1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/profiler/heap-snapshot-generator.h"
6 
7 #include "src/code-stubs.h"
8 #include "src/conversions.h"
9 #include "src/debug/debug.h"
10 #include "src/objects-body-descriptors.h"
11 #include "src/profiler/allocation-tracker.h"
12 #include "src/profiler/heap-profiler.h"
13 #include "src/profiler/heap-snapshot-generator-inl.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 
HeapGraphEdge(Type type,const char * name,int from,int to)19 HeapGraphEdge::HeapGraphEdge(Type type, const char* name, int from, int to)
20     : bit_field_(TypeField::encode(type) | FromIndexField::encode(from)),
21       to_index_(to),
22       name_(name) {
23   DCHECK(type == kContextVariable
24       || type == kProperty
25       || type == kInternal
26       || type == kShortcut
27       || type == kWeak);
28 }
29 
30 
HeapGraphEdge(Type type,int index,int from,int to)31 HeapGraphEdge::HeapGraphEdge(Type type, int index, int from, int to)
32     : bit_field_(TypeField::encode(type) | FromIndexField::encode(from)),
33       to_index_(to),
34       index_(index) {
35   DCHECK(type == kElement || type == kHidden);
36 }
37 
38 
ReplaceToIndexWithEntry(HeapSnapshot * snapshot)39 void HeapGraphEdge::ReplaceToIndexWithEntry(HeapSnapshot* snapshot) {
40   to_entry_ = &snapshot->entries()[to_index_];
41 }
42 
43 
44 const int HeapEntry::kNoEntry = -1;
45 
HeapEntry(HeapSnapshot * snapshot,Type type,const char * name,SnapshotObjectId id,size_t self_size,unsigned trace_node_id)46 HeapEntry::HeapEntry(HeapSnapshot* snapshot,
47                      Type type,
48                      const char* name,
49                      SnapshotObjectId id,
50                      size_t self_size,
51                      unsigned trace_node_id)
52     : type_(type),
53       children_count_(0),
54       children_index_(-1),
55       self_size_(self_size),
56       snapshot_(snapshot),
57       name_(name),
58       id_(id),
59       trace_node_id_(trace_node_id) { }
60 
61 
SetNamedReference(HeapGraphEdge::Type type,const char * name,HeapEntry * entry)62 void HeapEntry::SetNamedReference(HeapGraphEdge::Type type,
63                                   const char* name,
64                                   HeapEntry* entry) {
65   HeapGraphEdge edge(type, name, this->index(), entry->index());
66   snapshot_->edges().Add(edge);
67   ++children_count_;
68 }
69 
70 
SetIndexedReference(HeapGraphEdge::Type type,int index,HeapEntry * entry)71 void HeapEntry::SetIndexedReference(HeapGraphEdge::Type type,
72                                     int index,
73                                     HeapEntry* entry) {
74   HeapGraphEdge edge(type, index, this->index(), entry->index());
75   snapshot_->edges().Add(edge);
76   ++children_count_;
77 }
78 
79 
Print(const char * prefix,const char * edge_name,int max_depth,int indent)80 void HeapEntry::Print(
81     const char* prefix, const char* edge_name, int max_depth, int indent) {
82   STATIC_ASSERT(sizeof(unsigned) == sizeof(id()));
83   base::OS::Print("%6" PRIuS " @%6u %*c %s%s: ", self_size(), id(), indent, ' ',
84                   prefix, edge_name);
85   if (type() != kString) {
86     base::OS::Print("%s %.40s\n", TypeAsString(), name_);
87   } else {
88     base::OS::Print("\"");
89     const char* c = name_;
90     while (*c && (c - name_) <= 40) {
91       if (*c != '\n')
92         base::OS::Print("%c", *c);
93       else
94         base::OS::Print("\\n");
95       ++c;
96     }
97     base::OS::Print("\"\n");
98   }
99   if (--max_depth == 0) return;
100   Vector<HeapGraphEdge*> ch = children();
101   for (int i = 0; i < ch.length(); ++i) {
102     HeapGraphEdge& edge = *ch[i];
103     const char* edge_prefix = "";
104     EmbeddedVector<char, 64> index;
105     const char* edge_name = index.start();
106     switch (edge.type()) {
107       case HeapGraphEdge::kContextVariable:
108         edge_prefix = "#";
109         edge_name = edge.name();
110         break;
111       case HeapGraphEdge::kElement:
112         SNPrintF(index, "%d", edge.index());
113         break;
114       case HeapGraphEdge::kInternal:
115         edge_prefix = "$";
116         edge_name = edge.name();
117         break;
118       case HeapGraphEdge::kProperty:
119         edge_name = edge.name();
120         break;
121       case HeapGraphEdge::kHidden:
122         edge_prefix = "$";
123         SNPrintF(index, "%d", edge.index());
124         break;
125       case HeapGraphEdge::kShortcut:
126         edge_prefix = "^";
127         edge_name = edge.name();
128         break;
129       case HeapGraphEdge::kWeak:
130         edge_prefix = "w";
131         edge_name = edge.name();
132         break;
133       default:
134         SNPrintF(index, "!!! unknown edge type: %d ", edge.type());
135     }
136     edge.to()->Print(edge_prefix, edge_name, max_depth, indent + 2);
137   }
138 }
139 
140 
TypeAsString()141 const char* HeapEntry::TypeAsString() {
142   switch (type()) {
143     case kHidden: return "/hidden/";
144     case kObject: return "/object/";
145     case kClosure: return "/closure/";
146     case kString: return "/string/";
147     case kCode: return "/code/";
148     case kArray: return "/array/";
149     case kRegExp: return "/regexp/";
150     case kHeapNumber: return "/number/";
151     case kNative: return "/native/";
152     case kSynthetic: return "/synthetic/";
153     case kConsString: return "/concatenated string/";
154     case kSlicedString: return "/sliced string/";
155     case kSymbol: return "/symbol/";
156     case kSimdValue: return "/simd/";
157     default: return "???";
158   }
159 }
160 
161 
162 // It is very important to keep objects that form a heap snapshot
163 // as small as possible.
164 namespace {  // Avoid littering the global namespace.
165 
166 template <size_t ptr_size> struct SnapshotSizeConstants;
167 
168 template <> struct SnapshotSizeConstants<4> {
169   static const int kExpectedHeapGraphEdgeSize = 12;
170   static const int kExpectedHeapEntrySize = 28;
171 };
172 
173 template <> struct SnapshotSizeConstants<8> {
174   static const int kExpectedHeapGraphEdgeSize = 24;
175   static const int kExpectedHeapEntrySize = 40;
176 };
177 
178 }  // namespace
179 
180 
HeapSnapshot(HeapProfiler * profiler)181 HeapSnapshot::HeapSnapshot(HeapProfiler* profiler)
182     : profiler_(profiler),
183       root_index_(HeapEntry::kNoEntry),
184       gc_roots_index_(HeapEntry::kNoEntry),
185       max_snapshot_js_object_id_(0) {
186   STATIC_ASSERT(
187       sizeof(HeapGraphEdge) ==
188       SnapshotSizeConstants<kPointerSize>::kExpectedHeapGraphEdgeSize);
189   STATIC_ASSERT(
190       sizeof(HeapEntry) ==
191       SnapshotSizeConstants<kPointerSize>::kExpectedHeapEntrySize);
192   USE(SnapshotSizeConstants<4>::kExpectedHeapGraphEdgeSize);
193   USE(SnapshotSizeConstants<4>::kExpectedHeapEntrySize);
194   USE(SnapshotSizeConstants<8>::kExpectedHeapGraphEdgeSize);
195   USE(SnapshotSizeConstants<8>::kExpectedHeapEntrySize);
196   for (int i = 0; i < VisitorSynchronization::kNumberOfSyncTags; ++i) {
197     gc_subroot_indexes_[i] = HeapEntry::kNoEntry;
198   }
199 }
200 
201 
Delete()202 void HeapSnapshot::Delete() {
203   profiler_->RemoveSnapshot(this);
204   delete this;
205 }
206 
207 
RememberLastJSObjectId()208 void HeapSnapshot::RememberLastJSObjectId() {
209   max_snapshot_js_object_id_ = profiler_->heap_object_map()->last_assigned_id();
210 }
211 
212 
AddSyntheticRootEntries()213 void HeapSnapshot::AddSyntheticRootEntries() {
214   AddRootEntry();
215   AddGcRootsEntry();
216   SnapshotObjectId id = HeapObjectsMap::kGcRootsFirstSubrootId;
217   for (int tag = 0; tag < VisitorSynchronization::kNumberOfSyncTags; tag++) {
218     AddGcSubrootEntry(tag, id);
219     id += HeapObjectsMap::kObjectIdStep;
220   }
221   DCHECK(HeapObjectsMap::kFirstAvailableObjectId == id);
222 }
223 
224 
AddRootEntry()225 HeapEntry* HeapSnapshot::AddRootEntry() {
226   DCHECK(root_index_ == HeapEntry::kNoEntry);
227   DCHECK(entries_.is_empty());  // Root entry must be the first one.
228   HeapEntry* entry = AddEntry(HeapEntry::kSynthetic,
229                               "",
230                               HeapObjectsMap::kInternalRootObjectId,
231                               0,
232                               0);
233   root_index_ = entry->index();
234   DCHECK(root_index_ == 0);
235   return entry;
236 }
237 
238 
AddGcRootsEntry()239 HeapEntry* HeapSnapshot::AddGcRootsEntry() {
240   DCHECK(gc_roots_index_ == HeapEntry::kNoEntry);
241   HeapEntry* entry = AddEntry(HeapEntry::kSynthetic,
242                               "(GC roots)",
243                               HeapObjectsMap::kGcRootsObjectId,
244                               0,
245                               0);
246   gc_roots_index_ = entry->index();
247   return entry;
248 }
249 
250 
AddGcSubrootEntry(int tag,SnapshotObjectId id)251 HeapEntry* HeapSnapshot::AddGcSubrootEntry(int tag, SnapshotObjectId id) {
252   DCHECK(gc_subroot_indexes_[tag] == HeapEntry::kNoEntry);
253   DCHECK(0 <= tag && tag < VisitorSynchronization::kNumberOfSyncTags);
254   HeapEntry* entry = AddEntry(HeapEntry::kSynthetic,
255                               VisitorSynchronization::kTagNames[tag], id, 0, 0);
256   gc_subroot_indexes_[tag] = entry->index();
257   return entry;
258 }
259 
260 
AddEntry(HeapEntry::Type type,const char * name,SnapshotObjectId id,size_t size,unsigned trace_node_id)261 HeapEntry* HeapSnapshot::AddEntry(HeapEntry::Type type,
262                                   const char* name,
263                                   SnapshotObjectId id,
264                                   size_t size,
265                                   unsigned trace_node_id) {
266   HeapEntry entry(this, type, name, id, size, trace_node_id);
267   entries_.Add(entry);
268   return &entries_.last();
269 }
270 
271 
FillChildren()272 void HeapSnapshot::FillChildren() {
273   DCHECK(children().is_empty());
274   children().Allocate(edges().length());
275   int children_index = 0;
276   for (int i = 0; i < entries().length(); ++i) {
277     HeapEntry* entry = &entries()[i];
278     children_index = entry->set_children_index(children_index);
279   }
280   DCHECK(edges().length() == children_index);
281   for (int i = 0; i < edges().length(); ++i) {
282     HeapGraphEdge* edge = &edges()[i];
283     edge->ReplaceToIndexWithEntry(this);
284     edge->from()->add_child(edge);
285   }
286 }
287 
288 
289 class FindEntryById {
290  public:
FindEntryById(SnapshotObjectId id)291   explicit FindEntryById(SnapshotObjectId id) : id_(id) { }
operator ()(HeapEntry * const * entry)292   int operator()(HeapEntry* const* entry) {
293     if ((*entry)->id() == id_) return 0;
294     return (*entry)->id() < id_ ? -1 : 1;
295   }
296  private:
297   SnapshotObjectId id_;
298 };
299 
300 
GetEntryById(SnapshotObjectId id)301 HeapEntry* HeapSnapshot::GetEntryById(SnapshotObjectId id) {
302   List<HeapEntry*>* entries_by_id = GetSortedEntriesList();
303   // Perform a binary search by id.
304   int index = SortedListBSearch(*entries_by_id, FindEntryById(id));
305   if (index == -1)
306     return NULL;
307   return entries_by_id->at(index);
308 }
309 
310 
311 template<class T>
SortByIds(const T * entry1_ptr,const T * entry2_ptr)312 static int SortByIds(const T* entry1_ptr,
313                      const T* entry2_ptr) {
314   if ((*entry1_ptr)->id() == (*entry2_ptr)->id()) return 0;
315   return (*entry1_ptr)->id() < (*entry2_ptr)->id() ? -1 : 1;
316 }
317 
318 
GetSortedEntriesList()319 List<HeapEntry*>* HeapSnapshot::GetSortedEntriesList() {
320   if (sorted_entries_.is_empty()) {
321     sorted_entries_.Allocate(entries_.length());
322     for (int i = 0; i < entries_.length(); ++i) {
323       sorted_entries_[i] = &entries_[i];
324     }
325     sorted_entries_.Sort<int (*)(HeapEntry* const*, HeapEntry* const*)>(
326         SortByIds);
327   }
328   return &sorted_entries_;
329 }
330 
331 
Print(int max_depth)332 void HeapSnapshot::Print(int max_depth) {
333   root()->Print("", "", max_depth, 0);
334 }
335 
336 
RawSnapshotSize() const337 size_t HeapSnapshot::RawSnapshotSize() const {
338   return
339       sizeof(*this) +
340       GetMemoryUsedByList(entries_) +
341       GetMemoryUsedByList(edges_) +
342       GetMemoryUsedByList(children_) +
343       GetMemoryUsedByList(sorted_entries_);
344 }
345 
346 
347 // We split IDs on evens for embedder objects (see
348 // HeapObjectsMap::GenerateId) and odds for native objects.
349 const SnapshotObjectId HeapObjectsMap::kInternalRootObjectId = 1;
350 const SnapshotObjectId HeapObjectsMap::kGcRootsObjectId =
351     HeapObjectsMap::kInternalRootObjectId + HeapObjectsMap::kObjectIdStep;
352 const SnapshotObjectId HeapObjectsMap::kGcRootsFirstSubrootId =
353     HeapObjectsMap::kGcRootsObjectId + HeapObjectsMap::kObjectIdStep;
354 const SnapshotObjectId HeapObjectsMap::kFirstAvailableObjectId =
355     HeapObjectsMap::kGcRootsFirstSubrootId +
356     VisitorSynchronization::kNumberOfSyncTags * HeapObjectsMap::kObjectIdStep;
357 
HeapObjectsMap(Heap * heap)358 HeapObjectsMap::HeapObjectsMap(Heap* heap)
359     : next_id_(kFirstAvailableObjectId), heap_(heap) {
360   // This dummy element solves a problem with entries_map_.
361   // When we do lookup in HashMap we see no difference between two cases:
362   // it has an entry with NULL as the value or it has created
363   // a new entry on the fly with NULL as the default value.
364   // With such dummy element we have a guaranty that all entries_map_ entries
365   // will have the value field grater than 0.
366   // This fact is using in MoveObject method.
367   entries_.Add(EntryInfo(0, NULL, 0));
368 }
369 
370 
MoveObject(Address from,Address to,int object_size)371 bool HeapObjectsMap::MoveObject(Address from, Address to, int object_size) {
372   DCHECK(to != NULL);
373   DCHECK(from != NULL);
374   if (from == to) return false;
375   void* from_value = entries_map_.Remove(from, ComputePointerHash(from));
376   if (from_value == NULL) {
377     // It may occur that some untracked object moves to an address X and there
378     // is a tracked object at that address. In this case we should remove the
379     // entry as we know that the object has died.
380     void* to_value = entries_map_.Remove(to, ComputePointerHash(to));
381     if (to_value != NULL) {
382       int to_entry_info_index =
383           static_cast<int>(reinterpret_cast<intptr_t>(to_value));
384       entries_.at(to_entry_info_index).addr = NULL;
385     }
386   } else {
387     base::HashMap::Entry* to_entry =
388         entries_map_.LookupOrInsert(to, ComputePointerHash(to));
389     if (to_entry->value != NULL) {
390       // We found the existing entry with to address for an old object.
391       // Without this operation we will have two EntryInfo's with the same
392       // value in addr field. It is bad because later at RemoveDeadEntries
393       // one of this entry will be removed with the corresponding entries_map_
394       // entry.
395       int to_entry_info_index =
396           static_cast<int>(reinterpret_cast<intptr_t>(to_entry->value));
397       entries_.at(to_entry_info_index).addr = NULL;
398     }
399     int from_entry_info_index =
400         static_cast<int>(reinterpret_cast<intptr_t>(from_value));
401     entries_.at(from_entry_info_index).addr = to;
402     // Size of an object can change during its life, so to keep information
403     // about the object in entries_ consistent, we have to adjust size when the
404     // object is migrated.
405     if (FLAG_heap_profiler_trace_objects) {
406       PrintF("Move object from %p to %p old size %6d new size %6d\n",
407              static_cast<void*>(from), static_cast<void*>(to),
408              entries_.at(from_entry_info_index).size, object_size);
409     }
410     entries_.at(from_entry_info_index).size = object_size;
411     to_entry->value = from_value;
412   }
413   return from_value != NULL;
414 }
415 
416 
UpdateObjectSize(Address addr,int size)417 void HeapObjectsMap::UpdateObjectSize(Address addr, int size) {
418   FindOrAddEntry(addr, size, false);
419 }
420 
421 
FindEntry(Address addr)422 SnapshotObjectId HeapObjectsMap::FindEntry(Address addr) {
423   base::HashMap::Entry* entry =
424       entries_map_.Lookup(addr, ComputePointerHash(addr));
425   if (entry == NULL) return 0;
426   int entry_index = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
427   EntryInfo& entry_info = entries_.at(entry_index);
428   DCHECK(static_cast<uint32_t>(entries_.length()) > entries_map_.occupancy());
429   return entry_info.id;
430 }
431 
432 
FindOrAddEntry(Address addr,unsigned int size,bool accessed)433 SnapshotObjectId HeapObjectsMap::FindOrAddEntry(Address addr,
434                                                 unsigned int size,
435                                                 bool accessed) {
436   DCHECK(static_cast<uint32_t>(entries_.length()) > entries_map_.occupancy());
437   base::HashMap::Entry* entry =
438       entries_map_.LookupOrInsert(addr, ComputePointerHash(addr));
439   if (entry->value != NULL) {
440     int entry_index =
441         static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
442     EntryInfo& entry_info = entries_.at(entry_index);
443     entry_info.accessed = accessed;
444     if (FLAG_heap_profiler_trace_objects) {
445       PrintF("Update object size : %p with old size %d and new size %d\n",
446              static_cast<void*>(addr), entry_info.size, size);
447     }
448     entry_info.size = size;
449     return entry_info.id;
450   }
451   entry->value = reinterpret_cast<void*>(entries_.length());
452   SnapshotObjectId id = next_id_;
453   next_id_ += kObjectIdStep;
454   entries_.Add(EntryInfo(id, addr, size, accessed));
455   DCHECK(static_cast<uint32_t>(entries_.length()) > entries_map_.occupancy());
456   return id;
457 }
458 
459 
StopHeapObjectsTracking()460 void HeapObjectsMap::StopHeapObjectsTracking() {
461   time_intervals_.Clear();
462 }
463 
464 
UpdateHeapObjectsMap()465 void HeapObjectsMap::UpdateHeapObjectsMap() {
466   if (FLAG_heap_profiler_trace_objects) {
467     PrintF("Begin HeapObjectsMap::UpdateHeapObjectsMap. map has %d entries.\n",
468            entries_map_.occupancy());
469   }
470   heap_->CollectAllGarbage(Heap::kMakeHeapIterableMask,
471                            GarbageCollectionReason::kHeapProfiler);
472   HeapIterator iterator(heap_);
473   for (HeapObject* obj = iterator.next();
474        obj != NULL;
475        obj = iterator.next()) {
476     FindOrAddEntry(obj->address(), obj->Size());
477     if (FLAG_heap_profiler_trace_objects) {
478       PrintF("Update object      : %p %6d. Next address is %p\n",
479              static_cast<void*>(obj->address()), obj->Size(),
480              static_cast<void*>(obj->address() + obj->Size()));
481     }
482   }
483   RemoveDeadEntries();
484   if (FLAG_heap_profiler_trace_objects) {
485     PrintF("End HeapObjectsMap::UpdateHeapObjectsMap. map has %d entries.\n",
486            entries_map_.occupancy());
487   }
488 }
489 
490 
491 namespace {
492 
493 
494 struct HeapObjectInfo {
HeapObjectInfov8::internal::__anon5e8b875a0211::HeapObjectInfo495   HeapObjectInfo(HeapObject* obj, int expected_size)
496     : obj(obj),
497       expected_size(expected_size) {
498   }
499 
500   HeapObject* obj;
501   int expected_size;
502 
IsValidv8::internal::__anon5e8b875a0211::HeapObjectInfo503   bool IsValid() const { return expected_size == obj->Size(); }
504 
Printv8::internal::__anon5e8b875a0211::HeapObjectInfo505   void Print() const {
506     if (expected_size == 0) {
507       PrintF("Untracked object   : %p %6d. Next address is %p\n",
508              static_cast<void*>(obj->address()), obj->Size(),
509              static_cast<void*>(obj->address() + obj->Size()));
510     } else if (obj->Size() != expected_size) {
511       PrintF("Wrong size %6d: %p %6d. Next address is %p\n", expected_size,
512              static_cast<void*>(obj->address()), obj->Size(),
513              static_cast<void*>(obj->address() + obj->Size()));
514     } else {
515       PrintF("Good object      : %p %6d. Next address is %p\n",
516              static_cast<void*>(obj->address()), expected_size,
517              static_cast<void*>(obj->address() + obj->Size()));
518     }
519   }
520 };
521 
522 
comparator(const HeapObjectInfo * a,const HeapObjectInfo * b)523 static int comparator(const HeapObjectInfo* a, const HeapObjectInfo* b) {
524   if (a->obj < b->obj) return -1;
525   if (a->obj > b->obj) return 1;
526   return 0;
527 }
528 
529 
530 }  // namespace
531 
532 
FindUntrackedObjects()533 int HeapObjectsMap::FindUntrackedObjects() {
534   List<HeapObjectInfo> heap_objects(1000);
535 
536   HeapIterator iterator(heap_);
537   int untracked = 0;
538   for (HeapObject* obj = iterator.next();
539        obj != NULL;
540        obj = iterator.next()) {
541     base::HashMap::Entry* entry =
542         entries_map_.Lookup(obj->address(), ComputePointerHash(obj->address()));
543     if (entry == NULL) {
544       ++untracked;
545       if (FLAG_heap_profiler_trace_objects) {
546         heap_objects.Add(HeapObjectInfo(obj, 0));
547       }
548     } else {
549       int entry_index = static_cast<int>(
550           reinterpret_cast<intptr_t>(entry->value));
551       EntryInfo& entry_info = entries_.at(entry_index);
552       if (FLAG_heap_profiler_trace_objects) {
553         heap_objects.Add(HeapObjectInfo(obj,
554                          static_cast<int>(entry_info.size)));
555         if (obj->Size() != static_cast<int>(entry_info.size))
556           ++untracked;
557       } else {
558         CHECK_EQ(obj->Size(), static_cast<int>(entry_info.size));
559       }
560     }
561   }
562   if (FLAG_heap_profiler_trace_objects) {
563     PrintF("\nBegin HeapObjectsMap::FindUntrackedObjects. %d entries in map.\n",
564            entries_map_.occupancy());
565     heap_objects.Sort(comparator);
566     int last_printed_object = -1;
567     bool print_next_object = false;
568     for (int i = 0; i < heap_objects.length(); ++i) {
569       const HeapObjectInfo& object_info = heap_objects[i];
570       if (!object_info.IsValid()) {
571         ++untracked;
572         if (last_printed_object != i - 1) {
573           if (i > 0) {
574             PrintF("%d objects were skipped\n", i - 1 - last_printed_object);
575             heap_objects[i - 1].Print();
576           }
577         }
578         object_info.Print();
579         last_printed_object = i;
580         print_next_object = true;
581       } else if (print_next_object) {
582         object_info.Print();
583         print_next_object = false;
584         last_printed_object = i;
585       }
586     }
587     if (last_printed_object < heap_objects.length() - 1) {
588       PrintF("Last %d objects were skipped\n",
589              heap_objects.length() - 1 - last_printed_object);
590     }
591     PrintF("End HeapObjectsMap::FindUntrackedObjects. %d entries in map.\n\n",
592            entries_map_.occupancy());
593   }
594   return untracked;
595 }
596 
597 
PushHeapObjectsStats(OutputStream * stream,int64_t * timestamp_us)598 SnapshotObjectId HeapObjectsMap::PushHeapObjectsStats(OutputStream* stream,
599                                                       int64_t* timestamp_us) {
600   UpdateHeapObjectsMap();
601   time_intervals_.Add(TimeInterval(next_id_));
602   int prefered_chunk_size = stream->GetChunkSize();
603   List<v8::HeapStatsUpdate> stats_buffer;
604   DCHECK(!entries_.is_empty());
605   EntryInfo* entry_info = &entries_.first();
606   EntryInfo* end_entry_info = &entries_.last() + 1;
607   for (int time_interval_index = 0;
608        time_interval_index < time_intervals_.length();
609        ++time_interval_index) {
610     TimeInterval& time_interval = time_intervals_[time_interval_index];
611     SnapshotObjectId time_interval_id = time_interval.id;
612     uint32_t entries_size = 0;
613     EntryInfo* start_entry_info = entry_info;
614     while (entry_info < end_entry_info && entry_info->id < time_interval_id) {
615       entries_size += entry_info->size;
616       ++entry_info;
617     }
618     uint32_t entries_count =
619         static_cast<uint32_t>(entry_info - start_entry_info);
620     if (time_interval.count != entries_count ||
621         time_interval.size != entries_size) {
622       stats_buffer.Add(v8::HeapStatsUpdate(
623           time_interval_index,
624           time_interval.count = entries_count,
625           time_interval.size = entries_size));
626       if (stats_buffer.length() >= prefered_chunk_size) {
627         OutputStream::WriteResult result = stream->WriteHeapStatsChunk(
628             &stats_buffer.first(), stats_buffer.length());
629         if (result == OutputStream::kAbort) return last_assigned_id();
630         stats_buffer.Clear();
631       }
632     }
633   }
634   DCHECK(entry_info == end_entry_info);
635   if (!stats_buffer.is_empty()) {
636     OutputStream::WriteResult result = stream->WriteHeapStatsChunk(
637         &stats_buffer.first(), stats_buffer.length());
638     if (result == OutputStream::kAbort) return last_assigned_id();
639   }
640   stream->EndOfStream();
641   if (timestamp_us) {
642     *timestamp_us = (time_intervals_.last().timestamp -
643                      time_intervals_[0].timestamp).InMicroseconds();
644   }
645   return last_assigned_id();
646 }
647 
648 
RemoveDeadEntries()649 void HeapObjectsMap::RemoveDeadEntries() {
650   DCHECK(entries_.length() > 0 &&
651          entries_.at(0).id == 0 &&
652          entries_.at(0).addr == NULL);
653   int first_free_entry = 1;
654   for (int i = 1; i < entries_.length(); ++i) {
655     EntryInfo& entry_info = entries_.at(i);
656     if (entry_info.accessed) {
657       if (first_free_entry != i) {
658         entries_.at(first_free_entry) = entry_info;
659       }
660       entries_.at(first_free_entry).accessed = false;
661       base::HashMap::Entry* entry = entries_map_.Lookup(
662           entry_info.addr, ComputePointerHash(entry_info.addr));
663       DCHECK(entry);
664       entry->value = reinterpret_cast<void*>(first_free_entry);
665       ++first_free_entry;
666     } else {
667       if (entry_info.addr) {
668         entries_map_.Remove(entry_info.addr,
669                             ComputePointerHash(entry_info.addr));
670       }
671     }
672   }
673   entries_.Rewind(first_free_entry);
674   DCHECK(static_cast<uint32_t>(entries_.length()) - 1 ==
675          entries_map_.occupancy());
676 }
677 
678 
GenerateId(v8::RetainedObjectInfo * info)679 SnapshotObjectId HeapObjectsMap::GenerateId(v8::RetainedObjectInfo* info) {
680   SnapshotObjectId id = static_cast<SnapshotObjectId>(info->GetHash());
681   const char* label = info->GetLabel();
682   id ^= StringHasher::HashSequentialString(label,
683                                            static_cast<int>(strlen(label)),
684                                            heap_->HashSeed());
685   intptr_t element_count = info->GetElementCount();
686   if (element_count != -1)
687     id ^= ComputeIntegerHash(static_cast<uint32_t>(element_count),
688                              v8::internal::kZeroHashSeed);
689   return id << 1;
690 }
691 
692 
GetUsedMemorySize() const693 size_t HeapObjectsMap::GetUsedMemorySize() const {
694   return sizeof(*this) +
695          sizeof(base::HashMap::Entry) * entries_map_.capacity() +
696          GetMemoryUsedByList(entries_) + GetMemoryUsedByList(time_intervals_);
697 }
698 
HeapEntriesMap()699 HeapEntriesMap::HeapEntriesMap() : entries_() {}
700 
Map(HeapThing thing)701 int HeapEntriesMap::Map(HeapThing thing) {
702   base::HashMap::Entry* cache_entry = entries_.Lookup(thing, Hash(thing));
703   if (cache_entry == NULL) return HeapEntry::kNoEntry;
704   return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value));
705 }
706 
707 
Pair(HeapThing thing,int entry)708 void HeapEntriesMap::Pair(HeapThing thing, int entry) {
709   base::HashMap::Entry* cache_entry =
710       entries_.LookupOrInsert(thing, Hash(thing));
711   DCHECK(cache_entry->value == NULL);
712   cache_entry->value = reinterpret_cast<void*>(static_cast<intptr_t>(entry));
713 }
714 
HeapObjectsSet()715 HeapObjectsSet::HeapObjectsSet() : entries_() {}
716 
Clear()717 void HeapObjectsSet::Clear() {
718   entries_.Clear();
719 }
720 
721 
Contains(Object * obj)722 bool HeapObjectsSet::Contains(Object* obj) {
723   if (!obj->IsHeapObject()) return false;
724   HeapObject* object = HeapObject::cast(obj);
725   return entries_.Lookup(object, HeapEntriesMap::Hash(object)) != NULL;
726 }
727 
728 
Insert(Object * obj)729 void HeapObjectsSet::Insert(Object* obj) {
730   if (!obj->IsHeapObject()) return;
731   HeapObject* object = HeapObject::cast(obj);
732   entries_.LookupOrInsert(object, HeapEntriesMap::Hash(object));
733 }
734 
735 
GetTag(Object * obj)736 const char* HeapObjectsSet::GetTag(Object* obj) {
737   HeapObject* object = HeapObject::cast(obj);
738   base::HashMap::Entry* cache_entry =
739       entries_.Lookup(object, HeapEntriesMap::Hash(object));
740   return cache_entry != NULL
741       ? reinterpret_cast<const char*>(cache_entry->value)
742       : NULL;
743 }
744 
745 
SetTag(Object * obj,const char * tag)746 V8_NOINLINE void HeapObjectsSet::SetTag(Object* obj, const char* tag) {
747   if (!obj->IsHeapObject()) return;
748   HeapObject* object = HeapObject::cast(obj);
749   base::HashMap::Entry* cache_entry =
750       entries_.LookupOrInsert(object, HeapEntriesMap::Hash(object));
751   cache_entry->value = const_cast<char*>(tag);
752 }
753 
754 
V8HeapExplorer(HeapSnapshot * snapshot,SnapshottingProgressReportingInterface * progress,v8::HeapProfiler::ObjectNameResolver * resolver)755 V8HeapExplorer::V8HeapExplorer(
756     HeapSnapshot* snapshot,
757     SnapshottingProgressReportingInterface* progress,
758     v8::HeapProfiler::ObjectNameResolver* resolver)
759     : heap_(snapshot->profiler()->heap_object_map()->heap()),
760       snapshot_(snapshot),
761       names_(snapshot_->profiler()->names()),
762       heap_object_map_(snapshot_->profiler()->heap_object_map()),
763       progress_(progress),
764       filler_(NULL),
765       global_object_name_resolver_(resolver) {
766 }
767 
768 
~V8HeapExplorer()769 V8HeapExplorer::~V8HeapExplorer() {
770 }
771 
772 
AllocateEntry(HeapThing ptr)773 HeapEntry* V8HeapExplorer::AllocateEntry(HeapThing ptr) {
774   return AddEntry(reinterpret_cast<HeapObject*>(ptr));
775 }
776 
777 
AddEntry(HeapObject * object)778 HeapEntry* V8HeapExplorer::AddEntry(HeapObject* object) {
779   if (object->IsJSFunction()) {
780     JSFunction* func = JSFunction::cast(object);
781     SharedFunctionInfo* shared = func->shared();
782     const char* name = names_->GetName(String::cast(shared->name()));
783     return AddEntry(object, HeapEntry::kClosure, name);
784   } else if (object->IsJSBoundFunction()) {
785     return AddEntry(object, HeapEntry::kClosure, "native_bind");
786   } else if (object->IsJSRegExp()) {
787     JSRegExp* re = JSRegExp::cast(object);
788     return AddEntry(object,
789                     HeapEntry::kRegExp,
790                     names_->GetName(re->Pattern()));
791   } else if (object->IsJSObject()) {
792     const char* name = names_->GetName(
793         GetConstructorName(JSObject::cast(object)));
794     if (object->IsJSGlobalObject()) {
795       const char* tag = objects_tags_.GetTag(object);
796       if (tag != NULL) {
797         name = names_->GetFormatted("%s / %s", name, tag);
798       }
799     }
800     return AddEntry(object, HeapEntry::kObject, name);
801   } else if (object->IsString()) {
802     String* string = String::cast(object);
803     if (string->IsConsString())
804       return AddEntry(object,
805                       HeapEntry::kConsString,
806                       "(concatenated string)");
807     if (string->IsSlicedString())
808       return AddEntry(object,
809                       HeapEntry::kSlicedString,
810                       "(sliced string)");
811     return AddEntry(object,
812                     HeapEntry::kString,
813                     names_->GetName(String::cast(object)));
814   } else if (object->IsSymbol()) {
815     if (Symbol::cast(object)->is_private())
816       return AddEntry(object, HeapEntry::kHidden, "private symbol");
817     else
818       return AddEntry(object, HeapEntry::kSymbol, "symbol");
819   } else if (object->IsCode()) {
820     return AddEntry(object, HeapEntry::kCode, "");
821   } else if (object->IsSharedFunctionInfo()) {
822     String* name = String::cast(SharedFunctionInfo::cast(object)->name());
823     return AddEntry(object,
824                     HeapEntry::kCode,
825                     names_->GetName(name));
826   } else if (object->IsScript()) {
827     Object* name = Script::cast(object)->name();
828     return AddEntry(object,
829                     HeapEntry::kCode,
830                     name->IsString()
831                         ? names_->GetName(String::cast(name))
832                         : "");
833   } else if (object->IsNativeContext()) {
834     return AddEntry(object, HeapEntry::kHidden, "system / NativeContext");
835   } else if (object->IsContext()) {
836     return AddEntry(object, HeapEntry::kObject, "system / Context");
837   } else if (object->IsFixedArray() || object->IsFixedDoubleArray() ||
838              object->IsByteArray()) {
839     return AddEntry(object, HeapEntry::kArray, "");
840   } else if (object->IsHeapNumber()) {
841     return AddEntry(object, HeapEntry::kHeapNumber, "number");
842   } else if (object->IsSimd128Value()) {
843     return AddEntry(object, HeapEntry::kSimdValue, "simd");
844   }
845   return AddEntry(object, HeapEntry::kHidden, GetSystemEntryName(object));
846 }
847 
848 
AddEntry(HeapObject * object,HeapEntry::Type type,const char * name)849 HeapEntry* V8HeapExplorer::AddEntry(HeapObject* object,
850                                     HeapEntry::Type type,
851                                     const char* name) {
852   return AddEntry(object->address(), type, name, object->Size());
853 }
854 
855 
AddEntry(Address address,HeapEntry::Type type,const char * name,size_t size)856 HeapEntry* V8HeapExplorer::AddEntry(Address address,
857                                     HeapEntry::Type type,
858                                     const char* name,
859                                     size_t size) {
860   SnapshotObjectId object_id = heap_object_map_->FindOrAddEntry(
861       address, static_cast<unsigned int>(size));
862   unsigned trace_node_id = 0;
863   if (AllocationTracker* allocation_tracker =
864       snapshot_->profiler()->allocation_tracker()) {
865     trace_node_id =
866         allocation_tracker->address_to_trace()->GetTraceNodeId(address);
867   }
868   return snapshot_->AddEntry(type, name, object_id, size, trace_node_id);
869 }
870 
871 
872 class SnapshotFiller {
873  public:
SnapshotFiller(HeapSnapshot * snapshot,HeapEntriesMap * entries)874   explicit SnapshotFiller(HeapSnapshot* snapshot, HeapEntriesMap* entries)
875       : snapshot_(snapshot),
876         names_(snapshot->profiler()->names()),
877         entries_(entries) { }
AddEntry(HeapThing ptr,HeapEntriesAllocator * allocator)878   HeapEntry* AddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) {
879     HeapEntry* entry = allocator->AllocateEntry(ptr);
880     entries_->Pair(ptr, entry->index());
881     return entry;
882   }
FindEntry(HeapThing ptr)883   HeapEntry* FindEntry(HeapThing ptr) {
884     int index = entries_->Map(ptr);
885     return index != HeapEntry::kNoEntry ? &snapshot_->entries()[index] : NULL;
886   }
FindOrAddEntry(HeapThing ptr,HeapEntriesAllocator * allocator)887   HeapEntry* FindOrAddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) {
888     HeapEntry* entry = FindEntry(ptr);
889     return entry != NULL ? entry : AddEntry(ptr, allocator);
890   }
SetIndexedReference(HeapGraphEdge::Type type,int parent,int index,HeapEntry * child_entry)891   void SetIndexedReference(HeapGraphEdge::Type type,
892                            int parent,
893                            int index,
894                            HeapEntry* child_entry) {
895     HeapEntry* parent_entry = &snapshot_->entries()[parent];
896     parent_entry->SetIndexedReference(type, index, child_entry);
897   }
SetIndexedAutoIndexReference(HeapGraphEdge::Type type,int parent,HeapEntry * child_entry)898   void SetIndexedAutoIndexReference(HeapGraphEdge::Type type,
899                                     int parent,
900                                     HeapEntry* child_entry) {
901     HeapEntry* parent_entry = &snapshot_->entries()[parent];
902     int index = parent_entry->children_count() + 1;
903     parent_entry->SetIndexedReference(type, index, child_entry);
904   }
SetNamedReference(HeapGraphEdge::Type type,int parent,const char * reference_name,HeapEntry * child_entry)905   void SetNamedReference(HeapGraphEdge::Type type,
906                          int parent,
907                          const char* reference_name,
908                          HeapEntry* child_entry) {
909     HeapEntry* parent_entry = &snapshot_->entries()[parent];
910     parent_entry->SetNamedReference(type, reference_name, child_entry);
911   }
SetNamedAutoIndexReference(HeapGraphEdge::Type type,int parent,HeapEntry * child_entry)912   void SetNamedAutoIndexReference(HeapGraphEdge::Type type,
913                                   int parent,
914                                   HeapEntry* child_entry) {
915     HeapEntry* parent_entry = &snapshot_->entries()[parent];
916     int index = parent_entry->children_count() + 1;
917     parent_entry->SetNamedReference(
918         type,
919         names_->GetName(index),
920         child_entry);
921   }
922 
923  private:
924   HeapSnapshot* snapshot_;
925   StringsStorage* names_;
926   HeapEntriesMap* entries_;
927 };
928 
929 
GetSystemEntryName(HeapObject * object)930 const char* V8HeapExplorer::GetSystemEntryName(HeapObject* object) {
931   switch (object->map()->instance_type()) {
932     case MAP_TYPE:
933       switch (Map::cast(object)->instance_type()) {
934 #define MAKE_STRING_MAP_CASE(instance_type, size, name, Name) \
935         case instance_type: return "system / Map (" #Name ")";
936       STRING_TYPE_LIST(MAKE_STRING_MAP_CASE)
937 #undef MAKE_STRING_MAP_CASE
938         default: return "system / Map";
939       }
940     case CELL_TYPE: return "system / Cell";
941     case PROPERTY_CELL_TYPE: return "system / PropertyCell";
942     case FOREIGN_TYPE: return "system / Foreign";
943     case ODDBALL_TYPE: return "system / Oddball";
944 #define MAKE_STRUCT_CASE(NAME, Name, name) \
945     case NAME##_TYPE: return "system / "#Name;
946   STRUCT_LIST(MAKE_STRUCT_CASE)
947 #undef MAKE_STRUCT_CASE
948     default: return "system";
949   }
950 }
951 
952 
EstimateObjectsCount(HeapIterator * iterator)953 int V8HeapExplorer::EstimateObjectsCount(HeapIterator* iterator) {
954   int objects_count = 0;
955   for (HeapObject* obj = iterator->next();
956        obj != NULL;
957        obj = iterator->next()) {
958     objects_count++;
959   }
960   return objects_count;
961 }
962 
963 
964 class IndexedReferencesExtractor : public ObjectVisitor {
965  public:
IndexedReferencesExtractor(V8HeapExplorer * generator,HeapObject * parent_obj,int parent)966   IndexedReferencesExtractor(V8HeapExplorer* generator, HeapObject* parent_obj,
967                              int parent)
968       : generator_(generator),
969         parent_obj_(parent_obj),
970         parent_start_(HeapObject::RawField(parent_obj_, 0)),
971         parent_end_(HeapObject::RawField(parent_obj_, parent_obj_->Size())),
972         parent_(parent),
973         next_index_(0) {}
VisitCodeEntry(Address entry_address)974   void VisitCodeEntry(Address entry_address) override {
975      Code* code = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
976      generator_->SetInternalReference(parent_obj_, parent_, "code", code);
977      generator_->TagCodeObject(code);
978   }
VisitPointers(Object ** start,Object ** end)979   void VisitPointers(Object** start, Object** end) override {
980     for (Object** p = start; p < end; p++) {
981       int index = static_cast<int>(p - HeapObject::RawField(parent_obj_, 0));
982       ++next_index_;
983       // |p| could be outside of the object, e.g., while visiting RelocInfo of
984       // code objects.
985       if (p >= parent_start_ && p < parent_end_ && generator_->marks_[index]) {
986         generator_->marks_[index] = false;
987         continue;
988       }
989       generator_->SetHiddenReference(parent_obj_, parent_, next_index_, *p,
990                                      index * kPointerSize);
991     }
992   }
993 
994  private:
995   V8HeapExplorer* generator_;
996   HeapObject* parent_obj_;
997   Object** parent_start_;
998   Object** parent_end_;
999   int parent_;
1000   int next_index_;
1001 };
1002 
1003 
ExtractReferencesPass1(int entry,HeapObject * obj)1004 bool V8HeapExplorer::ExtractReferencesPass1(int entry, HeapObject* obj) {
1005   if (obj->IsFixedArray()) return false;  // FixedArrays are processed on pass 2
1006 
1007   if (obj->IsJSGlobalProxy()) {
1008     ExtractJSGlobalProxyReferences(entry, JSGlobalProxy::cast(obj));
1009   } else if (obj->IsJSArrayBuffer()) {
1010     ExtractJSArrayBufferReferences(entry, JSArrayBuffer::cast(obj));
1011   } else if (obj->IsJSObject()) {
1012     if (obj->IsJSWeakSet()) {
1013       ExtractJSWeakCollectionReferences(entry, JSWeakSet::cast(obj));
1014     } else if (obj->IsJSWeakMap()) {
1015       ExtractJSWeakCollectionReferences(entry, JSWeakMap::cast(obj));
1016     } else if (obj->IsJSSet()) {
1017       ExtractJSCollectionReferences(entry, JSSet::cast(obj));
1018     } else if (obj->IsJSMap()) {
1019       ExtractJSCollectionReferences(entry, JSMap::cast(obj));
1020     }
1021     ExtractJSObjectReferences(entry, JSObject::cast(obj));
1022   } else if (obj->IsString()) {
1023     ExtractStringReferences(entry, String::cast(obj));
1024   } else if (obj->IsSymbol()) {
1025     ExtractSymbolReferences(entry, Symbol::cast(obj));
1026   } else if (obj->IsMap()) {
1027     ExtractMapReferences(entry, Map::cast(obj));
1028   } else if (obj->IsSharedFunctionInfo()) {
1029     ExtractSharedFunctionInfoReferences(entry, SharedFunctionInfo::cast(obj));
1030   } else if (obj->IsScript()) {
1031     ExtractScriptReferences(entry, Script::cast(obj));
1032   } else if (obj->IsAccessorInfo()) {
1033     ExtractAccessorInfoReferences(entry, AccessorInfo::cast(obj));
1034   } else if (obj->IsAccessorPair()) {
1035     ExtractAccessorPairReferences(entry, AccessorPair::cast(obj));
1036   } else if (obj->IsCode()) {
1037     ExtractCodeReferences(entry, Code::cast(obj));
1038   } else if (obj->IsBox()) {
1039     ExtractBoxReferences(entry, Box::cast(obj));
1040   } else if (obj->IsCell()) {
1041     ExtractCellReferences(entry, Cell::cast(obj));
1042   } else if (obj->IsWeakCell()) {
1043     ExtractWeakCellReferences(entry, WeakCell::cast(obj));
1044   } else if (obj->IsPropertyCell()) {
1045     ExtractPropertyCellReferences(entry, PropertyCell::cast(obj));
1046   } else if (obj->IsAllocationSite()) {
1047     ExtractAllocationSiteReferences(entry, AllocationSite::cast(obj));
1048   }
1049   return true;
1050 }
1051 
1052 
ExtractReferencesPass2(int entry,HeapObject * obj)1053 bool V8HeapExplorer::ExtractReferencesPass2(int entry, HeapObject* obj) {
1054   if (!obj->IsFixedArray()) return false;
1055 
1056   if (obj->IsContext()) {
1057     ExtractContextReferences(entry, Context::cast(obj));
1058   } else {
1059     ExtractFixedArrayReferences(entry, FixedArray::cast(obj));
1060   }
1061   return true;
1062 }
1063 
1064 
ExtractJSGlobalProxyReferences(int entry,JSGlobalProxy * proxy)1065 void V8HeapExplorer::ExtractJSGlobalProxyReferences(
1066     int entry, JSGlobalProxy* proxy) {
1067   SetInternalReference(proxy, entry,
1068                        "native_context", proxy->native_context(),
1069                        JSGlobalProxy::kNativeContextOffset);
1070 }
1071 
1072 
ExtractJSObjectReferences(int entry,JSObject * js_obj)1073 void V8HeapExplorer::ExtractJSObjectReferences(
1074     int entry, JSObject* js_obj) {
1075   HeapObject* obj = js_obj;
1076   ExtractPropertyReferences(js_obj, entry);
1077   ExtractElementReferences(js_obj, entry);
1078   ExtractInternalReferences(js_obj, entry);
1079   PrototypeIterator iter(heap_->isolate(), js_obj);
1080   SetPropertyReference(obj, entry, heap_->proto_string(), iter.GetCurrent());
1081   if (obj->IsJSBoundFunction()) {
1082     JSBoundFunction* js_fun = JSBoundFunction::cast(obj);
1083     TagObject(js_fun->bound_arguments(), "(bound arguments)");
1084     SetInternalReference(js_fun, entry, "bindings", js_fun->bound_arguments(),
1085                          JSBoundFunction::kBoundArgumentsOffset);
1086     SetInternalReference(js_obj, entry, "bound_this", js_fun->bound_this(),
1087                          JSBoundFunction::kBoundThisOffset);
1088     SetInternalReference(js_obj, entry, "bound_function",
1089                          js_fun->bound_target_function(),
1090                          JSBoundFunction::kBoundTargetFunctionOffset);
1091     FixedArray* bindings = js_fun->bound_arguments();
1092     for (int i = 0; i < bindings->length(); i++) {
1093       const char* reference_name = names_->GetFormatted("bound_argument_%d", i);
1094       SetNativeBindReference(js_obj, entry, reference_name, bindings->get(i));
1095     }
1096   } else if (obj->IsJSFunction()) {
1097     JSFunction* js_fun = JSFunction::cast(js_obj);
1098     Object* proto_or_map = js_fun->prototype_or_initial_map();
1099     if (!proto_or_map->IsTheHole(heap_->isolate())) {
1100       if (!proto_or_map->IsMap()) {
1101         SetPropertyReference(
1102             obj, entry,
1103             heap_->prototype_string(), proto_or_map,
1104             NULL,
1105             JSFunction::kPrototypeOrInitialMapOffset);
1106       } else {
1107         SetPropertyReference(
1108             obj, entry,
1109             heap_->prototype_string(), js_fun->prototype());
1110         SetInternalReference(
1111             obj, entry, "initial_map", proto_or_map,
1112             JSFunction::kPrototypeOrInitialMapOffset);
1113       }
1114     }
1115     SharedFunctionInfo* shared_info = js_fun->shared();
1116     TagObject(js_fun->literals(), "(function literals)");
1117     SetInternalReference(js_fun, entry, "literals", js_fun->literals(),
1118                          JSFunction::kLiteralsOffset);
1119     TagObject(shared_info, "(shared function info)");
1120     SetInternalReference(js_fun, entry,
1121                          "shared", shared_info,
1122                          JSFunction::kSharedFunctionInfoOffset);
1123     TagObject(js_fun->context(), "(context)");
1124     SetInternalReference(js_fun, entry,
1125                          "context", js_fun->context(),
1126                          JSFunction::kContextOffset);
1127     // Ensure no new weak references appeared in JSFunction.
1128     STATIC_ASSERT(JSFunction::kCodeEntryOffset ==
1129                   JSFunction::kNonWeakFieldsEndOffset);
1130     STATIC_ASSERT(JSFunction::kCodeEntryOffset + kPointerSize ==
1131                   JSFunction::kNextFunctionLinkOffset);
1132     STATIC_ASSERT(JSFunction::kNextFunctionLinkOffset + kPointerSize
1133                  == JSFunction::kSize);
1134   } else if (obj->IsJSGlobalObject()) {
1135     JSGlobalObject* global_obj = JSGlobalObject::cast(obj);
1136     SetInternalReference(global_obj, entry, "native_context",
1137                          global_obj->native_context(),
1138                          JSGlobalObject::kNativeContextOffset);
1139     SetInternalReference(global_obj, entry, "global_proxy",
1140                          global_obj->global_proxy(),
1141                          JSGlobalObject::kGlobalProxyOffset);
1142     STATIC_ASSERT(JSGlobalObject::kSize - JSObject::kHeaderSize ==
1143                   2 * kPointerSize);
1144   } else if (obj->IsJSArrayBufferView()) {
1145     JSArrayBufferView* view = JSArrayBufferView::cast(obj);
1146     SetInternalReference(view, entry, "buffer", view->buffer(),
1147                          JSArrayBufferView::kBufferOffset);
1148   }
1149   TagObject(js_obj->properties(), "(object properties)");
1150   SetInternalReference(obj, entry,
1151                        "properties", js_obj->properties(),
1152                        JSObject::kPropertiesOffset);
1153   TagObject(js_obj->elements(), "(object elements)");
1154   SetInternalReference(obj, entry,
1155                        "elements", js_obj->elements(),
1156                        JSObject::kElementsOffset);
1157 }
1158 
1159 
ExtractStringReferences(int entry,String * string)1160 void V8HeapExplorer::ExtractStringReferences(int entry, String* string) {
1161   if (string->IsConsString()) {
1162     ConsString* cs = ConsString::cast(string);
1163     SetInternalReference(cs, entry, "first", cs->first(),
1164                          ConsString::kFirstOffset);
1165     SetInternalReference(cs, entry, "second", cs->second(),
1166                          ConsString::kSecondOffset);
1167   } else if (string->IsSlicedString()) {
1168     SlicedString* ss = SlicedString::cast(string);
1169     SetInternalReference(ss, entry, "parent", ss->parent(),
1170                          SlicedString::kParentOffset);
1171   }
1172 }
1173 
1174 
ExtractSymbolReferences(int entry,Symbol * symbol)1175 void V8HeapExplorer::ExtractSymbolReferences(int entry, Symbol* symbol) {
1176   SetInternalReference(symbol, entry,
1177                        "name", symbol->name(),
1178                        Symbol::kNameOffset);
1179 }
1180 
1181 
ExtractJSCollectionReferences(int entry,JSCollection * collection)1182 void V8HeapExplorer::ExtractJSCollectionReferences(int entry,
1183                                                    JSCollection* collection) {
1184   SetInternalReference(collection, entry, "table", collection->table(),
1185                        JSCollection::kTableOffset);
1186 }
1187 
ExtractJSWeakCollectionReferences(int entry,JSWeakCollection * obj)1188 void V8HeapExplorer::ExtractJSWeakCollectionReferences(int entry,
1189                                                        JSWeakCollection* obj) {
1190   if (obj->table()->IsHashTable()) {
1191     ObjectHashTable* table = ObjectHashTable::cast(obj->table());
1192     TagFixedArraySubType(table, JS_WEAK_COLLECTION_SUB_TYPE);
1193   }
1194   SetInternalReference(obj, entry, "table", obj->table(),
1195                        JSWeakCollection::kTableOffset);
1196 }
1197 
ExtractContextReferences(int entry,Context * context)1198 void V8HeapExplorer::ExtractContextReferences(int entry, Context* context) {
1199   if (context == context->declaration_context()) {
1200     ScopeInfo* scope_info = context->closure()->shared()->scope_info();
1201     // Add context allocated locals.
1202     int context_locals = scope_info->ContextLocalCount();
1203     for (int i = 0; i < context_locals; ++i) {
1204       String* local_name = scope_info->ContextLocalName(i);
1205       int idx = Context::MIN_CONTEXT_SLOTS + i;
1206       SetContextReference(context, entry, local_name, context->get(idx),
1207                           Context::OffsetOfElementAt(idx));
1208     }
1209     if (scope_info->HasFunctionName()) {
1210       String* name = scope_info->FunctionName();
1211       int idx = scope_info->FunctionContextSlotIndex(name);
1212       if (idx >= 0) {
1213         SetContextReference(context, entry, name, context->get(idx),
1214                             Context::OffsetOfElementAt(idx));
1215       }
1216     }
1217   }
1218 
1219 #define EXTRACT_CONTEXT_FIELD(index, type, name) \
1220   if (Context::index < Context::FIRST_WEAK_SLOT || \
1221       Context::index == Context::MAP_CACHE_INDEX) { \
1222     SetInternalReference(context, entry, #name, context->get(Context::index), \
1223         FixedArray::OffsetOfElementAt(Context::index)); \
1224   } else { \
1225     SetWeakReference(context, entry, #name, context->get(Context::index), \
1226         FixedArray::OffsetOfElementAt(Context::index)); \
1227   }
1228   EXTRACT_CONTEXT_FIELD(CLOSURE_INDEX, JSFunction, closure);
1229   EXTRACT_CONTEXT_FIELD(PREVIOUS_INDEX, Context, previous);
1230   EXTRACT_CONTEXT_FIELD(EXTENSION_INDEX, HeapObject, extension);
1231   EXTRACT_CONTEXT_FIELD(NATIVE_CONTEXT_INDEX, Context, native_context);
1232   if (context->IsNativeContext()) {
1233     TagObject(context->normalized_map_cache(), "(context norm. map cache)");
1234     TagObject(context->embedder_data(), "(context data)");
1235     NATIVE_CONTEXT_FIELDS(EXTRACT_CONTEXT_FIELD)
1236     EXTRACT_CONTEXT_FIELD(OPTIMIZED_FUNCTIONS_LIST, unused,
1237                           optimized_functions_list);
1238     EXTRACT_CONTEXT_FIELD(OPTIMIZED_CODE_LIST, unused, optimized_code_list);
1239     EXTRACT_CONTEXT_FIELD(DEOPTIMIZED_CODE_LIST, unused, deoptimized_code_list);
1240 #undef EXTRACT_CONTEXT_FIELD
1241     STATIC_ASSERT(Context::OPTIMIZED_FUNCTIONS_LIST ==
1242                   Context::FIRST_WEAK_SLOT);
1243     STATIC_ASSERT(Context::NEXT_CONTEXT_LINK + 1 ==
1244                   Context::NATIVE_CONTEXT_SLOTS);
1245     STATIC_ASSERT(Context::FIRST_WEAK_SLOT + 4 ==
1246                   Context::NATIVE_CONTEXT_SLOTS);
1247   }
1248 }
1249 
1250 
ExtractMapReferences(int entry,Map * map)1251 void V8HeapExplorer::ExtractMapReferences(int entry, Map* map) {
1252   Object* raw_transitions_or_prototype_info = map->raw_transitions();
1253   if (TransitionArray::IsFullTransitionArray(
1254           raw_transitions_or_prototype_info)) {
1255     TransitionArray* transitions =
1256         TransitionArray::cast(raw_transitions_or_prototype_info);
1257     if (map->CanTransition() && transitions->HasPrototypeTransitions()) {
1258       TagObject(transitions->GetPrototypeTransitions(),
1259                 "(prototype transitions)");
1260     }
1261 
1262     TagObject(transitions, "(transition array)");
1263     SetInternalReference(map, entry, "transitions", transitions,
1264                          Map::kTransitionsOrPrototypeInfoOffset);
1265   } else if (TransitionArray::IsSimpleTransition(
1266                  raw_transitions_or_prototype_info)) {
1267     TagObject(raw_transitions_or_prototype_info, "(transition)");
1268     SetInternalReference(map, entry, "transition",
1269                          raw_transitions_or_prototype_info,
1270                          Map::kTransitionsOrPrototypeInfoOffset);
1271   } else if (map->is_prototype_map()) {
1272     TagObject(raw_transitions_or_prototype_info, "prototype_info");
1273     SetInternalReference(map, entry, "prototype_info",
1274                          raw_transitions_or_prototype_info,
1275                          Map::kTransitionsOrPrototypeInfoOffset);
1276   }
1277   DescriptorArray* descriptors = map->instance_descriptors();
1278   TagObject(descriptors, "(map descriptors)");
1279   SetInternalReference(map, entry, "descriptors", descriptors,
1280                        Map::kDescriptorsOffset);
1281   SetInternalReference(map, entry, "code_cache", map->code_cache(),
1282                        Map::kCodeCacheOffset);
1283   SetInternalReference(map, entry, "prototype", map->prototype(),
1284                        Map::kPrototypeOffset);
1285 #if V8_DOUBLE_FIELDS_UNBOXING
1286   if (FLAG_unbox_double_fields) {
1287     SetInternalReference(map, entry, "layout_descriptor",
1288                          map->layout_descriptor(),
1289                          Map::kLayoutDescriptorOffset);
1290   }
1291 #endif
1292   Object* constructor_or_backpointer = map->constructor_or_backpointer();
1293   if (constructor_or_backpointer->IsMap()) {
1294     TagObject(constructor_or_backpointer, "(back pointer)");
1295     SetInternalReference(map, entry, "back_pointer", constructor_or_backpointer,
1296                          Map::kConstructorOrBackPointerOffset);
1297   } else {
1298     SetInternalReference(map, entry, "constructor", constructor_or_backpointer,
1299                          Map::kConstructorOrBackPointerOffset);
1300   }
1301   TagObject(map->dependent_code(), "(dependent code)");
1302   SetInternalReference(map, entry, "dependent_code", map->dependent_code(),
1303                        Map::kDependentCodeOffset);
1304   TagObject(map->weak_cell_cache(), "(weak cell)");
1305   SetInternalReference(map, entry, "weak_cell_cache", map->weak_cell_cache(),
1306                        Map::kWeakCellCacheOffset);
1307 }
1308 
1309 
ExtractSharedFunctionInfoReferences(int entry,SharedFunctionInfo * shared)1310 void V8HeapExplorer::ExtractSharedFunctionInfoReferences(
1311     int entry, SharedFunctionInfo* shared) {
1312   HeapObject* obj = shared;
1313   String* shared_name = shared->DebugName();
1314   const char* name = NULL;
1315   if (shared_name != heap_->empty_string()) {
1316     name = names_->GetName(shared_name);
1317     TagObject(shared->code(), names_->GetFormatted("(code for %s)", name));
1318   } else {
1319     TagObject(shared->code(), names_->GetFormatted("(%s code)",
1320         Code::Kind2String(shared->code()->kind())));
1321   }
1322 
1323   SetInternalReference(obj, entry,
1324                        "name", shared->name(),
1325                        SharedFunctionInfo::kNameOffset);
1326   SetInternalReference(obj, entry,
1327                        "code", shared->code(),
1328                        SharedFunctionInfo::kCodeOffset);
1329   TagObject(shared->scope_info(), "(function scope info)");
1330   SetInternalReference(obj, entry,
1331                        "scope_info", shared->scope_info(),
1332                        SharedFunctionInfo::kScopeInfoOffset);
1333   SetInternalReference(obj, entry,
1334                        "instance_class_name", shared->instance_class_name(),
1335                        SharedFunctionInfo::kInstanceClassNameOffset);
1336   SetInternalReference(obj, entry,
1337                        "script", shared->script(),
1338                        SharedFunctionInfo::kScriptOffset);
1339   const char* construct_stub_name = name ?
1340       names_->GetFormatted("(construct stub code for %s)", name) :
1341       "(construct stub code)";
1342   TagObject(shared->construct_stub(), construct_stub_name);
1343   SetInternalReference(obj, entry,
1344                        "construct_stub", shared->construct_stub(),
1345                        SharedFunctionInfo::kConstructStubOffset);
1346   SetInternalReference(obj, entry,
1347                        "function_data", shared->function_data(),
1348                        SharedFunctionInfo::kFunctionDataOffset);
1349   SetInternalReference(obj, entry,
1350                        "debug_info", shared->debug_info(),
1351                        SharedFunctionInfo::kDebugInfoOffset);
1352   SetInternalReference(obj, entry, "function_identifier",
1353                        shared->function_identifier(),
1354                        SharedFunctionInfo::kFunctionIdentifierOffset);
1355   SetInternalReference(obj, entry,
1356                        "optimized_code_map", shared->optimized_code_map(),
1357                        SharedFunctionInfo::kOptimizedCodeMapOffset);
1358   SetInternalReference(obj, entry, "feedback_metadata",
1359                        shared->feedback_metadata(),
1360                        SharedFunctionInfo::kFeedbackMetadataOffset);
1361 }
1362 
1363 
ExtractScriptReferences(int entry,Script * script)1364 void V8HeapExplorer::ExtractScriptReferences(int entry, Script* script) {
1365   HeapObject* obj = script;
1366   SetInternalReference(obj, entry,
1367                        "source", script->source(),
1368                        Script::kSourceOffset);
1369   SetInternalReference(obj, entry,
1370                        "name", script->name(),
1371                        Script::kNameOffset);
1372   SetInternalReference(obj, entry,
1373                        "context_data", script->context_data(),
1374                        Script::kContextOffset);
1375   TagObject(script->line_ends(), "(script line ends)");
1376   SetInternalReference(obj, entry,
1377                        "line_ends", script->line_ends(),
1378                        Script::kLineEndsOffset);
1379 }
1380 
1381 
ExtractAccessorInfoReferences(int entry,AccessorInfo * accessor_info)1382 void V8HeapExplorer::ExtractAccessorInfoReferences(
1383     int entry, AccessorInfo* accessor_info) {
1384   SetInternalReference(accessor_info, entry, "name", accessor_info->name(),
1385                        AccessorInfo::kNameOffset);
1386   SetInternalReference(accessor_info, entry, "expected_receiver_type",
1387                        accessor_info->expected_receiver_type(),
1388                        AccessorInfo::kExpectedReceiverTypeOffset);
1389   if (accessor_info->IsAccessorInfo()) {
1390     AccessorInfo* executable_accessor_info = AccessorInfo::cast(accessor_info);
1391     SetInternalReference(executable_accessor_info, entry, "getter",
1392                          executable_accessor_info->getter(),
1393                          AccessorInfo::kGetterOffset);
1394     SetInternalReference(executable_accessor_info, entry, "setter",
1395                          executable_accessor_info->setter(),
1396                          AccessorInfo::kSetterOffset);
1397     SetInternalReference(executable_accessor_info, entry, "data",
1398                          executable_accessor_info->data(),
1399                          AccessorInfo::kDataOffset);
1400   }
1401 }
1402 
1403 
ExtractAccessorPairReferences(int entry,AccessorPair * accessors)1404 void V8HeapExplorer::ExtractAccessorPairReferences(
1405     int entry, AccessorPair* accessors) {
1406   SetInternalReference(accessors, entry, "getter", accessors->getter(),
1407                        AccessorPair::kGetterOffset);
1408   SetInternalReference(accessors, entry, "setter", accessors->setter(),
1409                        AccessorPair::kSetterOffset);
1410 }
1411 
1412 
TagBuiltinCodeObject(Code * code,const char * name)1413 void V8HeapExplorer::TagBuiltinCodeObject(Code* code, const char* name) {
1414   TagObject(code, names_->GetFormatted("(%s builtin)", name));
1415 }
1416 
1417 
TagCodeObject(Code * code)1418 void V8HeapExplorer::TagCodeObject(Code* code) {
1419   if (code->kind() == Code::STUB) {
1420     TagObject(code, names_->GetFormatted(
1421                         "(%s code)",
1422                         CodeStub::MajorName(CodeStub::GetMajorKey(code))));
1423   }
1424 }
1425 
1426 
ExtractCodeReferences(int entry,Code * code)1427 void V8HeapExplorer::ExtractCodeReferences(int entry, Code* code) {
1428   TagCodeObject(code);
1429   TagObject(code->relocation_info(), "(code relocation info)");
1430   SetInternalReference(code, entry,
1431                        "relocation_info", code->relocation_info(),
1432                        Code::kRelocationInfoOffset);
1433   SetInternalReference(code, entry,
1434                        "handler_table", code->handler_table(),
1435                        Code::kHandlerTableOffset);
1436   TagObject(code->deoptimization_data(), "(code deopt data)");
1437   SetInternalReference(code, entry,
1438                        "deoptimization_data", code->deoptimization_data(),
1439                        Code::kDeoptimizationDataOffset);
1440   TagObject(code->source_position_table(), "(source position table)");
1441   SetInternalReference(code, entry, "source_position_table",
1442                        code->source_position_table(),
1443                        Code::kSourcePositionTableOffset);
1444   if (code->kind() == Code::FUNCTION) {
1445     SetInternalReference(code, entry, "type_feedback_info",
1446                          code->type_feedback_info(),
1447                          Code::kTypeFeedbackInfoOffset);
1448   }
1449   SetInternalReference(code, entry, "gc_metadata", code->gc_metadata(),
1450                        Code::kGCMetadataOffset);
1451 }
1452 
ExtractBoxReferences(int entry,Box * box)1453 void V8HeapExplorer::ExtractBoxReferences(int entry, Box* box) {
1454   SetInternalReference(box, entry, "value", box->value(), Box::kValueOffset);
1455 }
1456 
ExtractCellReferences(int entry,Cell * cell)1457 void V8HeapExplorer::ExtractCellReferences(int entry, Cell* cell) {
1458   SetInternalReference(cell, entry, "value", cell->value(), Cell::kValueOffset);
1459 }
1460 
ExtractWeakCellReferences(int entry,WeakCell * weak_cell)1461 void V8HeapExplorer::ExtractWeakCellReferences(int entry, WeakCell* weak_cell) {
1462   TagObject(weak_cell, "(weak cell)");
1463   SetWeakReference(weak_cell, entry, "value", weak_cell->value(),
1464                    WeakCell::kValueOffset);
1465 }
1466 
ExtractPropertyCellReferences(int entry,PropertyCell * cell)1467 void V8HeapExplorer::ExtractPropertyCellReferences(int entry,
1468                                                    PropertyCell* cell) {
1469   SetInternalReference(cell, entry, "value", cell->value(),
1470                        PropertyCell::kValueOffset);
1471   TagObject(cell->dependent_code(), "(dependent code)");
1472   SetInternalReference(cell, entry, "dependent_code", cell->dependent_code(),
1473                        PropertyCell::kDependentCodeOffset);
1474 }
1475 
1476 
ExtractAllocationSiteReferences(int entry,AllocationSite * site)1477 void V8HeapExplorer::ExtractAllocationSiteReferences(int entry,
1478                                                      AllocationSite* site) {
1479   SetInternalReference(site, entry, "transition_info", site->transition_info(),
1480                        AllocationSite::kTransitionInfoOffset);
1481   SetInternalReference(site, entry, "nested_site", site->nested_site(),
1482                        AllocationSite::kNestedSiteOffset);
1483   TagObject(site->dependent_code(), "(dependent code)");
1484   SetInternalReference(site, entry, "dependent_code", site->dependent_code(),
1485                        AllocationSite::kDependentCodeOffset);
1486   // Do not visit weak_next as it is not visited by the StaticVisitor,
1487   // and we're not very interested in weak_next field here.
1488   STATIC_ASSERT(AllocationSite::kWeakNextOffset >=
1489                 AllocationSite::kPointerFieldsEndOffset);
1490 }
1491 
1492 
1493 class JSArrayBufferDataEntryAllocator : public HeapEntriesAllocator {
1494  public:
JSArrayBufferDataEntryAllocator(size_t size,V8HeapExplorer * explorer)1495   JSArrayBufferDataEntryAllocator(size_t size, V8HeapExplorer* explorer)
1496       : size_(size)
1497       , explorer_(explorer) {
1498   }
AllocateEntry(HeapThing ptr)1499   virtual HeapEntry* AllocateEntry(HeapThing ptr) {
1500     return explorer_->AddEntry(
1501         static_cast<Address>(ptr),
1502         HeapEntry::kNative, "system / JSArrayBufferData", size_);
1503   }
1504  private:
1505   size_t size_;
1506   V8HeapExplorer* explorer_;
1507 };
1508 
1509 
ExtractJSArrayBufferReferences(int entry,JSArrayBuffer * buffer)1510 void V8HeapExplorer::ExtractJSArrayBufferReferences(
1511     int entry, JSArrayBuffer* buffer) {
1512   // Setup a reference to a native memory backing_store object.
1513   if (!buffer->backing_store())
1514     return;
1515   size_t data_size = NumberToSize(buffer->byte_length());
1516   JSArrayBufferDataEntryAllocator allocator(data_size, this);
1517   HeapEntry* data_entry =
1518       filler_->FindOrAddEntry(buffer->backing_store(), &allocator);
1519   filler_->SetNamedReference(HeapGraphEdge::kInternal,
1520                              entry, "backing_store", data_entry);
1521 }
1522 
ExtractFixedArrayReferences(int entry,FixedArray * array)1523 void V8HeapExplorer::ExtractFixedArrayReferences(int entry, FixedArray* array) {
1524   auto it = array_types_.find(array);
1525   if (it == array_types_.end()) {
1526     for (int i = 0, l = array->length(); i < l; ++i) {
1527       SetInternalReference(array, entry, i, array->get(i),
1528                            array->OffsetOfElementAt(i));
1529     }
1530     return;
1531   }
1532   switch (it->second) {
1533     case JS_WEAK_COLLECTION_SUB_TYPE:
1534       for (int i = 0, l = array->length(); i < l; ++i) {
1535         SetWeakReference(array, entry, i, array->get(i),
1536                          array->OffsetOfElementAt(i));
1537       }
1538       break;
1539 
1540     // TODO(alph): Add special processing for other types of FixedArrays.
1541 
1542     default:
1543       for (int i = 0, l = array->length(); i < l; ++i) {
1544         SetInternalReference(array, entry, i, array->get(i),
1545                              array->OffsetOfElementAt(i));
1546       }
1547       break;
1548   }
1549 }
1550 
ExtractPropertyReferences(JSObject * js_obj,int entry)1551 void V8HeapExplorer::ExtractPropertyReferences(JSObject* js_obj, int entry) {
1552   Isolate* isolate = js_obj->GetIsolate();
1553   if (js_obj->HasFastProperties()) {
1554     DescriptorArray* descs = js_obj->map()->instance_descriptors();
1555     int real_size = js_obj->map()->NumberOfOwnDescriptors();
1556     for (int i = 0; i < real_size; i++) {
1557       PropertyDetails details = descs->GetDetails(i);
1558       switch (details.location()) {
1559         case kField: {
1560           Representation r = details.representation();
1561           if (r.IsSmi() || r.IsDouble()) break;
1562 
1563           Name* k = descs->GetKey(i);
1564           FieldIndex field_index = FieldIndex::ForDescriptor(js_obj->map(), i);
1565           Object* value = js_obj->RawFastPropertyAt(field_index);
1566           int field_offset =
1567               field_index.is_inobject() ? field_index.offset() : -1;
1568 
1569           SetDataOrAccessorPropertyReference(details.kind(), js_obj, entry, k,
1570                                              value, NULL, field_offset);
1571           break;
1572         }
1573         case kDescriptor:
1574           SetDataOrAccessorPropertyReference(details.kind(), js_obj, entry,
1575                                              descs->GetKey(i),
1576                                              descs->GetValue(i));
1577           break;
1578       }
1579     }
1580   } else if (js_obj->IsJSGlobalObject()) {
1581     // We assume that global objects can only have slow properties.
1582     GlobalDictionary* dictionary = js_obj->global_dictionary();
1583     int length = dictionary->Capacity();
1584     for (int i = 0; i < length; ++i) {
1585       Object* k = dictionary->KeyAt(i);
1586       if (dictionary->IsKey(isolate, k)) {
1587         DCHECK(dictionary->ValueAt(i)->IsPropertyCell());
1588         PropertyCell* cell = PropertyCell::cast(dictionary->ValueAt(i));
1589         Object* value = cell->value();
1590         PropertyDetails details = cell->property_details();
1591         SetDataOrAccessorPropertyReference(details.kind(), js_obj, entry,
1592                                            Name::cast(k), value);
1593       }
1594     }
1595   } else {
1596     NameDictionary* dictionary = js_obj->property_dictionary();
1597     int length = dictionary->Capacity();
1598     for (int i = 0; i < length; ++i) {
1599       Object* k = dictionary->KeyAt(i);
1600       if (dictionary->IsKey(isolate, k)) {
1601         Object* value = dictionary->ValueAt(i);
1602         PropertyDetails details = dictionary->DetailsAt(i);
1603         SetDataOrAccessorPropertyReference(details.kind(), js_obj, entry,
1604                                            Name::cast(k), value);
1605       }
1606     }
1607   }
1608 }
1609 
1610 
ExtractAccessorPairProperty(JSObject * js_obj,int entry,Name * key,Object * callback_obj,int field_offset)1611 void V8HeapExplorer::ExtractAccessorPairProperty(JSObject* js_obj, int entry,
1612                                                  Name* key,
1613                                                  Object* callback_obj,
1614                                                  int field_offset) {
1615   if (!callback_obj->IsAccessorPair()) return;
1616   AccessorPair* accessors = AccessorPair::cast(callback_obj);
1617   SetPropertyReference(js_obj, entry, key, accessors, NULL, field_offset);
1618   Object* getter = accessors->getter();
1619   if (!getter->IsOddball()) {
1620     SetPropertyReference(js_obj, entry, key, getter, "get %s");
1621   }
1622   Object* setter = accessors->setter();
1623   if (!setter->IsOddball()) {
1624     SetPropertyReference(js_obj, entry, key, setter, "set %s");
1625   }
1626 }
1627 
1628 
ExtractElementReferences(JSObject * js_obj,int entry)1629 void V8HeapExplorer::ExtractElementReferences(JSObject* js_obj, int entry) {
1630   Isolate* isolate = js_obj->GetIsolate();
1631   if (js_obj->HasFastObjectElements()) {
1632     FixedArray* elements = FixedArray::cast(js_obj->elements());
1633     int length = js_obj->IsJSArray() ?
1634         Smi::cast(JSArray::cast(js_obj)->length())->value() :
1635         elements->length();
1636     for (int i = 0; i < length; ++i) {
1637       if (!elements->get(i)->IsTheHole(isolate)) {
1638         SetElementReference(js_obj, entry, i, elements->get(i));
1639       }
1640     }
1641   } else if (js_obj->HasDictionaryElements()) {
1642     SeededNumberDictionary* dictionary = js_obj->element_dictionary();
1643     int length = dictionary->Capacity();
1644     for (int i = 0; i < length; ++i) {
1645       Object* k = dictionary->KeyAt(i);
1646       if (dictionary->IsKey(isolate, k)) {
1647         DCHECK(k->IsNumber());
1648         uint32_t index = static_cast<uint32_t>(k->Number());
1649         SetElementReference(js_obj, entry, index, dictionary->ValueAt(i));
1650       }
1651     }
1652   }
1653 }
1654 
1655 
ExtractInternalReferences(JSObject * js_obj,int entry)1656 void V8HeapExplorer::ExtractInternalReferences(JSObject* js_obj, int entry) {
1657   int length = js_obj->GetInternalFieldCount();
1658   for (int i = 0; i < length; ++i) {
1659     Object* o = js_obj->GetInternalField(i);
1660     SetInternalReference(
1661         js_obj, entry, i, o, js_obj->GetInternalFieldOffset(i));
1662   }
1663 }
1664 
1665 
GetConstructorName(JSObject * object)1666 String* V8HeapExplorer::GetConstructorName(JSObject* object) {
1667   Isolate* isolate = object->GetIsolate();
1668   if (object->IsJSFunction()) return isolate->heap()->closure_string();
1669   DisallowHeapAllocation no_gc;
1670   HandleScope scope(isolate);
1671   return *JSReceiver::GetConstructorName(handle(object, isolate));
1672 }
1673 
1674 
GetEntry(Object * obj)1675 HeapEntry* V8HeapExplorer::GetEntry(Object* obj) {
1676   if (!obj->IsHeapObject()) return NULL;
1677   return filler_->FindOrAddEntry(obj, this);
1678 }
1679 
1680 
1681 class RootsReferencesExtractor : public ObjectVisitor {
1682  private:
1683   struct IndexTag {
IndexTagv8::internal::RootsReferencesExtractor::IndexTag1684     IndexTag(int index, VisitorSynchronization::SyncTag tag)
1685         : index(index), tag(tag) { }
1686     int index;
1687     VisitorSynchronization::SyncTag tag;
1688   };
1689 
1690  public:
RootsReferencesExtractor(Heap * heap)1691   explicit RootsReferencesExtractor(Heap* heap)
1692       : collecting_all_references_(false),
1693         previous_reference_count_(0),
1694         heap_(heap) {
1695   }
1696 
VisitPointers(Object ** start,Object ** end)1697   void VisitPointers(Object** start, Object** end) override {
1698     if (collecting_all_references_) {
1699       for (Object** p = start; p < end; p++) all_references_.Add(*p);
1700     } else {
1701       for (Object** p = start; p < end; p++) strong_references_.Add(*p);
1702     }
1703   }
1704 
SetCollectingAllReferences()1705   void SetCollectingAllReferences() { collecting_all_references_ = true; }
1706 
FillReferences(V8HeapExplorer * explorer)1707   void FillReferences(V8HeapExplorer* explorer) {
1708     DCHECK(strong_references_.length() <= all_references_.length());
1709     Builtins* builtins = heap_->isolate()->builtins();
1710     int strong_index = 0, all_index = 0, tags_index = 0, builtin_index = 0;
1711     while (all_index < all_references_.length()) {
1712       bool is_strong = strong_index < strong_references_.length()
1713           && strong_references_[strong_index] == all_references_[all_index];
1714       explorer->SetGcSubrootReference(reference_tags_[tags_index].tag,
1715                                       !is_strong,
1716                                       all_references_[all_index]);
1717       if (reference_tags_[tags_index].tag ==
1718           VisitorSynchronization::kBuiltins) {
1719         DCHECK(all_references_[all_index]->IsCode());
1720         explorer->TagBuiltinCodeObject(
1721             Code::cast(all_references_[all_index]),
1722             builtins->name(builtin_index++));
1723       }
1724       ++all_index;
1725       if (is_strong) ++strong_index;
1726       if (reference_tags_[tags_index].index == all_index) ++tags_index;
1727     }
1728   }
1729 
Synchronize(VisitorSynchronization::SyncTag tag)1730   void Synchronize(VisitorSynchronization::SyncTag tag) override {
1731     if (collecting_all_references_ &&
1732         previous_reference_count_ != all_references_.length()) {
1733       previous_reference_count_ = all_references_.length();
1734       reference_tags_.Add(IndexTag(previous_reference_count_, tag));
1735     }
1736   }
1737 
1738  private:
1739   bool collecting_all_references_;
1740   List<Object*> strong_references_;
1741   List<Object*> all_references_;
1742   int previous_reference_count_;
1743   List<IndexTag> reference_tags_;
1744   Heap* heap_;
1745 };
1746 
1747 
IterateAndExtractReferences(SnapshotFiller * filler)1748 bool V8HeapExplorer::IterateAndExtractReferences(
1749     SnapshotFiller* filler) {
1750   filler_ = filler;
1751 
1752   // Create references to the synthetic roots.
1753   SetRootGcRootsReference();
1754   for (int tag = 0; tag < VisitorSynchronization::kNumberOfSyncTags; tag++) {
1755     SetGcRootsReference(static_cast<VisitorSynchronization::SyncTag>(tag));
1756   }
1757 
1758   // Make sure builtin code objects get their builtin tags
1759   // first. Otherwise a particular JSFunction object could set
1760   // its custom name to a generic builtin.
1761   RootsReferencesExtractor extractor(heap_);
1762   heap_->IterateRoots(&extractor, VISIT_ONLY_STRONG);
1763   extractor.SetCollectingAllReferences();
1764   heap_->IterateRoots(&extractor, VISIT_ALL);
1765   extractor.FillReferences(this);
1766 
1767   // We have to do two passes as sometimes FixedArrays are used
1768   // to weakly hold their items, and it's impossible to distinguish
1769   // between these cases without processing the array owner first.
1770   bool interrupted =
1771       IterateAndExtractSinglePass<&V8HeapExplorer::ExtractReferencesPass1>() ||
1772       IterateAndExtractSinglePass<&V8HeapExplorer::ExtractReferencesPass2>();
1773 
1774   if (interrupted) {
1775     filler_ = NULL;
1776     return false;
1777   }
1778 
1779   filler_ = NULL;
1780   return progress_->ProgressReport(true);
1781 }
1782 
1783 
1784 template<V8HeapExplorer::ExtractReferencesMethod extractor>
IterateAndExtractSinglePass()1785 bool V8HeapExplorer::IterateAndExtractSinglePass() {
1786   // Now iterate the whole heap.
1787   bool interrupted = false;
1788   HeapIterator iterator(heap_, HeapIterator::kFilterUnreachable);
1789   // Heap iteration with filtering must be finished in any case.
1790   for (HeapObject* obj = iterator.next();
1791        obj != NULL;
1792        obj = iterator.next(), progress_->ProgressStep()) {
1793     if (interrupted) continue;
1794 
1795     size_t max_pointer = obj->Size() / kPointerSize;
1796     if (max_pointer > marks_.size()) {
1797       // Clear the current bits.
1798       std::vector<bool>().swap(marks_);
1799       // Reallocate to right size.
1800       marks_.resize(max_pointer, false);
1801     }
1802 
1803     HeapEntry* heap_entry = GetEntry(obj);
1804     int entry = heap_entry->index();
1805     if ((this->*extractor)(entry, obj)) {
1806       SetInternalReference(obj, entry,
1807                            "map", obj->map(), HeapObject::kMapOffset);
1808       // Extract unvisited fields as hidden references and restore tags
1809       // of visited fields.
1810       IndexedReferencesExtractor refs_extractor(this, obj, entry);
1811       obj->Iterate(&refs_extractor);
1812     }
1813 
1814     if (!progress_->ProgressReport(false)) interrupted = true;
1815   }
1816   return interrupted;
1817 }
1818 
1819 
IsEssentialObject(Object * object)1820 bool V8HeapExplorer::IsEssentialObject(Object* object) {
1821   return object->IsHeapObject() && !object->IsOddball() &&
1822          object != heap_->empty_byte_array() &&
1823          object != heap_->empty_fixed_array() &&
1824          object != heap_->empty_descriptor_array() &&
1825          object != heap_->empty_type_feedback_vector() &&
1826          object != heap_->fixed_array_map() && object != heap_->cell_map() &&
1827          object != heap_->global_property_cell_map() &&
1828          object != heap_->shared_function_info_map() &&
1829          object != heap_->free_space_map() &&
1830          object != heap_->one_pointer_filler_map() &&
1831          object != heap_->two_pointer_filler_map();
1832 }
1833 
IsEssentialHiddenReference(Object * parent,int field_offset)1834 bool V8HeapExplorer::IsEssentialHiddenReference(Object* parent,
1835                                                 int field_offset) {
1836   if (parent->IsAllocationSite() &&
1837       field_offset == AllocationSite::kWeakNextOffset)
1838     return false;
1839   if (parent->IsJSFunction() &&
1840       field_offset == JSFunction::kNextFunctionLinkOffset)
1841     return false;
1842   if (parent->IsCode() && field_offset == Code::kNextCodeLinkOffset)
1843     return false;
1844   if (parent->IsContext() &&
1845       field_offset == Context::OffsetOfElementAt(Context::NEXT_CONTEXT_LINK))
1846     return false;
1847   if (parent->IsWeakCell() && field_offset == WeakCell::kNextOffset)
1848     return false;
1849   return true;
1850 }
1851 
SetContextReference(HeapObject * parent_obj,int parent_entry,String * reference_name,Object * child_obj,int field_offset)1852 void V8HeapExplorer::SetContextReference(HeapObject* parent_obj,
1853                                          int parent_entry,
1854                                          String* reference_name,
1855                                          Object* child_obj,
1856                                          int field_offset) {
1857   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1858   HeapEntry* child_entry = GetEntry(child_obj);
1859   if (child_entry != NULL) {
1860     filler_->SetNamedReference(HeapGraphEdge::kContextVariable,
1861                                parent_entry,
1862                                names_->GetName(reference_name),
1863                                child_entry);
1864     MarkVisitedField(parent_obj, field_offset);
1865   }
1866 }
1867 
1868 
MarkVisitedField(HeapObject * obj,int offset)1869 void V8HeapExplorer::MarkVisitedField(HeapObject* obj, int offset) {
1870   if (offset < 0) return;
1871   int index = offset / kPointerSize;
1872   DCHECK(!marks_[index]);
1873   marks_[index] = true;
1874 }
1875 
1876 
SetNativeBindReference(HeapObject * parent_obj,int parent_entry,const char * reference_name,Object * child_obj)1877 void V8HeapExplorer::SetNativeBindReference(HeapObject* parent_obj,
1878                                             int parent_entry,
1879                                             const char* reference_name,
1880                                             Object* child_obj) {
1881   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1882   HeapEntry* child_entry = GetEntry(child_obj);
1883   if (child_entry != NULL) {
1884     filler_->SetNamedReference(HeapGraphEdge::kShortcut,
1885                                parent_entry,
1886                                reference_name,
1887                                child_entry);
1888   }
1889 }
1890 
1891 
SetElementReference(HeapObject * parent_obj,int parent_entry,int index,Object * child_obj)1892 void V8HeapExplorer::SetElementReference(HeapObject* parent_obj,
1893                                          int parent_entry,
1894                                          int index,
1895                                          Object* child_obj) {
1896   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1897   HeapEntry* child_entry = GetEntry(child_obj);
1898   if (child_entry != NULL) {
1899     filler_->SetIndexedReference(HeapGraphEdge::kElement,
1900                                  parent_entry,
1901                                  index,
1902                                  child_entry);
1903   }
1904 }
1905 
1906 
SetInternalReference(HeapObject * parent_obj,int parent_entry,const char * reference_name,Object * child_obj,int field_offset)1907 void V8HeapExplorer::SetInternalReference(HeapObject* parent_obj,
1908                                           int parent_entry,
1909                                           const char* reference_name,
1910                                           Object* child_obj,
1911                                           int field_offset) {
1912   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1913   HeapEntry* child_entry = GetEntry(child_obj);
1914   if (child_entry == NULL) return;
1915   if (IsEssentialObject(child_obj)) {
1916     filler_->SetNamedReference(HeapGraphEdge::kInternal,
1917                                parent_entry,
1918                                reference_name,
1919                                child_entry);
1920   }
1921   MarkVisitedField(parent_obj, field_offset);
1922 }
1923 
1924 
SetInternalReference(HeapObject * parent_obj,int parent_entry,int index,Object * child_obj,int field_offset)1925 void V8HeapExplorer::SetInternalReference(HeapObject* parent_obj,
1926                                           int parent_entry,
1927                                           int index,
1928                                           Object* child_obj,
1929                                           int field_offset) {
1930   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1931   HeapEntry* child_entry = GetEntry(child_obj);
1932   if (child_entry == NULL) return;
1933   if (IsEssentialObject(child_obj)) {
1934     filler_->SetNamedReference(HeapGraphEdge::kInternal,
1935                                parent_entry,
1936                                names_->GetName(index),
1937                                child_entry);
1938   }
1939   MarkVisitedField(parent_obj, field_offset);
1940 }
1941 
SetHiddenReference(HeapObject * parent_obj,int parent_entry,int index,Object * child_obj,int field_offset)1942 void V8HeapExplorer::SetHiddenReference(HeapObject* parent_obj,
1943                                         int parent_entry, int index,
1944                                         Object* child_obj, int field_offset) {
1945   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1946   HeapEntry* child_entry = GetEntry(child_obj);
1947   if (child_entry != nullptr && IsEssentialObject(child_obj) &&
1948       IsEssentialHiddenReference(parent_obj, field_offset)) {
1949     filler_->SetIndexedReference(HeapGraphEdge::kHidden, parent_entry, index,
1950                                  child_entry);
1951   }
1952 }
1953 
1954 
SetWeakReference(HeapObject * parent_obj,int parent_entry,const char * reference_name,Object * child_obj,int field_offset)1955 void V8HeapExplorer::SetWeakReference(HeapObject* parent_obj,
1956                                       int parent_entry,
1957                                       const char* reference_name,
1958                                       Object* child_obj,
1959                                       int field_offset) {
1960   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1961   HeapEntry* child_entry = GetEntry(child_obj);
1962   if (child_entry == NULL) return;
1963   if (IsEssentialObject(child_obj)) {
1964     filler_->SetNamedReference(HeapGraphEdge::kWeak,
1965                                parent_entry,
1966                                reference_name,
1967                                child_entry);
1968   }
1969   MarkVisitedField(parent_obj, field_offset);
1970 }
1971 
1972 
SetWeakReference(HeapObject * parent_obj,int parent_entry,int index,Object * child_obj,int field_offset)1973 void V8HeapExplorer::SetWeakReference(HeapObject* parent_obj,
1974                                       int parent_entry,
1975                                       int index,
1976                                       Object* child_obj,
1977                                       int field_offset) {
1978   DCHECK(parent_entry == GetEntry(parent_obj)->index());
1979   HeapEntry* child_entry = GetEntry(child_obj);
1980   if (child_entry == NULL) return;
1981   if (IsEssentialObject(child_obj)) {
1982     filler_->SetNamedReference(HeapGraphEdge::kWeak,
1983                                parent_entry,
1984                                names_->GetFormatted("%d", index),
1985                                child_entry);
1986   }
1987   MarkVisitedField(parent_obj, field_offset);
1988 }
1989 
1990 
SetDataOrAccessorPropertyReference(PropertyKind kind,JSObject * parent_obj,int parent_entry,Name * reference_name,Object * child_obj,const char * name_format_string,int field_offset)1991 void V8HeapExplorer::SetDataOrAccessorPropertyReference(
1992     PropertyKind kind, JSObject* parent_obj, int parent_entry,
1993     Name* reference_name, Object* child_obj, const char* name_format_string,
1994     int field_offset) {
1995   if (kind == kAccessor) {
1996     ExtractAccessorPairProperty(parent_obj, parent_entry, reference_name,
1997                                 child_obj, field_offset);
1998   } else {
1999     SetPropertyReference(parent_obj, parent_entry, reference_name, child_obj,
2000                          name_format_string, field_offset);
2001   }
2002 }
2003 
2004 
SetPropertyReference(HeapObject * parent_obj,int parent_entry,Name * reference_name,Object * child_obj,const char * name_format_string,int field_offset)2005 void V8HeapExplorer::SetPropertyReference(HeapObject* parent_obj,
2006                                           int parent_entry,
2007                                           Name* reference_name,
2008                                           Object* child_obj,
2009                                           const char* name_format_string,
2010                                           int field_offset) {
2011   DCHECK(parent_entry == GetEntry(parent_obj)->index());
2012   HeapEntry* child_entry = GetEntry(child_obj);
2013   if (child_entry != NULL) {
2014     HeapGraphEdge::Type type =
2015         reference_name->IsSymbol() || String::cast(reference_name)->length() > 0
2016             ? HeapGraphEdge::kProperty : HeapGraphEdge::kInternal;
2017     const char* name = name_format_string != NULL && reference_name->IsString()
2018         ? names_->GetFormatted(
2019               name_format_string,
2020               String::cast(reference_name)->ToCString(
2021                   DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL).get()) :
2022         names_->GetName(reference_name);
2023 
2024     filler_->SetNamedReference(type,
2025                                parent_entry,
2026                                name,
2027                                child_entry);
2028     MarkVisitedField(parent_obj, field_offset);
2029   }
2030 }
2031 
2032 
SetRootGcRootsReference()2033 void V8HeapExplorer::SetRootGcRootsReference() {
2034   filler_->SetIndexedAutoIndexReference(
2035       HeapGraphEdge::kElement,
2036       snapshot_->root()->index(),
2037       snapshot_->gc_roots());
2038 }
2039 
2040 
SetUserGlobalReference(Object * child_obj)2041 void V8HeapExplorer::SetUserGlobalReference(Object* child_obj) {
2042   HeapEntry* child_entry = GetEntry(child_obj);
2043   DCHECK(child_entry != NULL);
2044   filler_->SetNamedAutoIndexReference(
2045       HeapGraphEdge::kShortcut,
2046       snapshot_->root()->index(),
2047       child_entry);
2048 }
2049 
2050 
SetGcRootsReference(VisitorSynchronization::SyncTag tag)2051 void V8HeapExplorer::SetGcRootsReference(VisitorSynchronization::SyncTag tag) {
2052   filler_->SetIndexedAutoIndexReference(
2053       HeapGraphEdge::kElement,
2054       snapshot_->gc_roots()->index(),
2055       snapshot_->gc_subroot(tag));
2056 }
2057 
2058 
SetGcSubrootReference(VisitorSynchronization::SyncTag tag,bool is_weak,Object * child_obj)2059 void V8HeapExplorer::SetGcSubrootReference(
2060     VisitorSynchronization::SyncTag tag, bool is_weak, Object* child_obj) {
2061   HeapEntry* child_entry = GetEntry(child_obj);
2062   if (child_entry != NULL) {
2063     const char* name = GetStrongGcSubrootName(child_obj);
2064     if (name != NULL) {
2065       filler_->SetNamedReference(
2066           HeapGraphEdge::kInternal,
2067           snapshot_->gc_subroot(tag)->index(),
2068           name,
2069           child_entry);
2070     } else {
2071       if (is_weak) {
2072         filler_->SetNamedAutoIndexReference(
2073             HeapGraphEdge::kWeak,
2074             snapshot_->gc_subroot(tag)->index(),
2075             child_entry);
2076       } else {
2077         filler_->SetIndexedAutoIndexReference(
2078             HeapGraphEdge::kElement,
2079             snapshot_->gc_subroot(tag)->index(),
2080             child_entry);
2081       }
2082     }
2083 
2084     // Add a shortcut to JS global object reference at snapshot root.
2085     if (child_obj->IsNativeContext()) {
2086       Context* context = Context::cast(child_obj);
2087       JSGlobalObject* global = context->global_object();
2088       if (global->IsJSGlobalObject()) {
2089         bool is_debug_object = false;
2090         is_debug_object = heap_->isolate()->debug()->IsDebugGlobal(global);
2091         if (!is_debug_object && !user_roots_.Contains(global)) {
2092           user_roots_.Insert(global);
2093           SetUserGlobalReference(global);
2094         }
2095       }
2096     }
2097   }
2098 }
2099 
2100 
GetStrongGcSubrootName(Object * object)2101 const char* V8HeapExplorer::GetStrongGcSubrootName(Object* object) {
2102   if (strong_gc_subroot_names_.is_empty()) {
2103 #define NAME_ENTRY(name) strong_gc_subroot_names_.SetTag(heap_->name(), #name);
2104 #define ROOT_NAME(type, name, camel_name) NAME_ENTRY(name)
2105     STRONG_ROOT_LIST(ROOT_NAME)
2106 #undef ROOT_NAME
2107 #define STRUCT_MAP_NAME(NAME, Name, name) NAME_ENTRY(name##_map)
2108     STRUCT_LIST(STRUCT_MAP_NAME)
2109 #undef STRUCT_MAP_NAME
2110 #define STRING_NAME(name, str) NAME_ENTRY(name)
2111     INTERNALIZED_STRING_LIST(STRING_NAME)
2112 #undef STRING_NAME
2113 #define SYMBOL_NAME(name) NAME_ENTRY(name)
2114     PRIVATE_SYMBOL_LIST(SYMBOL_NAME)
2115 #undef SYMBOL_NAME
2116 #define SYMBOL_NAME(name, description) NAME_ENTRY(name)
2117     PUBLIC_SYMBOL_LIST(SYMBOL_NAME)
2118     WELL_KNOWN_SYMBOL_LIST(SYMBOL_NAME)
2119 #undef SYMBOL_NAME
2120 #undef NAME_ENTRY
2121     CHECK(!strong_gc_subroot_names_.is_empty());
2122   }
2123   return strong_gc_subroot_names_.GetTag(object);
2124 }
2125 
2126 
TagObject(Object * obj,const char * tag)2127 void V8HeapExplorer::TagObject(Object* obj, const char* tag) {
2128   if (IsEssentialObject(obj)) {
2129     HeapEntry* entry = GetEntry(obj);
2130     if (entry->name()[0] == '\0') {
2131       entry->set_name(tag);
2132     }
2133   }
2134 }
2135 
TagFixedArraySubType(const FixedArray * array,FixedArraySubInstanceType type)2136 void V8HeapExplorer::TagFixedArraySubType(const FixedArray* array,
2137                                           FixedArraySubInstanceType type) {
2138   DCHECK(array_types_.find(array) == array_types_.end());
2139   array_types_[array] = type;
2140 }
2141 
2142 class GlobalObjectsEnumerator : public ObjectVisitor {
2143  public:
VisitPointers(Object ** start,Object ** end)2144   void VisitPointers(Object** start, Object** end) override {
2145     for (Object** p = start; p < end; p++) {
2146       if ((*p)->IsNativeContext()) {
2147         Context* context = Context::cast(*p);
2148         JSObject* proxy = context->global_proxy();
2149         if (proxy->IsJSGlobalProxy()) {
2150           Object* global = proxy->map()->prototype();
2151           if (global->IsJSGlobalObject()) {
2152             objects_.Add(Handle<JSGlobalObject>(JSGlobalObject::cast(global)));
2153           }
2154         }
2155       }
2156     }
2157   }
count()2158   int count() { return objects_.length(); }
at(int i)2159   Handle<JSGlobalObject>& at(int i) { return objects_[i]; }
2160 
2161  private:
2162   List<Handle<JSGlobalObject> > objects_;
2163 };
2164 
2165 
2166 // Modifies heap. Must not be run during heap traversal.
TagGlobalObjects()2167 void V8HeapExplorer::TagGlobalObjects() {
2168   Isolate* isolate = heap_->isolate();
2169   HandleScope scope(isolate);
2170   GlobalObjectsEnumerator enumerator;
2171   isolate->global_handles()->IterateAllRoots(&enumerator);
2172   const char** urls = NewArray<const char*>(enumerator.count());
2173   for (int i = 0, l = enumerator.count(); i < l; ++i) {
2174     if (global_object_name_resolver_) {
2175       HandleScope scope(isolate);
2176       Handle<JSGlobalObject> global_obj = enumerator.at(i);
2177       urls[i] = global_object_name_resolver_->GetName(
2178           Utils::ToLocal(Handle<JSObject>::cast(global_obj)));
2179     } else {
2180       urls[i] = NULL;
2181     }
2182   }
2183 
2184   DisallowHeapAllocation no_allocation;
2185   for (int i = 0, l = enumerator.count(); i < l; ++i) {
2186     objects_tags_.SetTag(*enumerator.at(i), urls[i]);
2187   }
2188 
2189   DeleteArray(urls);
2190 }
2191 
2192 
2193 class GlobalHandlesExtractor : public ObjectVisitor {
2194  public:
GlobalHandlesExtractor(NativeObjectsExplorer * explorer)2195   explicit GlobalHandlesExtractor(NativeObjectsExplorer* explorer)
2196       : explorer_(explorer) {}
~GlobalHandlesExtractor()2197   ~GlobalHandlesExtractor() override {}
VisitPointers(Object ** start,Object ** end)2198   void VisitPointers(Object** start, Object** end) override { UNREACHABLE(); }
VisitEmbedderReference(Object ** p,uint16_t class_id)2199   void VisitEmbedderReference(Object** p, uint16_t class_id) override {
2200     explorer_->VisitSubtreeWrapper(p, class_id);
2201   }
2202  private:
2203   NativeObjectsExplorer* explorer_;
2204 };
2205 
2206 
2207 class BasicHeapEntriesAllocator : public HeapEntriesAllocator {
2208  public:
BasicHeapEntriesAllocator(HeapSnapshot * snapshot,HeapEntry::Type entries_type)2209   BasicHeapEntriesAllocator(
2210       HeapSnapshot* snapshot,
2211       HeapEntry::Type entries_type)
2212     : snapshot_(snapshot),
2213       names_(snapshot_->profiler()->names()),
2214       heap_object_map_(snapshot_->profiler()->heap_object_map()),
2215       entries_type_(entries_type) {
2216   }
2217   virtual HeapEntry* AllocateEntry(HeapThing ptr);
2218  private:
2219   HeapSnapshot* snapshot_;
2220   StringsStorage* names_;
2221   HeapObjectsMap* heap_object_map_;
2222   HeapEntry::Type entries_type_;
2223 };
2224 
2225 
AllocateEntry(HeapThing ptr)2226 HeapEntry* BasicHeapEntriesAllocator::AllocateEntry(HeapThing ptr) {
2227   v8::RetainedObjectInfo* info = reinterpret_cast<v8::RetainedObjectInfo*>(ptr);
2228   intptr_t elements = info->GetElementCount();
2229   intptr_t size = info->GetSizeInBytes();
2230   const char* name = elements != -1
2231                          ? names_->GetFormatted("%s / %" V8PRIdPTR " entries",
2232                                                 info->GetLabel(), elements)
2233                          : names_->GetCopy(info->GetLabel());
2234   return snapshot_->AddEntry(
2235       entries_type_,
2236       name,
2237       heap_object_map_->GenerateId(info),
2238       size != -1 ? static_cast<int>(size) : 0,
2239       0);
2240 }
2241 
2242 
NativeObjectsExplorer(HeapSnapshot * snapshot,SnapshottingProgressReportingInterface * progress)2243 NativeObjectsExplorer::NativeObjectsExplorer(
2244     HeapSnapshot* snapshot,
2245     SnapshottingProgressReportingInterface* progress)
2246     : isolate_(snapshot->profiler()->heap_object_map()->heap()->isolate()),
2247       snapshot_(snapshot),
2248       names_(snapshot_->profiler()->names()),
2249       embedder_queried_(false),
2250       objects_by_info_(RetainedInfosMatch),
2251       native_groups_(StringsMatch),
2252       filler_(NULL) {
2253   synthetic_entries_allocator_ =
2254       new BasicHeapEntriesAllocator(snapshot, HeapEntry::kSynthetic);
2255   native_entries_allocator_ =
2256       new BasicHeapEntriesAllocator(snapshot, HeapEntry::kNative);
2257 }
2258 
2259 
~NativeObjectsExplorer()2260 NativeObjectsExplorer::~NativeObjectsExplorer() {
2261   for (base::HashMap::Entry* p = objects_by_info_.Start(); p != NULL;
2262        p = objects_by_info_.Next(p)) {
2263     v8::RetainedObjectInfo* info =
2264         reinterpret_cast<v8::RetainedObjectInfo*>(p->key);
2265     info->Dispose();
2266     List<HeapObject*>* objects =
2267         reinterpret_cast<List<HeapObject*>* >(p->value);
2268     delete objects;
2269   }
2270   for (base::HashMap::Entry* p = native_groups_.Start(); p != NULL;
2271        p = native_groups_.Next(p)) {
2272     v8::RetainedObjectInfo* info =
2273         reinterpret_cast<v8::RetainedObjectInfo*>(p->value);
2274     info->Dispose();
2275   }
2276   delete synthetic_entries_allocator_;
2277   delete native_entries_allocator_;
2278 }
2279 
2280 
EstimateObjectsCount()2281 int NativeObjectsExplorer::EstimateObjectsCount() {
2282   FillRetainedObjects();
2283   return objects_by_info_.occupancy();
2284 }
2285 
2286 
FillRetainedObjects()2287 void NativeObjectsExplorer::FillRetainedObjects() {
2288   if (embedder_queried_) return;
2289   Isolate* isolate = isolate_;
2290   const GCType major_gc_type = kGCTypeMarkSweepCompact;
2291   // Record objects that are joined into ObjectGroups.
2292   isolate->heap()->CallGCPrologueCallbacks(
2293       major_gc_type, kGCCallbackFlagConstructRetainedObjectInfos);
2294   List<ObjectGroup*>* groups = isolate->global_handles()->object_groups();
2295   for (int i = 0; i < groups->length(); ++i) {
2296     ObjectGroup* group = groups->at(i);
2297     if (group->info == NULL) continue;
2298     List<HeapObject*>* list = GetListMaybeDisposeInfo(group->info);
2299     for (size_t j = 0; j < group->length; ++j) {
2300       HeapObject* obj = HeapObject::cast(*group->objects[j]);
2301       list->Add(obj);
2302       in_groups_.Insert(obj);
2303     }
2304     group->info = NULL;  // Acquire info object ownership.
2305   }
2306   isolate->global_handles()->RemoveObjectGroups();
2307   isolate->heap()->CallGCEpilogueCallbacks(major_gc_type, kNoGCCallbackFlags);
2308   // Record objects that are not in ObjectGroups, but have class ID.
2309   GlobalHandlesExtractor extractor(this);
2310   isolate->global_handles()->IterateAllRootsWithClassIds(&extractor);
2311   embedder_queried_ = true;
2312 }
2313 
2314 
FillImplicitReferences()2315 void NativeObjectsExplorer::FillImplicitReferences() {
2316   Isolate* isolate = isolate_;
2317   List<ImplicitRefGroup*>* groups =
2318       isolate->global_handles()->implicit_ref_groups();
2319   for (int i = 0; i < groups->length(); ++i) {
2320     ImplicitRefGroup* group = groups->at(i);
2321     HeapObject* parent = *group->parent;
2322     int parent_entry =
2323         filler_->FindOrAddEntry(parent, native_entries_allocator_)->index();
2324     DCHECK(parent_entry != HeapEntry::kNoEntry);
2325     Object*** children = group->children;
2326     for (size_t j = 0; j < group->length; ++j) {
2327       Object* child = *children[j];
2328       HeapEntry* child_entry =
2329           filler_->FindOrAddEntry(child, native_entries_allocator_);
2330       filler_->SetNamedReference(
2331           HeapGraphEdge::kInternal,
2332           parent_entry,
2333           "native",
2334           child_entry);
2335     }
2336   }
2337   isolate->global_handles()->RemoveImplicitRefGroups();
2338 }
2339 
GetListMaybeDisposeInfo(v8::RetainedObjectInfo * info)2340 List<HeapObject*>* NativeObjectsExplorer::GetListMaybeDisposeInfo(
2341     v8::RetainedObjectInfo* info) {
2342   base::HashMap::Entry* entry =
2343       objects_by_info_.LookupOrInsert(info, InfoHash(info));
2344   if (entry->value != NULL) {
2345     info->Dispose();
2346   } else {
2347     entry->value = new List<HeapObject*>(4);
2348   }
2349   return reinterpret_cast<List<HeapObject*>* >(entry->value);
2350 }
2351 
2352 
IterateAndExtractReferences(SnapshotFiller * filler)2353 bool NativeObjectsExplorer::IterateAndExtractReferences(
2354     SnapshotFiller* filler) {
2355   filler_ = filler;
2356   FillRetainedObjects();
2357   FillImplicitReferences();
2358   if (EstimateObjectsCount() > 0) {
2359     for (base::HashMap::Entry* p = objects_by_info_.Start(); p != NULL;
2360          p = objects_by_info_.Next(p)) {
2361       v8::RetainedObjectInfo* info =
2362           reinterpret_cast<v8::RetainedObjectInfo*>(p->key);
2363       SetNativeRootReference(info);
2364       List<HeapObject*>* objects =
2365           reinterpret_cast<List<HeapObject*>* >(p->value);
2366       for (int i = 0; i < objects->length(); ++i) {
2367         SetWrapperNativeReferences(objects->at(i), info);
2368       }
2369     }
2370     SetRootNativeRootsReference();
2371   }
2372   filler_ = NULL;
2373   return true;
2374 }
2375 
2376 
2377 class NativeGroupRetainedObjectInfo : public v8::RetainedObjectInfo {
2378  public:
NativeGroupRetainedObjectInfo(const char * label)2379   explicit NativeGroupRetainedObjectInfo(const char* label)
2380       : disposed_(false),
2381         hash_(reinterpret_cast<intptr_t>(label)),
2382         label_(label) {
2383   }
2384 
~NativeGroupRetainedObjectInfo()2385   virtual ~NativeGroupRetainedObjectInfo() {}
Dispose()2386   virtual void Dispose() {
2387     CHECK(!disposed_);
2388     disposed_ = true;
2389     delete this;
2390   }
IsEquivalent(RetainedObjectInfo * other)2391   virtual bool IsEquivalent(RetainedObjectInfo* other) {
2392     return hash_ == other->GetHash() && !strcmp(label_, other->GetLabel());
2393   }
GetHash()2394   virtual intptr_t GetHash() { return hash_; }
GetLabel()2395   virtual const char* GetLabel() { return label_; }
2396 
2397  private:
2398   bool disposed_;
2399   intptr_t hash_;
2400   const char* label_;
2401 };
2402 
2403 
FindOrAddGroupInfo(const char * label)2404 NativeGroupRetainedObjectInfo* NativeObjectsExplorer::FindOrAddGroupInfo(
2405     const char* label) {
2406   const char* label_copy = names_->GetCopy(label);
2407   uint32_t hash = StringHasher::HashSequentialString(
2408       label_copy,
2409       static_cast<int>(strlen(label_copy)),
2410       isolate_->heap()->HashSeed());
2411   base::HashMap::Entry* entry =
2412       native_groups_.LookupOrInsert(const_cast<char*>(label_copy), hash);
2413   if (entry->value == NULL) {
2414     entry->value = new NativeGroupRetainedObjectInfo(label);
2415   }
2416   return static_cast<NativeGroupRetainedObjectInfo*>(entry->value);
2417 }
2418 
2419 
SetNativeRootReference(v8::RetainedObjectInfo * info)2420 void NativeObjectsExplorer::SetNativeRootReference(
2421     v8::RetainedObjectInfo* info) {
2422   HeapEntry* child_entry =
2423       filler_->FindOrAddEntry(info, native_entries_allocator_);
2424   DCHECK(child_entry != NULL);
2425   NativeGroupRetainedObjectInfo* group_info =
2426       FindOrAddGroupInfo(info->GetGroupLabel());
2427   HeapEntry* group_entry =
2428       filler_->FindOrAddEntry(group_info, synthetic_entries_allocator_);
2429   // |FindOrAddEntry| can move and resize the entries backing store. Reload
2430   // potentially-stale pointer.
2431   child_entry = filler_->FindEntry(info);
2432   filler_->SetNamedAutoIndexReference(
2433       HeapGraphEdge::kInternal,
2434       group_entry->index(),
2435       child_entry);
2436 }
2437 
2438 
SetWrapperNativeReferences(HeapObject * wrapper,v8::RetainedObjectInfo * info)2439 void NativeObjectsExplorer::SetWrapperNativeReferences(
2440     HeapObject* wrapper, v8::RetainedObjectInfo* info) {
2441   HeapEntry* wrapper_entry = filler_->FindEntry(wrapper);
2442   DCHECK(wrapper_entry != NULL);
2443   HeapEntry* info_entry =
2444       filler_->FindOrAddEntry(info, native_entries_allocator_);
2445   DCHECK(info_entry != NULL);
2446   filler_->SetNamedReference(HeapGraphEdge::kInternal,
2447                              wrapper_entry->index(),
2448                              "native",
2449                              info_entry);
2450   filler_->SetIndexedAutoIndexReference(HeapGraphEdge::kElement,
2451                                         info_entry->index(),
2452                                         wrapper_entry);
2453 }
2454 
2455 
SetRootNativeRootsReference()2456 void NativeObjectsExplorer::SetRootNativeRootsReference() {
2457   for (base::HashMap::Entry* entry = native_groups_.Start(); entry;
2458        entry = native_groups_.Next(entry)) {
2459     NativeGroupRetainedObjectInfo* group_info =
2460         static_cast<NativeGroupRetainedObjectInfo*>(entry->value);
2461     HeapEntry* group_entry =
2462         filler_->FindOrAddEntry(group_info, native_entries_allocator_);
2463     DCHECK(group_entry != NULL);
2464     filler_->SetIndexedAutoIndexReference(
2465         HeapGraphEdge::kElement,
2466         snapshot_->root()->index(),
2467         group_entry);
2468   }
2469 }
2470 
2471 
VisitSubtreeWrapper(Object ** p,uint16_t class_id)2472 void NativeObjectsExplorer::VisitSubtreeWrapper(Object** p, uint16_t class_id) {
2473   if (in_groups_.Contains(*p)) return;
2474   Isolate* isolate = isolate_;
2475   v8::RetainedObjectInfo* info =
2476       isolate->heap_profiler()->ExecuteWrapperClassCallback(class_id, p);
2477   if (info == NULL) return;
2478   GetListMaybeDisposeInfo(info)->Add(HeapObject::cast(*p));
2479 }
2480 
2481 
HeapSnapshotGenerator(HeapSnapshot * snapshot,v8::ActivityControl * control,v8::HeapProfiler::ObjectNameResolver * resolver,Heap * heap)2482 HeapSnapshotGenerator::HeapSnapshotGenerator(
2483     HeapSnapshot* snapshot,
2484     v8::ActivityControl* control,
2485     v8::HeapProfiler::ObjectNameResolver* resolver,
2486     Heap* heap)
2487     : snapshot_(snapshot),
2488       control_(control),
2489       v8_heap_explorer_(snapshot_, this, resolver),
2490       dom_explorer_(snapshot_, this),
2491       heap_(heap) {
2492 }
2493 
2494 
GenerateSnapshot()2495 bool HeapSnapshotGenerator::GenerateSnapshot() {
2496   v8_heap_explorer_.TagGlobalObjects();
2497 
2498   // TODO(1562) Profiler assumes that any object that is in the heap after
2499   // full GC is reachable from the root when computing dominators.
2500   // This is not true for weakly reachable objects.
2501   // As a temporary solution we call GC twice.
2502   heap_->CollectAllGarbage(Heap::kMakeHeapIterableMask,
2503                            GarbageCollectionReason::kHeapProfiler);
2504   heap_->CollectAllGarbage(Heap::kMakeHeapIterableMask,
2505                            GarbageCollectionReason::kHeapProfiler);
2506 
2507 #ifdef VERIFY_HEAP
2508   Heap* debug_heap = heap_;
2509   if (FLAG_verify_heap) {
2510     debug_heap->Verify();
2511   }
2512 #endif
2513 
2514   SetProgressTotal(2);  // 2 passes.
2515 
2516 #ifdef VERIFY_HEAP
2517   if (FLAG_verify_heap) {
2518     debug_heap->Verify();
2519   }
2520 #endif
2521 
2522   snapshot_->AddSyntheticRootEntries();
2523 
2524   if (!FillReferences()) return false;
2525 
2526   snapshot_->FillChildren();
2527   snapshot_->RememberLastJSObjectId();
2528 
2529   progress_counter_ = progress_total_;
2530   if (!ProgressReport(true)) return false;
2531   return true;
2532 }
2533 
2534 
ProgressStep()2535 void HeapSnapshotGenerator::ProgressStep() {
2536   ++progress_counter_;
2537 }
2538 
2539 
ProgressReport(bool force)2540 bool HeapSnapshotGenerator::ProgressReport(bool force) {
2541   const int kProgressReportGranularity = 10000;
2542   if (control_ != NULL
2543       && (force || progress_counter_ % kProgressReportGranularity == 0)) {
2544       return
2545           control_->ReportProgressValue(progress_counter_, progress_total_) ==
2546           v8::ActivityControl::kContinue;
2547   }
2548   return true;
2549 }
2550 
2551 
SetProgressTotal(int iterations_count)2552 void HeapSnapshotGenerator::SetProgressTotal(int iterations_count) {
2553   if (control_ == NULL) return;
2554   HeapIterator iterator(heap_, HeapIterator::kFilterUnreachable);
2555   progress_total_ = iterations_count * (
2556       v8_heap_explorer_.EstimateObjectsCount(&iterator) +
2557       dom_explorer_.EstimateObjectsCount());
2558   progress_counter_ = 0;
2559 }
2560 
2561 
FillReferences()2562 bool HeapSnapshotGenerator::FillReferences() {
2563   SnapshotFiller filler(snapshot_, &entries_);
2564   return v8_heap_explorer_.IterateAndExtractReferences(&filler)
2565       && dom_explorer_.IterateAndExtractReferences(&filler);
2566 }
2567 
2568 
2569 template<int bytes> struct MaxDecimalDigitsIn;
2570 template<> struct MaxDecimalDigitsIn<4> {
2571   static const int kSigned = 11;
2572   static const int kUnsigned = 10;
2573 };
2574 template<> struct MaxDecimalDigitsIn<8> {
2575   static const int kSigned = 20;
2576   static const int kUnsigned = 20;
2577 };
2578 
2579 
2580 class OutputStreamWriter {
2581  public:
OutputStreamWriter(v8::OutputStream * stream)2582   explicit OutputStreamWriter(v8::OutputStream* stream)
2583       : stream_(stream),
2584         chunk_size_(stream->GetChunkSize()),
2585         chunk_(chunk_size_),
2586         chunk_pos_(0),
2587         aborted_(false) {
2588     DCHECK(chunk_size_ > 0);
2589   }
aborted()2590   bool aborted() { return aborted_; }
AddCharacter(char c)2591   void AddCharacter(char c) {
2592     DCHECK(c != '\0');
2593     DCHECK(chunk_pos_ < chunk_size_);
2594     chunk_[chunk_pos_++] = c;
2595     MaybeWriteChunk();
2596   }
AddString(const char * s)2597   void AddString(const char* s) {
2598     AddSubstring(s, StrLength(s));
2599   }
AddSubstring(const char * s,int n)2600   void AddSubstring(const char* s, int n) {
2601     if (n <= 0) return;
2602     DCHECK(static_cast<size_t>(n) <= strlen(s));
2603     const char* s_end = s + n;
2604     while (s < s_end) {
2605       int s_chunk_size =
2606           Min(chunk_size_ - chunk_pos_, static_cast<int>(s_end - s));
2607       DCHECK(s_chunk_size > 0);
2608       MemCopy(chunk_.start() + chunk_pos_, s, s_chunk_size);
2609       s += s_chunk_size;
2610       chunk_pos_ += s_chunk_size;
2611       MaybeWriteChunk();
2612     }
2613   }
AddNumber(unsigned n)2614   void AddNumber(unsigned n) { AddNumberImpl<unsigned>(n, "%u"); }
Finalize()2615   void Finalize() {
2616     if (aborted_) return;
2617     DCHECK(chunk_pos_ < chunk_size_);
2618     if (chunk_pos_ != 0) {
2619       WriteChunk();
2620     }
2621     stream_->EndOfStream();
2622   }
2623 
2624  private:
2625   template<typename T>
AddNumberImpl(T n,const char * format)2626   void AddNumberImpl(T n, const char* format) {
2627     // Buffer for the longest value plus trailing \0
2628     static const int kMaxNumberSize =
2629         MaxDecimalDigitsIn<sizeof(T)>::kUnsigned + 1;
2630     if (chunk_size_ - chunk_pos_ >= kMaxNumberSize) {
2631       int result = SNPrintF(
2632           chunk_.SubVector(chunk_pos_, chunk_size_), format, n);
2633       DCHECK(result != -1);
2634       chunk_pos_ += result;
2635       MaybeWriteChunk();
2636     } else {
2637       EmbeddedVector<char, kMaxNumberSize> buffer;
2638       int result = SNPrintF(buffer, format, n);
2639       USE(result);
2640       DCHECK(result != -1);
2641       AddString(buffer.start());
2642     }
2643   }
MaybeWriteChunk()2644   void MaybeWriteChunk() {
2645     DCHECK(chunk_pos_ <= chunk_size_);
2646     if (chunk_pos_ == chunk_size_) {
2647       WriteChunk();
2648     }
2649   }
WriteChunk()2650   void WriteChunk() {
2651     if (aborted_) return;
2652     if (stream_->WriteAsciiChunk(chunk_.start(), chunk_pos_) ==
2653         v8::OutputStream::kAbort) aborted_ = true;
2654     chunk_pos_ = 0;
2655   }
2656 
2657   v8::OutputStream* stream_;
2658   int chunk_size_;
2659   ScopedVector<char> chunk_;
2660   int chunk_pos_;
2661   bool aborted_;
2662 };
2663 
2664 
2665 // type, name|index, to_node.
2666 const int HeapSnapshotJSONSerializer::kEdgeFieldsCount = 3;
2667 // type, name, id, self_size, edge_count, trace_node_id.
2668 const int HeapSnapshotJSONSerializer::kNodeFieldsCount = 6;
2669 
Serialize(v8::OutputStream * stream)2670 void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) {
2671   if (AllocationTracker* allocation_tracker =
2672       snapshot_->profiler()->allocation_tracker()) {
2673     allocation_tracker->PrepareForSerialization();
2674   }
2675   DCHECK(writer_ == NULL);
2676   writer_ = new OutputStreamWriter(stream);
2677   SerializeImpl();
2678   delete writer_;
2679   writer_ = NULL;
2680 }
2681 
2682 
SerializeImpl()2683 void HeapSnapshotJSONSerializer::SerializeImpl() {
2684   DCHECK(0 == snapshot_->root()->index());
2685   writer_->AddCharacter('{');
2686   writer_->AddString("\"snapshot\":{");
2687   SerializeSnapshot();
2688   if (writer_->aborted()) return;
2689   writer_->AddString("},\n");
2690   writer_->AddString("\"nodes\":[");
2691   SerializeNodes();
2692   if (writer_->aborted()) return;
2693   writer_->AddString("],\n");
2694   writer_->AddString("\"edges\":[");
2695   SerializeEdges();
2696   if (writer_->aborted()) return;
2697   writer_->AddString("],\n");
2698 
2699   writer_->AddString("\"trace_function_infos\":[");
2700   SerializeTraceNodeInfos();
2701   if (writer_->aborted()) return;
2702   writer_->AddString("],\n");
2703   writer_->AddString("\"trace_tree\":[");
2704   SerializeTraceTree();
2705   if (writer_->aborted()) return;
2706   writer_->AddString("],\n");
2707 
2708   writer_->AddString("\"samples\":[");
2709   SerializeSamples();
2710   if (writer_->aborted()) return;
2711   writer_->AddString("],\n");
2712 
2713   writer_->AddString("\"strings\":[");
2714   SerializeStrings();
2715   if (writer_->aborted()) return;
2716   writer_->AddCharacter(']');
2717   writer_->AddCharacter('}');
2718   writer_->Finalize();
2719 }
2720 
2721 
GetStringId(const char * s)2722 int HeapSnapshotJSONSerializer::GetStringId(const char* s) {
2723   base::HashMap::Entry* cache_entry =
2724       strings_.LookupOrInsert(const_cast<char*>(s), StringHash(s));
2725   if (cache_entry->value == NULL) {
2726     cache_entry->value = reinterpret_cast<void*>(next_string_id_++);
2727   }
2728   return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value));
2729 }
2730 
2731 
2732 namespace {
2733 
2734 template<size_t size> struct ToUnsigned;
2735 
2736 template<> struct ToUnsigned<4> {
2737   typedef uint32_t Type;
2738 };
2739 
2740 template<> struct ToUnsigned<8> {
2741   typedef uint64_t Type;
2742 };
2743 
2744 }  // namespace
2745 
2746 
2747 template<typename T>
utoa_impl(T value,const Vector<char> & buffer,int buffer_pos)2748 static int utoa_impl(T value, const Vector<char>& buffer, int buffer_pos) {
2749   STATIC_ASSERT(static_cast<T>(-1) > 0);  // Check that T is unsigned
2750   int number_of_digits = 0;
2751   T t = value;
2752   do {
2753     ++number_of_digits;
2754   } while (t /= 10);
2755 
2756   buffer_pos += number_of_digits;
2757   int result = buffer_pos;
2758   do {
2759     int last_digit = static_cast<int>(value % 10);
2760     buffer[--buffer_pos] = '0' + last_digit;
2761     value /= 10;
2762   } while (value);
2763   return result;
2764 }
2765 
2766 
2767 template<typename T>
utoa(T value,const Vector<char> & buffer,int buffer_pos)2768 static int utoa(T value, const Vector<char>& buffer, int buffer_pos) {
2769   typename ToUnsigned<sizeof(value)>::Type unsigned_value = value;
2770   STATIC_ASSERT(sizeof(value) == sizeof(unsigned_value));
2771   return utoa_impl(unsigned_value, buffer, buffer_pos);
2772 }
2773 
2774 
SerializeEdge(HeapGraphEdge * edge,bool first_edge)2775 void HeapSnapshotJSONSerializer::SerializeEdge(HeapGraphEdge* edge,
2776                                                bool first_edge) {
2777   // The buffer needs space for 3 unsigned ints, 3 commas, \n and \0
2778   static const int kBufferSize =
2779       MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned * 3 + 3 + 2;  // NOLINT
2780   EmbeddedVector<char, kBufferSize> buffer;
2781   int edge_name_or_index = edge->type() == HeapGraphEdge::kElement
2782       || edge->type() == HeapGraphEdge::kHidden
2783       ? edge->index() : GetStringId(edge->name());
2784   int buffer_pos = 0;
2785   if (!first_edge) {
2786     buffer[buffer_pos++] = ',';
2787   }
2788   buffer_pos = utoa(edge->type(), buffer, buffer_pos);
2789   buffer[buffer_pos++] = ',';
2790   buffer_pos = utoa(edge_name_or_index, buffer, buffer_pos);
2791   buffer[buffer_pos++] = ',';
2792   buffer_pos = utoa(entry_index(edge->to()), buffer, buffer_pos);
2793   buffer[buffer_pos++] = '\n';
2794   buffer[buffer_pos++] = '\0';
2795   writer_->AddString(buffer.start());
2796 }
2797 
2798 
SerializeEdges()2799 void HeapSnapshotJSONSerializer::SerializeEdges() {
2800   List<HeapGraphEdge*>& edges = snapshot_->children();
2801   for (int i = 0; i < edges.length(); ++i) {
2802     DCHECK(i == 0 ||
2803            edges[i - 1]->from()->index() <= edges[i]->from()->index());
2804     SerializeEdge(edges[i], i == 0);
2805     if (writer_->aborted()) return;
2806   }
2807 }
2808 
2809 
SerializeNode(HeapEntry * entry)2810 void HeapSnapshotJSONSerializer::SerializeNode(HeapEntry* entry) {
2811   // The buffer needs space for 4 unsigned ints, 1 size_t, 5 commas, \n and \0
2812   static const int kBufferSize =
2813       5 * MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned  // NOLINT
2814       + MaxDecimalDigitsIn<sizeof(size_t)>::kUnsigned  // NOLINT
2815       + 6 + 1 + 1;
2816   EmbeddedVector<char, kBufferSize> buffer;
2817   int buffer_pos = 0;
2818   if (entry_index(entry) != 0) {
2819     buffer[buffer_pos++] = ',';
2820   }
2821   buffer_pos = utoa(entry->type(), buffer, buffer_pos);
2822   buffer[buffer_pos++] = ',';
2823   buffer_pos = utoa(GetStringId(entry->name()), buffer, buffer_pos);
2824   buffer[buffer_pos++] = ',';
2825   buffer_pos = utoa(entry->id(), buffer, buffer_pos);
2826   buffer[buffer_pos++] = ',';
2827   buffer_pos = utoa(entry->self_size(), buffer, buffer_pos);
2828   buffer[buffer_pos++] = ',';
2829   buffer_pos = utoa(entry->children_count(), buffer, buffer_pos);
2830   buffer[buffer_pos++] = ',';
2831   buffer_pos = utoa(entry->trace_node_id(), buffer, buffer_pos);
2832   buffer[buffer_pos++] = '\n';
2833   buffer[buffer_pos++] = '\0';
2834   writer_->AddString(buffer.start());
2835 }
2836 
2837 
SerializeNodes()2838 void HeapSnapshotJSONSerializer::SerializeNodes() {
2839   List<HeapEntry>& entries = snapshot_->entries();
2840   for (int i = 0; i < entries.length(); ++i) {
2841     SerializeNode(&entries[i]);
2842     if (writer_->aborted()) return;
2843   }
2844 }
2845 
2846 
SerializeSnapshot()2847 void HeapSnapshotJSONSerializer::SerializeSnapshot() {
2848   writer_->AddString("\"meta\":");
2849   // The object describing node serialization layout.
2850   // We use a set of macros to improve readability.
2851 #define JSON_A(s) "[" s "]"
2852 #define JSON_O(s) "{" s "}"
2853 #define JSON_S(s) "\"" s "\""
2854   writer_->AddString(JSON_O(
2855     JSON_S("node_fields") ":" JSON_A(
2856         JSON_S("type") ","
2857         JSON_S("name") ","
2858         JSON_S("id") ","
2859         JSON_S("self_size") ","
2860         JSON_S("edge_count") ","
2861         JSON_S("trace_node_id")) ","
2862     JSON_S("node_types") ":" JSON_A(
2863         JSON_A(
2864             JSON_S("hidden") ","
2865             JSON_S("array") ","
2866             JSON_S("string") ","
2867             JSON_S("object") ","
2868             JSON_S("code") ","
2869             JSON_S("closure") ","
2870             JSON_S("regexp") ","
2871             JSON_S("number") ","
2872             JSON_S("native") ","
2873             JSON_S("synthetic") ","
2874             JSON_S("concatenated string") ","
2875             JSON_S("sliced string")) ","
2876         JSON_S("string") ","
2877         JSON_S("number") ","
2878         JSON_S("number") ","
2879         JSON_S("number") ","
2880         JSON_S("number") ","
2881         JSON_S("number")) ","
2882     JSON_S("edge_fields") ":" JSON_A(
2883         JSON_S("type") ","
2884         JSON_S("name_or_index") ","
2885         JSON_S("to_node")) ","
2886     JSON_S("edge_types") ":" JSON_A(
2887         JSON_A(
2888             JSON_S("context") ","
2889             JSON_S("element") ","
2890             JSON_S("property") ","
2891             JSON_S("internal") ","
2892             JSON_S("hidden") ","
2893             JSON_S("shortcut") ","
2894             JSON_S("weak")) ","
2895         JSON_S("string_or_number") ","
2896         JSON_S("node")) ","
2897     JSON_S("trace_function_info_fields") ":" JSON_A(
2898         JSON_S("function_id") ","
2899         JSON_S("name") ","
2900         JSON_S("script_name") ","
2901         JSON_S("script_id") ","
2902         JSON_S("line") ","
2903         JSON_S("column")) ","
2904     JSON_S("trace_node_fields") ":" JSON_A(
2905         JSON_S("id") ","
2906         JSON_S("function_info_index") ","
2907         JSON_S("count") ","
2908         JSON_S("size") ","
2909         JSON_S("children")) ","
2910     JSON_S("sample_fields") ":" JSON_A(
2911         JSON_S("timestamp_us") ","
2912         JSON_S("last_assigned_id"))));
2913 #undef JSON_S
2914 #undef JSON_O
2915 #undef JSON_A
2916   writer_->AddString(",\"node_count\":");
2917   writer_->AddNumber(snapshot_->entries().length());
2918   writer_->AddString(",\"edge_count\":");
2919   writer_->AddNumber(snapshot_->edges().length());
2920   writer_->AddString(",\"trace_function_count\":");
2921   uint32_t count = 0;
2922   AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker();
2923   if (tracker) {
2924     count = tracker->function_info_list().length();
2925   }
2926   writer_->AddNumber(count);
2927 }
2928 
2929 
WriteUChar(OutputStreamWriter * w,unibrow::uchar u)2930 static void WriteUChar(OutputStreamWriter* w, unibrow::uchar u) {
2931   static const char hex_chars[] = "0123456789ABCDEF";
2932   w->AddString("\\u");
2933   w->AddCharacter(hex_chars[(u >> 12) & 0xf]);
2934   w->AddCharacter(hex_chars[(u >> 8) & 0xf]);
2935   w->AddCharacter(hex_chars[(u >> 4) & 0xf]);
2936   w->AddCharacter(hex_chars[u & 0xf]);
2937 }
2938 
2939 
SerializeTraceTree()2940 void HeapSnapshotJSONSerializer::SerializeTraceTree() {
2941   AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker();
2942   if (!tracker) return;
2943   AllocationTraceTree* traces = tracker->trace_tree();
2944   SerializeTraceNode(traces->root());
2945 }
2946 
2947 
SerializeTraceNode(AllocationTraceNode * node)2948 void HeapSnapshotJSONSerializer::SerializeTraceNode(AllocationTraceNode* node) {
2949   // The buffer needs space for 4 unsigned ints, 4 commas, [ and \0
2950   const int kBufferSize =
2951       4 * MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned  // NOLINT
2952       + 4 + 1 + 1;
2953   EmbeddedVector<char, kBufferSize> buffer;
2954   int buffer_pos = 0;
2955   buffer_pos = utoa(node->id(), buffer, buffer_pos);
2956   buffer[buffer_pos++] = ',';
2957   buffer_pos = utoa(node->function_info_index(), buffer, buffer_pos);
2958   buffer[buffer_pos++] = ',';
2959   buffer_pos = utoa(node->allocation_count(), buffer, buffer_pos);
2960   buffer[buffer_pos++] = ',';
2961   buffer_pos = utoa(node->allocation_size(), buffer, buffer_pos);
2962   buffer[buffer_pos++] = ',';
2963   buffer[buffer_pos++] = '[';
2964   buffer[buffer_pos++] = '\0';
2965   writer_->AddString(buffer.start());
2966 
2967   Vector<AllocationTraceNode*> children = node->children();
2968   for (int i = 0; i < children.length(); i++) {
2969     if (i > 0) {
2970       writer_->AddCharacter(',');
2971     }
2972     SerializeTraceNode(children[i]);
2973   }
2974   writer_->AddCharacter(']');
2975 }
2976 
2977 
2978 // 0-based position is converted to 1-based during the serialization.
SerializePosition(int position,const Vector<char> & buffer,int buffer_pos)2979 static int SerializePosition(int position, const Vector<char>& buffer,
2980                              int buffer_pos) {
2981   if (position == -1) {
2982     buffer[buffer_pos++] = '0';
2983   } else {
2984     DCHECK(position >= 0);
2985     buffer_pos = utoa(static_cast<unsigned>(position + 1), buffer, buffer_pos);
2986   }
2987   return buffer_pos;
2988 }
2989 
2990 
SerializeTraceNodeInfos()2991 void HeapSnapshotJSONSerializer::SerializeTraceNodeInfos() {
2992   AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker();
2993   if (!tracker) return;
2994   // The buffer needs space for 6 unsigned ints, 6 commas, \n and \0
2995   const int kBufferSize =
2996       6 * MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned  // NOLINT
2997       + 6 + 1 + 1;
2998   EmbeddedVector<char, kBufferSize> buffer;
2999   const List<AllocationTracker::FunctionInfo*>& list =
3000       tracker->function_info_list();
3001   for (int i = 0; i < list.length(); i++) {
3002     AllocationTracker::FunctionInfo* info = list[i];
3003     int buffer_pos = 0;
3004     if (i > 0) {
3005       buffer[buffer_pos++] = ',';
3006     }
3007     buffer_pos = utoa(info->function_id, buffer, buffer_pos);
3008     buffer[buffer_pos++] = ',';
3009     buffer_pos = utoa(GetStringId(info->name), buffer, buffer_pos);
3010     buffer[buffer_pos++] = ',';
3011     buffer_pos = utoa(GetStringId(info->script_name), buffer, buffer_pos);
3012     buffer[buffer_pos++] = ',';
3013     // The cast is safe because script id is a non-negative Smi.
3014     buffer_pos = utoa(static_cast<unsigned>(info->script_id), buffer,
3015         buffer_pos);
3016     buffer[buffer_pos++] = ',';
3017     buffer_pos = SerializePosition(info->line, buffer, buffer_pos);
3018     buffer[buffer_pos++] = ',';
3019     buffer_pos = SerializePosition(info->column, buffer, buffer_pos);
3020     buffer[buffer_pos++] = '\n';
3021     buffer[buffer_pos++] = '\0';
3022     writer_->AddString(buffer.start());
3023   }
3024 }
3025 
3026 
SerializeSamples()3027 void HeapSnapshotJSONSerializer::SerializeSamples() {
3028   const List<HeapObjectsMap::TimeInterval>& samples =
3029       snapshot_->profiler()->heap_object_map()->samples();
3030   if (samples.is_empty()) return;
3031   base::TimeTicks start_time = samples[0].timestamp;
3032   // The buffer needs space for 2 unsigned ints, 2 commas, \n and \0
3033   const int kBufferSize = MaxDecimalDigitsIn<sizeof(
3034                               base::TimeDelta().InMicroseconds())>::kUnsigned +
3035                           MaxDecimalDigitsIn<sizeof(samples[0].id)>::kUnsigned +
3036                           2 + 1 + 1;
3037   EmbeddedVector<char, kBufferSize> buffer;
3038   for (int i = 0; i < samples.length(); i++) {
3039     HeapObjectsMap::TimeInterval& sample = samples[i];
3040     int buffer_pos = 0;
3041     if (i > 0) {
3042       buffer[buffer_pos++] = ',';
3043     }
3044     base::TimeDelta time_delta = sample.timestamp - start_time;
3045     buffer_pos = utoa(time_delta.InMicroseconds(), buffer, buffer_pos);
3046     buffer[buffer_pos++] = ',';
3047     buffer_pos = utoa(sample.last_assigned_id(), buffer, buffer_pos);
3048     buffer[buffer_pos++] = '\n';
3049     buffer[buffer_pos++] = '\0';
3050     writer_->AddString(buffer.start());
3051   }
3052 }
3053 
3054 
SerializeString(const unsigned char * s)3055 void HeapSnapshotJSONSerializer::SerializeString(const unsigned char* s) {
3056   writer_->AddCharacter('\n');
3057   writer_->AddCharacter('\"');
3058   for ( ; *s != '\0'; ++s) {
3059     switch (*s) {
3060       case '\b':
3061         writer_->AddString("\\b");
3062         continue;
3063       case '\f':
3064         writer_->AddString("\\f");
3065         continue;
3066       case '\n':
3067         writer_->AddString("\\n");
3068         continue;
3069       case '\r':
3070         writer_->AddString("\\r");
3071         continue;
3072       case '\t':
3073         writer_->AddString("\\t");
3074         continue;
3075       case '\"':
3076       case '\\':
3077         writer_->AddCharacter('\\');
3078         writer_->AddCharacter(*s);
3079         continue;
3080       default:
3081         if (*s > 31 && *s < 128) {
3082           writer_->AddCharacter(*s);
3083         } else if (*s <= 31) {
3084           // Special character with no dedicated literal.
3085           WriteUChar(writer_, *s);
3086         } else {
3087           // Convert UTF-8 into \u UTF-16 literal.
3088           size_t length = 1, cursor = 0;
3089           for ( ; length <= 4 && *(s + length) != '\0'; ++length) { }
3090           unibrow::uchar c = unibrow::Utf8::CalculateValue(s, length, &cursor);
3091           if (c != unibrow::Utf8::kBadChar) {
3092             WriteUChar(writer_, c);
3093             DCHECK(cursor != 0);
3094             s += cursor - 1;
3095           } else {
3096             writer_->AddCharacter('?');
3097           }
3098         }
3099     }
3100   }
3101   writer_->AddCharacter('\"');
3102 }
3103 
3104 
SerializeStrings()3105 void HeapSnapshotJSONSerializer::SerializeStrings() {
3106   ScopedVector<const unsigned char*> sorted_strings(
3107       strings_.occupancy() + 1);
3108   for (base::HashMap::Entry* entry = strings_.Start(); entry != NULL;
3109        entry = strings_.Next(entry)) {
3110     int index = static_cast<int>(reinterpret_cast<uintptr_t>(entry->value));
3111     sorted_strings[index] = reinterpret_cast<const unsigned char*>(entry->key);
3112   }
3113   writer_->AddString("\"<dummy>\"");
3114   for (int i = 1; i < sorted_strings.length(); ++i) {
3115     writer_->AddCharacter(',');
3116     SerializeString(sorted_strings[i]);
3117     if (writer_->aborted()) return;
3118   }
3119 }
3120 
3121 
3122 }  // namespace internal
3123 }  // namespace v8
3124