_fpu_register_double(int fpureg, double value) {
1036 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1037 *bit_cast<double*>(&FPUregisters_[fpureg]) = value;
1038 }
1039
1040
1041 // Get the register from the architecture state. This function does handle
1042 // the special case of accessing the PC register.
get_register(int reg) const1043 int64_t Simulator::get_register(int reg) const {
1044 DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
1045 if (reg == 0)
1046 return 0;
1047 else
1048 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
1049 }
1050
1051
get_double_from_register_pair(int reg)1052 double Simulator::get_double_from_register_pair(int reg) {
1053 // TODO(plind): bad ABI stuff, refactor or remove.
1054 DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
1055
1056 double dm_val = 0.0;
1057 // Read the bits from the unsigned integer register_[] array
1058 // into the double precision floating point value and return it.
1059 char buffer[sizeof(registers_[0])];
1060 memcpy(buffer, ®isters_[reg], sizeof(registers_[0]));
1061 memcpy(&dm_val, buffer, sizeof(registers_[0]));
1062 return(dm_val);
1063 }
1064
1065
get_fpu_register(int fpureg) const1066 int64_t Simulator::get_fpu_register(int fpureg) const {
1067 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1068 return FPUregisters_[fpureg];
1069 }
1070
1071
get_fpu_register_word(int fpureg) const1072 int32_t Simulator::get_fpu_register_word(int fpureg) const {
1073 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1074 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
1075 }
1076
1077
get_fpu_register_signed_word(int fpureg) const1078 int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
1079 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1080 return static_cast<int32_t>(FPUregisters_[fpureg] & 0xffffffff);
1081 }
1082
1083
get_fpu_register_hi_word(int fpureg) const1084 int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
1085 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1086 return static_cast<int32_t>((FPUregisters_[fpureg] >> 32) & 0xffffffff);
1087 }
1088
1089
get_fpu_register_float(int fpureg) const1090 float Simulator::get_fpu_register_float(int fpureg) const {
1091 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1092 return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg]));
1093 }
1094
1095
get_fpu_register_double(int fpureg) const1096 double Simulator::get_fpu_register_double(int fpureg) const {
1097 DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1098 return *bit_cast<double*>(&FPUregisters_[fpureg]);
1099 }
1100
1101
1102 // Runtime FP routines take up to two double arguments and zero
1103 // or one integer arguments. All are constructed here,
1104 // from a0-a3 or f12 and f13 (n64), or f14 (O32).
GetFpArgs(double * x,double * y,int32_t * z)1105 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1106 if (!IsMipsSoftFloatABI) {
1107 const int fparg2 = 13;
1108 *x = get_fpu_register_double(12);
1109 *y = get_fpu_register_double(fparg2);
1110 *z = static_cast<int32_t>(get_register(a2));
1111 } else {
1112 // TODO(plind): bad ABI stuff, refactor or remove.
1113 // We use a char buffer to get around the strict-aliasing rules which
1114 // otherwise allow the compiler to optimize away the copy.
1115 char buffer[sizeof(*x)];
1116 int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
1117
1118 // Registers a0 and a1 -> x.
1119 reg_buffer[0] = get_register(a0);
1120 reg_buffer[1] = get_register(a1);
1121 memcpy(x, buffer, sizeof(buffer));
1122 // Registers a2 and a3 -> y.
1123 reg_buffer[0] = get_register(a2);
1124 reg_buffer[1] = get_register(a3);
1125 memcpy(y, buffer, sizeof(buffer));
1126 // Register 2 -> z.
1127 reg_buffer[0] = get_register(a2);
1128 memcpy(z, buffer, sizeof(*z));
1129 }
1130 }
1131
1132
1133 // The return value is either in v0/v1 or f0.
SetFpResult(const double & result)1134 void Simulator::SetFpResult(const double& result) {
1135 if (!IsMipsSoftFloatABI) {
1136 set_fpu_register_double(0, result);
1137 } else {
1138 char buffer[2 * sizeof(registers_[0])];
1139 int64_t* reg_buffer = reinterpret_cast<int64_t*>(buffer);
1140 memcpy(buffer, &result, sizeof(buffer));
1141 // Copy result to v0 and v1.
1142 set_register(v0, reg_buffer[0]);
1143 set_register(v1, reg_buffer[1]);
1144 }
1145 }
1146
1147
1148 // Helper functions for setting and testing the FCSR register's bits.
set_fcsr_bit(uint32_t cc,bool value)1149 void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
1150 if (value) {
1151 FCSR_ |= (1 << cc);
1152 } else {
1153 FCSR_ &= ~(1 << cc);
1154 }
1155 }
1156
1157
test_fcsr_bit(uint32_t cc)1158 bool Simulator::test_fcsr_bit(uint32_t cc) {
1159 return FCSR_ & (1 << cc);
1160 }
1161
1162
set_fcsr_rounding_mode(FPURoundingMode mode)1163 void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
1164 FCSR_ |= mode & kFPURoundingModeMask;
1165 }
1166
1167
get_fcsr_rounding_mode()1168 unsigned int Simulator::get_fcsr_rounding_mode() {
1169 return FCSR_ & kFPURoundingModeMask;
1170 }
1171
1172
1173 // Sets the rounding error codes in FCSR based on the result of the rounding.
1174 // Returns true if the operation was invalid.
set_fcsr_round_error(double original,double rounded)1175 bool Simulator::set_fcsr_round_error(double original, double rounded) {
1176 bool ret = false;
1177 double max_int32 = std::numeric_limits<int32_t>::max();
1178 double min_int32 = std::numeric_limits<int32_t>::min();
1179
1180 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1181 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1182 ret = true;
1183 }
1184
1185 if (original != rounded) {
1186 set_fcsr_bit(kFCSRInexactFlagBit, true);
1187 }
1188
1189 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1190 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1191 ret = true;
1192 }
1193
1194 if (rounded > max_int32 || rounded < min_int32) {
1195 set_fcsr_bit(kFCSROverflowFlagBit, true);
1196 // The reference is not really clear but it seems this is required:
1197 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1198 ret = true;
1199 }
1200
1201 return ret;
1202 }
1203
1204
1205 // Sets the rounding error codes in FCSR based on the result of the rounding.
1206 // Returns true if the operation was invalid.
set_fcsr_round64_error(double original,double rounded)1207 bool Simulator::set_fcsr_round64_error(double original, double rounded) {
1208 bool ret = false;
1209 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1210 // loading the most accurate representation into max_int64, which is 2^63.
1211 double max_int64 = std::numeric_limits<int64_t>::max();
1212 double min_int64 = std::numeric_limits<int64_t>::min();
1213
1214 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1215 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1216 ret = true;
1217 }
1218
1219 if (original != rounded) {
1220 set_fcsr_bit(kFCSRInexactFlagBit, true);
1221 }
1222
1223 if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1224 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1225 ret = true;
1226 }
1227
1228 if (rounded >= max_int64 || rounded < min_int64) {
1229 set_fcsr_bit(kFCSROverflowFlagBit, true);
1230 // The reference is not really clear but it seems this is required:
1231 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1232 ret = true;
1233 }
1234
1235 return ret;
1236 }
1237
1238
1239 // Sets the rounding error codes in FCSR based on the result of the rounding.
1240 // Returns true if the operation was invalid.
set_fcsr_round_error(float original,float rounded)1241 bool Simulator::set_fcsr_round_error(float original, float rounded) {
1242 bool ret = false;
1243 double max_int32 = std::numeric_limits<int32_t>::max();
1244 double min_int32 = std::numeric_limits<int32_t>::min();
1245
1246 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1247 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1248 ret = true;
1249 }
1250
1251 if (original != rounded) {
1252 set_fcsr_bit(kFCSRInexactFlagBit, true);
1253 }
1254
1255 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1256 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1257 ret = true;
1258 }
1259
1260 if (rounded > max_int32 || rounded < min_int32) {
1261 set_fcsr_bit(kFCSROverflowFlagBit, true);
1262 // The reference is not really clear but it seems this is required:
1263 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1264 ret = true;
1265 }
1266
1267 return ret;
1268 }
1269
set_fpu_register_word_invalid_result(float original,float rounded)1270 void Simulator::set_fpu_register_word_invalid_result(float original,
1271 float rounded) {
1272 if (FCSR_ & kFCSRNaN2008FlagMask) {
1273 double max_int32 = std::numeric_limits<int32_t>::max();
1274 double min_int32 = std::numeric_limits<int32_t>::min();
1275 if (std::isnan(original)) {
1276 set_fpu_register_word(fd_reg(), 0);
1277 } else if (rounded > max_int32) {
1278 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1279 } else if (rounded < min_int32) {
1280 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1281 } else {
1282 UNREACHABLE();
1283 }
1284 } else {
1285 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1286 }
1287 }
1288
1289
set_fpu_register_invalid_result(float original,float rounded)1290 void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
1291 if (FCSR_ & kFCSRNaN2008FlagMask) {
1292 double max_int32 = std::numeric_limits<int32_t>::max();
1293 double min_int32 = std::numeric_limits<int32_t>::min();
1294 if (std::isnan(original)) {
1295 set_fpu_register(fd_reg(), 0);
1296 } else if (rounded > max_int32) {
1297 set_fpu_register(fd_reg(), kFPUInvalidResult);
1298 } else if (rounded < min_int32) {
1299 set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1300 } else {
1301 UNREACHABLE();
1302 }
1303 } else {
1304 set_fpu_register(fd_reg(), kFPUInvalidResult);
1305 }
1306 }
1307
1308
set_fpu_register_invalid_result64(float original,float rounded)1309 void Simulator::set_fpu_register_invalid_result64(float original,
1310 float rounded) {
1311 if (FCSR_ & kFCSRNaN2008FlagMask) {
1312 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1313 // loading the most accurate representation into max_int64, which is 2^63.
1314 double max_int64 = std::numeric_limits<int64_t>::max();
1315 double min_int64 = std::numeric_limits<int64_t>::min();
1316 if (std::isnan(original)) {
1317 set_fpu_register(fd_reg(), 0);
1318 } else if (rounded >= max_int64) {
1319 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1320 } else if (rounded < min_int64) {
1321 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1322 } else {
1323 UNREACHABLE();
1324 }
1325 } else {
1326 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1327 }
1328 }
1329
1330
set_fpu_register_word_invalid_result(double original,double rounded)1331 void Simulator::set_fpu_register_word_invalid_result(double original,
1332 double rounded) {
1333 if (FCSR_ & kFCSRNaN2008FlagMask) {
1334 double max_int32 = std::numeric_limits<int32_t>::max();
1335 double min_int32 = std::numeric_limits<int32_t>::min();
1336 if (std::isnan(original)) {
1337 set_fpu_register_word(fd_reg(), 0);
1338 } else if (rounded > max_int32) {
1339 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1340 } else if (rounded < min_int32) {
1341 set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1342 } else {
1343 UNREACHABLE();
1344 }
1345 } else {
1346 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1347 }
1348 }
1349
1350
set_fpu_register_invalid_result(double original,double rounded)1351 void Simulator::set_fpu_register_invalid_result(double original,
1352 double rounded) {
1353 if (FCSR_ & kFCSRNaN2008FlagMask) {
1354 double max_int32 = std::numeric_limits<int32_t>::max();
1355 double min_int32 = std::numeric_limits<int32_t>::min();
1356 if (std::isnan(original)) {
1357 set_fpu_register(fd_reg(), 0);
1358 } else if (rounded > max_int32) {
1359 set_fpu_register(fd_reg(), kFPUInvalidResult);
1360 } else if (rounded < min_int32) {
1361 set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1362 } else {
1363 UNREACHABLE();
1364 }
1365 } else {
1366 set_fpu_register(fd_reg(), kFPUInvalidResult);
1367 }
1368 }
1369
1370
set_fpu_register_invalid_result64(double original,double rounded)1371 void Simulator::set_fpu_register_invalid_result64(double original,
1372 double rounded) {
1373 if (FCSR_ & kFCSRNaN2008FlagMask) {
1374 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1375 // loading the most accurate representation into max_int64, which is 2^63.
1376 double max_int64 = std::numeric_limits<int64_t>::max();
1377 double min_int64 = std::numeric_limits<int64_t>::min();
1378 if (std::isnan(original)) {
1379 set_fpu_register(fd_reg(), 0);
1380 } else if (rounded >= max_int64) {
1381 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1382 } else if (rounded < min_int64) {
1383 set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1384 } else {
1385 UNREACHABLE();
1386 }
1387 } else {
1388 set_fpu_register(fd_reg(), kFPU64InvalidResult);
1389 }
1390 }
1391
1392
1393 // Sets the rounding error codes in FCSR based on the result of the rounding.
1394 // Returns true if the operation was invalid.
set_fcsr_round64_error(float original,float rounded)1395 bool Simulator::set_fcsr_round64_error(float original, float rounded) {
1396 bool ret = false;
1397 // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1398 // loading the most accurate representation into max_int64, which is 2^63.
1399 double max_int64 = std::numeric_limits<int64_t>::max();
1400 double min_int64 = std::numeric_limits<int64_t>::min();
1401
1402 if (!std::isfinite(original) || !std::isfinite(rounded)) {
1403 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1404 ret = true;
1405 }
1406
1407 if (original != rounded) {
1408 set_fcsr_bit(kFCSRInexactFlagBit, true);
1409 }
1410
1411 if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1412 set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1413 ret = true;
1414 }
1415
1416 if (rounded >= max_int64 || rounded < min_int64) {
1417 set_fcsr_bit(kFCSROverflowFlagBit, true);
1418 // The reference is not really clear but it seems this is required:
1419 set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1420 ret = true;
1421 }
1422
1423 return ret;
1424 }
1425
1426
1427 // For cvt instructions only
round_according_to_fcsr(double toRound,double & rounded,int32_t & rounded_int,double fs)1428 void Simulator::round_according_to_fcsr(double toRound, double& rounded,
1429 int32_t& rounded_int, double fs) {
1430 // 0 RN (round to nearest): Round a result to the nearest
1431 // representable value; if the result is exactly halfway between
1432 // two representable values, round to zero. Behave like round_w_d.
1433
1434 // 1 RZ (round toward zero): Round a result to the closest
1435 // representable value whose absolute value is less than or
1436 // equal to the infinitely accurate result. Behave like trunc_w_d.
1437
1438 // 2 RP (round up, or toward +infinity): Round a result to the
1439 // next representable value up. Behave like ceil_w_d.
1440
1441 // 3 RN (round down, or toward −infinity): Round a result to
1442 // the next representable value down. Behave like floor_w_d.
1443 switch (FCSR_ & 3) {
1444 case kRoundToNearest:
1445 rounded = std::floor(fs + 0.5);
1446 rounded_int = static_cast<int32_t>(rounded);
1447 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1448 // If the number is halfway between two integers,
1449 // round to the even one.
1450 rounded_int--;
1451 }
1452 break;
1453 case kRoundToZero:
1454 rounded = trunc(fs);
1455 rounded_int = static_cast<int32_t>(rounded);
1456 break;
1457 case kRoundToPlusInf:
1458 rounded = std::ceil(fs);
1459 rounded_int = static_cast<int32_t>(rounded);
1460 break;
1461 case kRoundToMinusInf:
1462 rounded = std::floor(fs);
1463 rounded_int = static_cast<int32_t>(rounded);
1464 break;
1465 }
1466 }
1467
1468
round64_according_to_fcsr(double toRound,double & rounded,int64_t & rounded_int,double fs)1469 void Simulator::round64_according_to_fcsr(double toRound, double& rounded,
1470 int64_t& rounded_int, double fs) {
1471 // 0 RN (round to nearest): Round a result to the nearest
1472 // representable value; if the result is exactly halfway between
1473 // two representable values, round to zero. Behave like round_w_d.
1474
1475 // 1 RZ (round toward zero): Round a result to the closest
1476 // representable value whose absolute value is less than or.
1477 // equal to the infinitely accurate result. Behave like trunc_w_d.
1478
1479 // 2 RP (round up, or toward +infinity): Round a result to the
1480 // next representable value up. Behave like ceil_w_d.
1481
1482 // 3 RN (round down, or toward −infinity): Round a result to
1483 // the next representable value down. Behave like floor_w_d.
1484 switch (FCSR_ & 3) {
1485 case kRoundToNearest:
1486 rounded = std::floor(fs + 0.5);
1487 rounded_int = static_cast<int64_t>(rounded);
1488 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1489 // If the number is halfway between two integers,
1490 // round to the even one.
1491 rounded_int--;
1492 }
1493 break;
1494 case kRoundToZero:
1495 rounded = trunc(fs);
1496 rounded_int = static_cast<int64_t>(rounded);
1497 break;
1498 case kRoundToPlusInf:
1499 rounded = std::ceil(fs);
1500 rounded_int = static_cast<int64_t>(rounded);
1501 break;
1502 case kRoundToMinusInf:
1503 rounded = std::floor(fs);
1504 rounded_int = static_cast<int64_t>(rounded);
1505 break;
1506 }
1507 }
1508
1509
1510 // for cvt instructions only
round_according_to_fcsr(float toRound,float & rounded,int32_t & rounded_int,float fs)1511 void Simulator::round_according_to_fcsr(float toRound, float& rounded,
1512 int32_t& rounded_int, float fs) {
1513 // 0 RN (round to nearest): Round a result to the nearest
1514 // representable value; if the result is exactly halfway between
1515 // two representable values, round to zero. Behave like round_w_d.
1516
1517 // 1 RZ (round toward zero): Round a result to the closest
1518 // representable value whose absolute value is less than or
1519 // equal to the infinitely accurate result. Behave like trunc_w_d.
1520
1521 // 2 RP (round up, or toward +infinity): Round a result to the
1522 // next representable value up. Behave like ceil_w_d.
1523
1524 // 3 RN (round down, or toward −infinity): Round a result to
1525 // the next representable value down. Behave like floor_w_d.
1526 switch (FCSR_ & 3) {
1527 case kRoundToNearest:
1528 rounded = std::floor(fs + 0.5);
1529 rounded_int = static_cast<int32_t>(rounded);
1530 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1531 // If the number is halfway between two integers,
1532 // round to the even one.
1533 rounded_int--;
1534 }
1535 break;
1536 case kRoundToZero:
1537 rounded = trunc(fs);
1538 rounded_int = static_cast<int32_t>(rounded);
1539 break;
1540 case kRoundToPlusInf:
1541 rounded = std::ceil(fs);
1542 rounded_int = static_cast<int32_t>(rounded);
1543 break;
1544 case kRoundToMinusInf:
1545 rounded = std::floor(fs);
1546 rounded_int = static_cast<int32_t>(rounded);
1547 break;
1548 }
1549 }
1550
1551
round64_according_to_fcsr(float toRound,float & rounded,int64_t & rounded_int,float fs)1552 void Simulator::round64_according_to_fcsr(float toRound, float& rounded,
1553 int64_t& rounded_int, float fs) {
1554 // 0 RN (round to nearest): Round a result to the nearest
1555 // representable value; if the result is exactly halfway between
1556 // two representable values, round to zero. Behave like round_w_d.
1557
1558 // 1 RZ (round toward zero): Round a result to the closest
1559 // representable value whose absolute value is less than or.
1560 // equal to the infinitely accurate result. Behave like trunc_w_d.
1561
1562 // 2 RP (round up, or toward +infinity): Round a result to the
1563 // next representable value up. Behave like ceil_w_d.
1564
1565 // 3 RN (round down, or toward −infinity): Round a result to
1566 // the next representable value down. Behave like floor_w_d.
1567 switch (FCSR_ & 3) {
1568 case kRoundToNearest:
1569 rounded = std::floor(fs + 0.5);
1570 rounded_int = static_cast<int64_t>(rounded);
1571 if ((rounded_int & 1) != 0 && rounded_int - fs == 0.5) {
1572 // If the number is halfway between two integers,
1573 // round to the even one.
1574 rounded_int--;
1575 }
1576 break;
1577 case kRoundToZero:
1578 rounded = trunc(fs);
1579 rounded_int = static_cast<int64_t>(rounded);
1580 break;
1581 case kRoundToPlusInf:
1582 rounded = std::ceil(fs);
1583 rounded_int = static_cast<int64_t>(rounded);
1584 break;
1585 case kRoundToMinusInf:
1586 rounded = std::floor(fs);
1587 rounded_int = static_cast<int64_t>(rounded);
1588 break;
1589 }
1590 }
1591
1592
1593 // Raw access to the PC register.
set_pc(int64_t value)1594 void Simulator::set_pc(int64_t value) {
1595 pc_modified_ = true;
1596 registers_[pc] = value;
1597 }
1598
1599
has_bad_pc() const1600 bool Simulator::has_bad_pc() const {
1601 return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
1602 }
1603
1604
1605 // Raw access to the PC register without the special adjustment when reading.
get_pc() const1606 int64_t Simulator::get_pc() const {
1607 return registers_[pc];
1608 }
1609
1610
1611 // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an
1612 // interrupt is caused. On others it does a funky rotation thing. For now we
1613 // simply disallow unaligned reads, but at some point we may want to move to
1614 // emulating the rotate behaviour. Note that simulator runs have the runtime
1615 // system running directly on the host system and only generated code is
1616 // executed in the simulator. Since the host is typically IA32 we will not
1617 // get the correct MIPS-like behaviour on unaligned accesses.
1618
1619 // TODO(plind): refactor this messy debug code when we do unaligned access.
DieOrDebug()1620 void Simulator::DieOrDebug() {
1621 if (1) { // Flag for this was removed.
1622 MipsDebugger dbg(this);
1623 dbg.Debug();
1624 } else {
1625 base::OS::Abort();
1626 }
1627 }
1628
1629
TraceRegWr(int64_t value)1630 void Simulator::TraceRegWr(int64_t value) {
1631 if (::v8::internal::FLAG_trace_sim) {
1632 SNPrintF(trace_buf_, "%016" PRIx64 " ", value);
1633 }
1634 }
1635
1636
1637 // TODO(plind): consider making icount_ printing a flag option.
TraceMemRd(int64_t addr,int64_t value)1638 void Simulator::TraceMemRd(int64_t addr, int64_t value) {
1639 if (::v8::internal::FLAG_trace_sim) {
1640 SNPrintF(trace_buf_,
1641 "%016" PRIx64 " <-- [%016" PRIx64 " ] (%" PRId64 " )", value,
1642 addr, icount_);
1643 }
1644 }
1645
1646
TraceMemWr(int64_t addr,int64_t value,TraceType t)1647 void Simulator::TraceMemWr(int64_t addr, int64_t value, TraceType t) {
1648 if (::v8::internal::FLAG_trace_sim) {
1649 switch (t) {
1650 case BYTE:
1651 SNPrintF(trace_buf_, " %02x --> [%016" PRIx64 " ]",
1652 static_cast<int8_t>(value), addr);
1653 break;
1654 case HALF:
1655 SNPrintF(trace_buf_, " %04x --> [%016" PRIx64 " ]",
1656 static_cast<int16_t>(value), addr);
1657 break;
1658 case WORD:
1659 SNPrintF(trace_buf_, " %08x --> [%016" PRIx64 " ]",
1660 static_cast<int32_t>(value), addr);
1661 break;
1662 case DWORD:
1663 SNPrintF(trace_buf_,
1664 "%016" PRIx64 " --> [%016" PRIx64 " ] (%" PRId64 " )",
1665 value, addr, icount_);
1666 break;
1667 }
1668 }
1669 }
1670
1671
1672 // TODO(plind): sign-extend and zero-extend not implmented properly
1673 // on all the ReadXX functions, I don't think re-interpret cast does it.
ReadW(int64_t addr,Instruction * instr)1674 int32_t Simulator::ReadW(int64_t addr, Instruction* instr) {
1675 if (addr >=0 && addr < 0x400) {
1676 // This has to be a NULL-dereference, drop into debugger.
1677 PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1678 " \n",
1679 addr, reinterpret_cast<intptr_t>(instr));
1680 DieOrDebug();
1681 }
1682 if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
1683 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1684 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1685 return *ptr;
1686 }
1687 PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1688 reinterpret_cast<intptr_t>(instr));
1689 DieOrDebug();
1690 return 0;
1691 }
1692
1693
ReadWU(int64_t addr,Instruction * instr)1694 uint32_t Simulator::ReadWU(int64_t addr, Instruction* instr) {
1695 if (addr >=0 && addr < 0x400) {
1696 // This has to be a NULL-dereference, drop into debugger.
1697 PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1698 " \n",
1699 addr, reinterpret_cast<intptr_t>(instr));
1700 DieOrDebug();
1701 }
1702 if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
1703 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1704 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1705 return *ptr;
1706 }
1707 PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1708 reinterpret_cast<intptr_t>(instr));
1709 DieOrDebug();
1710 return 0;
1711 }
1712
1713
WriteW(int64_t addr,int32_t value,Instruction * instr)1714 void Simulator::WriteW(int64_t addr, int32_t value, Instruction* instr) {
1715 if (addr >= 0 && addr < 0x400) {
1716 // This has to be a NULL-dereference, drop into debugger.
1717 PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1718 " \n",
1719 addr, reinterpret_cast<intptr_t>(instr));
1720 DieOrDebug();
1721 }
1722 if ((addr & 0x3) == 0 || kArchVariant == kMips64r6) {
1723 TraceMemWr(addr, value, WORD);
1724 int* ptr = reinterpret_cast<int*>(addr);
1725 *ptr = value;
1726 return;
1727 }
1728 PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1729 reinterpret_cast<intptr_t>(instr));
1730 DieOrDebug();
1731 }
1732
1733
Read2W(int64_t addr,Instruction * instr)1734 int64_t Simulator::Read2W(int64_t addr, Instruction* instr) {
1735 if (addr >=0 && addr < 0x400) {
1736 // This has to be a NULL-dereference, drop into debugger.
1737 PrintF("Memory read from bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1738 " \n",
1739 addr, reinterpret_cast<intptr_t>(instr));
1740 DieOrDebug();
1741 }
1742 if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1743 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1744 TraceMemRd(addr, *ptr);
1745 return *ptr;
1746 }
1747 PrintF("Unaligned read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1748 reinterpret_cast<intptr_t>(instr));
1749 DieOrDebug();
1750 return 0;
1751 }
1752
1753
Write2W(int64_t addr,int64_t value,Instruction * instr)1754 void Simulator::Write2W(int64_t addr, int64_t value, Instruction* instr) {
1755 if (addr >= 0 && addr < 0x400) {
1756 // This has to be a NULL-dereference, drop into debugger.
1757 PrintF("Memory write to bad address: 0x%08" PRIx64 " , pc=0x%08" PRIxPTR
1758 "\n",
1759 addr, reinterpret_cast<intptr_t>(instr));
1760 DieOrDebug();
1761 }
1762 if ((addr & kPointerAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1763 TraceMemWr(addr, value, DWORD);
1764 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1765 *ptr = value;
1766 return;
1767 }
1768 PrintF("Unaligned write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n", addr,
1769 reinterpret_cast<intptr_t>(instr));
1770 DieOrDebug();
1771 }
1772
1773
ReadD(int64_t addr,Instruction * instr)1774 double Simulator::ReadD(int64_t addr, Instruction* instr) {
1775 if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1776 double* ptr = reinterpret_cast<double*>(addr);
1777 return *ptr;
1778 }
1779 PrintF("Unaligned (double) read at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR "\n",
1780 addr, reinterpret_cast<intptr_t>(instr));
1781 base::OS::Abort();
1782 return 0;
1783 }
1784
1785
WriteD(int64_t addr,double value,Instruction * instr)1786 void Simulator::WriteD(int64_t addr, double value, Instruction* instr) {
1787 if ((addr & kDoubleAlignmentMask) == 0 || kArchVariant == kMips64r6) {
1788 double* ptr = reinterpret_cast<double*>(addr);
1789 *ptr = value;
1790 return;
1791 }
1792 PrintF("Unaligned (double) write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR
1793 "\n",
1794 addr, reinterpret_cast<intptr_t>(instr));
1795 DieOrDebug();
1796 }
1797
1798
ReadHU(int64_t addr,Instruction * instr)1799 uint16_t Simulator::ReadHU(int64_t addr, Instruction* instr) {
1800 if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1801 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1802 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1803 return *ptr;
1804 }
1805 PrintF("Unaligned unsigned halfword read at 0x%08" PRIx64
1806 " , pc=0x%08" V8PRIxPTR "\n",
1807 addr, reinterpret_cast<intptr_t>(instr));
1808 DieOrDebug();
1809 return 0;
1810 }
1811
1812
ReadH(int64_t addr,Instruction * instr)1813 int16_t Simulator::ReadH(int64_t addr, Instruction* instr) {
1814 if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1815 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1816 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1817 return *ptr;
1818 }
1819 PrintF("Unaligned signed halfword read at 0x%08" PRIx64
1820 " , pc=0x%08" V8PRIxPTR "\n",
1821 addr, reinterpret_cast<intptr_t>(instr));
1822 DieOrDebug();
1823 return 0;
1824 }
1825
1826
WriteH(int64_t addr,uint16_t value,Instruction * instr)1827 void Simulator::WriteH(int64_t addr, uint16_t value, Instruction* instr) {
1828 if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1829 TraceMemWr(addr, value, HALF);
1830 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1831 *ptr = value;
1832 return;
1833 }
1834 PrintF("Unaligned unsigned halfword write at 0x%08" PRIx64
1835 " , pc=0x%08" V8PRIxPTR "\n",
1836 addr, reinterpret_cast<intptr_t>(instr));
1837 DieOrDebug();
1838 }
1839
1840
WriteH(int64_t addr,int16_t value,Instruction * instr)1841 void Simulator::WriteH(int64_t addr, int16_t value, Instruction* instr) {
1842 if ((addr & 1) == 0 || kArchVariant == kMips64r6) {
1843 TraceMemWr(addr, value, HALF);
1844 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1845 *ptr = value;
1846 return;
1847 }
1848 PrintF("Unaligned halfword write at 0x%08" PRIx64 " , pc=0x%08" V8PRIxPTR
1849 "\n",
1850 addr, reinterpret_cast<intptr_t>(instr));
1851 DieOrDebug();
1852 }
1853
1854
ReadBU(int64_t addr)1855 uint32_t Simulator::ReadBU(int64_t addr) {
1856 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1857 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1858 return *ptr & 0xff;
1859 }
1860
1861
ReadB(int64_t addr)1862 int32_t Simulator::ReadB(int64_t addr) {
1863 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1864 TraceMemRd(addr, static_cast<int64_t>(*ptr));
1865 return *ptr;
1866 }
1867
1868
WriteB(int64_t addr,uint8_t value)1869 void Simulator::WriteB(int64_t addr, uint8_t value) {
1870 TraceMemWr(addr, value, BYTE);
1871 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1872 *ptr = value;
1873 }
1874
1875
WriteB(int64_t addr,int8_t value)1876 void Simulator::WriteB(int64_t addr, int8_t value) {
1877 TraceMemWr(addr, value, BYTE);
1878 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1879 *ptr = value;
1880 }
1881
1882
1883 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit(uintptr_t c_limit) const1884 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1885 // The simulator uses a separate JS stack. If we have exhausted the C stack,
1886 // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1887 if (GetCurrentStackPosition() < c_limit) {
1888 return reinterpret_cast<uintptr_t>(get_sp());
1889 }
1890
1891 // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
1892 // to prevent overrunning the stack when pushing values.
1893 return reinterpret_cast<uintptr_t>(stack_) + 1024;
1894 }
1895
1896
1897 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1898 void Simulator::Format(Instruction* instr, const char* format) {
1899 PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR " : %s\n",
1900 reinterpret_cast<intptr_t>(instr), format);
1901 UNIMPLEMENTED_MIPS();
1902 }
1903
1904
1905 // Calls into the V8 runtime are based on this very simple interface.
1906 // Note: To be able to return two values from some calls the code in runtime.cc
1907 // uses the ObjectPair which is essentially two 32-bit values stuffed into a
1908 // 64-bit value. With the code below we assume that all runtime calls return
1909 // 64 bits of result. If they don't, the v1 result register contains a bogus
1910 // value, which is fine because it is caller-saved.
1911
1912 typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
1913 int64_t arg1,
1914 int64_t arg2,
1915 int64_t arg3,
1916 int64_t arg4,
1917 int64_t arg5);
1918
1919 typedef ObjectTriple (*SimulatorRuntimeTripleCall)(int64_t arg0, int64_t arg1,
1920 int64_t arg2, int64_t arg3,
1921 int64_t arg4);
1922
1923 // These prototypes handle the four types of FP calls.
1924 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1925 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1926 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1927 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
1928
1929 // This signature supports direct call in to API function native callback
1930 // (refer to InvocationCallback in v8.h).
1931 typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
1932 typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
1933
1934 // This signature supports direct call to accessor getter callback.
1935 typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
1936 typedef void (*SimulatorRuntimeProfilingGetterCall)(
1937 int64_t arg0, int64_t arg1, void* arg2);
1938
1939 // Software interrupt instructions are used by the simulator to call into the
1940 // C-based V8 runtime. They are also used for debugging with simulator.
SoftwareInterrupt()1941 void Simulator::SoftwareInterrupt() {
1942 // There are several instructions that could get us here,
1943 // the break_ instruction, or several variants of traps. All
1944 // Are "SPECIAL" class opcode, and are distinuished by function.
1945 int32_t func = instr_.FunctionFieldRaw();
1946 uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
1947 // We first check if we met a call_rt_redirected.
1948 if (instr_.InstructionBits() == rtCallRedirInstr) {
1949 Redirection* redirection = Redirection::FromSwiInstruction(instr_.instr());
1950 int64_t arg0 = get_register(a0);
1951 int64_t arg1 = get_register(a1);
1952 int64_t arg2 = get_register(a2);
1953 int64_t arg3 = get_register(a3);
1954 int64_t arg4, arg5;
1955
1956 arg4 = get_register(a4); // Abi n64 register a4.
1957 arg5 = get_register(a5); // Abi n64 register a5.
1958
1959 bool fp_call =
1960 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1961 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1962 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1963 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1964
1965 if (!IsMipsSoftFloatABI) {
1966 // With the hard floating point calling convention, double
1967 // arguments are passed in FPU registers. Fetch the arguments
1968 // from there and call the builtin using soft floating point
1969 // convention.
1970 switch (redirection->type()) {
1971 case ExternalReference::BUILTIN_FP_FP_CALL:
1972 case ExternalReference::BUILTIN_COMPARE_CALL:
1973 arg0 = get_fpu_register(f12);
1974 arg1 = get_fpu_register(f13);
1975 arg2 = get_fpu_register(f14);
1976 arg3 = get_fpu_register(f15);
1977 break;
1978 case ExternalReference::BUILTIN_FP_CALL:
1979 arg0 = get_fpu_register(f12);
1980 arg1 = get_fpu_register(f13);
1981 break;
1982 case ExternalReference::BUILTIN_FP_INT_CALL:
1983 arg0 = get_fpu_register(f12);
1984 arg1 = get_fpu_register(f13);
1985 arg2 = get_register(a2);
1986 break;
1987 default:
1988 break;
1989 }
1990 }
1991
1992 // This is dodgy but it works because the C entry stubs are never moved.
1993 // See comment in codegen-arm.cc and bug 1242173.
1994 int64_t saved_ra = get_register(ra);
1995
1996 intptr_t external =
1997 reinterpret_cast<intptr_t>(redirection->external_function());
1998
1999 // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
2000 // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
2001 // simulator. Soft-float has additional abstraction of ExternalReference,
2002 // to support serialization.
2003 if (fp_call) {
2004 double dval0, dval1; // one or two double parameters
2005 int32_t ival; // zero or one integer parameters
2006 int64_t iresult = 0; // integer return value
2007 double dresult = 0; // double return value
2008 GetFpArgs(&dval0, &dval1, &ival);
2009 SimulatorRuntimeCall generic_target =
2010 reinterpret_cast<SimulatorRuntimeCall>(external);
2011 if (::v8::internal::FLAG_trace_sim) {
2012 switch (redirection->type()) {
2013 case ExternalReference::BUILTIN_FP_FP_CALL:
2014 case ExternalReference::BUILTIN_COMPARE_CALL:
2015 PrintF("Call to host function at %p with args %f, %f",
2016 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
2017 dval1);
2018 break;
2019 case ExternalReference::BUILTIN_FP_CALL:
2020 PrintF("Call to host function at %p with arg %f",
2021 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0);
2022 break;
2023 case ExternalReference::BUILTIN_FP_INT_CALL:
2024 PrintF("Call to host function at %p with args %f, %d",
2025 static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
2026 ival);
2027 break;
2028 default:
2029 UNREACHABLE();
2030 break;
2031 }
2032 }
2033 switch (redirection->type()) {
2034 case ExternalReference::BUILTIN_COMPARE_CALL: {
2035 SimulatorRuntimeCompareCall target =
2036 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
2037 iresult = target(dval0, dval1);
2038 set_register(v0, static_cast<int64_t>(iresult));
2039 // set_register(v1, static_cast<int64_t>(iresult >> 32));
2040 break;
2041 }
2042 case ExternalReference::BUILTIN_FP_FP_CALL: {
2043 SimulatorRuntimeFPFPCall target =
2044 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
2045 dresult = target(dval0, dval1);
2046 SetFpResult(dresult);
2047 break;
2048 }
2049 case ExternalReference::BUILTIN_FP_CALL: {
2050 SimulatorRuntimeFPCall target =
2051 reinterpret_cast<SimulatorRuntimeFPCall>(external);
2052 dresult = target(dval0);
2053 SetFpResult(dresult);
2054 break;
2055 }
2056 case ExternalReference::BUILTIN_FP_INT_CALL: {
2057 SimulatorRuntimeFPIntCall target =
2058 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
2059 dresult = target(dval0, ival);
2060 SetFpResult(dresult);
2061 break;
2062 }
2063 default:
2064 UNREACHABLE();
2065 break;
2066 }
2067 if (::v8::internal::FLAG_trace_sim) {
2068 switch (redirection->type()) {
2069 case ExternalReference::BUILTIN_COMPARE_CALL:
2070 PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
2071 break;
2072 case ExternalReference::BUILTIN_FP_FP_CALL:
2073 case ExternalReference::BUILTIN_FP_CALL:
2074 case ExternalReference::BUILTIN_FP_INT_CALL:
2075 PrintF("Returned %f\n", dresult);
2076 break;
2077 default:
2078 UNREACHABLE();
2079 break;
2080 }
2081 }
2082 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
2083 if (::v8::internal::FLAG_trace_sim) {
2084 PrintF("Call to host function at %p args %08" PRIx64 " \n",
2085 reinterpret_cast<void*>(external), arg0);
2086 }
2087 SimulatorRuntimeDirectApiCall target =
2088 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
2089 target(arg0);
2090 } else if (
2091 redirection->type() == ExternalReference::PROFILING_API_CALL) {
2092 if (::v8::internal::FLAG_trace_sim) {
2093 PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64
2094 " \n",
2095 reinterpret_cast<void*>(external), arg0, arg1);
2096 }
2097 SimulatorRuntimeProfilingApiCall target =
2098 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
2099 target(arg0, Redirection::ReverseRedirection(arg1));
2100 } else if (
2101 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
2102 if (::v8::internal::FLAG_trace_sim) {
2103 PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64
2104 " \n",
2105 reinterpret_cast<void*>(external), arg0, arg1);
2106 }
2107 SimulatorRuntimeDirectGetterCall target =
2108 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
2109 target(arg0, arg1);
2110 } else if (
2111 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
2112 if (::v8::internal::FLAG_trace_sim) {
2113 PrintF("Call to host function at %p args %08" PRIx64 " %08" PRIx64
2114 " %08" PRIx64 " \n",
2115 reinterpret_cast<void*>(external), arg0, arg1, arg2);
2116 }
2117 SimulatorRuntimeProfilingGetterCall target =
2118 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
2119 target(arg0, arg1, Redirection::ReverseRedirection(arg2));
2120 } else if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
2121 // builtin call returning ObjectTriple.
2122 SimulatorRuntimeTripleCall target =
2123 reinterpret_cast<SimulatorRuntimeTripleCall>(external);
2124 if (::v8::internal::FLAG_trace_sim) {
2125 PrintF(
2126 "Call to host triple returning runtime function %p "
2127 "args %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64 ", %016" PRIx64
2128 ", %016" PRIx64 "\n",
2129 static_cast<void*>(FUNCTION_ADDR(target)), arg1, arg2, arg3, arg4,
2130 arg5);
2131 }
2132 // arg0 is a hidden argument pointing to the return location, so don't
2133 // pass it to the target function.
2134 ObjectTriple result = target(arg1, arg2, arg3, arg4, arg5);
2135 if (::v8::internal::FLAG_trace_sim) {
2136 PrintF("Returned { %p, %p, %p }\n", static_cast<void*>(result.x),
2137 static_cast<void*>(result.y), static_cast<void*>(result.z));
2138 }
2139 // Return is passed back in address pointed to by hidden first argument.
2140 ObjectTriple* sim_result = reinterpret_cast<ObjectTriple*>(arg0);
2141 *sim_result = result;
2142 set_register(v0, arg0);
2143 } else {
2144 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
2145 redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
2146 SimulatorRuntimeCall target =
2147 reinterpret_cast<SimulatorRuntimeCall>(external);
2148 if (::v8::internal::FLAG_trace_sim) {
2149 PrintF(
2150 "Call to host function at %p "
2151 "args %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64 " , %08" PRIx64
2152 " , %08" PRIx64 " , %08" PRIx64 " \n",
2153 static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3,
2154 arg4, arg5);
2155 }
2156 // int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
2157 // set_register(v0, static_cast<int32_t>(result));
2158 // set_register(v1, static_cast<int32_t>(result >> 32));
2159 ObjectPair result = target(arg0, arg1, arg2, arg3, arg4, arg5);
2160 set_register(v0, (int64_t)(result.x));
2161 set_register(v1, (int64_t)(result.y));
2162 }
2163 if (::v8::internal::FLAG_trace_sim) {
2164 PrintF("Returned %08" PRIx64 " : %08" PRIx64 " \n", get_register(v1),
2165 get_register(v0));
2166 }
2167 set_register(ra, saved_ra);
2168 set_pc(get_register(ra));
2169
2170 } else if (func == BREAK && code <= kMaxStopCode) {
2171 if (IsWatchpoint(code)) {
2172 PrintWatchpoint(code);
2173 } else {
2174 IncreaseStopCounter(code);
2175 HandleStop(code, instr_.instr());
2176 }
2177 } else {
2178 // All remaining break_ codes, and all traps are handled here.
2179 MipsDebugger dbg(this);
2180 dbg.Debug();
2181 }
2182 }
2183
2184
2185 // Stop helper functions.
IsWatchpoint(uint64_t code)2186 bool Simulator::IsWatchpoint(uint64_t code) {
2187 return (code <= kMaxWatchpointCode);
2188 }
2189
2190
PrintWatchpoint(uint64_t code)2191 void Simulator::PrintWatchpoint(uint64_t code) {
2192 MipsDebugger dbg(this);
2193 ++break_count_;
2194 PrintF("\n---- break %" PRId64 " marker: %3d (instr count: %8" PRId64
2195 " ) ----------"
2196 "----------------------------------",
2197 code, break_count_, icount_);
2198 dbg.PrintAllRegs(); // Print registers and continue running.
2199 }
2200
2201
HandleStop(uint64_t code,Instruction * instr)2202 void Simulator::HandleStop(uint64_t code, Instruction* instr) {
2203 // Stop if it is enabled, otherwise go on jumping over the stop
2204 // and the message address.
2205 if (IsEnabledStop(code)) {
2206 MipsDebugger dbg(this);
2207 dbg.Stop(instr);
2208 } else {
2209 set_pc(get_pc() + 2 * Instruction::kInstrSize);
2210 }
2211 }
2212
2213
IsStopInstruction(Instruction * instr)2214 bool Simulator::IsStopInstruction(Instruction* instr) {
2215 int32_t func = instr->FunctionFieldRaw();
2216 uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
2217 return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
2218 }
2219
2220
IsEnabledStop(uint64_t code)2221 bool Simulator::IsEnabledStop(uint64_t code) {
2222 DCHECK(code <= kMaxStopCode);
2223 DCHECK(code > kMaxWatchpointCode);
2224 return !(watched_stops_[code].count & kStopDisabledBit);
2225 }
2226
2227
EnableStop(uint64_t code)2228 void Simulator::EnableStop(uint64_t code) {
2229 if (!IsEnabledStop(code)) {
2230 watched_stops_[code].count &= ~kStopDisabledBit;
2231 }
2232 }
2233
2234
DisableStop(uint64_t code)2235 void Simulator::DisableStop(uint64_t code) {
2236 if (IsEnabledStop(code)) {
2237 watched_stops_[code].count |= kStopDisabledBit;
2238 }
2239 }
2240
2241
IncreaseStopCounter(uint64_t code)2242 void Simulator::IncreaseStopCounter(uint64_t code) {
2243 DCHECK(code <= kMaxStopCode);
2244 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
2245 PrintF("Stop counter for code %" PRId64
2246 " has overflowed.\n"
2247 "Enabling this code and reseting the counter to 0.\n",
2248 code);
2249 watched_stops_[code].count = 0;
2250 EnableStop(code);
2251 } else {
2252 watched_stops_[code].count++;
2253 }
2254 }
2255
2256
2257 // Print a stop status.
PrintStopInfo(uint64_t code)2258 void Simulator::PrintStopInfo(uint64_t code) {
2259 if (code <= kMaxWatchpointCode) {
2260 PrintF("That is a watchpoint, not a stop.\n");
2261 return;
2262 } else if (code > kMaxStopCode) {
2263 PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
2264 return;
2265 }
2266 const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
2267 int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
2268 // Don't print the state of unused breakpoints.
2269 if (count != 0) {
2270 if (watched_stops_[code].desc) {
2271 PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i, \t%s\n",
2272 code, code, state, count, watched_stops_[code].desc);
2273 } else {
2274 PrintF("stop %" PRId64 " - 0x%" PRIx64 " : \t%s, \tcounter = %i\n", code,
2275 code, state, count);
2276 }
2277 }
2278 }
2279
2280
SignalException(Exception e)2281 void Simulator::SignalException(Exception e) {
2282 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
2283 static_cast<int>(e));
2284 }
2285
2286 // Min/Max template functions for Double and Single arguments.
2287
2288 template <typename T>
2289 static T FPAbs(T a);
2290
2291 template <>
FPAbs(double a)2292 double FPAbs<double>(double a) {
2293 return fabs(a);
2294 }
2295
2296 template <>
FPAbs(float a)2297 float FPAbs<float>(float a) {
2298 return fabsf(a);
2299 }
2300
2301 template <typename T>
FPUProcessNaNsAndZeros(T a,T b,MaxMinKind kind,T & result)2302 static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T& result) {
2303 if (std::isnan(a) && std::isnan(b)) {
2304 result = a;
2305 } else if (std::isnan(a)) {
2306 result = b;
2307 } else if (std::isnan(b)) {
2308 result = a;
2309 } else if (b == a) {
2310 // Handle -0.0 == 0.0 case.
2311 // std::signbit() returns int 0 or 1 so substracting MaxMinKind::kMax
2312 // negates the result.
2313 result = std::signbit(b) - static_cast<int>(kind) ? b : a;
2314 } else {
2315 return false;
2316 }
2317 return true;
2318 }
2319
2320 template <typename T>
FPUMin(T a,T b)2321 static T FPUMin(T a, T b) {
2322 T result;
2323 if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
2324 return result;
2325 } else {
2326 return b < a ? b : a;
2327 }
2328 }
2329
2330 template <typename T>
FPUMax(T a,T b)2331 static T FPUMax(T a, T b) {
2332 T result;
2333 if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, result)) {
2334 return result;
2335 } else {
2336 return b > a ? b : a;
2337 }
2338 }
2339
2340 template <typename T>
FPUMinA(T a,T b)2341 static T FPUMinA(T a, T b) {
2342 T result;
2343 if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
2344 if (FPAbs(a) < FPAbs(b)) {
2345 result = a;
2346 } else if (FPAbs(b) < FPAbs(a)) {
2347 result = b;
2348 } else {
2349 result = a < b ? a : b;
2350 }
2351 }
2352 return result;
2353 }
2354
2355 template <typename T>
FPUMaxA(T a,T b)2356 static T FPUMaxA(T a, T b) {
2357 T result;
2358 if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, result)) {
2359 if (FPAbs(a) > FPAbs(b)) {
2360 result = a;
2361 } else if (FPAbs(b) > FPAbs(a)) {
2362 result = b;
2363 } else {
2364 result = a > b ? a : b;
2365 }
2366 }
2367 return result;
2368 }
2369
2370 enum class KeepSign : bool { no = false, yes };
2371
2372 template <typename T, typename std::enable_if<std::is_floating_point<T>::value,
2373 int>::type = 0>
FPUCanonalizeNaNArg(T result,T arg,KeepSign keepSign=KeepSign::no)2374 T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) {
2375 DCHECK(std::isnan(arg));
2376 T qNaN = std::numeric_limits<T>::quiet_NaN();
2377 if (keepSign == KeepSign::yes) {
2378 return std::copysign(qNaN, result);
2379 }
2380 return qNaN;
2381 }
2382
2383 template <typename T>
FPUCanonalizeNaNArgs(T result,KeepSign keepSign,T first)2384 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) {
2385 if (std::isnan(first)) {
2386 return FPUCanonalizeNaNArg(result, first, keepSign);
2387 }
2388 return result;
2389 }
2390
2391 template <typename T, typename... Args>
FPUCanonalizeNaNArgs(T result,KeepSign keepSign,T first,Args...args)2392 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) {
2393 if (std::isnan(first)) {
2394 return FPUCanonalizeNaNArg(result, first, keepSign);
2395 }
2396 return FPUCanonalizeNaNArgs(result, keepSign, args...);
2397 }
2398
2399 template <typename Func, typename T, typename... Args>
FPUCanonalizeOperation(Func f,T first,Args...args)2400 T FPUCanonalizeOperation(Func f, T first, Args... args) {
2401 return FPUCanonalizeOperation(f, KeepSign::no, first, args...);
2402 }
2403
2404 template <typename Func, typename T, typename... Args>
FPUCanonalizeOperation(Func f,KeepSign keepSign,T first,Args...args)2405 T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) {
2406 T result = f(first, args...);
2407 if (std::isnan(result)) {
2408 result = FPUCanonalizeNaNArgs(result, keepSign, first, args...);
2409 }
2410 return result;
2411 }
2412
2413 // Handle execution based on instruction types.
2414
DecodeTypeRegisterSRsType()2415 void Simulator::DecodeTypeRegisterSRsType() {
2416 float fs, ft, fd;
2417 fs = get_fpu_register_float(fs_reg());
2418 ft = get_fpu_register_float(ft_reg());
2419 fd = get_fpu_register_float(fd_reg());
2420 int32_t ft_int = bit_cast<int32_t>(ft);
2421 int32_t fd_int = bit_cast<int32_t>(fd);
2422 uint32_t cc, fcsr_cc;
2423 cc = instr_.FCccValue();
2424 fcsr_cc = get_fcsr_condition_bit(cc);
2425 switch (instr_.FunctionFieldRaw()) {
2426 case RINT: {
2427 DCHECK(kArchVariant == kMips64r6);
2428 float result, temp_result;
2429 double temp;
2430 float upper = std::ceil(fs);
2431 float lower = std::floor(fs);
2432 switch (get_fcsr_rounding_mode()) {
2433 case kRoundToNearest:
2434 if (upper - fs < fs - lower) {
2435 result = upper;
2436 } else if (upper - fs > fs - lower) {
2437 result = lower;
2438 } else {
2439 temp_result = upper / 2;
2440 float reminder = modf(temp_result, &temp);
2441 if (reminder == 0) {
2442 result = upper;
2443 } else {
2444 result = lower;
2445 }
2446 }
2447 break;
2448 case kRoundToZero:
2449 result = (fs > 0 ? lower : upper);
2450 break;
2451 case kRoundToPlusInf:
2452 result = upper;
2453 break;
2454 case kRoundToMinusInf:
2455 result = lower;
2456 break;
2457 }
2458 set_fpu_register_float(fd_reg(), result);
2459 if (result != fs) {
2460 set_fcsr_bit(kFCSRInexactFlagBit, true);
2461 }
2462 break;
2463 }
2464 case ADD_S:
2465 set_fpu_register_float(
2466 fd_reg(),
2467 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; },
2468 fs, ft));
2469 break;
2470 case SUB_S:
2471 set_fpu_register_float(
2472 fd_reg(),
2473 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; },
2474 fs, ft));
2475 break;
2476 case MADDF_S:
2477 DCHECK(kArchVariant == kMips64r6);
2478 set_fpu_register_float(fd_reg(), fd + (fs * ft));
2479 break;
2480 case MSUBF_S:
2481 DCHECK(kArchVariant == kMips64r6);
2482 set_fpu_register_float(fd_reg(), fd - (fs * ft));
2483 break;
2484 case MUL_S:
2485 set_fpu_register_float(
2486 fd_reg(),
2487 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; },
2488 fs, ft));
2489 break;
2490 case DIV_S:
2491 set_fpu_register_float(
2492 fd_reg(),
2493 FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; },
2494 fs, ft));
2495 break;
2496 case ABS_S:
2497 set_fpu_register_float(
2498 fd_reg(),
2499 FPUCanonalizeOperation([](float fs) { return FPAbs(fs); }, fs));
2500 break;
2501 case MOV_S:
2502 set_fpu_register_float(fd_reg(), fs);
2503 break;
2504 case NEG_S:
2505 set_fpu_register_float(
2506 fd_reg(), FPUCanonalizeOperation([](float src) { return -src; },
2507 KeepSign::yes, fs));
2508 break;
2509 case SQRT_S:
2510 set_fpu_register_float(
2511 fd_reg(),
2512 FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs));
2513 break;
2514 case RSQRT_S:
2515 set_fpu_register_float(
2516 fd_reg(), FPUCanonalizeOperation(
2517 [](float src) { return 1.0 / std::sqrt(src); }, fs));
2518 break;
2519 case RECIP_S:
2520 set_fpu_register_float(
2521 fd_reg(),
2522 FPUCanonalizeOperation([](float src) { return 1.0 / src; }, fs));
2523 break;
2524 case C_F_D:
2525 set_fcsr_bit(fcsr_cc, false);
2526 break;
2527 case C_UN_D:
2528 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2529 break;
2530 case C_EQ_D:
2531 set_fcsr_bit(fcsr_cc, (fs == ft));
2532 break;
2533 case C_UEQ_D:
2534 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2535 break;
2536 case C_OLT_D:
2537 set_fcsr_bit(fcsr_cc, (fs < ft));
2538 break;
2539 case C_ULT_D:
2540 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2541 break;
2542 case C_OLE_D:
2543 set_fcsr_bit(fcsr_cc, (fs <= ft));
2544 break;
2545 case C_ULE_D:
2546 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2547 break;
2548 case CVT_D_S:
2549 set_fpu_register_double(fd_reg(), static_cast<double>(fs));
2550 break;
2551 case CLASS_S: { // Mips64r6 instruction
2552 // Convert float input to uint32_t for easier bit manipulation
2553 uint32_t classed = bit_cast<uint32_t>(fs);
2554
2555 // Extracting sign, exponent and mantissa from the input float
2556 uint32_t sign = (classed >> 31) & 1;
2557 uint32_t exponent = (classed >> 23) & 0x000000ff;
2558 uint32_t mantissa = classed & 0x007fffff;
2559 uint32_t result;
2560 float fResult;
2561
2562 // Setting flags if input float is negative infinity,
2563 // positive infinity, negative zero or positive zero
2564 bool negInf = (classed == 0xFF800000);
2565 bool posInf = (classed == 0x7F800000);
2566 bool negZero = (classed == 0x80000000);
2567 bool posZero = (classed == 0x00000000);
2568
2569 bool signalingNan;
2570 bool quietNan;
2571 bool negSubnorm;
2572 bool posSubnorm;
2573 bool negNorm;
2574 bool posNorm;
2575
2576 // Setting flags if float is NaN
2577 signalingNan = false;
2578 quietNan = false;
2579 if (!negInf && !posInf && (exponent == 0xff)) {
2580 quietNan = ((mantissa & 0x00200000) == 0) &&
2581 ((mantissa & (0x00200000 - 1)) == 0);
2582 signalingNan = !quietNan;
2583 }
2584
2585 // Setting flags if float is subnormal number
2586 posSubnorm = false;
2587 negSubnorm = false;
2588 if ((exponent == 0) && (mantissa != 0)) {
2589 DCHECK(sign == 0 || sign == 1);
2590 posSubnorm = (sign == 0);
2591 negSubnorm = (sign == 1);
2592 }
2593
2594 // Setting flags if float is normal number
2595 posNorm = false;
2596 negNorm = false;
2597 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
2598 !quietNan && !negZero && !posZero) {
2599 DCHECK(sign == 0 || sign == 1);
2600 posNorm = (sign == 0);
2601 negNorm = (sign == 1);
2602 }
2603
2604 // Calculating result according to description of CLASS.S instruction
2605 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
2606 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
2607 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
2608
2609 DCHECK(result != 0);
2610
2611 fResult = bit_cast<float>(result);
2612 set_fpu_register_float(fd_reg(), fResult);
2613
2614 break;
2615 }
2616 case CVT_L_S: {
2617 float rounded;
2618 int64_t result;
2619 round64_according_to_fcsr(fs, rounded, result, fs);
2620 set_fpu_register(fd_reg(), result);
2621 if (set_fcsr_round64_error(fs, rounded)) {
2622 set_fpu_register_invalid_result64(fs, rounded);
2623 }
2624 break;
2625 }
2626 case CVT_W_S: {
2627 float rounded;
2628 int32_t result;
2629 round_according_to_fcsr(fs, rounded, result, fs);
2630 set_fpu_register_word(fd_reg(), result);
2631 if (set_fcsr_round_error(fs, rounded)) {
2632 set_fpu_register_word_invalid_result(fs, rounded);
2633 }
2634 break;
2635 }
2636 case TRUNC_W_S: { // Truncate single to word (round towards 0).
2637 float rounded = trunc(fs);
2638 int32_t result = static_cast<int32_t>(rounded);
2639 set_fpu_register_word(fd_reg(), result);
2640 if (set_fcsr_round_error(fs, rounded)) {
2641 set_fpu_register_word_invalid_result(fs, rounded);
2642 }
2643 } break;
2644 case TRUNC_L_S: { // Mips64r2 instruction.
2645 float rounded = trunc(fs);
2646 int64_t result = static_cast<int64_t>(rounded);
2647 set_fpu_register(fd_reg(), result);
2648 if (set_fcsr_round64_error(fs, rounded)) {
2649 set_fpu_register_invalid_result64(fs, rounded);
2650 }
2651 break;
2652 }
2653 case ROUND_W_S: {
2654 float rounded = std::floor(fs + 0.5);
2655 int32_t result = static_cast<int32_t>(rounded);
2656 if ((result & 1) != 0 && result - fs == 0.5) {
2657 // If the number is halfway between two integers,
2658 // round to the even one.
2659 result--;
2660 }
2661 set_fpu_register_word(fd_reg(), result);
2662 if (set_fcsr_round_error(fs, rounded)) {
2663 set_fpu_register_word_invalid_result(fs, rounded);
2664 }
2665 break;
2666 }
2667 case ROUND_L_S: { // Mips64r2 instruction.
2668 float rounded = std::floor(fs + 0.5);
2669 int64_t result = static_cast<int64_t>(rounded);
2670 if ((result & 1) != 0 && result - fs == 0.5) {
2671 // If the number is halfway between two integers,
2672 // round to the even one.
2673 result--;
2674 }
2675 int64_t i64 = static_cast<int64_t>(result);
2676 set_fpu_register(fd_reg(), i64);
2677 if (set_fcsr_round64_error(fs, rounded)) {
2678 set_fpu_register_invalid_result64(fs, rounded);
2679 }
2680 break;
2681 }
2682 case FLOOR_L_S: { // Mips64r2 instruction.
2683 float rounded = floor(fs);
2684 int64_t result = static_cast<int64_t>(rounded);
2685 set_fpu_register(fd_reg(), result);
2686 if (set_fcsr_round64_error(fs, rounded)) {
2687 set_fpu_register_invalid_result64(fs, rounded);
2688 }
2689 break;
2690 }
2691 case FLOOR_W_S: // Round double to word towards negative infinity.
2692 {
2693 float rounded = std::floor(fs);
2694 int32_t result = static_cast<int32_t>(rounded);
2695 set_fpu_register_word(fd_reg(), result);
2696 if (set_fcsr_round_error(fs, rounded)) {
2697 set_fpu_register_word_invalid_result(fs, rounded);
2698 }
2699 } break;
2700 case CEIL_W_S: // Round double to word towards positive infinity.
2701 {
2702 float rounded = std::ceil(fs);
2703 int32_t result = static_cast<int32_t>(rounded);
2704 set_fpu_register_word(fd_reg(), result);
2705 if (set_fcsr_round_error(fs, rounded)) {
2706 set_fpu_register_invalid_result(fs, rounded);
2707 }
2708 } break;
2709 case CEIL_L_S: { // Mips64r2 instruction.
2710 float rounded = ceil(fs);
2711 int64_t result = static_cast<int64_t>(rounded);
2712 set_fpu_register(fd_reg(), result);
2713 if (set_fcsr_round64_error(fs, rounded)) {
2714 set_fpu_register_invalid_result64(fs, rounded);
2715 }
2716 break;
2717 }
2718 case MINA:
2719 DCHECK(kArchVariant == kMips64r6);
2720 set_fpu_register_float(fd_reg(), FPUMinA(ft, fs));
2721 break;
2722 case MAXA:
2723 DCHECK(kArchVariant == kMips64r6);
2724 set_fpu_register_float(fd_reg(), FPUMaxA(ft, fs));
2725 break;
2726 case MIN:
2727 DCHECK(kArchVariant == kMips64r6);
2728 set_fpu_register_float(fd_reg(), FPUMin(ft, fs));
2729 break;
2730 case MAX:
2731 DCHECK(kArchVariant == kMips64r6);
2732 set_fpu_register_float(fd_reg(), FPUMax(ft, fs));
2733 break;
2734 case SEL:
2735 DCHECK(kArchVariant == kMips64r6);
2736 set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2737 break;
2738 case SELEQZ_C:
2739 DCHECK(kArchVariant == kMips64r6);
2740 set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0
2741 ? get_fpu_register_float(fs_reg())
2742 : 0.0);
2743 break;
2744 case SELNEZ_C:
2745 DCHECK(kArchVariant == kMips64r6);
2746 set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0
2747 ? get_fpu_register_float(fs_reg())
2748 : 0.0);
2749 break;
2750 case MOVZ_C: {
2751 DCHECK(kArchVariant == kMips64r2);
2752 if (rt() == 0) {
2753 set_fpu_register_float(fd_reg(), fs);
2754 }
2755 break;
2756 }
2757 case MOVN_C: {
2758 DCHECK(kArchVariant == kMips64r2);
2759 if (rt() != 0) {
2760 set_fpu_register_float(fd_reg(), fs);
2761 }
2762 break;
2763 }
2764 case MOVF: {
2765 // Same function field for MOVT.D and MOVF.D
2766 uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2767 ft_cc = get_fcsr_condition_bit(ft_cc);
2768
2769 if (instr_.Bit(16)) { // Read Tf bit.
2770 // MOVT.D
2771 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
2772 } else {
2773 // MOVF.D
2774 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
2775 }
2776 break;
2777 }
2778 default:
2779 // TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
2780 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
2781 UNREACHABLE();
2782 }
2783 }
2784
2785
DecodeTypeRegisterDRsType()2786 void Simulator::DecodeTypeRegisterDRsType() {
2787 double ft, fs, fd;
2788 uint32_t cc, fcsr_cc;
2789 fs = get_fpu_register_double(fs_reg());
2790 ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
2791 : 0.0;
2792 fd = get_fpu_register_double(fd_reg());
2793 cc = instr_.FCccValue();
2794 fcsr_cc = get_fcsr_condition_bit(cc);
2795 int64_t ft_int = bit_cast<int64_t>(ft);
2796 int64_t fd_int = bit_cast<int64_t>(fd);
2797 switch (instr_.FunctionFieldRaw()) {
2798 case RINT: {
2799 DCHECK(kArchVariant == kMips64r6);
2800 double result, temp, temp_result;
2801 double upper = std::ceil(fs);
2802 double lower = std::floor(fs);
2803 switch (get_fcsr_rounding_mode()) {
2804 case kRoundToNearest:
2805 if (upper - fs < fs - lower) {
2806 result = upper;
2807 } else if (upper - fs > fs - lower) {
2808 result = lower;
2809 } else {
2810 temp_result = upper / 2;
2811 double reminder = modf(temp_result, &temp);
2812 if (reminder == 0) {
2813 result = upper;
2814 } else {
2815 result = lower;
2816 }
2817 }
2818 break;
2819 case kRoundToZero:
2820 result = (fs > 0 ? lower : upper);
2821 break;
2822 case kRoundToPlusInf:
2823 result = upper;
2824 break;
2825 case kRoundToMinusInf:
2826 result = lower;
2827 break;
2828 }
2829 set_fpu_register_double(fd_reg(), result);
2830 if (result != fs) {
2831 set_fcsr_bit(kFCSRInexactFlagBit, true);
2832 }
2833 break;
2834 }
2835 case SEL:
2836 DCHECK(kArchVariant == kMips64r6);
2837 set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2838 break;
2839 case SELEQZ_C:
2840 DCHECK(kArchVariant == kMips64r6);
2841 set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
2842 break;
2843 case SELNEZ_C:
2844 DCHECK(kArchVariant == kMips64r6);
2845 set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
2846 break;
2847 case MOVZ_C: {
2848 DCHECK(kArchVariant == kMips64r2);
2849 if (rt() == 0) {
2850 set_fpu_register_double(fd_reg(), fs);
2851 }
2852 break;
2853 }
2854 case MOVN_C: {
2855 DCHECK(kArchVariant == kMips64r2);
2856 if (rt() != 0) {
2857 set_fpu_register_double(fd_reg(), fs);
2858 }
2859 break;
2860 }
2861 case MOVF: {
2862 // Same function field for MOVT.D and MOVF.D
2863 uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2864 ft_cc = get_fcsr_condition_bit(ft_cc);
2865 if (instr_.Bit(16)) { // Read Tf bit.
2866 // MOVT.D
2867 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2868 } else {
2869 // MOVF.D
2870 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2871 }
2872 break;
2873 }
2874 case MINA:
2875 DCHECK(kArchVariant == kMips64r6);
2876 set_fpu_register_double(fd_reg(), FPUMinA(ft, fs));
2877 break;
2878 case MAXA:
2879 DCHECK(kArchVariant == kMips64r6);
2880 set_fpu_register_double(fd_reg(), FPUMaxA(ft, fs));
2881 break;
2882 case MIN:
2883 DCHECK(kArchVariant == kMips64r6);
2884 set_fpu_register_double(fd_reg(), FPUMin(ft, fs));
2885 break;
2886 case MAX:
2887 DCHECK(kArchVariant == kMips64r6);
2888 set_fpu_register_double(fd_reg(), FPUMax(ft, fs));
2889 break;
2890 case ADD_D:
2891 set_fpu_register_double(
2892 fd_reg(),
2893 FPUCanonalizeOperation(
2894 [](double lhs, double rhs) { return lhs + rhs; }, fs, ft));
2895 break;
2896 case SUB_D:
2897 set_fpu_register_double(
2898 fd_reg(),
2899 FPUCanonalizeOperation(
2900 [](double lhs, double rhs) { return lhs - rhs; }, fs, ft));
2901 break;
2902 case MADDF_D:
2903 DCHECK(kArchVariant == kMips64r6);
2904 set_fpu_register_double(fd_reg(), fd + (fs * ft));
2905 break;
2906 case MSUBF_D:
2907 DCHECK(kArchVariant == kMips64r6);
2908 set_fpu_register_double(fd_reg(), fd - (fs * ft));
2909 break;
2910 case MUL_D:
2911 set_fpu_register_double(
2912 fd_reg(),
2913 FPUCanonalizeOperation(
2914 [](double lhs, double rhs) { return lhs * rhs; }, fs, ft));
2915 break;
2916 case DIV_D:
2917 set_fpu_register_double(
2918 fd_reg(),
2919 FPUCanonalizeOperation(
2920 [](double lhs, double rhs) { return lhs / rhs; }, fs, ft));
2921 break;
2922 case ABS_D:
2923 set_fpu_register_double(
2924 fd_reg(),
2925 FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs));
2926 break;
2927 case MOV_D:
2928 set_fpu_register_double(fd_reg(), fs);
2929 break;
2930 case NEG_D:
2931 set_fpu_register_double(
2932 fd_reg(), FPUCanonalizeOperation([](double src) { return -src; },
2933 KeepSign::yes, fs));
2934 break;
2935 case SQRT_D:
2936 set_fpu_register_double(
2937 fd_reg(),
2938 FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs));
2939 break;
2940 case RSQRT_D:
2941 set_fpu_register_double(
2942 fd_reg(), FPUCanonalizeOperation(
2943 [](double fs) { return 1.0 / std::sqrt(fs); }, fs));
2944 break;
2945 case RECIP_D:
2946 set_fpu_register_double(
2947 fd_reg(),
2948 FPUCanonalizeOperation([](double fs) { return 1.0 / fs; }, fs));
2949 break;
2950 case C_UN_D:
2951 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2952 break;
2953 case C_EQ_D:
2954 set_fcsr_bit(fcsr_cc, (fs == ft));
2955 break;
2956 case C_UEQ_D:
2957 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2958 break;
2959 case C_OLT_D:
2960 set_fcsr_bit(fcsr_cc, (fs < ft));
2961 break;
2962 case C_ULT_D:
2963 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2964 break;
2965 case C_OLE_D:
2966 set_fcsr_bit(fcsr_cc, (fs <= ft));
2967 break;
2968 case C_ULE_D:
2969 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2970 break;
2971 case CVT_W_D: { // Convert double to word.
2972 double rounded;
2973 int32_t result;
2974 round_according_to_fcsr(fs, rounded, result, fs);
2975 set_fpu_register_word(fd_reg(), result);
2976 if (set_fcsr_round_error(fs, rounded)) {
2977 set_fpu_register_word_invalid_result(fs, rounded);
2978 }
2979 break;
2980 }
2981 case ROUND_W_D: // Round double to word (round half to even).
2982 {
2983 double rounded = std::floor(fs + 0.5);
2984 int32_t result = static_cast<int32_t>(rounded);
2985 if ((result & 1) != 0 && result - fs == 0.5) {
2986 // If the number is halfway between two integers,
2987 // round to the even one.
2988 result--;
2989 }
2990 set_fpu_register_word(fd_reg(), result);
2991 if (set_fcsr_round_error(fs, rounded)) {
2992 set_fpu_register_invalid_result(fs, rounded);
2993 }
2994 } break;
2995 case TRUNC_W_D: // Truncate double to word (round towards 0).
2996 {
2997 double rounded = trunc(fs);
2998 int32_t result = static_cast<int32_t>(rounded);
2999 set_fpu_register_word(fd_reg(), result);
3000 if (set_fcsr_round_error(fs, rounded)) {
3001 set_fpu_register_invalid_result(fs, rounded);
3002 }
3003 } break;
3004 case FLOOR_W_D: // Round double to word towards negative infinity.
3005 {
3006 double rounded = std::floor(fs);
3007 int32_t result = static_cast<int32_t>(rounded);
3008 set_fpu_register_word(fd_reg(), result);
3009 if (set_fcsr_round_error(fs, rounded)) {
3010 set_fpu_register_invalid_result(fs, rounded);
3011 }
3012 } break;
3013 case CEIL_W_D: // Round double to word towards positive infinity.
3014 {
3015 double rounded = std::ceil(fs);
3016 int32_t result = static_cast<int32_t>(rounded);
3017 set_fpu_register_word(fd_reg(), result);
3018 if (set_fcsr_round_error(fs, rounded)) {
3019 set_fpu_register_invalid_result(fs, rounded);
3020 }
3021 } break;
3022 case CVT_S_D: // Convert double to float (single).
3023 set_fpu_register_float(fd_reg(), static_cast<float>(fs));
3024 break;
3025 case CVT_L_D: { // Mips64r2: Truncate double to 64-bit long-word.
3026 double rounded;
3027 int64_t result;
3028 round64_according_to_fcsr(fs, rounded, result, fs);
3029 set_fpu_register(fd_reg(), result);
3030 if (set_fcsr_round64_error(fs, rounded)) {
3031 set_fpu_register_invalid_result64(fs, rounded);
3032 }
3033 break;
3034 }
3035 case ROUND_L_D: { // Mips64r2 instruction.
3036 double rounded = std::floor(fs + 0.5);
3037 int64_t result = static_cast<int64_t>(rounded);
3038 if ((result & 1) != 0 && result - fs == 0.5) {
3039 // If the number is halfway between two integers,
3040 // round to the even one.
3041 result--;
3042 }
3043 int64_t i64 = static_cast<int64_t>(result);
3044 set_fpu_register(fd_reg(), i64);
3045 if (set_fcsr_round64_error(fs, rounded)) {
3046 set_fpu_register_invalid_result64(fs, rounded);
3047 }
3048 break;
3049 }
3050 case TRUNC_L_D: { // Mips64r2 instruction.
3051 double rounded = trunc(fs);
3052 int64_t result = static_cast<int64_t>(rounded);
3053 set_fpu_register(fd_reg(), result);
3054 if (set_fcsr_round64_error(fs, rounded)) {
3055 set_fpu_register_invalid_result64(fs, rounded);
3056 }
3057 break;
3058 }
3059 case FLOOR_L_D: { // Mips64r2 instruction.
3060 double rounded = floor(fs);
3061 int64_t result = static_cast<int64_t>(rounded);
3062 set_fpu_register(fd_reg(), result);
3063 if (set_fcsr_round64_error(fs, rounded)) {
3064 set_fpu_register_invalid_result64(fs, rounded);
3065 }
3066 break;
3067 }
3068 case CEIL_L_D: { // Mips64r2 instruction.
3069 double rounded = ceil(fs);
3070 int64_t result = static_cast<int64_t>(rounded);
3071 set_fpu_register(fd_reg(), result);
3072 if (set_fcsr_round64_error(fs, rounded)) {
3073 set_fpu_register_invalid_result64(fs, rounded);
3074 }
3075 break;
3076 }
3077 case CLASS_D: { // Mips64r6 instruction
3078 // Convert double input to uint64_t for easier bit manipulation
3079 uint64_t classed = bit_cast<uint64_t>(fs);
3080
3081 // Extracting sign, exponent and mantissa from the input double
3082 uint32_t sign = (classed >> 63) & 1;
3083 uint32_t exponent = (classed >> 52) & 0x00000000000007ff;
3084 uint64_t mantissa = classed & 0x000fffffffffffff;
3085 uint64_t result;
3086 double dResult;
3087
3088 // Setting flags if input double is negative infinity,
3089 // positive infinity, negative zero or positive zero
3090 bool negInf = (classed == 0xFFF0000000000000);
3091 bool posInf = (classed == 0x7FF0000000000000);
3092 bool negZero = (classed == 0x8000000000000000);
3093 bool posZero = (classed == 0x0000000000000000);
3094
3095 bool signalingNan;
3096 bool quietNan;
3097 bool negSubnorm;
3098 bool posSubnorm;
3099 bool negNorm;
3100 bool posNorm;
3101
3102 // Setting flags if double is NaN
3103 signalingNan = false;
3104 quietNan = false;
3105 if (!negInf && !posInf && exponent == 0x7ff) {
3106 quietNan = ((mantissa & 0x0008000000000000) != 0) &&
3107 ((mantissa & (0x0008000000000000 - 1)) == 0);
3108 signalingNan = !quietNan;
3109 }
3110
3111 // Setting flags if double is subnormal number
3112 posSubnorm = false;
3113 negSubnorm = false;
3114 if ((exponent == 0) && (mantissa != 0)) {
3115 DCHECK(sign == 0 || sign == 1);
3116 posSubnorm = (sign == 0);
3117 negSubnorm = (sign == 1);
3118 }
3119
3120 // Setting flags if double is normal number
3121 posNorm = false;
3122 negNorm = false;
3123 if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
3124 !quietNan && !negZero && !posZero) {
3125 DCHECK(sign == 0 || sign == 1);
3126 posNorm = (sign == 0);
3127 negNorm = (sign == 1);
3128 }
3129
3130 // Calculating result according to description of CLASS.D instruction
3131 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
3132 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
3133 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
3134
3135 DCHECK(result != 0);
3136
3137 dResult = bit_cast<double>(result);
3138 set_fpu_register_double(fd_reg(), dResult);
3139
3140 break;
3141 }
3142 case C_F_D: {
3143 set_fcsr_bit(fcsr_cc, false);
3144 break;
3145 }
3146 default:
3147 UNREACHABLE();
3148 }
3149 }
3150
3151
DecodeTypeRegisterWRsType()3152 void Simulator::DecodeTypeRegisterWRsType() {
3153 float fs = get_fpu_register_float(fs_reg());
3154 float ft = get_fpu_register_float(ft_reg());
3155 int64_t alu_out = 0x12345678;
3156 switch (instr_.FunctionFieldRaw()) {
3157 case CVT_S_W: // Convert word to float (single).
3158 alu_out = get_fpu_register_signed_word(fs_reg());
3159 set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
3160 break;
3161 case CVT_D_W: // Convert word to double.
3162 alu_out = get_fpu_register_signed_word(fs_reg());
3163 set_fpu_register_double(fd_reg(), static_cast<double>(alu_out));
3164 break;
3165 case CMP_AF:
3166 set_fpu_register_word(fd_reg(), 0);
3167 break;
3168 case CMP_UN:
3169 if (std::isnan(fs) || std::isnan(ft)) {
3170 set_fpu_register_word(fd_reg(), -1);
3171 } else {
3172 set_fpu_register_word(fd_reg(), 0);
3173 }
3174 break;
3175 case CMP_EQ:
3176 if (fs == ft) {
3177 set_fpu_register_word(fd_reg(), -1);
3178 } else {
3179 set_fpu_register_word(fd_reg(), 0);
3180 }
3181 break;
3182 case CMP_UEQ:
3183 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3184 set_fpu_register_word(fd_reg(), -1);
3185 } else {
3186 set_fpu_register_word(fd_reg(), 0);
3187 }
3188 break;
3189 case CMP_LT:
3190 if (fs < ft) {
3191 set_fpu_register_word(fd_reg(), -1);
3192 } else {
3193 set_fpu_register_word(fd_reg(), 0);
3194 }
3195 break;
3196 case CMP_ULT:
3197 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3198 set_fpu_register_word(fd_reg(), -1);
3199 } else {
3200 set_fpu_register_word(fd_reg(), 0);
3201 }
3202 break;
3203 case CMP_LE:
3204 if (fs <= ft) {
3205 set_fpu_register_word(fd_reg(), -1);
3206 } else {
3207 set_fpu_register_word(fd_reg(), 0);
3208 }
3209 break;
3210 case CMP_ULE:
3211 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3212 set_fpu_register_word(fd_reg(), -1);
3213 } else {
3214 set_fpu_register_word(fd_reg(), 0);
3215 }
3216 break;
3217 case CMP_OR:
3218 if (!std::isnan(fs) && !std::isnan(ft)) {
3219 set_fpu_register_word(fd_reg(), -1);
3220 } else {
3221 set_fpu_register_word(fd_reg(), 0);
3222 }
3223 break;
3224 case CMP_UNE:
3225 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3226 set_fpu_register_word(fd_reg(), -1);
3227 } else {
3228 set_fpu_register_word(fd_reg(), 0);
3229 }
3230 break;
3231 case CMP_NE:
3232 if (fs != ft) {
3233 set_fpu_register_word(fd_reg(), -1);
3234 } else {
3235 set_fpu_register_word(fd_reg(), 0);
3236 }
3237 break;
3238 default:
3239 UNREACHABLE();
3240 }
3241 }
3242
3243
DecodeTypeRegisterLRsType()3244 void Simulator::DecodeTypeRegisterLRsType() {
3245 double fs = get_fpu_register_double(fs_reg());
3246 double ft = get_fpu_register_double(ft_reg());
3247 int64_t i64;
3248 switch (instr_.FunctionFieldRaw()) {
3249 case CVT_D_L: // Mips32r2 instruction.
3250 i64 = get_fpu_register(fs_reg());
3251 set_fpu_register_double(fd_reg(), static_cast<double>(i64));
3252 break;
3253 case CVT_S_L:
3254 i64 = get_fpu_register(fs_reg());
3255 set_fpu_register_float(fd_reg(), static_cast<float>(i64));
3256 break;
3257 case CMP_AF:
3258 set_fpu_register(fd_reg(), 0);
3259 break;
3260 case CMP_UN:
3261 if (std::isnan(fs) || std::isnan(ft)) {
3262 set_fpu_register(fd_reg(), -1);
3263 } else {
3264 set_fpu_register(fd_reg(), 0);
3265 }
3266 break;
3267 case CMP_EQ:
3268 if (fs == ft) {
3269 set_fpu_register(fd_reg(), -1);
3270 } else {
3271 set_fpu_register(fd_reg(), 0);
3272 }
3273 break;
3274 case CMP_UEQ:
3275 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3276 set_fpu_register(fd_reg(), -1);
3277 } else {
3278 set_fpu_register(fd_reg(), 0);
3279 }
3280 break;
3281 case CMP_LT:
3282 if (fs < ft) {
3283 set_fpu_register(fd_reg(), -1);
3284 } else {
3285 set_fpu_register(fd_reg(), 0);
3286 }
3287 break;
3288 case CMP_ULT:
3289 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3290 set_fpu_register(fd_reg(), -1);
3291 } else {
3292 set_fpu_register(fd_reg(), 0);
3293 }
3294 break;
3295 case CMP_LE:
3296 if (fs <= ft) {
3297 set_fpu_register(fd_reg(), -1);
3298 } else {
3299 set_fpu_register(fd_reg(), 0);
3300 }
3301 break;
3302 case CMP_ULE:
3303 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3304 set_fpu_register(fd_reg(), -1);
3305 } else {
3306 set_fpu_register(fd_reg(), 0);
3307 }
3308 break;
3309 case CMP_OR:
3310 if (!std::isnan(fs) && !std::isnan(ft)) {
3311 set_fpu_register(fd_reg(), -1);
3312 } else {
3313 set_fpu_register(fd_reg(), 0);
3314 }
3315 break;
3316 case CMP_UNE:
3317 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3318 set_fpu_register(fd_reg(), -1);
3319 } else {
3320 set_fpu_register(fd_reg(), 0);
3321 }
3322 break;
3323 case CMP_NE:
3324 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
3325 set_fpu_register(fd_reg(), -1);
3326 } else {
3327 set_fpu_register(fd_reg(), 0);
3328 }
3329 break;
3330 default:
3331 UNREACHABLE();
3332 }
3333 }
3334
3335
DecodeTypeRegisterCOP1()3336 void Simulator::DecodeTypeRegisterCOP1() {
3337 switch (instr_.RsFieldRaw()) {
3338 case BC1: // Branch on coprocessor condition.
3339 case BC1EQZ:
3340 case BC1NEZ:
3341 UNREACHABLE();
3342 break;
3343 case CFC1:
3344 // At the moment only FCSR is supported.
3345 DCHECK(fs_reg() == kFCSRRegister);
3346 set_register(rt_reg(), FCSR_);
3347 break;
3348 case MFC1:
3349 set_register(rt_reg(),
3350 static_cast<int64_t>(get_fpu_register_word(fs_reg())));
3351 break;
3352 case DMFC1:
3353 set_register(rt_reg(), get_fpu_register(fs_reg()));
3354 break;
3355 case MFHC1:
3356 set_register(rt_reg(), get_fpu_register_hi_word(fs_reg()));
3357 break;
3358 case CTC1: {
3359 // At the moment only FCSR is supported.
3360 DCHECK(fs_reg() == kFCSRRegister);
3361 uint32_t reg = static_cast<uint32_t>(rt());
3362 if (kArchVariant == kMips64r6) {
3363 FCSR_ = reg | kFCSRNaN2008FlagMask;
3364 } else {
3365 DCHECK(kArchVariant == kMips64r2);
3366 FCSR_ = reg & ~kFCSRNaN2008FlagMask;
3367 }
3368 break;
3369 }
3370 case MTC1:
3371 // Hardware writes upper 32-bits to zero on mtc1.
3372 set_fpu_register_hi_word(fs_reg(), 0);
3373 set_fpu_register_word(fs_reg(), static_cast<int32_t>(rt()));
3374 break;
3375 case DMTC1:
3376 set_fpu_register(fs_reg(), rt());
3377 break;
3378 case MTHC1:
3379 set_fpu_register_hi_word(fs_reg(), static_cast<int32_t>(rt()));
3380 break;
3381 case S:
3382 DecodeTypeRegisterSRsType();
3383 break;
3384 case D:
3385 DecodeTypeRegisterDRsType();
3386 break;
3387 case W:
3388 DecodeTypeRegisterWRsType();
3389 break;
3390 case L:
3391 DecodeTypeRegisterLRsType();
3392 break;
3393 default:
3394 UNREACHABLE();
3395 }
3396 }
3397
3398
DecodeTypeRegisterCOP1X()3399 void Simulator::DecodeTypeRegisterCOP1X() {
3400 switch (instr_.FunctionFieldRaw()) {
3401 case MADD_S: {
3402 DCHECK(kArchVariant == kMips64r2);
3403 float fr, ft, fs;
3404 fr = get_fpu_register_float(fr_reg());
3405 fs = get_fpu_register_float(fs_reg());
3406 ft = get_fpu_register_float(ft_reg());
3407 set_fpu_register_float(fd_reg(), fs * ft + fr);
3408 break;
3409 }
3410 case MSUB_S: {
3411 DCHECK(kArchVariant == kMips64r2);
3412 float fr, ft, fs;
3413 fr = get_fpu_register_float(fr_reg());
3414 fs = get_fpu_register_float(fs_reg());
3415 ft = get_fpu_register_float(ft_reg());
3416 set_fpu_register_float(fd_reg(), fs * ft - fr);
3417 break;
3418 }
3419 case MADD_D: {
3420 DCHECK(kArchVariant == kMips64r2);
3421 double fr, ft, fs;
3422 fr = get_fpu_register_double(fr_reg());
3423 fs = get_fpu_register_double(fs_reg());
3424 ft = get_fpu_register_double(ft_reg());
3425 set_fpu_register_double(fd_reg(), fs * ft + fr);
3426 break;
3427 }
3428 case MSUB_D: {
3429 DCHECK(kArchVariant == kMips64r2);
3430 double fr, ft, fs;
3431 fr = get_fpu_register_double(fr_reg());
3432 fs = get_fpu_register_double(fs_reg());
3433 ft = get_fpu_register_double(ft_reg());
3434 set_fpu_register_double(fd_reg(), fs * ft - fr);
3435 break;
3436 }
3437 default:
3438 UNREACHABLE();
3439 }
3440 }
3441
3442
DecodeTypeRegisterSPECIAL()3443 void Simulator::DecodeTypeRegisterSPECIAL() {
3444 int64_t i64hilo;
3445 uint64_t u64hilo;
3446 int64_t alu_out;
3447 bool do_interrupt = false;
3448
3449 switch (instr_.FunctionFieldRaw()) {
3450 case SELEQZ_S:
3451 DCHECK(kArchVariant == kMips64r6);
3452 set_register(rd_reg(), rt() == 0 ? rs() : 0);
3453 break;
3454 case SELNEZ_S:
3455 DCHECK(kArchVariant == kMips64r6);
3456 set_register(rd_reg(), rt() != 0 ? rs() : 0);
3457 break;
3458 case JR: {
3459 int64_t next_pc = rs();
3460 int64_t current_pc = get_pc();
3461 Instruction* branch_delay_instr =
3462 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3463 BranchDelayInstructionDecode(branch_delay_instr);
3464 set_pc(next_pc);
3465 pc_modified_ = true;
3466 break;
3467 }
3468 case JALR: {
3469 int64_t next_pc = rs();
3470 int64_t current_pc = get_pc();
3471 int32_t return_addr_reg = rd_reg();
3472 Instruction* branch_delay_instr =
3473 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3474 BranchDelayInstructionDecode(branch_delay_instr);
3475 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize);
3476 set_pc(next_pc);
3477 pc_modified_ = true;
3478 break;
3479 }
3480 case SLL:
3481 SetResult(rd_reg(), static_cast<int32_t>(rt()) << sa());
3482 break;
3483 case DSLL:
3484 SetResult(rd_reg(), rt() << sa());
3485 break;
3486 case DSLL32:
3487 SetResult(rd_reg(), rt() << sa() << 32);
3488 break;
3489 case SRL:
3490 if (rs_reg() == 0) {
3491 // Regular logical right shift of a word by a fixed number of
3492 // bits instruction. RS field is always equal to 0.
3493 // Sign-extend the 32-bit result.
3494 alu_out = static_cast<int32_t>(static_cast<uint32_t>(rt_u()) >> sa());
3495 } else if (rs_reg() == 1) {
3496 // Logical right-rotate of a word by a fixed number of bits. This
3497 // is special case of SRL instruction, added in MIPS32 Release 2.
3498 // RS field is equal to 00001.
3499 alu_out = static_cast<int32_t>(
3500 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3501 static_cast<const uint32_t>(sa())));
3502 } else {
3503 UNREACHABLE();
3504 }
3505 SetResult(rd_reg(), alu_out);
3506 break;
3507 case DSRL:
3508 if (rs_reg() == 0) {
3509 // Regular logical right shift of a word by a fixed number of
3510 // bits instruction. RS field is always equal to 0.
3511 // Sign-extend the 64-bit result.
3512 alu_out = static_cast<int64_t>(rt_u() >> sa());
3513 } else if (rs_reg() == 1) {
3514 // Logical right-rotate of a word by a fixed number of bits. This
3515 // is special case of SRL instruction, added in MIPS32 Release 2.
3516 // RS field is equal to 00001.
3517 alu_out = static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa()));
3518 } else {
3519 UNREACHABLE();
3520 }
3521 SetResult(rd_reg(), alu_out);
3522 break;
3523 case DSRL32:
3524 if (rs_reg() == 0) {
3525 // Regular logical right shift of a word by a fixed number of
3526 // bits instruction. RS field is always equal to 0.
3527 // Sign-extend the 64-bit result.
3528 alu_out = static_cast<int64_t>(rt_u() >> sa() >> 32);
3529 } else if (rs_reg() == 1) {
3530 // Logical right-rotate of a word by a fixed number of bits. This
3531 // is special case of SRL instruction, added in MIPS32 Release 2.
3532 // RS field is equal to 00001.
3533 alu_out =
3534 static_cast<int64_t>(base::bits::RotateRight64(rt_u(), sa() + 32));
3535 } else {
3536 UNREACHABLE();
3537 }
3538 SetResult(rd_reg(), alu_out);
3539 break;
3540 case SRA:
3541 SetResult(rd_reg(), (int32_t)rt() >> sa());
3542 break;
3543 case DSRA:
3544 SetResult(rd_reg(), rt() >> sa());
3545 break;
3546 case DSRA32:
3547 SetResult(rd_reg(), rt() >> sa() >> 32);
3548 break;
3549 case SLLV:
3550 SetResult(rd_reg(), (int32_t)rt() << rs());
3551 break;
3552 case DSLLV:
3553 SetResult(rd_reg(), rt() << rs());
3554 break;
3555 case SRLV:
3556 if (sa() == 0) {
3557 // Regular logical right-shift of a word by a variable number of
3558 // bits instruction. SA field is always equal to 0.
3559 alu_out = static_cast<int32_t>((uint32_t)rt_u() >> rs());
3560 } else {
3561 // Logical right-rotate of a word by a variable number of bits.
3562 // This is special case od SRLV instruction, added in MIPS32
3563 // Release 2. SA field is equal to 00001.
3564 alu_out = static_cast<int32_t>(
3565 base::bits::RotateRight32(static_cast<const uint32_t>(rt_u()),
3566 static_cast<const uint32_t>(rs_u())));
3567 }
3568 SetResult(rd_reg(), alu_out);
3569 break;
3570 case DSRLV:
3571 if (sa() == 0) {
3572 // Regular logical right-shift of a word by a variable number of
3573 // bits instruction. SA field is always equal to 0.
3574 alu_out = static_cast<int64_t>(rt_u() >> rs());
3575 } else {
3576 // Logical right-rotate of a word by a variable number of bits.
3577 // This is special case od SRLV instruction, added in MIPS32
3578 // Release 2. SA field is equal to 00001.
3579 alu_out =
3580 static_cast<int64_t>(base::bits::RotateRight64(rt_u(), rs_u()));
3581 }
3582 SetResult(rd_reg(), alu_out);
3583 break;
3584 case SRAV:
3585 SetResult(rd_reg(), (int32_t)rt() >> rs());
3586 break;
3587 case DSRAV:
3588 SetResult(rd_reg(), rt() >> rs());
3589 break;
3590 case LSA: {
3591 DCHECK(kArchVariant == kMips64r6);
3592 int8_t sa = lsa_sa() + 1;
3593 int32_t _rt = static_cast<int32_t>(rt());
3594 int32_t _rs = static_cast<int32_t>(rs());
3595 int32_t res = _rs << sa;
3596 res += _rt;
3597 SetResult(rd_reg(), static_cast<int64_t>(res));
3598 break;
3599 }
3600 case DLSA:
3601 DCHECK(kArchVariant == kMips64r6);
3602 SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt());
3603 break;
3604 case MFHI: // MFHI == CLZ on R6.
3605 if (kArchVariant != kMips64r6) {
3606 DCHECK(sa() == 0);
3607 alu_out = get_register(HI);
3608 } else {
3609 // MIPS spec: If no bits were set in GPR rs(), the result written to
3610 // GPR rd() is 32.
3611 DCHECK(sa() == 1);
3612 alu_out = base::bits::CountLeadingZeros32(static_cast<int32_t>(rs_u()));
3613 }
3614 SetResult(rd_reg(), alu_out);
3615 break;
3616 case MFLO: // MFLO == DCLZ on R6.
3617 if (kArchVariant != kMips64r6) {
3618 DCHECK(sa() == 0);
3619 alu_out = get_register(LO);
3620 } else {
3621 // MIPS spec: If no bits were set in GPR rs(), the result written to
3622 // GPR rd() is 64.
3623 DCHECK(sa() == 1);
3624 alu_out = base::bits::CountLeadingZeros64(static_cast<int64_t>(rs_u()));
3625 }
3626 SetResult(rd_reg(), alu_out);
3627 break;
3628 // Instructions using HI and LO registers.
3629 case MULT: { // MULT == D_MUL_MUH.
3630 int32_t rs_lo = static_cast<int32_t>(rs());
3631 int32_t rt_lo = static_cast<int32_t>(rt());
3632 i64hilo = static_cast<int64_t>(rs_lo) * static_cast<int64_t>(rt_lo);
3633 if (kArchVariant != kMips64r6) {
3634 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
3635 set_register(HI, static_cast<int32_t>(i64hilo >> 32));
3636 } else {
3637 switch (sa()) {
3638 case MUL_OP:
3639 set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff));
3640 break;
3641 case MUH_OP:
3642 set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
3643 break;
3644 default:
3645 UNIMPLEMENTED_MIPS();
3646 break;
3647 }
3648 }
3649 break;
3650 }
3651 case MULTU:
3652 u64hilo = static_cast<uint64_t>(rs_u() & 0xffffffff) *
3653 static_cast<uint64_t>(rt_u() & 0xffffffff);
3654 if (kArchVariant != kMips64r6) {
3655 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
3656 set_register(HI, static_cast<int32_t>(u64hilo >> 32));
3657 } else {
3658 switch (sa()) {
3659 case MUL_OP:
3660 set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff));
3661 break;
3662 case MUH_OP:
3663 set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
3664 break;
3665 default:
3666 UNIMPLEMENTED_MIPS();
3667 break;
3668 }
3669 }
3670 break;
3671 case DMULT: // DMULT == D_MUL_MUH.
3672 if (kArchVariant != kMips64r6) {
3673 set_register(LO, rs() * rt());
3674 set_register(HI, MultiplyHighSigned(rs(), rt()));
3675 } else {
3676 switch (sa()) {
3677 case MUL_OP:
3678 set_register(rd_reg(), rs() * rt());
3679 break;
3680 case MUH_OP:
3681 set_register(rd_reg(), MultiplyHighSigned(rs(), rt()));
3682 break;
3683 default:
3684 UNIMPLEMENTED_MIPS();
3685 break;
3686 }
3687 }
3688 break;
3689 case DMULTU:
3690 UNIMPLEMENTED_MIPS();
3691 break;
3692 case DIV:
3693 case DDIV: {
3694 const int64_t int_min_value =
3695 instr_.FunctionFieldRaw() == DIV ? INT_MIN : LONG_MIN;
3696 switch (kArchVariant) {
3697 case kMips64r2:
3698 // Divide by zero and overflow was not checked in the
3699 // configuration step - div and divu do not raise exceptions. On
3700 // division by 0 the result will be UNPREDICTABLE. On overflow
3701 // (INT_MIN/-1), return INT_MIN which is what the hardware does.
3702 if (rs() == int_min_value && rt() == -1) {
3703 set_register(LO, int_min_value);
3704 set_register(HI, 0);
3705 } else if (rt() != 0) {
3706 set_register(LO, rs() / rt());
3707 set_register(HI, rs() % rt());
3708 }
3709 break;
3710 case kMips64r6:
3711 switch (sa()) {
3712 case DIV_OP:
3713 if (rs() == int_min_value && rt() == -1) {
3714 set_register(rd_reg(), int_min_value);
3715 } else if (rt() != 0) {
3716 set_register(rd_reg(), rs() / rt());
3717 }
3718 break;
3719 case MOD_OP:
3720 if (rs() == int_min_value && rt() == -1) {
3721 set_register(rd_reg(), 0);
3722 } else if (rt() != 0) {
3723 set_register(rd_reg(), rs() % rt());
3724 }
3725 break;
3726 default:
3727 UNIMPLEMENTED_MIPS();
3728 break;
3729 }
3730 break;
3731 default:
3732 break;
3733 }
3734 break;
3735 }
3736 case DIVU:
3737 switch (kArchVariant) {
3738 case kMips64r6: {
3739 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
3740 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
3741 switch (sa()) {
3742 case DIV_OP:
3743 if (rt_u_32 != 0) {
3744 set_register(rd_reg(), rs_u_32 / rt_u_32);
3745 }
3746 break;
3747 case MOD_OP:
3748 if (rt_u() != 0) {
3749 set_register(rd_reg(), rs_u_32 % rt_u_32);
3750 }
3751 break;
3752 default:
3753 UNIMPLEMENTED_MIPS();
3754 break;
3755 }
3756 } break;
3757 default: {
3758 if (rt_u() != 0) {
3759 uint32_t rt_u_32 = static_cast<uint32_t>(rt_u());
3760 uint32_t rs_u_32 = static_cast<uint32_t>(rs_u());
3761 set_register(LO, rs_u_32 / rt_u_32);
3762 set_register(HI, rs_u_32 % rt_u_32);
3763 }
3764 }
3765 }
3766 break;
3767 case DDIVU:
3768 switch (kArchVariant) {
3769 case kMips64r6: {
3770 switch (instr_.SaValue()) {
3771 case DIV_OP:
3772 if (rt_u() != 0) {
3773 set_register(rd_reg(), rs_u() / rt_u());
3774 }
3775 break;
3776 case MOD_OP:
3777 if (rt_u() != 0) {
3778 set_register(rd_reg(), rs_u() % rt_u());
3779 }
3780 break;
3781 default:
3782 UNIMPLEMENTED_MIPS();
3783 break;
3784 }
3785 } break;
3786 default: {
3787 if (rt_u() != 0) {
3788 set_register(LO, rs_u() / rt_u());
3789 set_register(HI, rs_u() % rt_u());
3790 }
3791 }
3792 }
3793 break;
3794 case ADD:
3795 case DADD:
3796 if (HaveSameSign(rs(), rt())) {
3797 if (rs() > 0) {
3798 if (rs() > (Registers::kMaxValue - rt())) {
3799 SignalException(kIntegerOverflow);
3800 }
3801 } else if (rs() < 0) {
3802 if (rs() < (Registers::kMinValue - rt())) {
3803 SignalException(kIntegerUnderflow);
3804 }
3805 }
3806 }
3807 SetResult(rd_reg(), rs() + rt());
3808 break;
3809 case ADDU: {
3810 int32_t alu32_out = static_cast<int32_t>(rs() + rt());
3811 // Sign-extend result of 32bit operation into 64bit register.
3812 SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
3813 break;
3814 }
3815 case DADDU:
3816 SetResult(rd_reg(), rs() + rt());
3817 break;
3818 case SUB:
3819 case DSUB:
3820 if (!HaveSameSign(rs(), rt())) {
3821 if (rs() > 0) {
3822 if (rs() > (Registers::kMaxValue + rt())) {
3823 SignalException(kIntegerOverflow);
3824 }
3825 } else if (rs() < 0) {
3826 if (rs() < (Registers::kMinValue + rt())) {
3827 SignalException(kIntegerUnderflow);
3828 }
3829 }
3830 }
3831 SetResult(rd_reg(), rs() - rt());
3832 break;
3833 case SUBU: {
3834 int32_t alu32_out = static_cast<int32_t>(rs() - rt());
3835 // Sign-extend result of 32bit operation into 64bit register.
3836 SetResult(rd_reg(), static_cast<int64_t>(alu32_out));
3837 break;
3838 }
3839 case DSUBU:
3840 SetResult(rd_reg(), rs() - rt());
3841 break;
3842 case AND:
3843 SetResult(rd_reg(), rs() & rt());
3844 break;
3845 case OR:
3846 SetResult(rd_reg(), rs() | rt());
3847 break;
3848 case XOR:
3849 SetResult(rd_reg(), rs() ^ rt());
3850 break;
3851 case NOR:
3852 SetResult(rd_reg(), ~(rs() | rt()));
3853 break;
3854 case SLT:
3855 SetResult(rd_reg(), rs() < rt() ? 1 : 0);
3856 break;
3857 case SLTU:
3858 SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
3859 break;
3860 // Break and trap instructions.
3861 case BREAK:
3862 do_interrupt = true;
3863 break;
3864 case TGE:
3865 do_interrupt = rs() >= rt();
3866 break;
3867 case TGEU:
3868 do_interrupt = rs_u() >= rt_u();
3869 break;
3870 case TLT:
3871 do_interrupt = rs() < rt();
3872 break;
3873 case TLTU:
3874 do_interrupt = rs_u() < rt_u();
3875 break;
3876 case TEQ:
3877 do_interrupt = rs() == rt();
3878 break;
3879 case TNE:
3880 do_interrupt = rs() != rt();
3881 break;
3882 case SYNC:
3883 // TODO(palfia): Ignore sync instruction for now.
3884 break;
3885 // Conditional moves.
3886 case MOVN:
3887 if (rt()) {
3888 SetResult(rd_reg(), rs());
3889 }
3890 break;
3891 case MOVCI: {
3892 uint32_t cc = instr_.FBccValue();
3893 uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
3894 if (instr_.Bit(16)) { // Read Tf bit.
3895 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3896 } else {
3897 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3898 }
3899 break;
3900 }
3901 case MOVZ:
3902 if (!rt()) {
3903 SetResult(rd_reg(), rs());
3904 }
3905 break;
3906 default:
3907 UNREACHABLE();
3908 }
3909 if (do_interrupt) {
3910 SoftwareInterrupt();
3911 }
3912 }
3913
3914
DecodeTypeRegisterSPECIAL2()3915 void Simulator::DecodeTypeRegisterSPECIAL2() {
3916 int64_t alu_out;
3917 switch (instr_.FunctionFieldRaw()) {
3918 case MUL:
3919 alu_out = static_cast<int32_t>(rs_u()) * static_cast<int32_t>(rt_u());
3920 SetResult(rd_reg(), alu_out);
3921 // HI and LO are UNPREDICTABLE after the operation.
3922 set_register(LO, Unpredictable);
3923 set_register(HI, Unpredictable);
3924 break;
3925 case CLZ:
3926 // MIPS32 spec: If no bits were set in GPR rs(), the result written to
3927 // GPR rd is 32.
3928 alu_out = base::bits::CountLeadingZeros32(static_cast<uint32_t>(rs_u()));
3929 SetResult(rd_reg(), alu_out);
3930 break;
3931 case DCLZ:
3932 // MIPS64 spec: If no bits were set in GPR rs(), the result written to
3933 // GPR rd is 64.
3934 alu_out = base::bits::CountLeadingZeros64(static_cast<uint64_t>(rs_u()));
3935 SetResult(rd_reg(), alu_out);
3936 break;
3937 default:
3938 alu_out = 0x12345678;
3939 UNREACHABLE();
3940 }
3941 }
3942
3943
DecodeTypeRegisterSPECIAL3()3944 void Simulator::DecodeTypeRegisterSPECIAL3() {
3945 int64_t alu_out;
3946 switch (instr_.FunctionFieldRaw()) {
3947 case INS: { // Mips64r2 instruction.
3948 // Interpret rd field as 5-bit msb of insert.
3949 uint16_t msb = rd_reg();
3950 // Interpret sa field as 5-bit lsb of insert.
3951 uint16_t lsb = sa();
3952 uint16_t size = msb - lsb + 1;
3953 uint64_t mask = (1ULL << size) - 1;
3954 alu_out = static_cast<int32_t>((rt_u() & ~(mask << lsb)) |
3955 ((rs_u() & mask) << lsb));
3956 SetResult(rt_reg(), alu_out);
3957 break;
3958 }
3959 case DINS: { // Mips64r2 instruction.
3960 // Interpret rd field as 5-bit msb of insert.
3961 uint16_t msb = rd_reg();
3962 // Interpret sa field as 5-bit lsb of insert.
3963 uint16_t lsb = sa();
3964 uint16_t size = msb - lsb + 1;
3965 uint64_t mask = (1ULL << size) - 1;
3966 alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
3967 SetResult(rt_reg(), alu_out);
3968 break;
3969 }
3970 case EXT: { // Mips64r2 instruction.
3971 // Interpret rd field as 5-bit msb of extract.
3972 uint16_t msb = rd_reg();
3973 // Interpret sa field as 5-bit lsb of extract.
3974 uint16_t lsb = sa();
3975 uint16_t size = msb + 1;
3976 uint64_t mask = (1ULL << size) - 1;
3977 alu_out = static_cast<int32_t>((rs_u() & (mask << lsb)) >> lsb);
3978 SetResult(rt_reg(), alu_out);
3979 break;
3980 }
3981 case DEXT: { // Mips64r2 instruction.
3982 // Interpret rd field as 5-bit msb of extract.
3983 uint16_t msb = rd_reg();
3984 // Interpret sa field as 5-bit lsb of extract.
3985 uint16_t lsb = sa();
3986 uint16_t size = msb + 1;
3987 uint64_t mask = (1ULL << size) - 1;
3988 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
3989 SetResult(rt_reg(), alu_out);
3990 break;
3991 }
3992 case DEXTM: {
3993 // Interpret rd field as 5-bit msb of extract.
3994 uint16_t msb = rd_reg();
3995 // Interpret sa field as 5-bit lsb of extract.
3996 uint16_t lsb = sa();
3997 uint16_t size = msb + 33;
3998 uint64_t mask = (1ULL << size) - 1;
3999 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
4000 SetResult(rt_reg(), alu_out);
4001 break;
4002 }
4003 case DEXTU: {
4004 // Interpret rd field as 5-bit msb of extract.
4005 uint16_t msb = rd_reg();
4006 // Interpret sa field as 5-bit lsb of extract.
4007 uint16_t lsb = sa() + 32;
4008 uint16_t size = msb + 1;
4009 uint64_t mask = (1ULL << size) - 1;
4010 alu_out = static_cast<int64_t>((rs_u() & (mask << lsb)) >> lsb);
4011 SetResult(rt_reg(), alu_out);
4012 break;
4013 }
4014 case BSHFL: {
4015 int32_t sa = instr_.SaFieldRaw() >> kSaShift;
4016 switch (sa) {
4017 case BITSWAP: {
4018 uint32_t input = static_cast<uint32_t>(rt());
4019 uint32_t output = 0;
4020 uint8_t i_byte, o_byte;
4021
4022 // Reverse the bit in byte for each individual byte
4023 for (int i = 0; i < 4; i++) {
4024 output = output >> 8;
4025 i_byte = input & 0xff;
4026
4027 // Fast way to reverse bits in byte
4028 // Devised by Sean Anderson, July 13, 2001
4029 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
4030 (i_byte * 0x8020LU & 0x88440LU)) *
4031 0x10101LU >>
4032 16);
4033
4034 output = output | (static_cast<uint32_t>(o_byte << 24));
4035 input = input >> 8;
4036 }
4037
4038 alu_out = static_cast<int64_t>(static_cast<int32_t>(output));
4039 break;
4040 }
4041 case SEB: {
4042 uint8_t input = static_cast<uint8_t>(rt());
4043 uint32_t output = input;
4044 uint32_t mask = 0x00000080;
4045
4046 // Extending sign
4047 if (mask & input) {
4048 output |= 0xFFFFFF00;
4049 }
4050
4051 alu_out = static_cast<int32_t>(output);
4052 break;
4053 }
4054 case SEH: {
4055 uint16_t input = static_cast<uint16_t>(rt());
4056 uint32_t output = input;
4057 uint32_t mask = 0x00008000;
4058
4059 // Extending sign
4060 if (mask & input) {
4061 output |= 0xFFFF0000;
4062 }
4063
4064 alu_out = static_cast<int32_t>(output);
4065 break;
4066 }
4067 case WSBH: {
4068 uint32_t input = static_cast<uint32_t>(rt());
4069 uint64_t output = 0;
4070
4071 uint32_t mask = 0xFF000000;
4072 for (int i = 0; i < 4; i++) {
4073 uint32_t tmp = mask & input;
4074 if (i % 2 == 0) {
4075 tmp = tmp >> 8;
4076 } else {
4077 tmp = tmp << 8;
4078 }
4079 output = output | tmp;
4080 mask = mask >> 8;
4081 }
4082 mask = 0x80000000;
4083
4084 // Extending sign
4085 if (mask & output) {
4086 output |= 0xFFFFFFFF00000000;
4087 }
4088
4089 alu_out = static_cast<int64_t>(output);
4090 break;
4091 }
4092 default: {
4093 const uint8_t bp2 = instr_.Bp2Value();
4094 sa >>= kBp2Bits;
4095 switch (sa) {
4096 case ALIGN: {
4097 if (bp2 == 0) {
4098 alu_out = static_cast<int32_t>(rt());
4099 } else {
4100 uint64_t rt_hi = rt() << (8 * bp2);
4101 uint64_t rs_lo = rs() >> (8 * (4 - bp2));
4102 alu_out = static_cast<int32_t>(rt_hi | rs_lo);
4103 }
4104 break;
4105 }
4106 default:
4107 alu_out = 0x12345678;
4108 UNREACHABLE();
4109 break;
4110 }
4111 break;
4112 }
4113 }
4114 SetResult(rd_reg(), alu_out);
4115 break;
4116 }
4117 case DBSHFL: {
4118 int32_t sa = instr_.SaFieldRaw() >> kSaShift;
4119 switch (sa) {
4120 case DBITSWAP: {
4121 switch (sa) {
4122 case DBITSWAP_SA: { // Mips64r6
4123 uint64_t input = static_cast<uint64_t>(rt());
4124 uint64_t output = 0;
4125 uint8_t i_byte, o_byte;
4126
4127 // Reverse the bit in byte for each individual byte
4128 for (int i = 0; i < 8; i++) {
4129 output = output >> 8;
4130 i_byte = input & 0xff;
4131
4132 // Fast way to reverse bits in byte
4133 // Devised by Sean Anderson, July 13, 2001
4134 o_byte =
4135 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
4136 (i_byte * 0x8020LU & 0x88440LU)) *
4137 0x10101LU >>
4138 16);
4139
4140 output = output | ((static_cast<uint64_t>(o_byte) << 56));
4141 input = input >> 8;
4142 }
4143
4144 alu_out = static_cast<int64_t>(output);
4145 break;
4146 }
4147 }
4148 break;
4149 }
4150 case DSBH: {
4151 uint64_t input = static_cast<uint64_t>(rt());
4152 uint64_t output = 0;
4153
4154 uint64_t mask = 0xFF00000000000000;
4155 for (int i = 0; i < 8; i++) {
4156 uint64_t tmp = mask & input;
4157 if (i % 2 == 0)
4158 tmp = tmp >> 8;
4159 else
4160 tmp = tmp << 8;
4161
4162 output = output | tmp;
4163 mask = mask >> 8;
4164 }
4165
4166 alu_out = static_cast<int64_t>(output);
4167 break;
4168 }
4169 case DSHD: {
4170 uint64_t input = static_cast<uint64_t>(rt());
4171 uint64_t output = 0;
4172
4173 uint64_t mask = 0xFFFF000000000000;
4174 for (int i = 0; i < 4; i++) {
4175 uint64_t tmp = mask & input;
4176 if (i == 0)
4177 tmp = tmp >> 48;
4178 else if (i == 1)
4179 tmp = tmp >> 16;
4180 else if (i == 2)
4181 tmp = tmp << 16;
4182 else
4183 tmp = tmp << 48;
4184 output = output | tmp;
4185 mask = mask >> 16;
4186 }
4187
4188 alu_out = static_cast<int64_t>(output);
4189 break;
4190 }
4191 default: {
4192 const uint8_t bp3 = instr_.Bp3Value();
4193 sa >>= kBp3Bits;
4194 switch (sa) {
4195 case DALIGN: {
4196 if (bp3 == 0) {
4197 alu_out = static_cast<int64_t>(rt());
4198 } else {
4199 uint64_t rt_hi = rt() << (8 * bp3);
4200 uint64_t rs_lo = rs() >> (8 * (8 - bp3));
4201 alu_out = static_cast<int64_t>(rt_hi | rs_lo);
4202 }
4203 break;
4204 }
4205 default:
4206 alu_out = 0x12345678;
4207 UNREACHABLE();
4208 break;
4209 }
4210 break;
4211 }
4212 }
4213 SetResult(rd_reg(), alu_out);
4214 break;
4215 }
4216 default:
4217 UNREACHABLE();
4218 }
4219 }
4220
DecodeTypeRegister()4221 void Simulator::DecodeTypeRegister() {
4222 // ---------- Execution.
4223 switch (instr_.OpcodeFieldRaw()) {
4224 case COP1:
4225 DecodeTypeRegisterCOP1();
4226 break;
4227 case COP1X:
4228 DecodeTypeRegisterCOP1X();
4229 break;
4230 case SPECIAL:
4231 DecodeTypeRegisterSPECIAL();
4232 break;
4233 case SPECIAL2:
4234 DecodeTypeRegisterSPECIAL2();
4235 break;
4236 case SPECIAL3:
4237 DecodeTypeRegisterSPECIAL3();
4238 break;
4239 // Unimplemented opcodes raised an error in the configuration step before,
4240 // so we can use the default here to set the destination register in common
4241 // cases.
4242 default:
4243 UNREACHABLE();
4244 }
4245 }
4246
4247
4248 // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
DecodeTypeImmediate()4249 void Simulator::DecodeTypeImmediate() {
4250 // Instruction fields.
4251 Opcode op = instr_.OpcodeFieldRaw();
4252 int32_t rs_reg = instr_.RsValue();
4253 int64_t rs = get_register(instr_.RsValue());
4254 uint64_t rs_u = static_cast<uint64_t>(rs);
4255 int32_t rt_reg = instr_.RtValue(); // Destination register.
4256 int64_t rt = get_register(rt_reg);
4257 int16_t imm16 = instr_.Imm16Value();
4258 int32_t imm18 = instr_.Imm18Value();
4259
4260 int32_t ft_reg = instr_.FtValue(); // Destination register.
4261
4262 // Zero extended immediate.
4263 uint64_t oe_imm16 = 0xffff & imm16;
4264 // Sign extended immediate.
4265 int64_t se_imm16 = imm16;
4266 int64_t se_imm18 = imm18 | ((imm18 & 0x20000) ? 0xfffffffffffc0000 : 0);
4267
4268 // Next pc.
4269 int64_t next_pc = bad_ra;
4270
4271 // Used for conditional branch instructions.
4272 bool execute_branch_delay_instruction = false;
4273
4274 // Used for arithmetic instructions.
4275 int64_t alu_out = 0;
4276
4277 // Used for memory instructions.
4278 int64_t addr = 0x0;
4279 // Alignment for 32-bit integers used in LWL, LWR, etc.
4280 const int kInt32AlignmentMask = sizeof(uint32_t) - 1;
4281 // Alignment for 64-bit integers used in LDL, LDR, etc.
4282 const int kInt64AlignmentMask = sizeof(uint64_t) - 1;
4283
4284 // Branch instructions common part.
4285 auto BranchAndLinkHelper =
4286 [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
4287 execute_branch_delay_instruction = true;
4288 int64_t current_pc = get_pc();
4289 if (do_branch) {
4290 int16_t imm16 = instr_.Imm16Value();
4291 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4292 set_register(31, current_pc + 2 * Instruction::kInstrSize);
4293 } else {
4294 next_pc = current_pc + 2 * Instruction::kInstrSize;
4295 }
4296 };
4297
4298 auto BranchHelper = [this, &next_pc,
4299 &execute_branch_delay_instruction](bool do_branch) {
4300 execute_branch_delay_instruction = true;
4301 int64_t current_pc = get_pc();
4302 if (do_branch) {
4303 int16_t imm16 = instr_.Imm16Value();
4304 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4305 } else {
4306 next_pc = current_pc + 2 * Instruction::kInstrSize;
4307 }
4308 };
4309
4310 auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
4311 int64_t current_pc = get_pc();
4312 CheckForbiddenSlot(current_pc);
4313 if (do_branch) {
4314 int32_t imm = instr_.ImmValue(bits);
4315 imm <<= 32 - bits;
4316 imm >>= 32 - bits;
4317 next_pc = current_pc + (imm << 2) + Instruction::kInstrSize;
4318 set_register(31, current_pc + Instruction::kInstrSize);
4319 }
4320 };
4321
4322 auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
4323 int64_t current_pc = get_pc();
4324 CheckForbiddenSlot(current_pc);
4325 if (do_branch) {
4326 int32_t imm = instr_.ImmValue(bits);
4327 imm <<= 32 - bits;
4328 imm >>= 32 - bits;
4329 next_pc = get_pc() + (imm << 2) + Instruction::kInstrSize;
4330 }
4331 };
4332
4333 switch (op) {
4334 // ------------- COP1. Coprocessor instructions.
4335 case COP1:
4336 switch (instr_.RsFieldRaw()) {
4337 case BC1: { // Branch on coprocessor condition.
4338 uint32_t cc = instr_.FBccValue();
4339 uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
4340 uint32_t cc_value = test_fcsr_bit(fcsr_cc);
4341 bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
4342 BranchHelper(do_branch);
4343 break;
4344 }
4345 case BC1EQZ:
4346 BranchHelper(!(get_fpu_register(ft_reg) & 0x1));
4347 break;
4348 case BC1NEZ:
4349 BranchHelper(get_fpu_register(ft_reg) & 0x1);
4350 break;
4351 default:
4352 UNREACHABLE();
4353 }
4354 break;
4355 // ------------- REGIMM class.
4356 case REGIMM:
4357 switch (instr_.RtFieldRaw()) {
4358 case BLTZ:
4359 BranchHelper(rs < 0);
4360 break;
4361 case BGEZ:
4362 BranchHelper(rs >= 0);
4363 break;
4364 case BLTZAL:
4365 BranchAndLinkHelper(rs < 0);
4366 break;
4367 case BGEZAL:
4368 BranchAndLinkHelper(rs >= 0);
4369 break;
4370 case DAHI:
4371 SetResult(rs_reg, rs + (se_imm16 << 32));
4372 break;
4373 case DATI:
4374 SetResult(rs_reg, rs + (se_imm16 << 48));
4375 break;
4376 default:
4377 UNREACHABLE();
4378 }
4379 break; // case REGIMM.
4380 // ------------- Branch instructions.
4381 // When comparing to zero, the encoding of rt field is always 0, so we don't
4382 // need to replace rt with zero.
4383 case BEQ:
4384 BranchHelper(rs == rt);
4385 break;
4386 case BNE:
4387 BranchHelper(rs != rt);
4388 break;
4389 case POP06: // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6)
4390 if (kArchVariant == kMips64r6) {
4391 if (rt_reg != 0) {
4392 if (rs_reg == 0) { // BLEZALC
4393 BranchAndLinkCompactHelper(rt <= 0, 16);
4394 } else {
4395 if (rs_reg == rt_reg) { // BGEZALC
4396 BranchAndLinkCompactHelper(rt >= 0, 16);
4397 } else { // BGEUC
4398 BranchCompactHelper(
4399 static_cast<uint64_t>(rs) >= static_cast<uint64_t>(rt), 16);
4400 }
4401 }
4402 } else { // BLEZ
4403 BranchHelper(rs <= 0);
4404 }
4405 } else { // BLEZ
4406 BranchHelper(rs <= 0);
4407 }
4408 break;
4409 case POP07: // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6)
4410 if (kArchVariant == kMips64r6) {
4411 if (rt_reg != 0) {
4412 if (rs_reg == 0) { // BGTZALC
4413 BranchAndLinkCompactHelper(rt > 0, 16);
4414 } else {
4415 if (rt_reg == rs_reg) { // BLTZALC
4416 BranchAndLinkCompactHelper(rt < 0, 16);
4417 } else { // BLTUC
4418 BranchCompactHelper(
4419 static_cast<uint64_t>(rs) < static_cast<uint64_t>(rt), 16);
4420 }
4421 }
4422 } else { // BGTZ
4423 BranchHelper(rs > 0);
4424 }
4425 } else { // BGTZ
4426 BranchHelper(rs > 0);
4427 }
4428 break;
4429 case POP26: // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6)
4430 if (kArchVariant == kMips64r6) {
4431 if (rt_reg != 0) {
4432 if (rs_reg == 0) { // BLEZC
4433 BranchCompactHelper(rt <= 0, 16);
4434 } else {
4435 if (rs_reg == rt_reg) { // BGEZC
4436 BranchCompactHelper(rt >= 0, 16);
4437 } else { // BGEC/BLEC
4438 BranchCompactHelper(rs >= rt, 16);
4439 }
4440 }
4441 }
4442 } else { // BLEZL
4443 BranchAndLinkHelper(rs <= 0);
4444 }
4445 break;
4446 case POP27: // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6)
4447 if (kArchVariant == kMips64r6) {
4448 if (rt_reg != 0) {
4449 if (rs_reg == 0) { // BGTZC
4450 BranchCompactHelper(rt > 0, 16);
4451 } else {
4452 if (rs_reg == rt_reg) { // BLTZC
4453 BranchCompactHelper(rt < 0, 16);
4454 } else { // BLTC/BGTC
4455 BranchCompactHelper(rs < rt, 16);
4456 }
4457 }
4458 }
4459 } else { // BGTZL
4460 BranchAndLinkHelper(rs > 0);
4461 }
4462 break;
4463 case POP66: // BEQZC, JIC
4464 if (rs_reg != 0) { // BEQZC
4465 BranchCompactHelper(rs == 0, 21);
4466 } else { // JIC
4467 next_pc = rt + imm16;
4468 }
4469 break;
4470 case POP76: // BNEZC, JIALC
4471 if (rs_reg != 0) { // BNEZC
4472 BranchCompactHelper(rs != 0, 21);
4473 } else { // JIALC
4474 int64_t current_pc = get_pc();
4475 set_register(31, current_pc + Instruction::kInstrSize);
4476 next_pc = rt + imm16;
4477 }
4478 break;
4479 case BC:
4480 BranchCompactHelper(true, 26);
4481 break;
4482 case BALC:
4483 BranchAndLinkCompactHelper(true, 26);
4484 break;
4485 case POP10: // BOVC, BEQZALC, BEQC / ADDI (pre-r6)
4486 if (kArchVariant == kMips64r6) {
4487 if (rs_reg >= rt_reg) { // BOVC
4488 bool condition = !is_int32(rs) || !is_int32(rt) || !is_int32(rs + rt);
4489 BranchCompactHelper(condition, 16);
4490 } else {
4491 if (rs_reg == 0) { // BEQZALC
4492 BranchAndLinkCompactHelper(rt == 0, 16);
4493 } else { // BEQC
4494 BranchCompactHelper(rt == rs, 16);
4495 }
4496 }
4497 } else { // ADDI
4498 if (HaveSameSign(rs, se_imm16)) {
4499 if (rs > 0) {
4500 if (rs <= Registers::kMaxValue - se_imm16) {
4501 SignalException(kIntegerOverflow);
4502 }
4503 } else if (rs < 0) {
4504 if (rs >= Registers::kMinValue - se_imm16) {
4505 SignalException(kIntegerUnderflow);
4506 }
4507 }
4508 }
4509 SetResult(rt_reg, rs + se_imm16);
4510 }
4511 break;
4512 case POP30: // BNVC, BNEZALC, BNEC / DADDI (pre-r6)
4513 if (kArchVariant == kMips64r6) {
4514 if (rs_reg >= rt_reg) { // BNVC
4515 bool condition = is_int32(rs) && is_int32(rt) && is_int32(rs + rt);
4516 BranchCompactHelper(condition, 16);
4517 } else {
4518 if (rs_reg == 0) { // BNEZALC
4519 BranchAndLinkCompactHelper(rt != 0, 16);
4520 } else { // BNEC
4521 BranchCompactHelper(rt != rs, 16);
4522 }
4523 }
4524 }
4525 break;
4526 // ------------- Arithmetic instructions.
4527 case ADDIU: {
4528 DCHECK(is_int32(rs));
4529 int32_t alu32_out = static_cast<int32_t>(rs + se_imm16);
4530 // Sign-extend result of 32bit operation into 64bit register.
4531 SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4532 break;
4533 }
4534 case DADDIU:
4535 SetResult(rt_reg, rs + se_imm16);
4536 break;
4537 case SLTI:
4538 SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
4539 break;
4540 case SLTIU:
4541 SetResult(rt_reg, rs_u < static_cast<uint64_t>(se_imm16) ? 1 : 0);
4542 break;
4543 case ANDI:
4544 SetResult(rt_reg, rs & oe_imm16);
4545 break;
4546 case ORI:
4547 SetResult(rt_reg, rs | oe_imm16);
4548 break;
4549 case XORI:
4550 SetResult(rt_reg, rs ^ oe_imm16);
4551 break;
4552 case LUI:
4553 if (rs_reg != 0) {
4554 // AUI instruction.
4555 DCHECK(kArchVariant == kMips64r6);
4556 int32_t alu32_out = static_cast<int32_t>(rs + (se_imm16 << 16));
4557 SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4558 } else {
4559 // LUI instruction.
4560 int32_t alu32_out = static_cast<int32_t>(oe_imm16 << 16);
4561 // Sign-extend result of 32bit operation into 64bit register.
4562 SetResult(rt_reg, static_cast<int64_t>(alu32_out));
4563 }
4564 break;
4565 case DAUI:
4566 DCHECK(kArchVariant == kMips64r6);
4567 DCHECK(rs_reg != 0);
4568 SetResult(rt_reg, rs + (se_imm16 << 16));
4569 break;
4570 // ------------- Memory instructions.
4571 case LB:
4572 set_register(rt_reg, ReadB(rs + se_imm16));
4573 break;
4574 case LH:
4575 set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
4576 break;
4577 case LWL: {
4578 // al_offset is offset of the effective address within an aligned word.
4579 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4580 uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4581 uint32_t mask = (1 << byte_shift * 8) - 1;
4582 addr = rs + se_imm16 - al_offset;
4583 int32_t val = ReadW(addr, instr_.instr());
4584 val <<= byte_shift * 8;
4585 val |= rt & mask;
4586 set_register(rt_reg, static_cast<int64_t>(val));
4587 break;
4588 }
4589 case LW:
4590 set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
4591 break;
4592 case LWU:
4593 set_register(rt_reg, ReadWU(rs + se_imm16, instr_.instr()));
4594 break;
4595 case LD:
4596 set_register(rt_reg, Read2W(rs + se_imm16, instr_.instr()));
4597 break;
4598 case LBU:
4599 set_register(rt_reg, ReadBU(rs + se_imm16));
4600 break;
4601 case LHU:
4602 set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
4603 break;
4604 case LWR: {
4605 // al_offset is offset of the effective address within an aligned word.
4606 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4607 uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4608 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
4609 addr = rs + se_imm16 - al_offset;
4610 alu_out = ReadW(addr, instr_.instr());
4611 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
4612 alu_out |= rt & mask;
4613 set_register(rt_reg, alu_out);
4614 break;
4615 }
4616 case LDL: {
4617 // al_offset is offset of the effective address within an aligned word.
4618 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4619 uint8_t byte_shift = kInt64AlignmentMask - al_offset;
4620 uint64_t mask = (1UL << byte_shift * 8) - 1;
4621 addr = rs + se_imm16 - al_offset;
4622 alu_out = Read2W(addr, instr_.instr());
4623 alu_out <<= byte_shift * 8;
4624 alu_out |= rt & mask;
4625 set_register(rt_reg, alu_out);
4626 break;
4627 }
4628 case LDR: {
4629 // al_offset is offset of the effective address within an aligned word.
4630 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4631 uint8_t byte_shift = kInt64AlignmentMask - al_offset;
4632 uint64_t mask = al_offset ? (~0UL << (byte_shift + 1) * 8) : 0UL;
4633 addr = rs + se_imm16 - al_offset;
4634 alu_out = Read2W(addr, instr_.instr());
4635 alu_out = alu_out >> al_offset * 8;
4636 alu_out |= rt & mask;
4637 set_register(rt_reg, alu_out);
4638 break;
4639 }
4640 case SB:
4641 WriteB(rs + se_imm16, static_cast<int8_t>(rt));
4642 break;
4643 case SH:
4644 WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
4645 break;
4646 case SWL: {
4647 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4648 uint8_t byte_shift = kInt32AlignmentMask - al_offset;
4649 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
4650 addr = rs + se_imm16 - al_offset;
4651 uint64_t mem_value = ReadW(addr, instr_.instr()) & mask;
4652 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
4653 WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
4654 break;
4655 }
4656 case SW:
4657 WriteW(rs + se_imm16, static_cast<int32_t>(rt), instr_.instr());
4658 break;
4659 case SD:
4660 Write2W(rs + se_imm16, rt, instr_.instr());
4661 break;
4662 case SWR: {
4663 uint8_t al_offset = (rs + se_imm16) & kInt32AlignmentMask;
4664 uint32_t mask = (1 << al_offset * 8) - 1;
4665 addr = rs + se_imm16 - al_offset;
4666 uint64_t mem_value = ReadW(addr, instr_.instr());
4667 mem_value = (rt << al_offset * 8) | (mem_value & mask);
4668 WriteW(addr, static_cast<int32_t>(mem_value), instr_.instr());
4669 break;
4670 }
4671 case SDL: {
4672 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4673 uint8_t byte_shift = kInt64AlignmentMask - al_offset;
4674 uint64_t mask = byte_shift ? (~0UL << (al_offset + 1) * 8) : 0;
4675 addr = rs + se_imm16 - al_offset;
4676 uint64_t mem_value = Read2W(addr, instr_.instr()) & mask;
4677 mem_value |= rt >> byte_shift * 8;
4678 Write2W(addr, mem_value, instr_.instr());
4679 break;
4680 }
4681 case SDR: {
4682 uint8_t al_offset = (rs + se_imm16) & kInt64AlignmentMask;
4683 uint64_t mask = (1UL << al_offset * 8) - 1;
4684 addr = rs + se_imm16 - al_offset;
4685 uint64_t mem_value = Read2W(addr, instr_.instr());
4686 mem_value = (rt << al_offset * 8) | (mem_value & mask);
4687 Write2W(addr, mem_value, instr_.instr());
4688 break;
4689 }
4690 case LWC1:
4691 set_fpu_register(ft_reg, kFPUInvalidResult); // Trash upper 32 bits.
4692 set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr_.instr()));
4693 break;
4694 case LDC1:
4695 set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
4696 break;
4697 case SWC1: {
4698 int32_t alu_out_32 = static_cast<int32_t>(get_fpu_register(ft_reg));
4699 WriteW(rs + se_imm16, alu_out_32, instr_.instr());
4700 break;
4701 }
4702 case SDC1:
4703 WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
4704 break;
4705 // ------------- PC-Relative instructions.
4706 case PCREL: {
4707 // rt field: checking 5-bits.
4708 int32_t imm21 = instr_.Imm21Value();
4709 int64_t current_pc = get_pc();
4710 uint8_t rt = (imm21 >> kImm16Bits);
4711 switch (rt) {
4712 case ALUIPC:
4713 addr = current_pc + (se_imm16 << 16);
4714 alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
4715 break;
4716 case AUIPC:
4717 alu_out = current_pc + (se_imm16 << 16);
4718 break;
4719 default: {
4720 int32_t imm19 = instr_.Imm19Value();
4721 // rt field: checking the most significant 3-bits.
4722 rt = (imm21 >> kImm18Bits);
4723 switch (rt) {
4724 case LDPC:
4725 addr =
4726 (current_pc & static_cast<int64_t>(~0x7)) + (se_imm18 << 3);
4727 alu_out = Read2W(addr, instr_.instr());
4728 break;
4729 default: {
4730 // rt field: checking the most significant 2-bits.
4731 rt = (imm21 >> kImm19Bits);
4732 switch (rt) {
4733 case LWUPC: {
4734 // Set sign.
4735 imm19 <<= (kOpcodeBits + kRsBits + 2);
4736 imm19 >>= (kOpcodeBits + kRsBits + 2);
4737 addr = current_pc + (imm19 << 2);
4738 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
4739 alu_out = *ptr;
4740 break;
4741 }
4742 case LWPC: {
4743 // Set sign.
4744 imm19 <<= (kOpcodeBits + kRsBits + 2);
4745 imm19 >>= (kOpcodeBits + kRsBits + 2);
4746 addr = current_pc + (imm19 << 2);
4747 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
4748 alu_out = *ptr;
4749 break;
4750 }
4751 case ADDIUPC: {
4752 int64_t se_imm19 =
4753 imm19 | ((imm19 & 0x40000) ? 0xfffffffffff80000 : 0);
4754 alu_out = current_pc + (se_imm19 << 2);
4755 break;
4756 }
4757 default:
4758 UNREACHABLE();
4759 break;
4760 }
4761 break;
4762 }
4763 }
4764 break;
4765 }
4766 }
4767 set_register(rs_reg, alu_out);
4768 break;
4769 }
4770 default:
4771 UNREACHABLE();
4772 }
4773
4774 if (execute_branch_delay_instruction) {
4775 // Execute branch delay slot
4776 // We don't check for end_sim_pc. First it should not be met as the current
4777 // pc is valid. Secondly a jump should always execute its branch delay slot.
4778 Instruction* branch_delay_instr =
4779 reinterpret_cast<Instruction*>(get_pc() + Instruction::kInstrSize);
4780 BranchDelayInstructionDecode(branch_delay_instr);
4781 }
4782
4783 // If needed update pc after the branch delay execution.
4784 if (next_pc != bad_ra) {
4785 set_pc(next_pc);
4786 }
4787 }
4788
4789
4790 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
DecodeTypeJump()4791 void Simulator::DecodeTypeJump() {
4792 SimInstruction simInstr = instr_;
4793 // Get current pc.
4794 int64_t current_pc = get_pc();
4795 // Get unchanged bits of pc.
4796 int64_t pc_high_bits = current_pc & 0xfffffffff0000000;
4797 // Next pc.
4798 int64_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
4799
4800 // Execute branch delay slot.
4801 // We don't check for end_sim_pc. First it should not be met as the current pc
4802 // is valid. Secondly a jump should always execute its branch delay slot.
4803 Instruction* branch_delay_instr =
4804 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
4805 BranchDelayInstructionDecode(branch_delay_instr);
4806
4807 // Update pc and ra if necessary.
4808 // Do this after the branch delay execution.
4809 if (simInstr.IsLinkingInstruction()) {
4810 set_register(31, current_pc + 2 * Instruction::kInstrSize);
4811 }
4812 set_pc(next_pc);
4813 pc_modified_ = true;
4814 }
4815
4816
4817 // Executes the current instruction.
InstructionDecode(Instruction * instr)4818 void Simulator::InstructionDecode(Instruction* instr) {
4819 if (v8::internal::FLAG_check_icache) {
4820 CheckICache(isolate_->simulator_i_cache(), instr);
4821 }
4822 pc_modified_ = false;
4823
4824 v8::internal::EmbeddedVector<char, 256> buffer;
4825
4826 if (::v8::internal::FLAG_trace_sim) {
4827 SNPrintF(trace_buf_, " ");
4828 disasm::NameConverter converter;
4829 disasm::Disassembler dasm(converter);
4830 // Use a reasonably large buffer.
4831 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
4832 }
4833
4834 instr_ = instr;
4835 switch (instr_.InstructionType()) {
4836 case Instruction::kRegisterType:
4837 DecodeTypeRegister();
4838 break;
4839 case Instruction::kImmediateType:
4840 DecodeTypeImmediate();
4841 break;
4842 case Instruction::kJumpType:
4843 DecodeTypeJump();
4844 break;
4845 default:
4846 UNSUPPORTED();
4847 }
4848
4849 if (::v8::internal::FLAG_trace_sim) {
4850 PrintF(" 0x%08" PRIxPTR " %-44s %s\n",
4851 reinterpret_cast<intptr_t>(instr), buffer.start(),
4852 trace_buf_.start());
4853 }
4854
4855 if (!pc_modified_) {
4856 set_register(pc, reinterpret_cast<int64_t>(instr) +
4857 Instruction::kInstrSize);
4858 }
4859 }
4860
4861
4862
Execute()4863 void Simulator::Execute() {
4864 // Get the PC to simulate. Cannot use the accessor here as we need the
4865 // raw PC value and not the one used as input to arithmetic instructions.
4866 int64_t program_counter = get_pc();
4867 if (::v8::internal::FLAG_stop_sim_at == 0) {
4868 // Fast version of the dispatch loop without checking whether the simulator
4869 // should be stopping at a particular executed instruction.
4870 while (program_counter != end_sim_pc) {
4871 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4872 icount_++;
4873 InstructionDecode(instr);
4874 program_counter = get_pc();
4875 }
4876 } else {
4877 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
4878 // we reach the particular instuction count.
4879 while (program_counter != end_sim_pc) {
4880 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
4881 icount_++;
4882 if (icount_ == static_cast<int64_t>(::v8::internal::FLAG_stop_sim_at)) {
4883 MipsDebugger dbg(this);
4884 dbg.Debug();
4885 } else {
4886 InstructionDecode(instr);
4887 }
4888 program_counter = get_pc();
4889 }
4890 }
4891 }
4892
4893
CallInternal(byte * entry)4894 void Simulator::CallInternal(byte* entry) {
4895 // Adjust JS-based stack limit to C-based stack limit.
4896 isolate_->stack_guard()->AdjustStackLimitForSimulator();
4897
4898 // Prepare to execute the code at entry.
4899 set_register(pc, reinterpret_cast<int64_t>(entry));
4900 // Put down marker for end of simulation. The simulator will stop simulation
4901 // when the PC reaches this value. By saving the "end simulation" value into
4902 // the LR the simulation stops when returning to this call point.
4903 set_register(ra, end_sim_pc);
4904
4905 // Remember the values of callee-saved registers.
4906 // The code below assumes that r9 is not used as sb (static base) in
4907 // simulator code and therefore is regarded as a callee-saved register.
4908 int64_t s0_val = get_register(s0);
4909 int64_t s1_val = get_register(s1);
4910 int64_t s2_val = get_register(s2);
4911 int64_t s3_val = get_register(s3);
4912 int64_t s4_val = get_register(s4);
4913 int64_t s5_val = get_register(s5);
4914 int64_t s6_val = get_register(s6);
4915 int64_t s7_val = get_register(s7);
4916 int64_t gp_val = get_register(gp);
4917 int64_t sp_val = get_register(sp);
4918 int64_t fp_val = get_register(fp);
4919
4920 // Set up the callee-saved registers with a known value. To be able to check
4921 // that they are preserved properly across JS execution.
4922 int64_t callee_saved_value = icount_;
4923 set_register(s0, callee_saved_value);
4924 set_register(s1, callee_saved_value);
4925 set_register(s2, callee_saved_value);
4926 set_register(s3, callee_saved_value);
4927 set_register(s4, callee_saved_value);
4928 set_register(s5, callee_saved_value);
4929 set_register(s6, callee_saved_value);
4930 set_register(s7, callee_saved_value);
4931 set_register(gp, callee_saved_value);
4932 set_register(fp, callee_saved_value);
4933
4934 // Start the simulation.
4935 Execute();
4936
4937 // Check that the callee-saved registers have been preserved.
4938 CHECK_EQ(callee_saved_value, get_register(s0));
4939 CHECK_EQ(callee_saved_value, get_register(s1));
4940 CHECK_EQ(callee_saved_value, get_register(s2));
4941 CHECK_EQ(callee_saved_value, get_register(s3));
4942 CHECK_EQ(callee_saved_value, get_register(s4));
4943 CHECK_EQ(callee_saved_value, get_register(s5));
4944 CHECK_EQ(callee_saved_value, get_register(s6));
4945 CHECK_EQ(callee_saved_value, get_register(s7));
4946 CHECK_EQ(callee_saved_value, get_register(gp));
4947 CHECK_EQ(callee_saved_value, get_register(fp));
4948
4949 // Restore callee-saved registers with the original value.
4950 set_register(s0, s0_val);
4951 set_register(s1, s1_val);
4952 set_register(s2, s2_val);
4953 set_register(s3, s3_val);
4954 set_register(s4, s4_val);
4955 set_register(s5, s5_val);
4956 set_register(s6, s6_val);
4957 set_register(s7, s7_val);
4958 set_register(gp, gp_val);
4959 set_register(sp, sp_val);
4960 set_register(fp, fp_val);
4961 }
4962
4963
Call(byte * entry,int argument_count,...)4964 int64_t Simulator::Call(byte* entry, int argument_count, ...) {
4965 const int kRegisterPassedArguments = 8;
4966 va_list parameters;
4967 va_start(parameters, argument_count);
4968 // Set up arguments.
4969
4970 // First four arguments passed in registers in both ABI's.
4971 DCHECK(argument_count >= 4);
4972 set_register(a0, va_arg(parameters, int64_t));
4973 set_register(a1, va_arg(parameters, int64_t));
4974 set_register(a2, va_arg(parameters, int64_t));
4975 set_register(a3, va_arg(parameters, int64_t));
4976
4977 // Up to eight arguments passed in registers in N64 ABI.
4978 // TODO(plind): N64 ABI calls these regs a4 - a7. Clarify this.
4979 if (argument_count >= 5) set_register(a4, va_arg(parameters, int64_t));
4980 if (argument_count >= 6) set_register(a5, va_arg(parameters, int64_t));
4981 if (argument_count >= 7) set_register(a6, va_arg(parameters, int64_t));
4982 if (argument_count >= 8) set_register(a7, va_arg(parameters, int64_t));
4983
4984 // Remaining arguments passed on stack.
4985 int64_t original_stack = get_register(sp);
4986 // Compute position of stack on entry to generated code.
4987 int stack_args_count = (argument_count > kRegisterPassedArguments) ?
4988 (argument_count - kRegisterPassedArguments) : 0;
4989 int stack_args_size = stack_args_count * sizeof(int64_t) + kCArgsSlotsSize;
4990 int64_t entry_stack = original_stack - stack_args_size;
4991
4992 if (base::OS::ActivationFrameAlignment() != 0) {
4993 entry_stack &= -base::OS::ActivationFrameAlignment();
4994 }
4995 // Store remaining arguments on stack, from low to high memory.
4996 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
4997 for (int i = kRegisterPassedArguments; i < argument_count; i++) {
4998 int stack_index = i - kRegisterPassedArguments + kCArgSlotCount;
4999 stack_argument[stack_index] = va_arg(parameters, int64_t);
5000 }
5001 va_end(parameters);
5002 set_register(sp, entry_stack);
5003
5004 CallInternal(entry);
5005
5006 // Pop stack passed arguments.
5007 CHECK_EQ(entry_stack, get_register(sp));
5008 set_register(sp, original_stack);
5009
5010 int64_t result = get_register(v0);
5011 return result;
5012 }
5013
5014
CallFP(byte * entry,double d0,double d1)5015 double Simulator::CallFP(byte* entry, double d0, double d1) {
5016 if (!IsMipsSoftFloatABI) {
5017 const FPURegister fparg2 = f13;
5018 set_fpu_register_double(f12, d0);
5019 set_fpu_register_double(fparg2, d1);
5020 } else {
5021 int buffer[2];
5022 DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0));
5023 memcpy(buffer, &d0, sizeof(d0));
5024 set_dw_register(a0, buffer);
5025 memcpy(buffer, &d1, sizeof(d1));
5026 set_dw_register(a2, buffer);
5027 }
5028 CallInternal(entry);
5029 if (!IsMipsSoftFloatABI) {
5030 return get_fpu_register_double(f0);
5031 } else {
5032 return get_double_from_register_pair(v0);
5033 }
5034 }
5035
5036
PushAddress(uintptr_t address)5037 uintptr_t Simulator::PushAddress(uintptr_t address) {
5038 int64_t new_sp = get_register(sp) - sizeof(uintptr_t);
5039 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
5040 *stack_slot = address;
5041 set_register(sp, new_sp);
5042 return new_sp;
5043 }
5044
5045
PopAddress()5046 uintptr_t Simulator::PopAddress() {
5047 int64_t current_sp = get_register(sp);
5048 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
5049 uintptr_t address = *stack_slot;
5050 set_register(sp, current_sp + sizeof(uintptr_t));
5051 return address;
5052 }
5053
5054
5055 #undef UNSUPPORTED
5056 } // namespace internal
5057 } // namespace v8
5058
5059 #endif // USE_SIMULATOR
5060
5061 #endif // V8_TARGET_ARCH_MIPS64
5062