1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_X87
6
7 #include "src/regexp/x87/regexp-macro-assembler-x87.h"
8
9 #include "src/log.h"
10 #include "src/macro-assembler.h"
11 #include "src/regexp/regexp-macro-assembler.h"
12 #include "src/regexp/regexp-stack.h"
13 #include "src/unicode.h"
14
15 namespace v8 {
16 namespace internal {
17
18 #ifndef V8_INTERPRETED_REGEXP
19 /*
20 * This assembler uses the following register assignment convention
21 * - edx : Current character. Must be loaded using LoadCurrentCharacter
22 * before using any of the dispatch methods. Temporarily stores the
23 * index of capture start after a matching pass for a global regexp.
24 * - edi : Current position in input, as negative offset from end of string.
25 * Please notice that this is the byte offset, not the character offset!
26 * - esi : end of input (points to byte after last character in input).
27 * - ebp : Frame pointer. Used to access arguments, local variables and
28 * RegExp registers.
29 * - esp : Points to tip of C stack.
30 * - ecx : Points to tip of backtrack stack
31 *
32 * The registers eax and ebx are free to use for computations.
33 *
34 * Each call to a public method should retain this convention.
35 * The stack will have the following structure:
36 * - Isolate* isolate (address of the current isolate)
37 * - direct_call (if 1, direct call from JavaScript code, if 0
38 * call through the runtime system)
39 * - stack_area_base (high end of the memory area to use as
40 * backtracking stack)
41 * - capture array size (may fit multiple sets of matches)
42 * - int* capture_array (int[num_saved_registers_], for output).
43 * - end of input (address of end of string)
44 * - start of input (address of first character in string)
45 * - start index (character index of start)
46 * - String* input_string (location of a handle containing the string)
47 * --- frame alignment (if applicable) ---
48 * - return address
49 * ebp-> - old ebp
50 * - backup of caller esi
51 * - backup of caller edi
52 * - backup of caller ebx
53 * - success counter (only for global regexps to count matches).
54 * - Offset of location before start of input (effectively character
55 * string start - 1). Used to initialize capture registers to a
56 * non-position.
57 * - register 0 ebp[-4] (only positions must be stored in the first
58 * - register 1 ebp[-8] num_saved_registers_ registers)
59 * - ...
60 *
61 * The first num_saved_registers_ registers are initialized to point to
62 * "character -1" in the string (i.e., char_size() bytes before the first
63 * character of the string). The remaining registers starts out as garbage.
64 *
65 * The data up to the return address must be placed there by the calling
66 * code, by calling the code entry as cast to a function with the signature:
67 * int (*match)(String* input_string,
68 * int start_index,
69 * Address start,
70 * Address end,
71 * int* capture_output_array,
72 * bool at_start,
73 * byte* stack_area_base,
74 * bool direct_call)
75 */
76
77 #define __ ACCESS_MASM(masm_)
78
RegExpMacroAssemblerX87(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)79 RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone,
80 Mode mode,
81 int registers_to_save)
82 : NativeRegExpMacroAssembler(isolate, zone),
83 masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
84 CodeObjectRequired::kYes)),
85 mode_(mode),
86 num_registers_(registers_to_save),
87 num_saved_registers_(registers_to_save),
88 entry_label_(),
89 start_label_(),
90 success_label_(),
91 backtrack_label_(),
92 exit_label_() {
93 DCHECK_EQ(0, registers_to_save % 2);
94 __ jmp(&entry_label_); // We'll write the entry code later.
95 __ bind(&start_label_); // And then continue from here.
96 }
97
98
~RegExpMacroAssemblerX87()99 RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
100 delete masm_;
101 // Unuse labels in case we throw away the assembler without calling GetCode.
102 entry_label_.Unuse();
103 start_label_.Unuse();
104 success_label_.Unuse();
105 backtrack_label_.Unuse();
106 exit_label_.Unuse();
107 check_preempt_label_.Unuse();
108 stack_overflow_label_.Unuse();
109 }
110
111
stack_limit_slack()112 int RegExpMacroAssemblerX87::stack_limit_slack() {
113 return RegExpStack::kStackLimitSlack;
114 }
115
116
AdvanceCurrentPosition(int by)117 void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
118 if (by != 0) {
119 __ add(edi, Immediate(by * char_size()));
120 }
121 }
122
123
AdvanceRegister(int reg,int by)124 void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
125 DCHECK(reg >= 0);
126 DCHECK(reg < num_registers_);
127 if (by != 0) {
128 __ add(register_location(reg), Immediate(by));
129 }
130 }
131
132
Backtrack()133 void RegExpMacroAssemblerX87::Backtrack() {
134 CheckPreemption();
135 // Pop Code* offset from backtrack stack, add Code* and jump to location.
136 Pop(ebx);
137 __ add(ebx, Immediate(masm_->CodeObject()));
138 __ jmp(ebx);
139 }
140
141
Bind(Label * label)142 void RegExpMacroAssemblerX87::Bind(Label* label) {
143 __ bind(label);
144 }
145
146
CheckCharacter(uint32_t c,Label * on_equal)147 void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
148 __ cmp(current_character(), c);
149 BranchOrBacktrack(equal, on_equal);
150 }
151
152
CheckCharacterGT(uc16 limit,Label * on_greater)153 void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
154 __ cmp(current_character(), limit);
155 BranchOrBacktrack(greater, on_greater);
156 }
157
158
CheckAtStart(Label * on_at_start)159 void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
160 __ lea(eax, Operand(edi, -char_size()));
161 __ cmp(eax, Operand(ebp, kStringStartMinusOne));
162 BranchOrBacktrack(equal, on_at_start);
163 }
164
165
CheckNotAtStart(int cp_offset,Label * on_not_at_start)166 void RegExpMacroAssemblerX87::CheckNotAtStart(int cp_offset,
167 Label* on_not_at_start) {
168 __ lea(eax, Operand(edi, -char_size() + cp_offset * char_size()));
169 __ cmp(eax, Operand(ebp, kStringStartMinusOne));
170 BranchOrBacktrack(not_equal, on_not_at_start);
171 }
172
173
CheckCharacterLT(uc16 limit,Label * on_less)174 void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
175 __ cmp(current_character(), limit);
176 BranchOrBacktrack(less, on_less);
177 }
178
179
CheckGreedyLoop(Label * on_equal)180 void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
181 Label fallthrough;
182 __ cmp(edi, Operand(backtrack_stackpointer(), 0));
183 __ j(not_equal, &fallthrough);
184 __ add(backtrack_stackpointer(), Immediate(kPointerSize)); // Pop.
185 BranchOrBacktrack(no_condition, on_equal);
186 __ bind(&fallthrough);
187 }
188
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)189 void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
190 int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
191 Label fallthrough;
192 __ mov(edx, register_location(start_reg)); // Index of start of capture
193 __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture
194 __ sub(ebx, edx); // Length of capture.
195
196 // At this point, the capture registers are either both set or both cleared.
197 // If the capture length is zero, then the capture is either empty or cleared.
198 // Fall through in both cases.
199 __ j(equal, &fallthrough);
200
201 // Check that there are sufficient characters left in the input.
202 if (read_backward) {
203 __ mov(eax, Operand(ebp, kStringStartMinusOne));
204 __ add(eax, ebx);
205 __ cmp(edi, eax);
206 BranchOrBacktrack(less_equal, on_no_match);
207 } else {
208 __ mov(eax, edi);
209 __ add(eax, ebx);
210 BranchOrBacktrack(greater, on_no_match);
211 }
212
213 if (mode_ == LATIN1) {
214 Label success;
215 Label fail;
216 Label loop_increment;
217 // Save register contents to make the registers available below.
218 __ push(edi);
219 __ push(backtrack_stackpointer());
220 // After this, the eax, ecx, and edi registers are available.
221
222 __ add(edx, esi); // Start of capture
223 __ add(edi, esi); // Start of text to match against capture.
224 if (read_backward) {
225 __ sub(edi, ebx); // Offset by length when matching backwards.
226 }
227 __ add(ebx, edi); // End of text to match against capture.
228
229 Label loop;
230 __ bind(&loop);
231 __ movzx_b(eax, Operand(edi, 0));
232 __ cmpb_al(Operand(edx, 0));
233 __ j(equal, &loop_increment);
234
235 // Mismatch, try case-insensitive match (converting letters to lower-case).
236 __ or_(eax, 0x20); // Convert match character to lower-case.
237 __ lea(ecx, Operand(eax, -'a'));
238 __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter?
239 Label convert_capture;
240 __ j(below_equal, &convert_capture); // In range 'a'-'z'.
241 // Latin-1: Check for values in range [224,254] but not 247.
242 __ sub(ecx, Immediate(224 - 'a'));
243 __ cmp(ecx, Immediate(254 - 224));
244 __ j(above, &fail); // Weren't Latin-1 letters.
245 __ cmp(ecx, Immediate(247 - 224)); // Check for 247.
246 __ j(equal, &fail);
247 __ bind(&convert_capture);
248 // Also convert capture character.
249 __ movzx_b(ecx, Operand(edx, 0));
250 __ or_(ecx, 0x20);
251
252 __ cmp(eax, ecx);
253 __ j(not_equal, &fail);
254
255 __ bind(&loop_increment);
256 // Increment pointers into match and capture strings.
257 __ add(edx, Immediate(1));
258 __ add(edi, Immediate(1));
259 // Compare to end of match, and loop if not done.
260 __ cmp(edi, ebx);
261 __ j(below, &loop);
262 __ jmp(&success);
263
264 __ bind(&fail);
265 // Restore original values before failing.
266 __ pop(backtrack_stackpointer());
267 __ pop(edi);
268 BranchOrBacktrack(no_condition, on_no_match);
269
270 __ bind(&success);
271 // Restore original value before continuing.
272 __ pop(backtrack_stackpointer());
273 // Drop original value of character position.
274 __ add(esp, Immediate(kPointerSize));
275 // Compute new value of character position after the matched part.
276 __ sub(edi, esi);
277 if (read_backward) {
278 // Subtract match length if we matched backward.
279 __ add(edi, register_location(start_reg));
280 __ sub(edi, register_location(start_reg + 1));
281 }
282 } else {
283 DCHECK(mode_ == UC16);
284 // Save registers before calling C function.
285 __ push(esi);
286 __ push(edi);
287 __ push(backtrack_stackpointer());
288 __ push(ebx);
289
290 static const int argument_count = 4;
291 __ PrepareCallCFunction(argument_count, ecx);
292 // Put arguments into allocated stack area, last argument highest on stack.
293 // Parameters are
294 // Address byte_offset1 - Address captured substring's start.
295 // Address byte_offset2 - Address of current character position.
296 // size_t byte_length - length of capture in bytes(!)
297 // Isolate* isolate or 0 if unicode flag.
298
299 // Set isolate.
300 #ifdef V8_I18N_SUPPORT
301 if (unicode) {
302 __ mov(Operand(esp, 3 * kPointerSize), Immediate(0));
303 } else // NOLINT
304 #endif // V8_I18N_SUPPORT
305 {
306 __ mov(Operand(esp, 3 * kPointerSize),
307 Immediate(ExternalReference::isolate_address(isolate())));
308 }
309 // Set byte_length.
310 __ mov(Operand(esp, 2 * kPointerSize), ebx);
311 // Set byte_offset2.
312 // Found by adding negative string-end offset of current position (edi)
313 // to end of string.
314 __ add(edi, esi);
315 if (read_backward) {
316 __ sub(edi, ebx); // Offset by length when matching backwards.
317 }
318 __ mov(Operand(esp, 1 * kPointerSize), edi);
319 // Set byte_offset1.
320 // Start of capture, where edx already holds string-end negative offset.
321 __ add(edx, esi);
322 __ mov(Operand(esp, 0 * kPointerSize), edx);
323
324 {
325 AllowExternalCallThatCantCauseGC scope(masm_);
326 ExternalReference compare =
327 ExternalReference::re_case_insensitive_compare_uc16(isolate());
328 __ CallCFunction(compare, argument_count);
329 }
330 // Pop original values before reacting on result value.
331 __ pop(ebx);
332 __ pop(backtrack_stackpointer());
333 __ pop(edi);
334 __ pop(esi);
335
336 // Check if function returned non-zero for success or zero for failure.
337 __ or_(eax, eax);
338 BranchOrBacktrack(zero, on_no_match);
339 // On success, advance position by length of capture.
340 if (read_backward) {
341 __ sub(edi, ebx);
342 } else {
343 __ add(edi, ebx);
344 }
345 }
346 __ bind(&fallthrough);
347 }
348
349
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)350 void RegExpMacroAssemblerX87::CheckNotBackReference(int start_reg,
351 bool read_backward,
352 Label* on_no_match) {
353 Label fallthrough;
354 Label success;
355 Label fail;
356
357 // Find length of back-referenced capture.
358 __ mov(edx, register_location(start_reg));
359 __ mov(eax, register_location(start_reg + 1));
360 __ sub(eax, edx); // Length to check.
361
362 // At this point, the capture registers are either both set or both cleared.
363 // If the capture length is zero, then the capture is either empty or cleared.
364 // Fall through in both cases.
365 __ j(equal, &fallthrough);
366
367 // Check that there are sufficient characters left in the input.
368 if (read_backward) {
369 __ mov(ebx, Operand(ebp, kStringStartMinusOne));
370 __ add(ebx, eax);
371 __ cmp(edi, ebx);
372 BranchOrBacktrack(less_equal, on_no_match);
373 } else {
374 __ mov(ebx, edi);
375 __ add(ebx, eax);
376 BranchOrBacktrack(greater, on_no_match);
377 }
378
379 // Save register to make it available below.
380 __ push(backtrack_stackpointer());
381
382 // Compute pointers to match string and capture string
383 __ add(edx, esi); // Start of capture.
384 __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match.
385 if (read_backward) {
386 __ sub(ebx, eax); // Offset by length when matching backwards.
387 }
388 __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match
389
390 Label loop;
391 __ bind(&loop);
392 if (mode_ == LATIN1) {
393 __ movzx_b(eax, Operand(edx, 0));
394 __ cmpb_al(Operand(ebx, 0));
395 } else {
396 DCHECK(mode_ == UC16);
397 __ movzx_w(eax, Operand(edx, 0));
398 __ cmpw_ax(Operand(ebx, 0));
399 }
400 __ j(not_equal, &fail);
401 // Increment pointers into capture and match string.
402 __ add(edx, Immediate(char_size()));
403 __ add(ebx, Immediate(char_size()));
404 // Check if we have reached end of match area.
405 __ cmp(ebx, ecx);
406 __ j(below, &loop);
407 __ jmp(&success);
408
409 __ bind(&fail);
410 // Restore backtrack stackpointer.
411 __ pop(backtrack_stackpointer());
412 BranchOrBacktrack(no_condition, on_no_match);
413
414 __ bind(&success);
415 // Move current character position to position after match.
416 __ mov(edi, ecx);
417 __ sub(edi, esi);
418 if (read_backward) {
419 // Subtract match length if we matched backward.
420 __ add(edi, register_location(start_reg));
421 __ sub(edi, register_location(start_reg + 1));
422 }
423 // Restore backtrack stackpointer.
424 __ pop(backtrack_stackpointer());
425
426 __ bind(&fallthrough);
427 }
428
429
CheckNotCharacter(uint32_t c,Label * on_not_equal)430 void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
431 Label* on_not_equal) {
432 __ cmp(current_character(), c);
433 BranchOrBacktrack(not_equal, on_not_equal);
434 }
435
436
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)437 void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
438 uint32_t mask,
439 Label* on_equal) {
440 if (c == 0) {
441 __ test(current_character(), Immediate(mask));
442 } else {
443 __ mov(eax, mask);
444 __ and_(eax, current_character());
445 __ cmp(eax, c);
446 }
447 BranchOrBacktrack(equal, on_equal);
448 }
449
450
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)451 void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
452 uint32_t mask,
453 Label* on_not_equal) {
454 if (c == 0) {
455 __ test(current_character(), Immediate(mask));
456 } else {
457 __ mov(eax, mask);
458 __ and_(eax, current_character());
459 __ cmp(eax, c);
460 }
461 BranchOrBacktrack(not_equal, on_not_equal);
462 }
463
464
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)465 void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
466 uc16 c,
467 uc16 minus,
468 uc16 mask,
469 Label* on_not_equal) {
470 DCHECK(minus < String::kMaxUtf16CodeUnit);
471 __ lea(eax, Operand(current_character(), -minus));
472 if (c == 0) {
473 __ test(eax, Immediate(mask));
474 } else {
475 __ and_(eax, mask);
476 __ cmp(eax, c);
477 }
478 BranchOrBacktrack(not_equal, on_not_equal);
479 }
480
481
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)482 void RegExpMacroAssemblerX87::CheckCharacterInRange(
483 uc16 from,
484 uc16 to,
485 Label* on_in_range) {
486 __ lea(eax, Operand(current_character(), -from));
487 __ cmp(eax, to - from);
488 BranchOrBacktrack(below_equal, on_in_range);
489 }
490
491
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)492 void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
493 uc16 from,
494 uc16 to,
495 Label* on_not_in_range) {
496 __ lea(eax, Operand(current_character(), -from));
497 __ cmp(eax, to - from);
498 BranchOrBacktrack(above, on_not_in_range);
499 }
500
501
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)502 void RegExpMacroAssemblerX87::CheckBitInTable(
503 Handle<ByteArray> table,
504 Label* on_bit_set) {
505 __ mov(eax, Immediate(table));
506 Register index = current_character();
507 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
508 __ mov(ebx, kTableSize - 1);
509 __ and_(ebx, current_character());
510 index = ebx;
511 }
512 __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize),
513 Immediate(0));
514 BranchOrBacktrack(not_equal, on_bit_set);
515 }
516
517
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)518 bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
519 Label* on_no_match) {
520 // Range checks (c in min..max) are generally implemented by an unsigned
521 // (c - min) <= (max - min) check
522 switch (type) {
523 case 's':
524 // Match space-characters
525 if (mode_ == LATIN1) {
526 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
527 Label success;
528 __ cmp(current_character(), ' ');
529 __ j(equal, &success, Label::kNear);
530 // Check range 0x09..0x0d
531 __ lea(eax, Operand(current_character(), -'\t'));
532 __ cmp(eax, '\r' - '\t');
533 __ j(below_equal, &success, Label::kNear);
534 // \u00a0 (NBSP).
535 __ cmp(eax, 0x00a0 - '\t');
536 BranchOrBacktrack(not_equal, on_no_match);
537 __ bind(&success);
538 return true;
539 }
540 return false;
541 case 'S':
542 // The emitted code for generic character classes is good enough.
543 return false;
544 case 'd':
545 // Match ASCII digits ('0'..'9')
546 __ lea(eax, Operand(current_character(), -'0'));
547 __ cmp(eax, '9' - '0');
548 BranchOrBacktrack(above, on_no_match);
549 return true;
550 case 'D':
551 // Match non ASCII-digits
552 __ lea(eax, Operand(current_character(), -'0'));
553 __ cmp(eax, '9' - '0');
554 BranchOrBacktrack(below_equal, on_no_match);
555 return true;
556 case '.': {
557 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
558 __ mov(eax, current_character());
559 __ xor_(eax, Immediate(0x01));
560 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
561 __ sub(eax, Immediate(0x0b));
562 __ cmp(eax, 0x0c - 0x0b);
563 BranchOrBacktrack(below_equal, on_no_match);
564 if (mode_ == UC16) {
565 // Compare original value to 0x2028 and 0x2029, using the already
566 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
567 // 0x201d (0x2028 - 0x0b) or 0x201e.
568 __ sub(eax, Immediate(0x2028 - 0x0b));
569 __ cmp(eax, 0x2029 - 0x2028);
570 BranchOrBacktrack(below_equal, on_no_match);
571 }
572 return true;
573 }
574 case 'w': {
575 if (mode_ != LATIN1) {
576 // Table is 256 entries, so all Latin1 characters can be tested.
577 __ cmp(current_character(), Immediate('z'));
578 BranchOrBacktrack(above, on_no_match);
579 }
580 DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
581 ExternalReference word_map = ExternalReference::re_word_character_map();
582 __ test_b(current_character(),
583 Operand::StaticArray(current_character(), times_1, word_map));
584 BranchOrBacktrack(zero, on_no_match);
585 return true;
586 }
587 case 'W': {
588 Label done;
589 if (mode_ != LATIN1) {
590 // Table is 256 entries, so all Latin1 characters can be tested.
591 __ cmp(current_character(), Immediate('z'));
592 __ j(above, &done);
593 }
594 DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
595 ExternalReference word_map = ExternalReference::re_word_character_map();
596 __ test_b(current_character(),
597 Operand::StaticArray(current_character(), times_1, word_map));
598 BranchOrBacktrack(not_zero, on_no_match);
599 if (mode_ != LATIN1) {
600 __ bind(&done);
601 }
602 return true;
603 }
604 // Non-standard classes (with no syntactic shorthand) used internally.
605 case '*':
606 // Match any character.
607 return true;
608 case 'n': {
609 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
610 // The opposite of '.'.
611 __ mov(eax, current_character());
612 __ xor_(eax, Immediate(0x01));
613 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
614 __ sub(eax, Immediate(0x0b));
615 __ cmp(eax, 0x0c - 0x0b);
616 if (mode_ == LATIN1) {
617 BranchOrBacktrack(above, on_no_match);
618 } else {
619 Label done;
620 BranchOrBacktrack(below_equal, &done);
621 DCHECK_EQ(UC16, mode_);
622 // Compare original value to 0x2028 and 0x2029, using the already
623 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
624 // 0x201d (0x2028 - 0x0b) or 0x201e.
625 __ sub(eax, Immediate(0x2028 - 0x0b));
626 __ cmp(eax, 1);
627 BranchOrBacktrack(above, on_no_match);
628 __ bind(&done);
629 }
630 return true;
631 }
632 // No custom implementation (yet): s(UC16), S(UC16).
633 default:
634 return false;
635 }
636 }
637
638
Fail()639 void RegExpMacroAssemblerX87::Fail() {
640 STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
641 if (!global()) {
642 __ Move(eax, Immediate(FAILURE));
643 }
644 __ jmp(&exit_label_);
645 }
646
647
GetCode(Handle<String> source)648 Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
649 Label return_eax;
650 // Finalize code - write the entry point code now we know how many
651 // registers we need.
652
653 // Entry code:
654 __ bind(&entry_label_);
655
656 // Tell the system that we have a stack frame. Because the type is MANUAL, no
657 // code is generated.
658 FrameScope scope(masm_, StackFrame::MANUAL);
659
660 // Actually emit code to start a new stack frame.
661 __ push(ebp);
662 __ mov(ebp, esp);
663 // Save callee-save registers. Order here should correspond to order of
664 // kBackup_ebx etc.
665 __ push(esi);
666 __ push(edi);
667 __ push(ebx); // Callee-save on MacOS.
668 __ push(Immediate(0)); // Number of successful matches in a global regexp.
669 __ push(Immediate(0)); // Make room for "string start - 1" constant.
670
671 // Check if we have space on the stack for registers.
672 Label stack_limit_hit;
673 Label stack_ok;
674
675 ExternalReference stack_limit =
676 ExternalReference::address_of_stack_limit(isolate());
677 __ mov(ecx, esp);
678 __ sub(ecx, Operand::StaticVariable(stack_limit));
679 // Handle it if the stack pointer is already below the stack limit.
680 __ j(below_equal, &stack_limit_hit);
681 // Check if there is room for the variable number of registers above
682 // the stack limit.
683 __ cmp(ecx, num_registers_ * kPointerSize);
684 __ j(above_equal, &stack_ok);
685 // Exit with OutOfMemory exception. There is not enough space on the stack
686 // for our working registers.
687 __ mov(eax, EXCEPTION);
688 __ jmp(&return_eax);
689
690 __ bind(&stack_limit_hit);
691 CallCheckStackGuardState(ebx);
692 __ or_(eax, eax);
693 // If returned value is non-zero, we exit with the returned value as result.
694 __ j(not_zero, &return_eax);
695
696 __ bind(&stack_ok);
697 // Load start index for later use.
698 __ mov(ebx, Operand(ebp, kStartIndex));
699
700 // Allocate space on stack for registers.
701 __ sub(esp, Immediate(num_registers_ * kPointerSize));
702 // Load string length.
703 __ mov(esi, Operand(ebp, kInputEnd));
704 // Load input position.
705 __ mov(edi, Operand(ebp, kInputStart));
706 // Set up edi to be negative offset from string end.
707 __ sub(edi, esi);
708
709 // Set eax to address of char before start of the string.
710 // (effectively string position -1).
711 __ neg(ebx);
712 if (mode_ == UC16) {
713 __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
714 } else {
715 __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
716 }
717 // Store this value in a local variable, for use when clearing
718 // position registers.
719 __ mov(Operand(ebp, kStringStartMinusOne), eax);
720
721 #if V8_OS_WIN
722 // Ensure that we write to each stack page, in order. Skipping a page
723 // on Windows can cause segmentation faults. Assuming page size is 4k.
724 const int kPageSize = 4096;
725 const int kRegistersPerPage = kPageSize / kPointerSize;
726 for (int i = num_saved_registers_ + kRegistersPerPage - 1;
727 i < num_registers_;
728 i += kRegistersPerPage) {
729 __ mov(register_location(i), eax); // One write every page.
730 }
731 #endif // V8_OS_WIN
732
733 Label load_char_start_regexp, start_regexp;
734 // Load newline if index is at start, previous character otherwise.
735 __ cmp(Operand(ebp, kStartIndex), Immediate(0));
736 __ j(not_equal, &load_char_start_regexp, Label::kNear);
737 __ mov(current_character(), '\n');
738 __ jmp(&start_regexp, Label::kNear);
739
740 // Global regexp restarts matching here.
741 __ bind(&load_char_start_regexp);
742 // Load previous char as initial value of current character register.
743 LoadCurrentCharacterUnchecked(-1, 1);
744 __ bind(&start_regexp);
745
746 // Initialize on-stack registers.
747 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
748 // Fill saved registers with initial value = start offset - 1
749 // Fill in stack push order, to avoid accessing across an unwritten
750 // page (a problem on Windows).
751 if (num_saved_registers_ > 8) {
752 __ mov(ecx, kRegisterZero);
753 Label init_loop;
754 __ bind(&init_loop);
755 __ mov(Operand(ebp, ecx, times_1, 0), eax);
756 __ sub(ecx, Immediate(kPointerSize));
757 __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
758 __ j(greater, &init_loop);
759 } else { // Unroll the loop.
760 for (int i = 0; i < num_saved_registers_; i++) {
761 __ mov(register_location(i), eax);
762 }
763 }
764 }
765
766 // Initialize backtrack stack pointer.
767 __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
768
769 __ jmp(&start_label_);
770
771 // Exit code:
772 if (success_label_.is_linked()) {
773 // Save captures when successful.
774 __ bind(&success_label_);
775 if (num_saved_registers_ > 0) {
776 // copy captures to output
777 __ mov(ebx, Operand(ebp, kRegisterOutput));
778 __ mov(ecx, Operand(ebp, kInputEnd));
779 __ mov(edx, Operand(ebp, kStartIndex));
780 __ sub(ecx, Operand(ebp, kInputStart));
781 if (mode_ == UC16) {
782 __ lea(ecx, Operand(ecx, edx, times_2, 0));
783 } else {
784 __ add(ecx, edx);
785 }
786 for (int i = 0; i < num_saved_registers_; i++) {
787 __ mov(eax, register_location(i));
788 if (i == 0 && global_with_zero_length_check()) {
789 // Keep capture start in edx for the zero-length check later.
790 __ mov(edx, eax);
791 }
792 // Convert to index from start of string, not end.
793 __ add(eax, ecx);
794 if (mode_ == UC16) {
795 __ sar(eax, 1); // Convert byte index to character index.
796 }
797 __ mov(Operand(ebx, i * kPointerSize), eax);
798 }
799 }
800
801 if (global()) {
802 // Restart matching if the regular expression is flagged as global.
803 // Increment success counter.
804 __ inc(Operand(ebp, kSuccessfulCaptures));
805 // Capture results have been stored, so the number of remaining global
806 // output registers is reduced by the number of stored captures.
807 __ mov(ecx, Operand(ebp, kNumOutputRegisters));
808 __ sub(ecx, Immediate(num_saved_registers_));
809 // Check whether we have enough room for another set of capture results.
810 __ cmp(ecx, Immediate(num_saved_registers_));
811 __ j(less, &exit_label_);
812
813 __ mov(Operand(ebp, kNumOutputRegisters), ecx);
814 // Advance the location for output.
815 __ add(Operand(ebp, kRegisterOutput),
816 Immediate(num_saved_registers_ * kPointerSize));
817
818 // Prepare eax to initialize registers with its value in the next run.
819 __ mov(eax, Operand(ebp, kStringStartMinusOne));
820
821 if (global_with_zero_length_check()) {
822 // Special case for zero-length matches.
823 // edx: capture start index
824 __ cmp(edi, edx);
825 // Not a zero-length match, restart.
826 __ j(not_equal, &load_char_start_regexp);
827 // edi (offset from the end) is zero if we already reached the end.
828 __ test(edi, edi);
829 __ j(zero, &exit_label_, Label::kNear);
830 // Advance current position after a zero-length match.
831 Label advance;
832 __ bind(&advance);
833 if (mode_ == UC16) {
834 __ add(edi, Immediate(2));
835 } else {
836 __ inc(edi);
837 }
838 if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
839 }
840 __ jmp(&load_char_start_regexp);
841 } else {
842 __ mov(eax, Immediate(SUCCESS));
843 }
844 }
845
846 __ bind(&exit_label_);
847 if (global()) {
848 // Return the number of successful captures.
849 __ mov(eax, Operand(ebp, kSuccessfulCaptures));
850 }
851
852 __ bind(&return_eax);
853 // Skip esp past regexp registers.
854 __ lea(esp, Operand(ebp, kBackup_ebx));
855 // Restore callee-save registers.
856 __ pop(ebx);
857 __ pop(edi);
858 __ pop(esi);
859 // Exit function frame, restore previous one.
860 __ pop(ebp);
861 __ ret(0);
862
863 // Backtrack code (branch target for conditional backtracks).
864 if (backtrack_label_.is_linked()) {
865 __ bind(&backtrack_label_);
866 Backtrack();
867 }
868
869 Label exit_with_exception;
870
871 // Preempt-code
872 if (check_preempt_label_.is_linked()) {
873 SafeCallTarget(&check_preempt_label_);
874
875 __ push(backtrack_stackpointer());
876 __ push(edi);
877
878 CallCheckStackGuardState(ebx);
879 __ or_(eax, eax);
880 // If returning non-zero, we should end execution with the given
881 // result as return value.
882 __ j(not_zero, &return_eax);
883
884 __ pop(edi);
885 __ pop(backtrack_stackpointer());
886 // String might have moved: Reload esi from frame.
887 __ mov(esi, Operand(ebp, kInputEnd));
888 SafeReturn();
889 }
890
891 // Backtrack stack overflow code.
892 if (stack_overflow_label_.is_linked()) {
893 SafeCallTarget(&stack_overflow_label_);
894 // Reached if the backtrack-stack limit has been hit.
895
896 Label grow_failed;
897 // Save registers before calling C function
898 __ push(esi);
899 __ push(edi);
900
901 // Call GrowStack(backtrack_stackpointer())
902 static const int num_arguments = 3;
903 __ PrepareCallCFunction(num_arguments, ebx);
904 __ mov(Operand(esp, 2 * kPointerSize),
905 Immediate(ExternalReference::isolate_address(isolate())));
906 __ lea(eax, Operand(ebp, kStackHighEnd));
907 __ mov(Operand(esp, 1 * kPointerSize), eax);
908 __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
909 ExternalReference grow_stack =
910 ExternalReference::re_grow_stack(isolate());
911 __ CallCFunction(grow_stack, num_arguments);
912 // If return NULL, we have failed to grow the stack, and
913 // must exit with a stack-overflow exception.
914 __ or_(eax, eax);
915 __ j(equal, &exit_with_exception);
916 // Otherwise use return value as new stack pointer.
917 __ mov(backtrack_stackpointer(), eax);
918 // Restore saved registers and continue.
919 __ pop(edi);
920 __ pop(esi);
921 SafeReturn();
922 }
923
924 if (exit_with_exception.is_linked()) {
925 // If any of the code above needed to exit with an exception.
926 __ bind(&exit_with_exception);
927 // Exit with Result EXCEPTION(-1) to signal thrown exception.
928 __ mov(eax, EXCEPTION);
929 __ jmp(&return_eax);
930 }
931
932 CodeDesc code_desc;
933 masm_->GetCode(&code_desc);
934 Handle<Code> code =
935 isolate()->factory()->NewCode(code_desc,
936 Code::ComputeFlags(Code::REGEXP),
937 masm_->CodeObject());
938 PROFILE(masm_->isolate(),
939 RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
940 return Handle<HeapObject>::cast(code);
941 }
942
943
GoTo(Label * to)944 void RegExpMacroAssemblerX87::GoTo(Label* to) {
945 BranchOrBacktrack(no_condition, to);
946 }
947
948
IfRegisterGE(int reg,int comparand,Label * if_ge)949 void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
950 int comparand,
951 Label* if_ge) {
952 __ cmp(register_location(reg), Immediate(comparand));
953 BranchOrBacktrack(greater_equal, if_ge);
954 }
955
956
IfRegisterLT(int reg,int comparand,Label * if_lt)957 void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
958 int comparand,
959 Label* if_lt) {
960 __ cmp(register_location(reg), Immediate(comparand));
961 BranchOrBacktrack(less, if_lt);
962 }
963
964
IfRegisterEqPos(int reg,Label * if_eq)965 void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
966 Label* if_eq) {
967 __ cmp(edi, register_location(reg));
968 BranchOrBacktrack(equal, if_eq);
969 }
970
971
972 RegExpMacroAssembler::IrregexpImplementation
Implementation()973 RegExpMacroAssemblerX87::Implementation() {
974 return kX87Implementation;
975 }
976
977
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)978 void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
979 Label* on_end_of_input,
980 bool check_bounds,
981 int characters) {
982 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
983 if (check_bounds) {
984 if (cp_offset >= 0) {
985 CheckPosition(cp_offset + characters - 1, on_end_of_input);
986 } else {
987 CheckPosition(cp_offset, on_end_of_input);
988 }
989 }
990 LoadCurrentCharacterUnchecked(cp_offset, characters);
991 }
992
993
PopCurrentPosition()994 void RegExpMacroAssemblerX87::PopCurrentPosition() {
995 Pop(edi);
996 }
997
998
PopRegister(int register_index)999 void RegExpMacroAssemblerX87::PopRegister(int register_index) {
1000 Pop(eax);
1001 __ mov(register_location(register_index), eax);
1002 }
1003
1004
PushBacktrack(Label * label)1005 void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
1006 Push(Immediate::CodeRelativeOffset(label));
1007 CheckStackLimit();
1008 }
1009
1010
PushCurrentPosition()1011 void RegExpMacroAssemblerX87::PushCurrentPosition() {
1012 Push(edi);
1013 }
1014
1015
PushRegister(int register_index,StackCheckFlag check_stack_limit)1016 void RegExpMacroAssemblerX87::PushRegister(int register_index,
1017 StackCheckFlag check_stack_limit) {
1018 __ mov(eax, register_location(register_index));
1019 Push(eax);
1020 if (check_stack_limit) CheckStackLimit();
1021 }
1022
1023
ReadCurrentPositionFromRegister(int reg)1024 void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
1025 __ mov(edi, register_location(reg));
1026 }
1027
1028
ReadStackPointerFromRegister(int reg)1029 void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
1030 __ mov(backtrack_stackpointer(), register_location(reg));
1031 __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
1032 }
1033
SetCurrentPositionFromEnd(int by)1034 void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by) {
1035 Label after_position;
1036 __ cmp(edi, -by * char_size());
1037 __ j(greater_equal, &after_position, Label::kNear);
1038 __ mov(edi, -by * char_size());
1039 // On RegExp code entry (where this operation is used), the character before
1040 // the current position is expected to be already loaded.
1041 // We have advanced the position, so it's safe to read backwards.
1042 LoadCurrentCharacterUnchecked(-1, 1);
1043 __ bind(&after_position);
1044 }
1045
1046
SetRegister(int register_index,int to)1047 void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
1048 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1049 __ mov(register_location(register_index), Immediate(to));
1050 }
1051
1052
Succeed()1053 bool RegExpMacroAssemblerX87::Succeed() {
1054 __ jmp(&success_label_);
1055 return global();
1056 }
1057
1058
WriteCurrentPositionToRegister(int reg,int cp_offset)1059 void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
1060 int cp_offset) {
1061 if (cp_offset == 0) {
1062 __ mov(register_location(reg), edi);
1063 } else {
1064 __ lea(eax, Operand(edi, cp_offset * char_size()));
1065 __ mov(register_location(reg), eax);
1066 }
1067 }
1068
1069
ClearRegisters(int reg_from,int reg_to)1070 void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
1071 DCHECK(reg_from <= reg_to);
1072 __ mov(eax, Operand(ebp, kStringStartMinusOne));
1073 for (int reg = reg_from; reg <= reg_to; reg++) {
1074 __ mov(register_location(reg), eax);
1075 }
1076 }
1077
1078
WriteStackPointerToRegister(int reg)1079 void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
1080 __ mov(eax, backtrack_stackpointer());
1081 __ sub(eax, Operand(ebp, kStackHighEnd));
1082 __ mov(register_location(reg), eax);
1083 }
1084
1085
1086 // Private methods:
1087
CallCheckStackGuardState(Register scratch)1088 void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
1089 static const int num_arguments = 3;
1090 __ PrepareCallCFunction(num_arguments, scratch);
1091 // RegExp code frame pointer.
1092 __ mov(Operand(esp, 2 * kPointerSize), ebp);
1093 // Code* of self.
1094 __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
1095 // Next address on the stack (will be address of return address).
1096 __ lea(eax, Operand(esp, -kPointerSize));
1097 __ mov(Operand(esp, 0 * kPointerSize), eax);
1098 ExternalReference check_stack_guard =
1099 ExternalReference::re_check_stack_guard_state(isolate());
1100 __ CallCFunction(check_stack_guard, num_arguments);
1101 }
1102
1103
1104 // Helper function for reading a value out of a stack frame.
1105 template <typename T>
frame_entry(Address re_frame,int frame_offset)1106 static T& frame_entry(Address re_frame, int frame_offset) {
1107 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1108 }
1109
1110
1111 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1112 static T* frame_entry_address(Address re_frame, int frame_offset) {
1113 return reinterpret_cast<T*>(re_frame + frame_offset);
1114 }
1115
1116
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1117 int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
1118 Code* re_code,
1119 Address re_frame) {
1120 return NativeRegExpMacroAssembler::CheckStackGuardState(
1121 frame_entry<Isolate*>(re_frame, kIsolate),
1122 frame_entry<int>(re_frame, kStartIndex),
1123 frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
1124 frame_entry_address<String*>(re_frame, kInputString),
1125 frame_entry_address<const byte*>(re_frame, kInputStart),
1126 frame_entry_address<const byte*>(re_frame, kInputEnd));
1127 }
1128
1129
register_location(int register_index)1130 Operand RegExpMacroAssemblerX87::register_location(int register_index) {
1131 DCHECK(register_index < (1<<30));
1132 if (num_registers_ <= register_index) {
1133 num_registers_ = register_index + 1;
1134 }
1135 return Operand(ebp, kRegisterZero - register_index * kPointerSize);
1136 }
1137
1138
CheckPosition(int cp_offset,Label * on_outside_input)1139 void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
1140 Label* on_outside_input) {
1141 if (cp_offset >= 0) {
1142 __ cmp(edi, -cp_offset * char_size());
1143 BranchOrBacktrack(greater_equal, on_outside_input);
1144 } else {
1145 __ lea(eax, Operand(edi, cp_offset * char_size()));
1146 __ cmp(eax, Operand(ebp, kStringStartMinusOne));
1147 BranchOrBacktrack(less_equal, on_outside_input);
1148 }
1149 }
1150
1151
BranchOrBacktrack(Condition condition,Label * to)1152 void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
1153 Label* to) {
1154 if (condition < 0) { // No condition
1155 if (to == NULL) {
1156 Backtrack();
1157 return;
1158 }
1159 __ jmp(to);
1160 return;
1161 }
1162 if (to == NULL) {
1163 __ j(condition, &backtrack_label_);
1164 return;
1165 }
1166 __ j(condition, to);
1167 }
1168
1169
SafeCall(Label * to)1170 void RegExpMacroAssemblerX87::SafeCall(Label* to) {
1171 Label return_to;
1172 __ push(Immediate::CodeRelativeOffset(&return_to));
1173 __ jmp(to);
1174 __ bind(&return_to);
1175 }
1176
1177
SafeReturn()1178 void RegExpMacroAssemblerX87::SafeReturn() {
1179 __ pop(ebx);
1180 __ add(ebx, Immediate(masm_->CodeObject()));
1181 __ jmp(ebx);
1182 }
1183
1184
SafeCallTarget(Label * name)1185 void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
1186 __ bind(name);
1187 }
1188
1189
Push(Register source)1190 void RegExpMacroAssemblerX87::Push(Register source) {
1191 DCHECK(!source.is(backtrack_stackpointer()));
1192 // Notice: This updates flags, unlike normal Push.
1193 __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1194 __ mov(Operand(backtrack_stackpointer(), 0), source);
1195 }
1196
1197
Push(Immediate value)1198 void RegExpMacroAssemblerX87::Push(Immediate value) {
1199 // Notice: This updates flags, unlike normal Push.
1200 __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1201 __ mov(Operand(backtrack_stackpointer(), 0), value);
1202 }
1203
1204
Pop(Register target)1205 void RegExpMacroAssemblerX87::Pop(Register target) {
1206 DCHECK(!target.is(backtrack_stackpointer()));
1207 __ mov(target, Operand(backtrack_stackpointer(), 0));
1208 // Notice: This updates flags, unlike normal Pop.
1209 __ add(backtrack_stackpointer(), Immediate(kPointerSize));
1210 }
1211
1212
CheckPreemption()1213 void RegExpMacroAssemblerX87::CheckPreemption() {
1214 // Check for preemption.
1215 Label no_preempt;
1216 ExternalReference stack_limit =
1217 ExternalReference::address_of_stack_limit(isolate());
1218 __ cmp(esp, Operand::StaticVariable(stack_limit));
1219 __ j(above, &no_preempt);
1220
1221 SafeCall(&check_preempt_label_);
1222
1223 __ bind(&no_preempt);
1224 }
1225
1226
CheckStackLimit()1227 void RegExpMacroAssemblerX87::CheckStackLimit() {
1228 Label no_stack_overflow;
1229 ExternalReference stack_limit =
1230 ExternalReference::address_of_regexp_stack_limit(isolate());
1231 __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
1232 __ j(above, &no_stack_overflow);
1233
1234 SafeCall(&stack_overflow_label_);
1235
1236 __ bind(&no_stack_overflow);
1237 }
1238
1239
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1240 void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
1241 int characters) {
1242 if (mode_ == LATIN1) {
1243 if (characters == 4) {
1244 __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
1245 } else if (characters == 2) {
1246 __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
1247 } else {
1248 DCHECK(characters == 1);
1249 __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
1250 }
1251 } else {
1252 DCHECK(mode_ == UC16);
1253 if (characters == 2) {
1254 __ mov(current_character(),
1255 Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1256 } else {
1257 DCHECK(characters == 1);
1258 __ movzx_w(current_character(),
1259 Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1260 }
1261 }
1262 }
1263
1264
1265 #undef __
1266
1267 #endif // V8_INTERPRETED_REGEXP
1268
1269 } // namespace internal
1270 } // namespace v8
1271
1272 #endif // V8_TARGET_ARCH_X87
1273