1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_X87
6 
7 #include "src/regexp/x87/regexp-macro-assembler-x87.h"
8 
9 #include "src/log.h"
10 #include "src/macro-assembler.h"
11 #include "src/regexp/regexp-macro-assembler.h"
12 #include "src/regexp/regexp-stack.h"
13 #include "src/unicode.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 #ifndef V8_INTERPRETED_REGEXP
19 /*
20  * This assembler uses the following register assignment convention
21  * - edx : Current character.  Must be loaded using LoadCurrentCharacter
22  *         before using any of the dispatch methods.  Temporarily stores the
23  *         index of capture start after a matching pass for a global regexp.
24  * - edi : Current position in input, as negative offset from end of string.
25  *         Please notice that this is the byte offset, not the character offset!
26  * - esi : end of input (points to byte after last character in input).
27  * - ebp : Frame pointer.  Used to access arguments, local variables and
28  *         RegExp registers.
29  * - esp : Points to tip of C stack.
30  * - ecx : Points to tip of backtrack stack
31  *
32  * The registers eax and ebx are free to use for computations.
33  *
34  * Each call to a public method should retain this convention.
35  * The stack will have the following structure:
36  *       - Isolate* isolate     (address of the current isolate)
37  *       - direct_call          (if 1, direct call from JavaScript code, if 0
38  *                               call through the runtime system)
39  *       - stack_area_base      (high end of the memory area to use as
40  *                               backtracking stack)
41  *       - capture array size   (may fit multiple sets of matches)
42  *       - int* capture_array   (int[num_saved_registers_], for output).
43  *       - end of input         (address of end of string)
44  *       - start of input       (address of first character in string)
45  *       - start index          (character index of start)
46  *       - String* input_string (location of a handle containing the string)
47  *       --- frame alignment (if applicable) ---
48  *       - return address
49  * ebp-> - old ebp
50  *       - backup of caller esi
51  *       - backup of caller edi
52  *       - backup of caller ebx
53  *       - success counter      (only for global regexps to count matches).
54  *       - Offset of location before start of input (effectively character
55  *         string start - 1). Used to initialize capture registers to a
56  *         non-position.
57  *       - register 0  ebp[-4]  (only positions must be stored in the first
58  *       - register 1  ebp[-8]   num_saved_registers_ registers)
59  *       - ...
60  *
61  * The first num_saved_registers_ registers are initialized to point to
62  * "character -1" in the string (i.e., char_size() bytes before the first
63  * character of the string). The remaining registers starts out as garbage.
64  *
65  * The data up to the return address must be placed there by the calling
66  * code, by calling the code entry as cast to a function with the signature:
67  * int (*match)(String* input_string,
68  *              int start_index,
69  *              Address start,
70  *              Address end,
71  *              int* capture_output_array,
72  *              bool at_start,
73  *              byte* stack_area_base,
74  *              bool direct_call)
75  */
76 
77 #define __ ACCESS_MASM(masm_)
78 
RegExpMacroAssemblerX87(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)79 RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone,
80                                                  Mode mode,
81                                                  int registers_to_save)
82     : NativeRegExpMacroAssembler(isolate, zone),
83       masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
84                                CodeObjectRequired::kYes)),
85       mode_(mode),
86       num_registers_(registers_to_save),
87       num_saved_registers_(registers_to_save),
88       entry_label_(),
89       start_label_(),
90       success_label_(),
91       backtrack_label_(),
92       exit_label_() {
93   DCHECK_EQ(0, registers_to_save % 2);
94   __ jmp(&entry_label_);   // We'll write the entry code later.
95   __ bind(&start_label_);  // And then continue from here.
96 }
97 
98 
~RegExpMacroAssemblerX87()99 RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
100   delete masm_;
101   // Unuse labels in case we throw away the assembler without calling GetCode.
102   entry_label_.Unuse();
103   start_label_.Unuse();
104   success_label_.Unuse();
105   backtrack_label_.Unuse();
106   exit_label_.Unuse();
107   check_preempt_label_.Unuse();
108   stack_overflow_label_.Unuse();
109 }
110 
111 
stack_limit_slack()112 int RegExpMacroAssemblerX87::stack_limit_slack()  {
113   return RegExpStack::kStackLimitSlack;
114 }
115 
116 
AdvanceCurrentPosition(int by)117 void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
118   if (by != 0) {
119     __ add(edi, Immediate(by * char_size()));
120   }
121 }
122 
123 
AdvanceRegister(int reg,int by)124 void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
125   DCHECK(reg >= 0);
126   DCHECK(reg < num_registers_);
127   if (by != 0) {
128     __ add(register_location(reg), Immediate(by));
129   }
130 }
131 
132 
Backtrack()133 void RegExpMacroAssemblerX87::Backtrack() {
134   CheckPreemption();
135   // Pop Code* offset from backtrack stack, add Code* and jump to location.
136   Pop(ebx);
137   __ add(ebx, Immediate(masm_->CodeObject()));
138   __ jmp(ebx);
139 }
140 
141 
Bind(Label * label)142 void RegExpMacroAssemblerX87::Bind(Label* label) {
143   __ bind(label);
144 }
145 
146 
CheckCharacter(uint32_t c,Label * on_equal)147 void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
148   __ cmp(current_character(), c);
149   BranchOrBacktrack(equal, on_equal);
150 }
151 
152 
CheckCharacterGT(uc16 limit,Label * on_greater)153 void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
154   __ cmp(current_character(), limit);
155   BranchOrBacktrack(greater, on_greater);
156 }
157 
158 
CheckAtStart(Label * on_at_start)159 void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
160   __ lea(eax, Operand(edi, -char_size()));
161   __ cmp(eax, Operand(ebp, kStringStartMinusOne));
162   BranchOrBacktrack(equal, on_at_start);
163 }
164 
165 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)166 void RegExpMacroAssemblerX87::CheckNotAtStart(int cp_offset,
167                                               Label* on_not_at_start) {
168   __ lea(eax, Operand(edi, -char_size() + cp_offset * char_size()));
169   __ cmp(eax, Operand(ebp, kStringStartMinusOne));
170   BranchOrBacktrack(not_equal, on_not_at_start);
171 }
172 
173 
CheckCharacterLT(uc16 limit,Label * on_less)174 void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
175   __ cmp(current_character(), limit);
176   BranchOrBacktrack(less, on_less);
177 }
178 
179 
CheckGreedyLoop(Label * on_equal)180 void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
181   Label fallthrough;
182   __ cmp(edi, Operand(backtrack_stackpointer(), 0));
183   __ j(not_equal, &fallthrough);
184   __ add(backtrack_stackpointer(), Immediate(kPointerSize));  // Pop.
185   BranchOrBacktrack(no_condition, on_equal);
186   __ bind(&fallthrough);
187 }
188 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)189 void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
190     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
191   Label fallthrough;
192   __ mov(edx, register_location(start_reg));  // Index of start of capture
193   __ mov(ebx, register_location(start_reg + 1));  // Index of end of capture
194   __ sub(ebx, edx);  // Length of capture.
195 
196   // At this point, the capture registers are either both set or both cleared.
197   // If the capture length is zero, then the capture is either empty or cleared.
198   // Fall through in both cases.
199   __ j(equal, &fallthrough);
200 
201   // Check that there are sufficient characters left in the input.
202   if (read_backward) {
203     __ mov(eax, Operand(ebp, kStringStartMinusOne));
204     __ add(eax, ebx);
205     __ cmp(edi, eax);
206     BranchOrBacktrack(less_equal, on_no_match);
207   } else {
208     __ mov(eax, edi);
209     __ add(eax, ebx);
210     BranchOrBacktrack(greater, on_no_match);
211   }
212 
213   if (mode_ == LATIN1) {
214     Label success;
215     Label fail;
216     Label loop_increment;
217     // Save register contents to make the registers available below.
218     __ push(edi);
219     __ push(backtrack_stackpointer());
220     // After this, the eax, ecx, and edi registers are available.
221 
222     __ add(edx, esi);  // Start of capture
223     __ add(edi, esi);  // Start of text to match against capture.
224     if (read_backward) {
225       __ sub(edi, ebx);  // Offset by length when matching backwards.
226     }
227     __ add(ebx, edi);  // End of text to match against capture.
228 
229     Label loop;
230     __ bind(&loop);
231     __ movzx_b(eax, Operand(edi, 0));
232     __ cmpb_al(Operand(edx, 0));
233     __ j(equal, &loop_increment);
234 
235     // Mismatch, try case-insensitive match (converting letters to lower-case).
236     __ or_(eax, 0x20);  // Convert match character to lower-case.
237     __ lea(ecx, Operand(eax, -'a'));
238     __ cmp(ecx, static_cast<int32_t>('z' - 'a'));  // Is eax a lowercase letter?
239     Label convert_capture;
240     __ j(below_equal, &convert_capture);  // In range 'a'-'z'.
241     // Latin-1: Check for values in range [224,254] but not 247.
242     __ sub(ecx, Immediate(224 - 'a'));
243     __ cmp(ecx, Immediate(254 - 224));
244     __ j(above, &fail);  // Weren't Latin-1 letters.
245     __ cmp(ecx, Immediate(247 - 224));  // Check for 247.
246     __ j(equal, &fail);
247     __ bind(&convert_capture);
248     // Also convert capture character.
249     __ movzx_b(ecx, Operand(edx, 0));
250     __ or_(ecx, 0x20);
251 
252     __ cmp(eax, ecx);
253     __ j(not_equal, &fail);
254 
255     __ bind(&loop_increment);
256     // Increment pointers into match and capture strings.
257     __ add(edx, Immediate(1));
258     __ add(edi, Immediate(1));
259     // Compare to end of match, and loop if not done.
260     __ cmp(edi, ebx);
261     __ j(below, &loop);
262     __ jmp(&success);
263 
264     __ bind(&fail);
265     // Restore original values before failing.
266     __ pop(backtrack_stackpointer());
267     __ pop(edi);
268     BranchOrBacktrack(no_condition, on_no_match);
269 
270     __ bind(&success);
271     // Restore original value before continuing.
272     __ pop(backtrack_stackpointer());
273     // Drop original value of character position.
274     __ add(esp, Immediate(kPointerSize));
275     // Compute new value of character position after the matched part.
276     __ sub(edi, esi);
277     if (read_backward) {
278       // Subtract match length if we matched backward.
279       __ add(edi, register_location(start_reg));
280       __ sub(edi, register_location(start_reg + 1));
281     }
282   } else {
283     DCHECK(mode_ == UC16);
284     // Save registers before calling C function.
285     __ push(esi);
286     __ push(edi);
287     __ push(backtrack_stackpointer());
288     __ push(ebx);
289 
290     static const int argument_count = 4;
291     __ PrepareCallCFunction(argument_count, ecx);
292     // Put arguments into allocated stack area, last argument highest on stack.
293     // Parameters are
294     //   Address byte_offset1 - Address captured substring's start.
295     //   Address byte_offset2 - Address of current character position.
296     //   size_t byte_length - length of capture in bytes(!)
297 //   Isolate* isolate or 0 if unicode flag.
298 
299     // Set isolate.
300 #ifdef V8_I18N_SUPPORT
301     if (unicode) {
302       __ mov(Operand(esp, 3 * kPointerSize), Immediate(0));
303     } else  // NOLINT
304 #endif      // V8_I18N_SUPPORT
305     {
306       __ mov(Operand(esp, 3 * kPointerSize),
307              Immediate(ExternalReference::isolate_address(isolate())));
308     }
309     // Set byte_length.
310     __ mov(Operand(esp, 2 * kPointerSize), ebx);
311     // Set byte_offset2.
312     // Found by adding negative string-end offset of current position (edi)
313     // to end of string.
314     __ add(edi, esi);
315     if (read_backward) {
316       __ sub(edi, ebx);  // Offset by length when matching backwards.
317     }
318     __ mov(Operand(esp, 1 * kPointerSize), edi);
319     // Set byte_offset1.
320     // Start of capture, where edx already holds string-end negative offset.
321     __ add(edx, esi);
322     __ mov(Operand(esp, 0 * kPointerSize), edx);
323 
324     {
325       AllowExternalCallThatCantCauseGC scope(masm_);
326       ExternalReference compare =
327           ExternalReference::re_case_insensitive_compare_uc16(isolate());
328       __ CallCFunction(compare, argument_count);
329     }
330     // Pop original values before reacting on result value.
331     __ pop(ebx);
332     __ pop(backtrack_stackpointer());
333     __ pop(edi);
334     __ pop(esi);
335 
336     // Check if function returned non-zero for success or zero for failure.
337     __ or_(eax, eax);
338     BranchOrBacktrack(zero, on_no_match);
339     // On success, advance position by length of capture.
340     if (read_backward) {
341       __ sub(edi, ebx);
342     } else {
343       __ add(edi, ebx);
344     }
345   }
346   __ bind(&fallthrough);
347 }
348 
349 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)350 void RegExpMacroAssemblerX87::CheckNotBackReference(int start_reg,
351                                                     bool read_backward,
352                                                     Label* on_no_match) {
353   Label fallthrough;
354   Label success;
355   Label fail;
356 
357   // Find length of back-referenced capture.
358   __ mov(edx, register_location(start_reg));
359   __ mov(eax, register_location(start_reg + 1));
360   __ sub(eax, edx);  // Length to check.
361 
362   // At this point, the capture registers are either both set or both cleared.
363   // If the capture length is zero, then the capture is either empty or cleared.
364   // Fall through in both cases.
365   __ j(equal, &fallthrough);
366 
367   // Check that there are sufficient characters left in the input.
368   if (read_backward) {
369     __ mov(ebx, Operand(ebp, kStringStartMinusOne));
370     __ add(ebx, eax);
371     __ cmp(edi, ebx);
372     BranchOrBacktrack(less_equal, on_no_match);
373   } else {
374     __ mov(ebx, edi);
375     __ add(ebx, eax);
376     BranchOrBacktrack(greater, on_no_match);
377   }
378 
379   // Save register to make it available below.
380   __ push(backtrack_stackpointer());
381 
382   // Compute pointers to match string and capture string
383   __ add(edx, esi);  // Start of capture.
384   __ lea(ebx, Operand(esi, edi, times_1, 0));  // Start of match.
385   if (read_backward) {
386     __ sub(ebx, eax);  // Offset by length when matching backwards.
387   }
388   __ lea(ecx, Operand(eax, ebx, times_1, 0));  // End of match
389 
390   Label loop;
391   __ bind(&loop);
392   if (mode_ == LATIN1) {
393     __ movzx_b(eax, Operand(edx, 0));
394     __ cmpb_al(Operand(ebx, 0));
395   } else {
396     DCHECK(mode_ == UC16);
397     __ movzx_w(eax, Operand(edx, 0));
398     __ cmpw_ax(Operand(ebx, 0));
399   }
400   __ j(not_equal, &fail);
401   // Increment pointers into capture and match string.
402   __ add(edx, Immediate(char_size()));
403   __ add(ebx, Immediate(char_size()));
404   // Check if we have reached end of match area.
405   __ cmp(ebx, ecx);
406   __ j(below, &loop);
407   __ jmp(&success);
408 
409   __ bind(&fail);
410   // Restore backtrack stackpointer.
411   __ pop(backtrack_stackpointer());
412   BranchOrBacktrack(no_condition, on_no_match);
413 
414   __ bind(&success);
415   // Move current character position to position after match.
416   __ mov(edi, ecx);
417   __ sub(edi, esi);
418   if (read_backward) {
419     // Subtract match length if we matched backward.
420     __ add(edi, register_location(start_reg));
421     __ sub(edi, register_location(start_reg + 1));
422   }
423   // Restore backtrack stackpointer.
424   __ pop(backtrack_stackpointer());
425 
426   __ bind(&fallthrough);
427 }
428 
429 
CheckNotCharacter(uint32_t c,Label * on_not_equal)430 void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
431                                                  Label* on_not_equal) {
432   __ cmp(current_character(), c);
433   BranchOrBacktrack(not_equal, on_not_equal);
434 }
435 
436 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)437 void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
438                                                       uint32_t mask,
439                                                       Label* on_equal) {
440   if (c == 0) {
441     __ test(current_character(), Immediate(mask));
442   } else {
443     __ mov(eax, mask);
444     __ and_(eax, current_character());
445     __ cmp(eax, c);
446   }
447   BranchOrBacktrack(equal, on_equal);
448 }
449 
450 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)451 void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
452                                                          uint32_t mask,
453                                                          Label* on_not_equal) {
454   if (c == 0) {
455     __ test(current_character(), Immediate(mask));
456   } else {
457     __ mov(eax, mask);
458     __ and_(eax, current_character());
459     __ cmp(eax, c);
460   }
461   BranchOrBacktrack(not_equal, on_not_equal);
462 }
463 
464 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)465 void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
466     uc16 c,
467     uc16 minus,
468     uc16 mask,
469     Label* on_not_equal) {
470   DCHECK(minus < String::kMaxUtf16CodeUnit);
471   __ lea(eax, Operand(current_character(), -minus));
472   if (c == 0) {
473     __ test(eax, Immediate(mask));
474   } else {
475     __ and_(eax, mask);
476     __ cmp(eax, c);
477   }
478   BranchOrBacktrack(not_equal, on_not_equal);
479 }
480 
481 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)482 void RegExpMacroAssemblerX87::CheckCharacterInRange(
483     uc16 from,
484     uc16 to,
485     Label* on_in_range) {
486   __ lea(eax, Operand(current_character(), -from));
487   __ cmp(eax, to - from);
488   BranchOrBacktrack(below_equal, on_in_range);
489 }
490 
491 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)492 void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
493     uc16 from,
494     uc16 to,
495     Label* on_not_in_range) {
496   __ lea(eax, Operand(current_character(), -from));
497   __ cmp(eax, to - from);
498   BranchOrBacktrack(above, on_not_in_range);
499 }
500 
501 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)502 void RegExpMacroAssemblerX87::CheckBitInTable(
503     Handle<ByteArray> table,
504     Label* on_bit_set) {
505   __ mov(eax, Immediate(table));
506   Register index = current_character();
507   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
508     __ mov(ebx, kTableSize - 1);
509     __ and_(ebx, current_character());
510     index = ebx;
511   }
512   __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize),
513           Immediate(0));
514   BranchOrBacktrack(not_equal, on_bit_set);
515 }
516 
517 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)518 bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
519                                                           Label* on_no_match) {
520   // Range checks (c in min..max) are generally implemented by an unsigned
521   // (c - min) <= (max - min) check
522   switch (type) {
523   case 's':
524     // Match space-characters
525     if (mode_ == LATIN1) {
526       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
527       Label success;
528       __ cmp(current_character(), ' ');
529       __ j(equal, &success, Label::kNear);
530       // Check range 0x09..0x0d
531       __ lea(eax, Operand(current_character(), -'\t'));
532       __ cmp(eax, '\r' - '\t');
533       __ j(below_equal, &success, Label::kNear);
534       // \u00a0 (NBSP).
535       __ cmp(eax, 0x00a0 - '\t');
536       BranchOrBacktrack(not_equal, on_no_match);
537       __ bind(&success);
538       return true;
539     }
540     return false;
541   case 'S':
542     // The emitted code for generic character classes is good enough.
543     return false;
544   case 'd':
545     // Match ASCII digits ('0'..'9')
546     __ lea(eax, Operand(current_character(), -'0'));
547     __ cmp(eax, '9' - '0');
548     BranchOrBacktrack(above, on_no_match);
549     return true;
550   case 'D':
551     // Match non ASCII-digits
552     __ lea(eax, Operand(current_character(), -'0'));
553     __ cmp(eax, '9' - '0');
554     BranchOrBacktrack(below_equal, on_no_match);
555     return true;
556   case '.': {
557     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
558     __ mov(eax, current_character());
559     __ xor_(eax, Immediate(0x01));
560     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
561     __ sub(eax, Immediate(0x0b));
562     __ cmp(eax, 0x0c - 0x0b);
563     BranchOrBacktrack(below_equal, on_no_match);
564     if (mode_ == UC16) {
565       // Compare original value to 0x2028 and 0x2029, using the already
566       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
567       // 0x201d (0x2028 - 0x0b) or 0x201e.
568       __ sub(eax, Immediate(0x2028 - 0x0b));
569       __ cmp(eax, 0x2029 - 0x2028);
570       BranchOrBacktrack(below_equal, on_no_match);
571     }
572     return true;
573   }
574   case 'w': {
575     if (mode_ != LATIN1) {
576       // Table is 256 entries, so all Latin1 characters can be tested.
577       __ cmp(current_character(), Immediate('z'));
578       BranchOrBacktrack(above, on_no_match);
579     }
580     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
581     ExternalReference word_map = ExternalReference::re_word_character_map();
582     __ test_b(current_character(),
583               Operand::StaticArray(current_character(), times_1, word_map));
584     BranchOrBacktrack(zero, on_no_match);
585     return true;
586   }
587   case 'W': {
588     Label done;
589     if (mode_ != LATIN1) {
590       // Table is 256 entries, so all Latin1 characters can be tested.
591       __ cmp(current_character(), Immediate('z'));
592       __ j(above, &done);
593     }
594     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
595     ExternalReference word_map = ExternalReference::re_word_character_map();
596     __ test_b(current_character(),
597               Operand::StaticArray(current_character(), times_1, word_map));
598     BranchOrBacktrack(not_zero, on_no_match);
599     if (mode_ != LATIN1) {
600       __ bind(&done);
601     }
602     return true;
603   }
604   // Non-standard classes (with no syntactic shorthand) used internally.
605   case '*':
606     // Match any character.
607     return true;
608   case 'n': {
609     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
610     // The opposite of '.'.
611     __ mov(eax, current_character());
612     __ xor_(eax, Immediate(0x01));
613     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
614     __ sub(eax, Immediate(0x0b));
615     __ cmp(eax, 0x0c - 0x0b);
616     if (mode_ == LATIN1) {
617       BranchOrBacktrack(above, on_no_match);
618     } else {
619       Label done;
620       BranchOrBacktrack(below_equal, &done);
621       DCHECK_EQ(UC16, mode_);
622       // Compare original value to 0x2028 and 0x2029, using the already
623       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
624       // 0x201d (0x2028 - 0x0b) or 0x201e.
625       __ sub(eax, Immediate(0x2028 - 0x0b));
626       __ cmp(eax, 1);
627       BranchOrBacktrack(above, on_no_match);
628       __ bind(&done);
629     }
630     return true;
631   }
632   // No custom implementation (yet): s(UC16), S(UC16).
633   default:
634     return false;
635   }
636 }
637 
638 
Fail()639 void RegExpMacroAssemblerX87::Fail() {
640   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
641   if (!global()) {
642     __ Move(eax, Immediate(FAILURE));
643   }
644   __ jmp(&exit_label_);
645 }
646 
647 
GetCode(Handle<String> source)648 Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
649   Label return_eax;
650   // Finalize code - write the entry point code now we know how many
651   // registers we need.
652 
653   // Entry code:
654   __ bind(&entry_label_);
655 
656   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
657   // code is generated.
658   FrameScope scope(masm_, StackFrame::MANUAL);
659 
660   // Actually emit code to start a new stack frame.
661   __ push(ebp);
662   __ mov(ebp, esp);
663   // Save callee-save registers. Order here should correspond to order of
664   // kBackup_ebx etc.
665   __ push(esi);
666   __ push(edi);
667   __ push(ebx);  // Callee-save on MacOS.
668   __ push(Immediate(0));  // Number of successful matches in a global regexp.
669   __ push(Immediate(0));  // Make room for "string start - 1" constant.
670 
671   // Check if we have space on the stack for registers.
672   Label stack_limit_hit;
673   Label stack_ok;
674 
675   ExternalReference stack_limit =
676       ExternalReference::address_of_stack_limit(isolate());
677   __ mov(ecx, esp);
678   __ sub(ecx, Operand::StaticVariable(stack_limit));
679   // Handle it if the stack pointer is already below the stack limit.
680   __ j(below_equal, &stack_limit_hit);
681   // Check if there is room for the variable number of registers above
682   // the stack limit.
683   __ cmp(ecx, num_registers_ * kPointerSize);
684   __ j(above_equal, &stack_ok);
685   // Exit with OutOfMemory exception. There is not enough space on the stack
686   // for our working registers.
687   __ mov(eax, EXCEPTION);
688   __ jmp(&return_eax);
689 
690   __ bind(&stack_limit_hit);
691   CallCheckStackGuardState(ebx);
692   __ or_(eax, eax);
693   // If returned value is non-zero, we exit with the returned value as result.
694   __ j(not_zero, &return_eax);
695 
696   __ bind(&stack_ok);
697   // Load start index for later use.
698   __ mov(ebx, Operand(ebp, kStartIndex));
699 
700   // Allocate space on stack for registers.
701   __ sub(esp, Immediate(num_registers_ * kPointerSize));
702   // Load string length.
703   __ mov(esi, Operand(ebp, kInputEnd));
704   // Load input position.
705   __ mov(edi, Operand(ebp, kInputStart));
706   // Set up edi to be negative offset from string end.
707   __ sub(edi, esi);
708 
709   // Set eax to address of char before start of the string.
710   // (effectively string position -1).
711   __ neg(ebx);
712   if (mode_ == UC16) {
713     __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
714   } else {
715     __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
716   }
717   // Store this value in a local variable, for use when clearing
718   // position registers.
719   __ mov(Operand(ebp, kStringStartMinusOne), eax);
720 
721 #if V8_OS_WIN
722   // Ensure that we write to each stack page, in order. Skipping a page
723   // on Windows can cause segmentation faults. Assuming page size is 4k.
724   const int kPageSize = 4096;
725   const int kRegistersPerPage = kPageSize / kPointerSize;
726   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
727       i < num_registers_;
728       i += kRegistersPerPage) {
729     __ mov(register_location(i), eax);  // One write every page.
730   }
731 #endif  // V8_OS_WIN
732 
733   Label load_char_start_regexp, start_regexp;
734   // Load newline if index is at start, previous character otherwise.
735   __ cmp(Operand(ebp, kStartIndex), Immediate(0));
736   __ j(not_equal, &load_char_start_regexp, Label::kNear);
737   __ mov(current_character(), '\n');
738   __ jmp(&start_regexp, Label::kNear);
739 
740   // Global regexp restarts matching here.
741   __ bind(&load_char_start_regexp);
742   // Load previous char as initial value of current character register.
743   LoadCurrentCharacterUnchecked(-1, 1);
744   __ bind(&start_regexp);
745 
746   // Initialize on-stack registers.
747   if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
748     // Fill saved registers with initial value = start offset - 1
749     // Fill in stack push order, to avoid accessing across an unwritten
750     // page (a problem on Windows).
751     if (num_saved_registers_ > 8) {
752       __ mov(ecx, kRegisterZero);
753       Label init_loop;
754       __ bind(&init_loop);
755       __ mov(Operand(ebp, ecx, times_1, 0), eax);
756       __ sub(ecx, Immediate(kPointerSize));
757       __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
758       __ j(greater, &init_loop);
759     } else {  // Unroll the loop.
760       for (int i = 0; i < num_saved_registers_; i++) {
761         __ mov(register_location(i), eax);
762       }
763     }
764   }
765 
766   // Initialize backtrack stack pointer.
767   __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
768 
769   __ jmp(&start_label_);
770 
771   // Exit code:
772   if (success_label_.is_linked()) {
773     // Save captures when successful.
774     __ bind(&success_label_);
775     if (num_saved_registers_ > 0) {
776       // copy captures to output
777       __ mov(ebx, Operand(ebp, kRegisterOutput));
778       __ mov(ecx, Operand(ebp, kInputEnd));
779       __ mov(edx, Operand(ebp, kStartIndex));
780       __ sub(ecx, Operand(ebp, kInputStart));
781       if (mode_ == UC16) {
782         __ lea(ecx, Operand(ecx, edx, times_2, 0));
783       } else {
784         __ add(ecx, edx);
785       }
786       for (int i = 0; i < num_saved_registers_; i++) {
787         __ mov(eax, register_location(i));
788         if (i == 0 && global_with_zero_length_check()) {
789           // Keep capture start in edx for the zero-length check later.
790           __ mov(edx, eax);
791         }
792         // Convert to index from start of string, not end.
793         __ add(eax, ecx);
794         if (mode_ == UC16) {
795           __ sar(eax, 1);  // Convert byte index to character index.
796         }
797         __ mov(Operand(ebx, i * kPointerSize), eax);
798       }
799     }
800 
801     if (global()) {
802       // Restart matching if the regular expression is flagged as global.
803       // Increment success counter.
804       __ inc(Operand(ebp, kSuccessfulCaptures));
805       // Capture results have been stored, so the number of remaining global
806       // output registers is reduced by the number of stored captures.
807       __ mov(ecx, Operand(ebp, kNumOutputRegisters));
808       __ sub(ecx, Immediate(num_saved_registers_));
809       // Check whether we have enough room for another set of capture results.
810       __ cmp(ecx, Immediate(num_saved_registers_));
811       __ j(less, &exit_label_);
812 
813       __ mov(Operand(ebp, kNumOutputRegisters), ecx);
814       // Advance the location for output.
815       __ add(Operand(ebp, kRegisterOutput),
816              Immediate(num_saved_registers_ * kPointerSize));
817 
818       // Prepare eax to initialize registers with its value in the next run.
819       __ mov(eax, Operand(ebp, kStringStartMinusOne));
820 
821       if (global_with_zero_length_check()) {
822         // Special case for zero-length matches.
823         // edx: capture start index
824         __ cmp(edi, edx);
825         // Not a zero-length match, restart.
826         __ j(not_equal, &load_char_start_regexp);
827         // edi (offset from the end) is zero if we already reached the end.
828         __ test(edi, edi);
829         __ j(zero, &exit_label_, Label::kNear);
830         // Advance current position after a zero-length match.
831         Label advance;
832         __ bind(&advance);
833         if (mode_ == UC16) {
834           __ add(edi, Immediate(2));
835         } else {
836           __ inc(edi);
837         }
838         if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
839       }
840       __ jmp(&load_char_start_regexp);
841     } else {
842       __ mov(eax, Immediate(SUCCESS));
843     }
844   }
845 
846   __ bind(&exit_label_);
847   if (global()) {
848     // Return the number of successful captures.
849     __ mov(eax, Operand(ebp, kSuccessfulCaptures));
850   }
851 
852   __ bind(&return_eax);
853   // Skip esp past regexp registers.
854   __ lea(esp, Operand(ebp, kBackup_ebx));
855   // Restore callee-save registers.
856   __ pop(ebx);
857   __ pop(edi);
858   __ pop(esi);
859   // Exit function frame, restore previous one.
860   __ pop(ebp);
861   __ ret(0);
862 
863   // Backtrack code (branch target for conditional backtracks).
864   if (backtrack_label_.is_linked()) {
865     __ bind(&backtrack_label_);
866     Backtrack();
867   }
868 
869   Label exit_with_exception;
870 
871   // Preempt-code
872   if (check_preempt_label_.is_linked()) {
873     SafeCallTarget(&check_preempt_label_);
874 
875     __ push(backtrack_stackpointer());
876     __ push(edi);
877 
878     CallCheckStackGuardState(ebx);
879     __ or_(eax, eax);
880     // If returning non-zero, we should end execution with the given
881     // result as return value.
882     __ j(not_zero, &return_eax);
883 
884     __ pop(edi);
885     __ pop(backtrack_stackpointer());
886     // String might have moved: Reload esi from frame.
887     __ mov(esi, Operand(ebp, kInputEnd));
888     SafeReturn();
889   }
890 
891   // Backtrack stack overflow code.
892   if (stack_overflow_label_.is_linked()) {
893     SafeCallTarget(&stack_overflow_label_);
894     // Reached if the backtrack-stack limit has been hit.
895 
896     Label grow_failed;
897     // Save registers before calling C function
898     __ push(esi);
899     __ push(edi);
900 
901     // Call GrowStack(backtrack_stackpointer())
902     static const int num_arguments = 3;
903     __ PrepareCallCFunction(num_arguments, ebx);
904     __ mov(Operand(esp, 2 * kPointerSize),
905            Immediate(ExternalReference::isolate_address(isolate())));
906     __ lea(eax, Operand(ebp, kStackHighEnd));
907     __ mov(Operand(esp, 1 * kPointerSize), eax);
908     __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
909     ExternalReference grow_stack =
910         ExternalReference::re_grow_stack(isolate());
911     __ CallCFunction(grow_stack, num_arguments);
912     // If return NULL, we have failed to grow the stack, and
913     // must exit with a stack-overflow exception.
914     __ or_(eax, eax);
915     __ j(equal, &exit_with_exception);
916     // Otherwise use return value as new stack pointer.
917     __ mov(backtrack_stackpointer(), eax);
918     // Restore saved registers and continue.
919     __ pop(edi);
920     __ pop(esi);
921     SafeReturn();
922   }
923 
924   if (exit_with_exception.is_linked()) {
925     // If any of the code above needed to exit with an exception.
926     __ bind(&exit_with_exception);
927     // Exit with Result EXCEPTION(-1) to signal thrown exception.
928     __ mov(eax, EXCEPTION);
929     __ jmp(&return_eax);
930   }
931 
932   CodeDesc code_desc;
933   masm_->GetCode(&code_desc);
934   Handle<Code> code =
935       isolate()->factory()->NewCode(code_desc,
936                                     Code::ComputeFlags(Code::REGEXP),
937                                     masm_->CodeObject());
938   PROFILE(masm_->isolate(),
939           RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
940   return Handle<HeapObject>::cast(code);
941 }
942 
943 
GoTo(Label * to)944 void RegExpMacroAssemblerX87::GoTo(Label* to) {
945   BranchOrBacktrack(no_condition, to);
946 }
947 
948 
IfRegisterGE(int reg,int comparand,Label * if_ge)949 void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
950                                             int comparand,
951                                             Label* if_ge) {
952   __ cmp(register_location(reg), Immediate(comparand));
953   BranchOrBacktrack(greater_equal, if_ge);
954 }
955 
956 
IfRegisterLT(int reg,int comparand,Label * if_lt)957 void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
958                                             int comparand,
959                                             Label* if_lt) {
960   __ cmp(register_location(reg), Immediate(comparand));
961   BranchOrBacktrack(less, if_lt);
962 }
963 
964 
IfRegisterEqPos(int reg,Label * if_eq)965 void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
966                                                Label* if_eq) {
967   __ cmp(edi, register_location(reg));
968   BranchOrBacktrack(equal, if_eq);
969 }
970 
971 
972 RegExpMacroAssembler::IrregexpImplementation
Implementation()973     RegExpMacroAssemblerX87::Implementation() {
974   return kX87Implementation;
975 }
976 
977 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)978 void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
979                                                     Label* on_end_of_input,
980                                                     bool check_bounds,
981                                                     int characters) {
982   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
983   if (check_bounds) {
984     if (cp_offset >= 0) {
985       CheckPosition(cp_offset + characters - 1, on_end_of_input);
986     } else {
987       CheckPosition(cp_offset, on_end_of_input);
988     }
989   }
990   LoadCurrentCharacterUnchecked(cp_offset, characters);
991 }
992 
993 
PopCurrentPosition()994 void RegExpMacroAssemblerX87::PopCurrentPosition() {
995   Pop(edi);
996 }
997 
998 
PopRegister(int register_index)999 void RegExpMacroAssemblerX87::PopRegister(int register_index) {
1000   Pop(eax);
1001   __ mov(register_location(register_index), eax);
1002 }
1003 
1004 
PushBacktrack(Label * label)1005 void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
1006   Push(Immediate::CodeRelativeOffset(label));
1007   CheckStackLimit();
1008 }
1009 
1010 
PushCurrentPosition()1011 void RegExpMacroAssemblerX87::PushCurrentPosition() {
1012   Push(edi);
1013 }
1014 
1015 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1016 void RegExpMacroAssemblerX87::PushRegister(int register_index,
1017                                             StackCheckFlag check_stack_limit) {
1018   __ mov(eax, register_location(register_index));
1019   Push(eax);
1020   if (check_stack_limit) CheckStackLimit();
1021 }
1022 
1023 
ReadCurrentPositionFromRegister(int reg)1024 void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
1025   __ mov(edi, register_location(reg));
1026 }
1027 
1028 
ReadStackPointerFromRegister(int reg)1029 void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
1030   __ mov(backtrack_stackpointer(), register_location(reg));
1031   __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
1032 }
1033 
SetCurrentPositionFromEnd(int by)1034 void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by)  {
1035   Label after_position;
1036   __ cmp(edi, -by * char_size());
1037   __ j(greater_equal, &after_position, Label::kNear);
1038   __ mov(edi, -by * char_size());
1039   // On RegExp code entry (where this operation is used), the character before
1040   // the current position is expected to be already loaded.
1041   // We have advanced the position, so it's safe to read backwards.
1042   LoadCurrentCharacterUnchecked(-1, 1);
1043   __ bind(&after_position);
1044 }
1045 
1046 
SetRegister(int register_index,int to)1047 void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
1048   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1049   __ mov(register_location(register_index), Immediate(to));
1050 }
1051 
1052 
Succeed()1053 bool RegExpMacroAssemblerX87::Succeed() {
1054   __ jmp(&success_label_);
1055   return global();
1056 }
1057 
1058 
WriteCurrentPositionToRegister(int reg,int cp_offset)1059 void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
1060                                                               int cp_offset) {
1061   if (cp_offset == 0) {
1062     __ mov(register_location(reg), edi);
1063   } else {
1064     __ lea(eax, Operand(edi, cp_offset * char_size()));
1065     __ mov(register_location(reg), eax);
1066   }
1067 }
1068 
1069 
ClearRegisters(int reg_from,int reg_to)1070 void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
1071   DCHECK(reg_from <= reg_to);
1072   __ mov(eax, Operand(ebp, kStringStartMinusOne));
1073   for (int reg = reg_from; reg <= reg_to; reg++) {
1074     __ mov(register_location(reg), eax);
1075   }
1076 }
1077 
1078 
WriteStackPointerToRegister(int reg)1079 void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
1080   __ mov(eax, backtrack_stackpointer());
1081   __ sub(eax, Operand(ebp, kStackHighEnd));
1082   __ mov(register_location(reg), eax);
1083 }
1084 
1085 
1086 // Private methods:
1087 
CallCheckStackGuardState(Register scratch)1088 void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
1089   static const int num_arguments = 3;
1090   __ PrepareCallCFunction(num_arguments, scratch);
1091   // RegExp code frame pointer.
1092   __ mov(Operand(esp, 2 * kPointerSize), ebp);
1093   // Code* of self.
1094   __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
1095   // Next address on the stack (will be address of return address).
1096   __ lea(eax, Operand(esp, -kPointerSize));
1097   __ mov(Operand(esp, 0 * kPointerSize), eax);
1098   ExternalReference check_stack_guard =
1099       ExternalReference::re_check_stack_guard_state(isolate());
1100   __ CallCFunction(check_stack_guard, num_arguments);
1101 }
1102 
1103 
1104 // Helper function for reading a value out of a stack frame.
1105 template <typename T>
frame_entry(Address re_frame,int frame_offset)1106 static T& frame_entry(Address re_frame, int frame_offset) {
1107   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1108 }
1109 
1110 
1111 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1112 static T* frame_entry_address(Address re_frame, int frame_offset) {
1113   return reinterpret_cast<T*>(re_frame + frame_offset);
1114 }
1115 
1116 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1117 int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
1118                                                    Code* re_code,
1119                                                    Address re_frame) {
1120   return NativeRegExpMacroAssembler::CheckStackGuardState(
1121       frame_entry<Isolate*>(re_frame, kIsolate),
1122       frame_entry<int>(re_frame, kStartIndex),
1123       frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
1124       frame_entry_address<String*>(re_frame, kInputString),
1125       frame_entry_address<const byte*>(re_frame, kInputStart),
1126       frame_entry_address<const byte*>(re_frame, kInputEnd));
1127 }
1128 
1129 
register_location(int register_index)1130 Operand RegExpMacroAssemblerX87::register_location(int register_index) {
1131   DCHECK(register_index < (1<<30));
1132   if (num_registers_ <= register_index) {
1133     num_registers_ = register_index + 1;
1134   }
1135   return Operand(ebp, kRegisterZero - register_index * kPointerSize);
1136 }
1137 
1138 
CheckPosition(int cp_offset,Label * on_outside_input)1139 void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
1140                                              Label* on_outside_input) {
1141   if (cp_offset >= 0) {
1142     __ cmp(edi, -cp_offset * char_size());
1143     BranchOrBacktrack(greater_equal, on_outside_input);
1144   } else {
1145     __ lea(eax, Operand(edi, cp_offset * char_size()));
1146     __ cmp(eax, Operand(ebp, kStringStartMinusOne));
1147     BranchOrBacktrack(less_equal, on_outside_input);
1148   }
1149 }
1150 
1151 
BranchOrBacktrack(Condition condition,Label * to)1152 void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
1153                                                  Label* to) {
1154   if (condition < 0) {  // No condition
1155     if (to == NULL) {
1156       Backtrack();
1157       return;
1158     }
1159     __ jmp(to);
1160     return;
1161   }
1162   if (to == NULL) {
1163     __ j(condition, &backtrack_label_);
1164     return;
1165   }
1166   __ j(condition, to);
1167 }
1168 
1169 
SafeCall(Label * to)1170 void RegExpMacroAssemblerX87::SafeCall(Label* to) {
1171   Label return_to;
1172   __ push(Immediate::CodeRelativeOffset(&return_to));
1173   __ jmp(to);
1174   __ bind(&return_to);
1175 }
1176 
1177 
SafeReturn()1178 void RegExpMacroAssemblerX87::SafeReturn() {
1179   __ pop(ebx);
1180   __ add(ebx, Immediate(masm_->CodeObject()));
1181   __ jmp(ebx);
1182 }
1183 
1184 
SafeCallTarget(Label * name)1185 void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
1186   __ bind(name);
1187 }
1188 
1189 
Push(Register source)1190 void RegExpMacroAssemblerX87::Push(Register source) {
1191   DCHECK(!source.is(backtrack_stackpointer()));
1192   // Notice: This updates flags, unlike normal Push.
1193   __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1194   __ mov(Operand(backtrack_stackpointer(), 0), source);
1195 }
1196 
1197 
Push(Immediate value)1198 void RegExpMacroAssemblerX87::Push(Immediate value) {
1199   // Notice: This updates flags, unlike normal Push.
1200   __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1201   __ mov(Operand(backtrack_stackpointer(), 0), value);
1202 }
1203 
1204 
Pop(Register target)1205 void RegExpMacroAssemblerX87::Pop(Register target) {
1206   DCHECK(!target.is(backtrack_stackpointer()));
1207   __ mov(target, Operand(backtrack_stackpointer(), 0));
1208   // Notice: This updates flags, unlike normal Pop.
1209   __ add(backtrack_stackpointer(), Immediate(kPointerSize));
1210 }
1211 
1212 
CheckPreemption()1213 void RegExpMacroAssemblerX87::CheckPreemption() {
1214   // Check for preemption.
1215   Label no_preempt;
1216   ExternalReference stack_limit =
1217       ExternalReference::address_of_stack_limit(isolate());
1218   __ cmp(esp, Operand::StaticVariable(stack_limit));
1219   __ j(above, &no_preempt);
1220 
1221   SafeCall(&check_preempt_label_);
1222 
1223   __ bind(&no_preempt);
1224 }
1225 
1226 
CheckStackLimit()1227 void RegExpMacroAssemblerX87::CheckStackLimit() {
1228   Label no_stack_overflow;
1229   ExternalReference stack_limit =
1230       ExternalReference::address_of_regexp_stack_limit(isolate());
1231   __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
1232   __ j(above, &no_stack_overflow);
1233 
1234   SafeCall(&stack_overflow_label_);
1235 
1236   __ bind(&no_stack_overflow);
1237 }
1238 
1239 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1240 void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
1241                                                              int characters) {
1242   if (mode_ == LATIN1) {
1243     if (characters == 4) {
1244       __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
1245     } else if (characters == 2) {
1246       __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
1247     } else {
1248       DCHECK(characters == 1);
1249       __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
1250     }
1251   } else {
1252     DCHECK(mode_ == UC16);
1253     if (characters == 2) {
1254       __ mov(current_character(),
1255              Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1256     } else {
1257       DCHECK(characters == 1);
1258       __ movzx_w(current_character(),
1259                  Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1260     }
1261   }
1262 }
1263 
1264 
1265 #undef __
1266 
1267 #endif  // V8_INTERPRETED_REGEXP
1268 
1269 }  // namespace internal
1270 }  // namespace v8
1271 
1272 #endif  // V8_TARGET_ARCH_X87
1273