1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_S390
8 
9 #include "src/base/bits.h"
10 #include "src/code-stubs.h"
11 #include "src/log.h"
12 #include "src/macro-assembler.h"
13 #include "src/regexp/regexp-macro-assembler.h"
14 #include "src/regexp/regexp-stack.h"
15 #include "src/regexp/s390/regexp-macro-assembler-s390.h"
16 #include "src/unicode.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #ifndef V8_INTERPRETED_REGEXP
22 /*
23  * This assembler uses the following register assignment convention
24  * - r6: Temporarily stores the index of capture start after a matching pass
25  *        for a global regexp.
26  * - r7: Pointer to current code object (Code*) including heap object tag.
27  * - r8: Current position in input, as negative offset from end of string.
28  *        Please notice that this is the byte offset, not the character offset!
29  * - r9: Currently loaded character. Must be loaded using
30  *        LoadCurrentCharacter before using any of the dispatch methods.
31  * - r13: Points to tip of backtrack stack
32  * - r10: End of input (points to byte after last character in input).
33  * - r11: Frame pointer. Used to access arguments, local variables and
34  *         RegExp registers.
35  * - r12: IP register, used by assembler. Very volatile.
36  * - r15/sp : Points to tip of C stack.
37  *
38  * The remaining registers are free for computations.
39  * Each call to a public method should retain this convention.
40  *
41  * The stack will have the following structure:
42  *  - fp[112] Isolate* isolate   (address of the current isolate)
43  *  - fp[108] secondary link/return address used by native call.
44  *  - fp[104] direct_call        (if 1, direct call from JavaScript code,
45  *                                if 0, call through the runtime system).
46  *  - fp[100] stack_area_base    (high end of the memory area to use as
47  *                                backtracking stack).
48  *  - fp[96]  capture array size (may fit multiple sets of matches)
49  *  - fp[0..96] zLinux ABI register saving area
50  *  --- sp when called ---
51  *  --- frame pointer ----
52  *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
53  *                                if 0, call through the runtime system).
54  *  - fp[-8]  stack_area_base    (high end of the memory area to use as
55  *                                backtracking stack).
56  *  - fp[-12] capture array size (may fit multiple sets of matches)
57  *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
58  *  - fp[-20] end of input       (address of end of string).
59  *  - fp[-24] start of input     (address of first character in string).
60  *  - fp[-28] start index        (character index of start).
61  *  - fp[-32] void* input_string (location of a handle containing the string).
62  *  - fp[-36] success counter    (only for global regexps to count matches).
63  *  - fp[-40] Offset of location before start of input (effectively character
64  *            string start - 1). Used to initialize capture registers to a
65  *            non-position.
66  *  - fp[-44] At start (if 1, we are starting at the start of the
67  *    string, otherwise 0)
68  *  - fp[-48] register 0         (Only positions must be stored in the first
69  *  -         register 1          num_saved_registers_ registers)
70  *  -         ...
71  *  -         register num_registers-1
72  *  --- sp ---
73  *
74  * The first num_saved_registers_ registers are initialized to point to
75  * "character -1" in the string (i.e., char_size() bytes before the first
76  * character of the string). The remaining registers start out as garbage.
77  *
78  * The data up to the return address must be placed there by the calling
79  * code and the remaining arguments are passed in registers, e.g. by calling the
80  * code entry as cast to a function with the signature:
81  * int (*match)(String* input_string,
82  *              int start_index,
83  *              Address start,
84  *              Address end,
85  *              int* capture_output_array,
86  *              byte* stack_area_base,
87  *              Address secondary_return_address,  // Only used by native call.
88  *              bool direct_call = false)
89  * The call is performed by NativeRegExpMacroAssembler::Execute()
90  * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
91  * in s390/simulator-s390.h.
92  * When calling as a non-direct call (i.e., from C++ code), the return address
93  * area is overwritten with the LR register by the RegExp code. When doing a
94  * direct call from generated code, the return address is placed there by
95  * the calling code, as in a normal exit frame.
96  */
97 
98 #define __ ACCESS_MASM(masm_)
99 
RegExpMacroAssemblerS390(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)100 RegExpMacroAssemblerS390::RegExpMacroAssemblerS390(Isolate* isolate, Zone* zone,
101                                                    Mode mode,
102                                                    int registers_to_save)
103     : NativeRegExpMacroAssembler(isolate, zone),
104       masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
105                                CodeObjectRequired::kYes)),
106       mode_(mode),
107       num_registers_(registers_to_save),
108       num_saved_registers_(registers_to_save),
109       entry_label_(),
110       start_label_(),
111       success_label_(),
112       backtrack_label_(),
113       exit_label_(),
114       internal_failure_label_() {
115   DCHECK_EQ(0, registers_to_save % 2);
116 
117   __ b(&entry_label_);  // We'll write the entry code later.
118   // If the code gets too big or corrupted, an internal exception will be
119   // raised, and we will exit right away.
120   __ bind(&internal_failure_label_);
121   __ LoadImmP(r2, Operand(FAILURE));
122   __ Ret();
123   __ bind(&start_label_);  // And then continue from here.
124 }
125 
~RegExpMacroAssemblerS390()126 RegExpMacroAssemblerS390::~RegExpMacroAssemblerS390() {
127   delete masm_;
128   // Unuse labels in case we throw away the assembler without calling GetCode.
129   entry_label_.Unuse();
130   start_label_.Unuse();
131   success_label_.Unuse();
132   backtrack_label_.Unuse();
133   exit_label_.Unuse();
134   check_preempt_label_.Unuse();
135   stack_overflow_label_.Unuse();
136   internal_failure_label_.Unuse();
137 }
138 
stack_limit_slack()139 int RegExpMacroAssemblerS390::stack_limit_slack() {
140   return RegExpStack::kStackLimitSlack;
141 }
142 
AdvanceCurrentPosition(int by)143 void RegExpMacroAssemblerS390::AdvanceCurrentPosition(int by) {
144   if (by != 0) {
145     __ AddP(current_input_offset(), Operand(by * char_size()));
146   }
147 }
148 
AdvanceRegister(int reg,int by)149 void RegExpMacroAssemblerS390::AdvanceRegister(int reg, int by) {
150   DCHECK(reg >= 0);
151   DCHECK(reg < num_registers_);
152   if (by != 0) {
153     if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(by)) {
154       __ AddMI(register_location(reg), Operand(by));
155     } else {
156       __ LoadP(r2, register_location(reg), r0);
157       __ mov(r0, Operand(by));
158       __ AddRR(r2, r0);
159       __ StoreP(r2, register_location(reg));
160     }
161   }
162 }
163 
Backtrack()164 void RegExpMacroAssemblerS390::Backtrack() {
165   CheckPreemption();
166   // Pop Code* offset from backtrack stack, add Code* and jump to location.
167   Pop(r2);
168   __ AddP(r2, code_pointer());
169   __ b(r2);
170 }
171 
Bind(Label * label)172 void RegExpMacroAssemblerS390::Bind(Label* label) { __ bind(label); }
173 
CheckCharacter(uint32_t c,Label * on_equal)174 void RegExpMacroAssemblerS390::CheckCharacter(uint32_t c, Label* on_equal) {
175   __ CmpLogicalP(current_character(), Operand(c));
176   BranchOrBacktrack(eq, on_equal);
177 }
178 
CheckCharacterGT(uc16 limit,Label * on_greater)179 void RegExpMacroAssemblerS390::CheckCharacterGT(uc16 limit, Label* on_greater) {
180   __ CmpLogicalP(current_character(), Operand(limit));
181   BranchOrBacktrack(gt, on_greater);
182 }
183 
CheckAtStart(Label * on_at_start)184 void RegExpMacroAssemblerS390::CheckAtStart(Label* on_at_start) {
185   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
186   __ AddP(r2, current_input_offset(), Operand(-char_size()));
187   __ CmpP(r2, r3);
188   BranchOrBacktrack(eq, on_at_start);
189 }
190 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)191 void RegExpMacroAssemblerS390::CheckNotAtStart(int cp_offset,
192                                                Label* on_not_at_start) {
193   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
194   __ AddP(r2, current_input_offset(),
195           Operand(-char_size() + cp_offset * char_size()));
196   __ CmpP(r2, r3);
197   BranchOrBacktrack(ne, on_not_at_start);
198 }
199 
CheckCharacterLT(uc16 limit,Label * on_less)200 void RegExpMacroAssemblerS390::CheckCharacterLT(uc16 limit, Label* on_less) {
201   __ CmpLogicalP(current_character(), Operand(limit));
202   BranchOrBacktrack(lt, on_less);
203 }
204 
CheckGreedyLoop(Label * on_equal)205 void RegExpMacroAssemblerS390::CheckGreedyLoop(Label* on_equal) {
206   Label backtrack_non_equal;
207   __ CmpP(current_input_offset(), MemOperand(backtrack_stackpointer(), 0));
208   __ bne(&backtrack_non_equal);
209   __ AddP(backtrack_stackpointer(), Operand(kPointerSize));
210 
211   BranchOrBacktrack(al, on_equal);
212   __ bind(&backtrack_non_equal);
213 }
214 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)215 void RegExpMacroAssemblerS390::CheckNotBackReferenceIgnoreCase(
216     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
217   Label fallthrough;
218   __ LoadP(r2, register_location(start_reg));      // Index of start of
219                                                    // capture
220   __ LoadP(r3, register_location(start_reg + 1));  // Index of end
221   __ SubP(r3, r3, r2);
222 
223   // At this point, the capture registers are either both set or both cleared.
224   // If the capture length is zero, then the capture is either empty or cleared.
225   // Fall through in both cases.
226   __ beq(&fallthrough);
227 
228   // Check that there are enough characters left in the input.
229   if (read_backward) {
230     __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
231     __ AddP(r5, r5, r3);
232     __ CmpP(current_input_offset(), r5);
233     BranchOrBacktrack(le, on_no_match);
234   } else {
235     __ AddP(r0, r3, current_input_offset());
236     BranchOrBacktrack(gt, on_no_match);
237   }
238 
239   if (mode_ == LATIN1) {
240     Label success;
241     Label fail;
242     Label loop_check;
243 
244     // r2 - offset of start of capture
245     // r3 - length of capture
246     __ AddP(r2, end_of_input_address());
247     __ AddP(r4, current_input_offset(), end_of_input_address());
248     if (read_backward) {
249       __ SubP(r4, r4, r3);  // Offset by length when matching backwards.
250     }
251     __ mov(r1, Operand::Zero());
252 
253     // r1 - Loop index
254     // r2 - Address of start of capture.
255     // r4 - Address of current input position.
256 
257     Label loop;
258     __ bind(&loop);
259     __ LoadlB(r5, MemOperand(r2, r1));
260     __ LoadlB(r6, MemOperand(r4, r1));
261 
262     __ CmpP(r6, r5);
263     __ beq(&loop_check);
264 
265     // Mismatch, try case-insensitive match (converting letters to lower-case).
266     __ Or(r5, Operand(0x20));  // Convert capture character to lower-case.
267     __ Or(r6, Operand(0x20));  // Also convert input character.
268     __ CmpP(r6, r5);
269     __ bne(&fail);
270     __ SubP(r5, Operand('a'));
271     __ CmpLogicalP(r5, Operand('z' - 'a'));  // Is r5 a lowercase letter?
272     __ ble(&loop_check);                     // In range 'a'-'z'.
273     // Latin-1: Check for values in range [224,254] but not 247.
274     __ SubP(r5, Operand(224 - 'a'));
275     __ CmpLogicalP(r5, Operand(254 - 224));
276     __ bgt(&fail);                           // Weren't Latin-1 letters.
277     __ CmpLogicalP(r5, Operand(247 - 224));  // Check for 247.
278     __ beq(&fail);
279 
280     __ bind(&loop_check);
281     __ la(r1, MemOperand(r1, char_size()));
282     __ CmpP(r1, r3);
283     __ blt(&loop);
284     __ b(&success);
285 
286     __ bind(&fail);
287     BranchOrBacktrack(al, on_no_match);
288 
289     __ bind(&success);
290     // Compute new value of character position after the matched part.
291     __ SubP(current_input_offset(), r4, end_of_input_address());
292     if (read_backward) {
293       __ LoadP(r2, register_location(start_reg));  // Index of start of capture
294       __ LoadP(r3,
295                register_location(start_reg + 1));  // Index of end of capture
296       __ AddP(current_input_offset(), current_input_offset(), r2);
297       __ SubP(current_input_offset(), current_input_offset(), r3);
298     }
299     __ AddP(current_input_offset(), r1);
300   } else {
301     DCHECK(mode_ == UC16);
302     int argument_count = 4;
303     __ PrepareCallCFunction(argument_count, r4);
304 
305     // r2 - offset of start of capture
306     // r3 - length of capture
307 
308     // Put arguments into arguments registers.
309     // Parameters are
310     //   r2: Address byte_offset1 - Address captured substring's start.
311     //   r3: Address byte_offset2 - Address of current character position.
312     //   r4: size_t byte_length - length of capture in bytes(!)
313     //   r5: Isolate* isolate or 0 if unicode flag.
314 
315     // Address of start of capture.
316     __ AddP(r2, end_of_input_address());
317     // Length of capture.
318     __ LoadRR(r4, r3);
319     // Save length in callee-save register for use on return.
320     __ LoadRR(r6, r3);
321     // Address of current input position.
322     __ AddP(r3, current_input_offset(), end_of_input_address());
323     if (read_backward) {
324       __ SubP(r3, r3, r6);
325     }
326 // Isolate.
327 #ifdef V8_I18N_SUPPORT
328     if (unicode) {
329       __ LoadImmP(r5, Operand::Zero());
330     } else  // NOLINT
331 #endif      // V8_I18N_SUPPORT
332     {
333       __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
334     }
335 
336     {
337       AllowExternalCallThatCantCauseGC scope(masm_);
338       ExternalReference function =
339           ExternalReference::re_case_insensitive_compare_uc16(isolate());
340       __ CallCFunction(function, argument_count);
341     }
342 
343     // Check if function returned non-zero for success or zero for failure.
344     __ CmpP(r2, Operand::Zero());
345     BranchOrBacktrack(eq, on_no_match);
346 
347     // On success, advance position by length of capture.
348     if (read_backward) {
349       __ SubP(current_input_offset(), current_input_offset(), r6);
350     } else {
351       __ AddP(current_input_offset(), current_input_offset(), r6);
352     }
353   }
354 
355   __ bind(&fallthrough);
356 }
357 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)358 void RegExpMacroAssemblerS390::CheckNotBackReference(int start_reg,
359                                                      bool read_backward,
360                                                      Label* on_no_match) {
361   Label fallthrough;
362   Label success;
363 
364   // Find length of back-referenced capture.
365   __ LoadP(r2, register_location(start_reg));
366   __ LoadP(r3, register_location(start_reg + 1));
367   __ SubP(r3, r3, r2);  // Length to check.
368 
369   // At this point, the capture registers are either both set or both cleared.
370   // If the capture length is zero, then the capture is either empty or cleared.
371   // Fall through in both cases.
372   __ beq(&fallthrough);
373 
374   // Check that there are enough characters left in the input.
375   if (read_backward) {
376     __ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
377     __ AddP(r5, r5, r3);
378     __ CmpP(current_input_offset(), r5);
379     BranchOrBacktrack(lt, on_no_match);
380   } else {
381     __ AddP(r0, r3, current_input_offset());
382     BranchOrBacktrack(gt, on_no_match, cr0);
383   }
384 
385   // r2 - offset of start of capture
386   // r3 - length of capture
387   __ la(r2, MemOperand(r2, end_of_input_address()));
388   __ la(r4, MemOperand(current_input_offset(), end_of_input_address()));
389   if (read_backward) {
390     __ SubP(r4, r4, r3);  // Offset by length when matching backwards.
391   }
392   __ mov(r1, Operand::Zero());
393 
394   Label loop;
395   __ bind(&loop);
396   if (mode_ == LATIN1) {
397     __ LoadlB(r5, MemOperand(r2, r1));
398     __ LoadlB(r6, MemOperand(r4, r1));
399   } else {
400     DCHECK(mode_ == UC16);
401     __ LoadLogicalHalfWordP(r5, MemOperand(r2, r1));
402     __ LoadLogicalHalfWordP(r6, MemOperand(r4, r1));
403   }
404   __ la(r1, MemOperand(r1, char_size()));
405   __ CmpP(r5, r6);
406   BranchOrBacktrack(ne, on_no_match);
407   __ CmpP(r1, r3);
408   __ blt(&loop);
409 
410   // Move current character position to position after match.
411   __ SubP(current_input_offset(), r4, end_of_input_address());
412   if (read_backward) {
413     __ LoadP(r2, register_location(start_reg));  // Index of start of capture
414     __ LoadP(r3, register_location(start_reg + 1));  // Index of end of capture
415     __ AddP(current_input_offset(), current_input_offset(), r2);
416     __ SubP(current_input_offset(), current_input_offset(), r3);
417   }
418   __ AddP(current_input_offset(), r1);
419 
420   __ bind(&fallthrough);
421 }
422 
CheckNotCharacter(unsigned c,Label * on_not_equal)423 void RegExpMacroAssemblerS390::CheckNotCharacter(unsigned c,
424                                                  Label* on_not_equal) {
425   __ CmpLogicalP(current_character(), Operand(c));
426   BranchOrBacktrack(ne, on_not_equal);
427 }
428 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)429 void RegExpMacroAssemblerS390::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
430                                                       Label* on_equal) {
431   __ AndP(r2, current_character(), Operand(mask));
432   if (c != 0) {
433     __ CmpLogicalP(r2, Operand(c));
434   }
435   BranchOrBacktrack(eq, on_equal);
436 }
437 
CheckNotCharacterAfterAnd(unsigned c,unsigned mask,Label * on_not_equal)438 void RegExpMacroAssemblerS390::CheckNotCharacterAfterAnd(unsigned c,
439                                                          unsigned mask,
440                                                          Label* on_not_equal) {
441   __ AndP(r2, current_character(), Operand(mask));
442   if (c != 0) {
443     __ CmpLogicalP(r2, Operand(c));
444   }
445   BranchOrBacktrack(ne, on_not_equal);
446 }
447 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)448 void RegExpMacroAssemblerS390::CheckNotCharacterAfterMinusAnd(
449     uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
450   DCHECK(minus < String::kMaxUtf16CodeUnit);
451   __ lay(r2, MemOperand(current_character(), -minus));
452   __ And(r2, Operand(mask));
453   if (c != 0) {
454     __ CmpLogicalP(r2, Operand(c));
455   }
456   BranchOrBacktrack(ne, on_not_equal);
457 }
458 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)459 void RegExpMacroAssemblerS390::CheckCharacterInRange(uc16 from, uc16 to,
460                                                      Label* on_in_range) {
461   __ lay(r2, MemOperand(current_character(), -from));
462   __ CmpLogicalP(r2, Operand(to - from));
463   BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
464 }
465 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)466 void RegExpMacroAssemblerS390::CheckCharacterNotInRange(
467     uc16 from, uc16 to, Label* on_not_in_range) {
468   __ lay(r2, MemOperand(current_character(), -from));
469   __ CmpLogicalP(r2, Operand(to - from));
470   BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
471 }
472 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)473 void RegExpMacroAssemblerS390::CheckBitInTable(Handle<ByteArray> table,
474                                                Label* on_bit_set) {
475   __ mov(r2, Operand(table));
476   Register index = current_character();
477   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
478     __ AndP(r3, current_character(), Operand(kTableSize - 1));
479     index = r3;
480   }
481   __ LoadlB(r2,
482             MemOperand(r2, index, (ByteArray::kHeaderSize - kHeapObjectTag)));
483   __ CmpP(r2, Operand::Zero());
484   BranchOrBacktrack(ne, on_bit_set);
485 }
486 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)487 bool RegExpMacroAssemblerS390::CheckSpecialCharacterClass(uc16 type,
488                                                           Label* on_no_match) {
489   // Range checks (c in min..max) are generally implemented by an unsigned
490   // (c - min) <= (max - min) check
491   switch (type) {
492     case 's':
493       // Match space-characters
494       if (mode_ == LATIN1) {
495         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
496         Label success;
497         __ CmpP(current_character(), Operand(' '));
498         __ beq(&success);
499         // Check range 0x09..0x0d
500         __ SubP(r2, current_character(), Operand('\t'));
501         __ CmpLogicalP(r2, Operand('\r' - '\t'));
502         __ ble(&success);
503         // \u00a0 (NBSP).
504         __ CmpLogicalP(r2, Operand(0x00a0 - '\t'));
505         BranchOrBacktrack(ne, on_no_match);
506         __ bind(&success);
507         return true;
508       }
509       return false;
510     case 'S':
511       // The emitted code for generic character classes is good enough.
512       return false;
513     case 'd':
514       // Match ASCII digits ('0'..'9')
515       __ SubP(r2, current_character(), Operand('0'));
516       __ CmpLogicalP(r2, Operand('9' - '0'));
517       BranchOrBacktrack(gt, on_no_match);
518       return true;
519     case 'D':
520       // Match non ASCII-digits
521       __ SubP(r2, current_character(), Operand('0'));
522       __ CmpLogicalP(r2, Operand('9' - '0'));
523       BranchOrBacktrack(le, on_no_match);
524       return true;
525     case '.': {
526       // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
527       __ XorP(r2, current_character(), Operand(0x01));
528       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
529       __ SubP(r2, Operand(0x0b));
530       __ CmpLogicalP(r2, Operand(0x0c - 0x0b));
531       BranchOrBacktrack(le, on_no_match);
532       if (mode_ == UC16) {
533         // Compare original value to 0x2028 and 0x2029, using the already
534         // computed (current_char ^ 0x01 - 0x0b). I.e., check for
535         // 0x201d (0x2028 - 0x0b) or 0x201e.
536         __ SubP(r2, Operand(0x2028 - 0x0b));
537         __ CmpLogicalP(r2, Operand(1));
538         BranchOrBacktrack(le, on_no_match);
539       }
540       return true;
541     }
542     case 'n': {
543       // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
544       __ XorP(r2, current_character(), Operand(0x01));
545       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
546       __ SubP(r2, Operand(0x0b));
547       __ CmpLogicalP(r2, Operand(0x0c - 0x0b));
548       if (mode_ == LATIN1) {
549         BranchOrBacktrack(gt, on_no_match);
550       } else {
551         Label done;
552         __ ble(&done);
553         // Compare original value to 0x2028 and 0x2029, using the already
554         // computed (current_char ^ 0x01 - 0x0b). I.e., check for
555         // 0x201d (0x2028 - 0x0b) or 0x201e.
556         __ SubP(r2, Operand(0x2028 - 0x0b));
557         __ CmpLogicalP(r2, Operand(1));
558         BranchOrBacktrack(gt, on_no_match);
559         __ bind(&done);
560       }
561       return true;
562     }
563     case 'w': {
564       if (mode_ != LATIN1) {
565         // Table is 1256 entries, so all LATIN1 characters can be tested.
566         __ CmpP(current_character(), Operand('z'));
567         BranchOrBacktrack(gt, on_no_match);
568       }
569       ExternalReference map = ExternalReference::re_word_character_map();
570       __ mov(r2, Operand(map));
571       __ LoadlB(r2, MemOperand(r2, current_character()));
572       __ CmpLogicalP(r2, Operand::Zero());
573       BranchOrBacktrack(eq, on_no_match);
574       return true;
575     }
576     case 'W': {
577       Label done;
578       if (mode_ != LATIN1) {
579         // Table is 256 entries, so all LATIN characters can be tested.
580         __ CmpLogicalP(current_character(), Operand('z'));
581         __ bgt(&done);
582       }
583       ExternalReference map = ExternalReference::re_word_character_map();
584       __ mov(r2, Operand(map));
585       __ LoadlB(r2, MemOperand(r2, current_character()));
586       __ CmpLogicalP(r2, Operand::Zero());
587       BranchOrBacktrack(ne, on_no_match);
588       if (mode_ != LATIN1) {
589         __ bind(&done);
590       }
591       return true;
592     }
593     case '*':
594       // Match any character.
595       return true;
596     // No custom implementation (yet): s(UC16), S(UC16).
597     default:
598       return false;
599   }
600 }
601 
Fail()602 void RegExpMacroAssemblerS390::Fail() {
603   __ LoadImmP(r2, Operand(FAILURE));
604   __ b(&exit_label_);
605 }
606 
GetCode(Handle<String> source)607 Handle<HeapObject> RegExpMacroAssemblerS390::GetCode(Handle<String> source) {
608   Label return_r2;
609 
610   // Finalize code - write the entry point code now we know how many
611   // registers we need.
612 
613   // Entry code:
614   __ bind(&entry_label_);
615 
616   // Tell the system that we have a stack frame.  Because the type
617   // is MANUAL, no is generated.
618   FrameScope scope(masm_, StackFrame::MANUAL);
619 
620   // Ensure register assigments are consistent with callee save mask
621   DCHECK(r6.bit() & kRegExpCalleeSaved);
622   DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
623   DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
624   DCHECK(current_character().bit() & kRegExpCalleeSaved);
625   DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
626   DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
627   DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
628 
629   // zLinux ABI
630   //    Incoming parameters:
631   //          r2: input_string
632   //          r3: start_index
633   //          r4: start addr
634   //          r5: end addr
635   //          r6: capture output arrray
636   //    Requires us to save the callee-preserved registers r6-r13
637   //    General convention is to also save r14 (return addr) and
638   //    sp/r15 as well in a single STM/STMG
639   __ StoreMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
640 
641   // Load stack parameters from caller stack frame
642   __ LoadMultipleP(r7, r9,
643                    MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
644   // r7 = capture array size
645   // r8 = stack area base
646   // r9 = direct call
647 
648   // Actually emit code to start a new stack frame.
649   // Push arguments
650   // Save callee-save registers.
651   // Start new stack frame.
652   // Store link register in existing stack-cell.
653   // Order here should correspond to order of offset constants in header file.
654   //
655   // Set frame pointer in space for it if this is not a direct call
656   // from generated code.
657   __ LoadRR(frame_pointer(), sp);
658   __ lay(sp, MemOperand(sp, -10 * kPointerSize));
659   __ mov(r1, Operand::Zero());  // success counter
660   __ LoadRR(r0, r1);            // offset of location
661   __ StoreMultipleP(r0, r9, MemOperand(sp, 0));
662 
663   // Check if we have space on the stack for registers.
664   Label stack_limit_hit;
665   Label stack_ok;
666 
667   ExternalReference stack_limit =
668       ExternalReference::address_of_stack_limit(isolate());
669   __ mov(r2, Operand(stack_limit));
670   __ LoadP(r2, MemOperand(r2));
671   __ SubP(r2, sp, r2);
672   // Handle it if the stack pointer is already below the stack limit.
673   __ ble(&stack_limit_hit);
674   // Check if there is room for the variable number of registers above
675   // the stack limit.
676   __ CmpLogicalP(r2, Operand(num_registers_ * kPointerSize));
677   __ bge(&stack_ok);
678   // Exit with OutOfMemory exception. There is not enough space on the stack
679   // for our working registers.
680   __ mov(r2, Operand(EXCEPTION));
681   __ b(&return_r2);
682 
683   __ bind(&stack_limit_hit);
684   CallCheckStackGuardState(r2);
685   __ CmpP(r2, Operand::Zero());
686   // If returned value is non-zero, we exit with the returned value as result.
687   __ bne(&return_r2);
688 
689   __ bind(&stack_ok);
690 
691   // Allocate space on stack for registers.
692   __ lay(sp, MemOperand(sp, (-num_registers_ * kPointerSize)));
693   // Load string end.
694   __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
695   // Load input start.
696   __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
697   // Find negative length (offset of start relative to end).
698   __ SubP(current_input_offset(), r4, end_of_input_address());
699   __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
700   // Set r1 to address of char before start of the input string
701   // (effectively string position -1).
702   __ LoadRR(r1, r4);
703   __ SubP(r1, current_input_offset(), Operand(char_size()));
704   if (mode_ == UC16) {
705     __ ShiftLeftP(r0, r3, Operand(1));
706     __ SubP(r1, r1, r0);
707   } else {
708     __ SubP(r1, r1, r3);
709   }
710   // Store this value in a local variable, for use when clearing
711   // position registers.
712   __ StoreP(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
713 
714   // Initialize code pointer register
715   __ mov(code_pointer(), Operand(masm_->CodeObject()));
716 
717   Label load_char_start_regexp, start_regexp;
718   // Load newline if index is at start, previous character otherwise.
719   __ CmpP(r3, Operand::Zero());
720   __ bne(&load_char_start_regexp);
721   __ mov(current_character(), Operand('\n'));
722   __ b(&start_regexp);
723 
724   // Global regexp restarts matching here.
725   __ bind(&load_char_start_regexp);
726   // Load previous char as initial value of current character register.
727   LoadCurrentCharacterUnchecked(-1, 1);
728   __ bind(&start_regexp);
729 
730   // Initialize on-stack registers.
731   if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
732     // Fill saved registers with initial value = start offset - 1
733     if (num_saved_registers_ > 8) {
734       // One slot beyond address of register 0.
735       __ lay(r3, MemOperand(frame_pointer(), kRegisterZero + kPointerSize));
736       __ LoadImmP(r4, Operand(num_saved_registers_));
737       Label init_loop;
738       __ bind(&init_loop);
739       __ StoreP(r1, MemOperand(r3, -kPointerSize));
740       __ lay(r3, MemOperand(r3, -kPointerSize));
741       __ BranchOnCount(r4, &init_loop);
742     } else {
743       for (int i = 0; i < num_saved_registers_; i++) {
744         __ StoreP(r1, register_location(i));
745       }
746     }
747   }
748 
749   // Initialize backtrack stack pointer.
750   __ LoadP(backtrack_stackpointer(),
751            MemOperand(frame_pointer(), kStackHighEnd));
752 
753   __ b(&start_label_);
754 
755   // Exit code:
756   if (success_label_.is_linked()) {
757     // Save captures when successful.
758     __ bind(&success_label_);
759     if (num_saved_registers_ > 0) {
760       // copy captures to output
761       __ LoadP(r0, MemOperand(frame_pointer(), kInputStart));
762       __ LoadP(r2, MemOperand(frame_pointer(), kRegisterOutput));
763       __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
764       __ SubP(r0, end_of_input_address(), r0);
765       // r0 is length of input in bytes.
766       if (mode_ == UC16) {
767         __ ShiftRightP(r0, r0, Operand(1));
768       }
769       // r0 is length of input in characters.
770       __ AddP(r0, r4);
771       // r0 is length of string in characters.
772 
773       DCHECK_EQ(0, num_saved_registers_ % 2);
774       // Always an even number of capture registers. This allows us to
775       // unroll the loop once to add an operation between a load of a register
776       // and the following use of that register.
777       __ lay(r2, MemOperand(r2, num_saved_registers_ * kIntSize));
778       for (int i = 0; i < num_saved_registers_;) {
779         if (false && i < num_saved_registers_ - 4) {
780           // TODO(john.yan): Can be optimized by SIMD instructions
781           __ LoadMultipleP(r3, r6, register_location(i + 3));
782           if (mode_ == UC16) {
783             __ ShiftRightArithP(r3, r3, Operand(1));
784             __ ShiftRightArithP(r4, r4, Operand(1));
785             __ ShiftRightArithP(r5, r5, Operand(1));
786             __ ShiftRightArithP(r6, r6, Operand(1));
787           }
788           __ AddP(r3, r0);
789           __ AddP(r4, r0);
790           __ AddP(r5, r0);
791           __ AddP(r6, r0);
792           __ StoreW(r3,
793                     MemOperand(r2, -(num_saved_registers_ - i - 3) * kIntSize));
794           __ StoreW(r4,
795                     MemOperand(r2, -(num_saved_registers_ - i - 2) * kIntSize));
796           __ StoreW(r5,
797                     MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
798           __ StoreW(r6, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
799           i += 4;
800         } else {
801           __ LoadMultipleP(r3, r4, register_location(i + 1));
802           if (mode_ == UC16) {
803             __ ShiftRightArithP(r3, r3, Operand(1));
804             __ ShiftRightArithP(r4, r4, Operand(1));
805           }
806           __ AddP(r3, r0);
807           __ AddP(r4, r0);
808           __ StoreW(r3,
809                     MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
810           __ StoreW(r4, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
811           i += 2;
812         }
813       }
814       if (global_with_zero_length_check()) {
815         // Keep capture start in r6 for the zero-length check later.
816         __ LoadP(r6, register_location(0));
817       }
818     }
819 
820     if (global()) {
821       // Restart matching if the regular expression is flagged as global.
822       __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
823       __ LoadP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
824       __ LoadP(r4, MemOperand(frame_pointer(), kRegisterOutput));
825       // Increment success counter.
826       __ AddP(r2, Operand(1));
827       __ StoreP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
828       // Capture results have been stored, so the number of remaining global
829       // output registers is reduced by the number of stored captures.
830       __ SubP(r3, Operand(num_saved_registers_));
831       // Check whether we have enough room for another set of capture results.
832       __ CmpP(r3, Operand(num_saved_registers_));
833       __ blt(&return_r2);
834 
835       __ StoreP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
836       // Advance the location for output.
837       __ AddP(r4, Operand(num_saved_registers_ * kIntSize));
838       __ StoreP(r4, MemOperand(frame_pointer(), kRegisterOutput));
839 
840       // Prepare r2 to initialize registers with its value in the next run.
841       __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
842 
843       if (global_with_zero_length_check()) {
844         // Special case for zero-length matches.
845         // r6: capture start index
846         __ CmpP(current_input_offset(), r6);
847         // Not a zero-length match, restart.
848         __ bne(&load_char_start_regexp);
849         // Offset from the end is zero if we already reached the end.
850         __ CmpP(current_input_offset(), Operand::Zero());
851         __ beq(&exit_label_);
852         // Advance current position after a zero-length match.
853         Label advance;
854         __ bind(&advance);
855         __ AddP(current_input_offset(), Operand((mode_ == UC16) ? 2 : 1));
856         if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
857       }
858 
859       __ b(&load_char_start_regexp);
860     } else {
861       __ LoadImmP(r2, Operand(SUCCESS));
862     }
863   }
864 
865   // Exit and return r2
866   __ bind(&exit_label_);
867   if (global()) {
868     __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
869   }
870 
871   __ bind(&return_r2);
872   // Skip sp past regexp registers and local variables..
873   __ LoadRR(sp, frame_pointer());
874   // Restore registers r6..r15.
875   __ LoadMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
876 
877   __ b(r14);
878 
879   // Backtrack code (branch target for conditional backtracks).
880   if (backtrack_label_.is_linked()) {
881     __ bind(&backtrack_label_);
882     Backtrack();
883   }
884 
885   Label exit_with_exception;
886 
887   // Preempt-code
888   if (check_preempt_label_.is_linked()) {
889     SafeCallTarget(&check_preempt_label_);
890 
891     CallCheckStackGuardState(r2);
892     __ CmpP(r2, Operand::Zero());
893     // If returning non-zero, we should end execution with the given
894     // result as return value.
895     __ bne(&return_r2);
896 
897     // String might have moved: Reload end of string from frame.
898     __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
899     SafeReturn();
900   }
901 
902   // Backtrack stack overflow code.
903   if (stack_overflow_label_.is_linked()) {
904     SafeCallTarget(&stack_overflow_label_);
905     // Reached if the backtrack-stack limit has been hit.
906     Label grow_failed;
907 
908     // Call GrowStack(backtrack_stackpointer(), &stack_base)
909     static const int num_arguments = 3;
910     __ PrepareCallCFunction(num_arguments, r2);
911     __ LoadRR(r2, backtrack_stackpointer());
912     __ AddP(r3, frame_pointer(), Operand(kStackHighEnd));
913     __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
914     ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate());
915     __ CallCFunction(grow_stack, num_arguments);
916     // If return NULL, we have failed to grow the stack, and
917     // must exit with a stack-overflow exception.
918     __ CmpP(r2, Operand::Zero());
919     __ beq(&exit_with_exception);
920     // Otherwise use return value as new stack pointer.
921     __ LoadRR(backtrack_stackpointer(), r2);
922     // Restore saved registers and continue.
923     SafeReturn();
924   }
925 
926   if (exit_with_exception.is_linked()) {
927     // If any of the code above needed to exit with an exception.
928     __ bind(&exit_with_exception);
929     // Exit with Result EXCEPTION(-1) to signal thrown exception.
930     __ LoadImmP(r2, Operand(EXCEPTION));
931     __ b(&return_r2);
932   }
933 
934   CodeDesc code_desc;
935   masm_->GetCode(&code_desc);
936   Handle<Code> code = isolate()->factory()->NewCode(
937       code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
938   PROFILE(masm_->isolate(),
939           RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
940   return Handle<HeapObject>::cast(code);
941 }
942 
GoTo(Label * to)943 void RegExpMacroAssemblerS390::GoTo(Label* to) { BranchOrBacktrack(al, to); }
944 
IfRegisterGE(int reg,int comparand,Label * if_ge)945 void RegExpMacroAssemblerS390::IfRegisterGE(int reg, int comparand,
946                                             Label* if_ge) {
947   __ LoadP(r2, register_location(reg), r0);
948   __ CmpP(r2, Operand(comparand));
949   BranchOrBacktrack(ge, if_ge);
950 }
951 
IfRegisterLT(int reg,int comparand,Label * if_lt)952 void RegExpMacroAssemblerS390::IfRegisterLT(int reg, int comparand,
953                                             Label* if_lt) {
954   __ LoadP(r2, register_location(reg), r0);
955   __ CmpP(r2, Operand(comparand));
956   BranchOrBacktrack(lt, if_lt);
957 }
958 
IfRegisterEqPos(int reg,Label * if_eq)959 void RegExpMacroAssemblerS390::IfRegisterEqPos(int reg, Label* if_eq) {
960   __ LoadP(r2, register_location(reg), r0);
961   __ CmpP(r2, current_input_offset());
962   BranchOrBacktrack(eq, if_eq);
963 }
964 
965 RegExpMacroAssembler::IrregexpImplementation
Implementation()966 RegExpMacroAssemblerS390::Implementation() {
967   return kS390Implementation;
968 }
969 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)970 void RegExpMacroAssemblerS390::LoadCurrentCharacter(int cp_offset,
971                                                     Label* on_end_of_input,
972                                                     bool check_bounds,
973                                                     int characters) {
974   DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
975   if (check_bounds) {
976     if (cp_offset >= 0) {
977       CheckPosition(cp_offset + characters - 1, on_end_of_input);
978     } else {
979       CheckPosition(cp_offset, on_end_of_input);
980     }
981   }
982   LoadCurrentCharacterUnchecked(cp_offset, characters);
983 }
984 
PopCurrentPosition()985 void RegExpMacroAssemblerS390::PopCurrentPosition() {
986   Pop(current_input_offset());
987 }
988 
PopRegister(int register_index)989 void RegExpMacroAssemblerS390::PopRegister(int register_index) {
990   Pop(r2);
991   __ StoreP(r2, register_location(register_index));
992 }
993 
PushBacktrack(Label * label)994 void RegExpMacroAssemblerS390::PushBacktrack(Label* label) {
995   if (label->is_bound()) {
996     int target = label->pos();
997     __ mov(r2, Operand(target + Code::kHeaderSize - kHeapObjectTag));
998   } else {
999     masm_->load_label_offset(r2, label);
1000   }
1001   Push(r2);
1002   CheckStackLimit();
1003 }
1004 
PushCurrentPosition()1005 void RegExpMacroAssemblerS390::PushCurrentPosition() {
1006   Push(current_input_offset());
1007 }
1008 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1009 void RegExpMacroAssemblerS390::PushRegister(int register_index,
1010                                             StackCheckFlag check_stack_limit) {
1011   __ LoadP(r2, register_location(register_index), r0);
1012   Push(r2);
1013   if (check_stack_limit) CheckStackLimit();
1014 }
1015 
ReadCurrentPositionFromRegister(int reg)1016 void RegExpMacroAssemblerS390::ReadCurrentPositionFromRegister(int reg) {
1017   __ LoadP(current_input_offset(), register_location(reg), r0);
1018 }
1019 
ReadStackPointerFromRegister(int reg)1020 void RegExpMacroAssemblerS390::ReadStackPointerFromRegister(int reg) {
1021   __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1022   __ LoadP(r2, MemOperand(frame_pointer(), kStackHighEnd));
1023   __ AddP(backtrack_stackpointer(), r2);
1024 }
1025 
SetCurrentPositionFromEnd(int by)1026 void RegExpMacroAssemblerS390::SetCurrentPositionFromEnd(int by) {
1027   Label after_position;
1028   __ CmpP(current_input_offset(), Operand(-by * char_size()));
1029   __ bge(&after_position);
1030   __ mov(current_input_offset(), Operand(-by * char_size()));
1031   // On RegExp code entry (where this operation is used), the character before
1032   // the current position is expected to be already loaded.
1033   // We have advanced the position, so it's safe to read backwards.
1034   LoadCurrentCharacterUnchecked(-1, 1);
1035   __ bind(&after_position);
1036 }
1037 
SetRegister(int register_index,int to)1038 void RegExpMacroAssemblerS390::SetRegister(int register_index, int to) {
1039   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1040   __ mov(r2, Operand(to));
1041   __ StoreP(r2, register_location(register_index));
1042 }
1043 
Succeed()1044 bool RegExpMacroAssemblerS390::Succeed() {
1045   __ b(&success_label_);
1046   return global();
1047 }
1048 
WriteCurrentPositionToRegister(int reg,int cp_offset)1049 void RegExpMacroAssemblerS390::WriteCurrentPositionToRegister(int reg,
1050                                                               int cp_offset) {
1051   if (cp_offset == 0) {
1052     __ StoreP(current_input_offset(), register_location(reg));
1053   } else {
1054     __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
1055     __ StoreP(r2, register_location(reg));
1056   }
1057 }
1058 
ClearRegisters(int reg_from,int reg_to)1059 void RegExpMacroAssemblerS390::ClearRegisters(int reg_from, int reg_to) {
1060   DCHECK(reg_from <= reg_to);
1061   __ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
1062   for (int reg = reg_from; reg <= reg_to; reg++) {
1063     __ StoreP(r2, register_location(reg));
1064   }
1065 }
1066 
WriteStackPointerToRegister(int reg)1067 void RegExpMacroAssemblerS390::WriteStackPointerToRegister(int reg) {
1068   __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1069   __ SubP(r2, backtrack_stackpointer(), r3);
1070   __ StoreP(r2, register_location(reg));
1071 }
1072 
1073 // Private methods:
1074 
CallCheckStackGuardState(Register scratch)1075 void RegExpMacroAssemblerS390::CallCheckStackGuardState(Register scratch) {
1076   static const int num_arguments = 3;
1077   __ PrepareCallCFunction(num_arguments, scratch);
1078   // RegExp code frame pointer.
1079   __ LoadRR(r4, frame_pointer());
1080   // Code* of self.
1081   __ mov(r3, Operand(masm_->CodeObject()));
1082   // r2 becomes return address pointer.
1083   __ lay(r2, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1084   ExternalReference stack_guard_check =
1085       ExternalReference::re_check_stack_guard_state(isolate());
1086   CallCFunctionUsingStub(stack_guard_check, num_arguments);
1087 }
1088 
1089 // Helper function for reading a value out of a stack frame.
1090 template <typename T>
frame_entry(Address re_frame,int frame_offset)1091 static T& frame_entry(Address re_frame, int frame_offset) {
1092   DCHECK(sizeof(T) == kPointerSize);
1093 #ifdef V8_TARGET_ARCH_S390X
1094   return reinterpret_cast<T&>(Memory::uint64_at(re_frame + frame_offset));
1095 #else
1096   return reinterpret_cast<T&>(Memory::uint32_at(re_frame + frame_offset));
1097 #endif
1098 }
1099 
1100 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1101 static T* frame_entry_address(Address re_frame, int frame_offset) {
1102   return reinterpret_cast<T*>(re_frame + frame_offset);
1103 }
1104 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1105 int RegExpMacroAssemblerS390::CheckStackGuardState(Address* return_address,
1106                                                    Code* re_code,
1107                                                    Address re_frame) {
1108   return NativeRegExpMacroAssembler::CheckStackGuardState(
1109       frame_entry<Isolate*>(re_frame, kIsolate),
1110       frame_entry<intptr_t>(re_frame, kStartIndex),
1111       frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
1112       re_code, frame_entry_address<String*>(re_frame, kInputString),
1113       frame_entry_address<const byte*>(re_frame, kInputStart),
1114       frame_entry_address<const byte*>(re_frame, kInputEnd));
1115 }
1116 
register_location(int register_index)1117 MemOperand RegExpMacroAssemblerS390::register_location(int register_index) {
1118   DCHECK(register_index < (1 << 30));
1119   if (num_registers_ <= register_index) {
1120     num_registers_ = register_index + 1;
1121   }
1122   return MemOperand(frame_pointer(),
1123                     kRegisterZero - register_index * kPointerSize);
1124 }
1125 
CheckPosition(int cp_offset,Label * on_outside_input)1126 void RegExpMacroAssemblerS390::CheckPosition(int cp_offset,
1127                                              Label* on_outside_input) {
1128   if (cp_offset >= 0) {
1129     __ CmpP(current_input_offset(), Operand(-cp_offset * char_size()));
1130     BranchOrBacktrack(ge, on_outside_input);
1131   } else {
1132     __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1133     __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
1134     __ CmpP(r2, r3);
1135     BranchOrBacktrack(le, on_outside_input);
1136   }
1137 }
1138 
BranchOrBacktrack(Condition condition,Label * to,CRegister cr)1139 void RegExpMacroAssemblerS390::BranchOrBacktrack(Condition condition, Label* to,
1140                                                  CRegister cr) {
1141   if (condition == al) {  // Unconditional.
1142     if (to == NULL) {
1143       Backtrack();
1144       return;
1145     }
1146     __ b(to);
1147     return;
1148   }
1149   if (to == NULL) {
1150     __ b(condition, &backtrack_label_);
1151     return;
1152   }
1153   __ b(condition, to);
1154 }
1155 
SafeCall(Label * to,Condition cond,CRegister cr)1156 void RegExpMacroAssemblerS390::SafeCall(Label* to, Condition cond,
1157                                         CRegister cr) {
1158   Label skip;
1159   __ b(NegateCondition(cond), &skip);
1160   __ b(r14, to);
1161   __ bind(&skip);
1162 }
1163 
SafeReturn()1164 void RegExpMacroAssemblerS390::SafeReturn() {
1165   __ pop(r14);
1166   __ mov(ip, Operand(masm_->CodeObject()));
1167   __ AddP(r14, ip);
1168   __ Ret();
1169 }
1170 
SafeCallTarget(Label * name)1171 void RegExpMacroAssemblerS390::SafeCallTarget(Label* name) {
1172   __ bind(name);
1173   __ CleanseP(r14);
1174   __ LoadRR(r0, r14);
1175   __ mov(ip, Operand(masm_->CodeObject()));
1176   __ SubP(r0, r0, ip);
1177   __ push(r0);
1178 }
1179 
Push(Register source)1180 void RegExpMacroAssemblerS390::Push(Register source) {
1181   DCHECK(!source.is(backtrack_stackpointer()));
1182   __ lay(backtrack_stackpointer(),
1183          MemOperand(backtrack_stackpointer(), -kPointerSize));
1184   __ StoreP(source, MemOperand(backtrack_stackpointer()));
1185 }
1186 
Pop(Register target)1187 void RegExpMacroAssemblerS390::Pop(Register target) {
1188   DCHECK(!target.is(backtrack_stackpointer()));
1189   __ LoadP(target, MemOperand(backtrack_stackpointer()));
1190   __ la(backtrack_stackpointer(),
1191         MemOperand(backtrack_stackpointer(), kPointerSize));
1192 }
1193 
CheckPreemption()1194 void RegExpMacroAssemblerS390::CheckPreemption() {
1195   // Check for preemption.
1196   ExternalReference stack_limit =
1197       ExternalReference::address_of_stack_limit(isolate());
1198   __ mov(r2, Operand(stack_limit));
1199   __ CmpLogicalP(sp, MemOperand(r2));
1200   SafeCall(&check_preempt_label_, le);
1201 }
1202 
CheckStackLimit()1203 void RegExpMacroAssemblerS390::CheckStackLimit() {
1204   ExternalReference stack_limit =
1205       ExternalReference::address_of_regexp_stack_limit(isolate());
1206   __ mov(r2, Operand(stack_limit));
1207   __ CmpLogicalP(backtrack_stackpointer(), MemOperand(r2));
1208   SafeCall(&stack_overflow_label_, le);
1209 }
1210 
CallCFunctionUsingStub(ExternalReference function,int num_arguments)1211 void RegExpMacroAssemblerS390::CallCFunctionUsingStub(
1212     ExternalReference function, int num_arguments) {
1213   // Must pass all arguments in registers. The stub pushes on the stack.
1214   DCHECK(num_arguments <= 8);
1215   __ mov(code_pointer(), Operand(function));
1216   Label ret;
1217   __ larl(r14, &ret);
1218   __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1219   __ b(code_pointer());
1220   __ bind(&ret);
1221   if (base::OS::ActivationFrameAlignment() > kPointerSize) {
1222     __ LoadP(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
1223   } else {
1224     __ la(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
1225   }
1226   __ mov(code_pointer(), Operand(masm_->CodeObject()));
1227 }
1228 
1229 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1230 void RegExpMacroAssemblerS390::LoadCurrentCharacterUnchecked(int cp_offset,
1231                                                              int characters) {
1232   if (mode_ == LATIN1) {
1233     // using load reverse for big-endian platforms
1234     if (characters == 4) {
1235 #if V8_TARGET_LITTLE_ENDIAN
1236       __ LoadlW(current_character(),
1237                 MemOperand(current_input_offset(), end_of_input_address(),
1238                            cp_offset * char_size()));
1239 #else
1240       __ LoadLogicalReversedWordP(current_character(),
1241                 MemOperand(current_input_offset(), end_of_input_address(),
1242                            cp_offset * char_size()));
1243 #endif
1244     } else if (characters == 2) {
1245 #if V8_TARGET_LITTLE_ENDIAN
1246       __ LoadLogicalHalfWordP(current_character(),
1247                 MemOperand(current_input_offset(), end_of_input_address(),
1248                            cp_offset * char_size()));
1249 #else
1250       __ LoadLogicalReversedHalfWordP(current_character(),
1251                 MemOperand(current_input_offset(), end_of_input_address(),
1252                            cp_offset * char_size()));
1253 #endif
1254     } else {
1255       DCHECK(characters == 1);
1256       __ LoadlB(current_character(),
1257                 MemOperand(current_input_offset(), end_of_input_address(),
1258                            cp_offset * char_size()));
1259     }
1260   } else {
1261     DCHECK(mode_ == UC16);
1262     if (characters == 2) {
1263       __ LoadlW(current_character(),
1264                 MemOperand(current_input_offset(), end_of_input_address(),
1265                            cp_offset * char_size()));
1266 #if !V8_TARGET_LITTLE_ENDIAN
1267       // need to swap the order of the characters for big-endian platforms
1268       __ rll(current_character(), current_character(), Operand(16));
1269 #endif
1270     } else {
1271       DCHECK(characters == 1);
1272       __ LoadLogicalHalfWordP(
1273           current_character(),
1274                 MemOperand(current_input_offset(), end_of_input_address(),
1275                            cp_offset * char_size()));
1276     }
1277   }
1278 }
1279 
1280 #undef __
1281 
1282 #endif  // V8_INTERPRETED_REGEXP
1283 }  // namespace internal
1284 }  // namespace v8
1285 
1286 #endif  // V8_TARGET_ARCH_S390
1287