1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/runtime/runtime-utils.h"
6
7 #include "src/arguments.h"
8 #include "src/regexp/jsregexp-inl.h"
9 #include "src/string-builder.h"
10 #include "src/string-search.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // This may return an empty MaybeHandle if an exception is thrown or
16 // we abort due to reaching the recursion limit.
StringReplaceOneCharWithString(Isolate * isolate,Handle<String> subject,Handle<String> search,Handle<String> replace,bool * found,int recursion_limit)17 MaybeHandle<String> StringReplaceOneCharWithString(
18 Isolate* isolate, Handle<String> subject, Handle<String> search,
19 Handle<String> replace, bool* found, int recursion_limit) {
20 StackLimitCheck stackLimitCheck(isolate);
21 if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
22 return MaybeHandle<String>();
23 }
24 recursion_limit--;
25 if (subject->IsConsString()) {
26 ConsString* cons = ConsString::cast(*subject);
27 Handle<String> first = Handle<String>(cons->first());
28 Handle<String> second = Handle<String>(cons->second());
29 Handle<String> new_first;
30 if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
31 recursion_limit).ToHandle(&new_first)) {
32 return MaybeHandle<String>();
33 }
34 if (*found) return isolate->factory()->NewConsString(new_first, second);
35
36 Handle<String> new_second;
37 if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
38 recursion_limit)
39 .ToHandle(&new_second)) {
40 return MaybeHandle<String>();
41 }
42 if (*found) return isolate->factory()->NewConsString(first, new_second);
43
44 return subject;
45 } else {
46 int index = String::IndexOf(isolate, subject, search, 0);
47 if (index == -1) return subject;
48 *found = true;
49 Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
50 Handle<String> cons1;
51 ASSIGN_RETURN_ON_EXCEPTION(
52 isolate, cons1, isolate->factory()->NewConsString(first, replace),
53 String);
54 Handle<String> second =
55 isolate->factory()->NewSubString(subject, index + 1, subject->length());
56 return isolate->factory()->NewConsString(cons1, second);
57 }
58 }
59
60
RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString)61 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
62 HandleScope scope(isolate);
63 DCHECK(args.length() == 3);
64 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
65 CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
66 CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
67
68 // If the cons string tree is too deep, we simply abort the recursion and
69 // retry with a flattened subject string.
70 const int kRecursionLimit = 0x1000;
71 bool found = false;
72 Handle<String> result;
73 if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
74 kRecursionLimit).ToHandle(&result)) {
75 return *result;
76 }
77 if (isolate->has_pending_exception()) return isolate->heap()->exception();
78
79 subject = String::Flatten(subject);
80 if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
81 kRecursionLimit).ToHandle(&result)) {
82 return *result;
83 }
84 if (isolate->has_pending_exception()) return isolate->heap()->exception();
85 // In case of empty handle and no pending exception we have stack overflow.
86 return isolate->StackOverflow();
87 }
88
89
RUNTIME_FUNCTION(Runtime_StringIndexOf)90 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
91 HandleScope scope(isolate);
92 DCHECK(args.length() == 3);
93 return String::IndexOf(isolate, args.at<Object>(0), args.at<Object>(1),
94 args.at<Object>(2));
95 }
96
RUNTIME_FUNCTION(Runtime_StringLastIndexOf)97 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
98 HandleScope handle_scope(isolate);
99 return String::LastIndexOf(isolate, args.at<Object>(0), args.at<Object>(1),
100 isolate->factory()->undefined_value());
101 }
102
RUNTIME_FUNCTION(Runtime_SubString)103 RUNTIME_FUNCTION(Runtime_SubString) {
104 HandleScope scope(isolate);
105 DCHECK(args.length() == 3);
106
107 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
108 int start, end;
109 // We have a fast integer-only case here to avoid a conversion to double in
110 // the common case where from and to are Smis.
111 if (args[1]->IsSmi() && args[2]->IsSmi()) {
112 CONVERT_SMI_ARG_CHECKED(from_number, 1);
113 CONVERT_SMI_ARG_CHECKED(to_number, 2);
114 start = from_number;
115 end = to_number;
116 } else if (args[1]->IsNumber() && args[2]->IsNumber()) {
117 CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
118 CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
119 start = FastD2IChecked(from_number);
120 end = FastD2IChecked(to_number);
121 } else {
122 return isolate->ThrowIllegalOperation();
123 }
124 // The following condition is intentionally robust because the SubStringStub
125 // delegates here and we test this in cctest/test-strings/RobustSubStringStub.
126 if (end < start || start < 0 || end > string->length()) {
127 return isolate->ThrowIllegalOperation();
128 }
129 isolate->counters()->sub_string_runtime()->Increment();
130
131 return *isolate->factory()->NewSubString(string, start, end);
132 }
133
134
RUNTIME_FUNCTION(Runtime_StringAdd)135 RUNTIME_FUNCTION(Runtime_StringAdd) {
136 HandleScope scope(isolate);
137 DCHECK(args.length() == 2);
138 CONVERT_ARG_HANDLE_CHECKED(Object, obj1, 0);
139 CONVERT_ARG_HANDLE_CHECKED(Object, obj2, 1);
140 isolate->counters()->string_add_runtime()->Increment();
141 MaybeHandle<String> maybe_str1(Object::ToString(isolate, obj1));
142 MaybeHandle<String> maybe_str2(Object::ToString(isolate, obj2));
143 Handle<String> str1;
144 Handle<String> str2;
145 maybe_str1.ToHandle(&str1);
146 maybe_str2.ToHandle(&str2);
147 RETURN_RESULT_OR_FAILURE(isolate,
148 isolate->factory()->NewConsString(str1, str2));
149 }
150
151
RUNTIME_FUNCTION(Runtime_InternalizeString)152 RUNTIME_FUNCTION(Runtime_InternalizeString) {
153 HandleScope handles(isolate);
154 DCHECK(args.length() == 1);
155 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
156 return *isolate->factory()->InternalizeString(string);
157 }
158
159
RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT)160 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
161 HandleScope handle_scope(isolate);
162 DCHECK(args.length() == 2);
163
164 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
165 CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
166
167 // Flatten the string. If someone wants to get a char at an index
168 // in a cons string, it is likely that more indices will be
169 // accessed.
170 subject = String::Flatten(subject);
171
172 if (i >= static_cast<uint32_t>(subject->length())) {
173 return isolate->heap()->nan_value();
174 }
175
176 return Smi::FromInt(subject->Get(i));
177 }
178
179
RUNTIME_FUNCTION(Runtime_StringCompare)180 RUNTIME_FUNCTION(Runtime_StringCompare) {
181 HandleScope handle_scope(isolate);
182 DCHECK_EQ(2, args.length());
183 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
184 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
185 isolate->counters()->string_compare_runtime()->Increment();
186 switch (String::Compare(x, y)) {
187 case ComparisonResult::kLessThan:
188 return Smi::FromInt(LESS);
189 case ComparisonResult::kEqual:
190 return Smi::FromInt(EQUAL);
191 case ComparisonResult::kGreaterThan:
192 return Smi::FromInt(GREATER);
193 case ComparisonResult::kUndefined:
194 break;
195 }
196 UNREACHABLE();
197 return Smi::kZero;
198 }
199
200
RUNTIME_FUNCTION(Runtime_StringBuilderConcat)201 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
202 HandleScope scope(isolate);
203 DCHECK(args.length() == 3);
204 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
205 int32_t array_length;
206 if (!args[1]->ToInt32(&array_length)) {
207 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
208 }
209 CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
210
211 size_t actual_array_length = 0;
212 CHECK(TryNumberToSize(array->length(), &actual_array_length));
213 CHECK(array_length >= 0);
214 CHECK(static_cast<size_t>(array_length) <= actual_array_length);
215
216 // This assumption is used by the slice encoding in one or two smis.
217 DCHECK(Smi::kMaxValue >= String::kMaxLength);
218
219 CHECK(array->HasFastElements());
220 JSObject::EnsureCanContainHeapObjectElements(array);
221
222 int special_length = special->length();
223 if (!array->HasFastObjectElements()) {
224 return isolate->Throw(isolate->heap()->illegal_argument_string());
225 }
226
227 int length;
228 bool one_byte = special->HasOnlyOneByteChars();
229
230 {
231 DisallowHeapAllocation no_gc;
232 FixedArray* fixed_array = FixedArray::cast(array->elements());
233 if (fixed_array->length() < array_length) {
234 array_length = fixed_array->length();
235 }
236
237 if (array_length == 0) {
238 return isolate->heap()->empty_string();
239 } else if (array_length == 1) {
240 Object* first = fixed_array->get(0);
241 if (first->IsString()) return first;
242 }
243 length = StringBuilderConcatLength(special_length, fixed_array,
244 array_length, &one_byte);
245 }
246
247 if (length == -1) {
248 return isolate->Throw(isolate->heap()->illegal_argument_string());
249 }
250
251 if (one_byte) {
252 Handle<SeqOneByteString> answer;
253 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
254 isolate, answer, isolate->factory()->NewRawOneByteString(length));
255 StringBuilderConcatHelper(*special, answer->GetChars(),
256 FixedArray::cast(array->elements()),
257 array_length);
258 return *answer;
259 } else {
260 Handle<SeqTwoByteString> answer;
261 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
262 isolate, answer, isolate->factory()->NewRawTwoByteString(length));
263 StringBuilderConcatHelper(*special, answer->GetChars(),
264 FixedArray::cast(array->elements()),
265 array_length);
266 return *answer;
267 }
268 }
269
270
RUNTIME_FUNCTION(Runtime_StringBuilderJoin)271 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
272 HandleScope scope(isolate);
273 DCHECK(args.length() == 3);
274 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
275 int32_t array_length;
276 if (!args[1]->ToInt32(&array_length)) {
277 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
278 }
279 CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
280 CHECK(array->HasFastObjectElements());
281 CHECK(array_length >= 0);
282
283 Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
284 if (fixed_array->length() < array_length) {
285 array_length = fixed_array->length();
286 }
287
288 if (array_length == 0) {
289 return isolate->heap()->empty_string();
290 } else if (array_length == 1) {
291 Object* first = fixed_array->get(0);
292 CHECK(first->IsString());
293 return first;
294 }
295
296 int separator_length = separator->length();
297 CHECK(separator_length > 0);
298 int max_nof_separators =
299 (String::kMaxLength + separator_length - 1) / separator_length;
300 if (max_nof_separators < (array_length - 1)) {
301 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
302 }
303 int length = (array_length - 1) * separator_length;
304 for (int i = 0; i < array_length; i++) {
305 Object* element_obj = fixed_array->get(i);
306 CHECK(element_obj->IsString());
307 String* element = String::cast(element_obj);
308 int increment = element->length();
309 if (increment > String::kMaxLength - length) {
310 STATIC_ASSERT(String::kMaxLength < kMaxInt);
311 length = kMaxInt; // Provoke exception;
312 break;
313 }
314 length += increment;
315 }
316
317 Handle<SeqTwoByteString> answer;
318 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
319 isolate, answer, isolate->factory()->NewRawTwoByteString(length));
320
321 DisallowHeapAllocation no_gc;
322
323 uc16* sink = answer->GetChars();
324 #ifdef DEBUG
325 uc16* end = sink + length;
326 #endif
327
328 CHECK(fixed_array->get(0)->IsString());
329 String* first = String::cast(fixed_array->get(0));
330 String* separator_raw = *separator;
331
332 int first_length = first->length();
333 String::WriteToFlat(first, sink, 0, first_length);
334 sink += first_length;
335
336 for (int i = 1; i < array_length; i++) {
337 DCHECK(sink + separator_length <= end);
338 String::WriteToFlat(separator_raw, sink, 0, separator_length);
339 sink += separator_length;
340
341 CHECK(fixed_array->get(i)->IsString());
342 String* element = String::cast(fixed_array->get(i));
343 int element_length = element->length();
344 DCHECK(sink + element_length <= end);
345 String::WriteToFlat(element, sink, 0, element_length);
346 sink += element_length;
347 }
348 DCHECK(sink == end);
349
350 // Use %_FastOneByteArrayJoin instead.
351 DCHECK(!answer->IsOneByteRepresentation());
352 return *answer;
353 }
354
355 template <typename sinkchar>
WriteRepeatToFlat(String * src,Vector<sinkchar> buffer,int cursor,int repeat,int length)356 static void WriteRepeatToFlat(String* src, Vector<sinkchar> buffer, int cursor,
357 int repeat, int length) {
358 if (repeat == 0) return;
359
360 sinkchar* start = &buffer[cursor];
361 String::WriteToFlat<sinkchar>(src, start, 0, length);
362
363 int done = 1;
364 sinkchar* next = start + length;
365
366 while (done < repeat) {
367 int block = Min(done, repeat - done);
368 int block_chars = block * length;
369 CopyChars(next, start, block_chars);
370 next += block_chars;
371 done += block;
372 }
373 }
374
375 template <typename Char>
JoinSparseArrayWithSeparator(FixedArray * elements,int elements_length,uint32_t array_length,String * separator,Vector<Char> buffer)376 static void JoinSparseArrayWithSeparator(FixedArray* elements,
377 int elements_length,
378 uint32_t array_length,
379 String* separator,
380 Vector<Char> buffer) {
381 DisallowHeapAllocation no_gc;
382 int previous_separator_position = 0;
383 int separator_length = separator->length();
384 DCHECK_LT(0, separator_length);
385 int cursor = 0;
386 for (int i = 0; i < elements_length; i += 2) {
387 int position = NumberToInt32(elements->get(i));
388 String* string = String::cast(elements->get(i + 1));
389 int string_length = string->length();
390 if (string->length() > 0) {
391 int repeat = position - previous_separator_position;
392 WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat,
393 separator_length);
394 cursor += repeat * separator_length;
395 previous_separator_position = position;
396 String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
397 cursor += string->length();
398 }
399 }
400
401 int last_array_index = static_cast<int>(array_length - 1);
402 // Array length must be representable as a signed 32-bit number,
403 // otherwise the total string length would have been too large.
404 DCHECK(array_length <= 0x7fffffff); // Is int32_t.
405 int repeat = last_array_index - previous_separator_position;
406 WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat, separator_length);
407 cursor += repeat * separator_length;
408 DCHECK(cursor <= buffer.length());
409 }
410
411
RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator)412 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
413 HandleScope scope(isolate);
414 DCHECK(args.length() == 3);
415 CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
416 CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
417 CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
418 // elements_array is fast-mode JSarray of alternating positions
419 // (increasing order) and strings.
420 CHECK(elements_array->HasFastSmiOrObjectElements());
421 // array_length is length of original array (used to add separators);
422 // separator is string to put between elements. Assumed to be non-empty.
423 CHECK(array_length > 0);
424
425 // Find total length of join result.
426 int string_length = 0;
427 bool is_one_byte = separator->IsOneByteRepresentation();
428 bool overflow = false;
429 CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
430 CHECK(elements_length <= elements_array->elements()->length());
431 CHECK((elements_length & 1) == 0); // Even length.
432 FixedArray* elements = FixedArray::cast(elements_array->elements());
433 {
434 DisallowHeapAllocation no_gc;
435 for (int i = 0; i < elements_length; i += 2) {
436 String* string = String::cast(elements->get(i + 1));
437 int length = string->length();
438 if (is_one_byte && !string->IsOneByteRepresentation()) {
439 is_one_byte = false;
440 }
441 if (length > String::kMaxLength ||
442 String::kMaxLength - length < string_length) {
443 overflow = true;
444 break;
445 }
446 string_length += length;
447 }
448 }
449
450 int separator_length = separator->length();
451 if (!overflow && separator_length > 0) {
452 if (array_length <= 0x7fffffffu) {
453 int separator_count = static_cast<int>(array_length) - 1;
454 int remaining_length = String::kMaxLength - string_length;
455 if ((remaining_length / separator_length) >= separator_count) {
456 string_length += separator_length * (array_length - 1);
457 } else {
458 // Not room for the separators within the maximal string length.
459 overflow = true;
460 }
461 } else {
462 // Nonempty separator and at least 2^31-1 separators necessary
463 // means that the string is too large to create.
464 STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
465 overflow = true;
466 }
467 }
468 if (overflow) {
469 // Throw an exception if the resulting string is too large. See
470 // https://code.google.com/p/chromium/issues/detail?id=336820
471 // for details.
472 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
473 }
474
475 if (is_one_byte) {
476 Handle<SeqOneByteString> result = isolate->factory()
477 ->NewRawOneByteString(string_length)
478 .ToHandleChecked();
479 JoinSparseArrayWithSeparator<uint8_t>(
480 FixedArray::cast(elements_array->elements()), elements_length,
481 array_length, *separator,
482 Vector<uint8_t>(result->GetChars(), string_length));
483 return *result;
484 } else {
485 Handle<SeqTwoByteString> result = isolate->factory()
486 ->NewRawTwoByteString(string_length)
487 .ToHandleChecked();
488 JoinSparseArrayWithSeparator<uc16>(
489 FixedArray::cast(elements_array->elements()), elements_length,
490 array_length, *separator,
491 Vector<uc16>(result->GetChars(), string_length));
492 return *result;
493 }
494 }
495
496
497 // Copies Latin1 characters to the given fixed array looking up
498 // one-char strings in the cache. Gives up on the first char that is
499 // not in the cache and fills the remainder with smi zeros. Returns
500 // the length of the successfully copied prefix.
CopyCachedOneByteCharsToArray(Heap * heap,const uint8_t * chars,FixedArray * elements,int length)501 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
502 FixedArray* elements, int length) {
503 DisallowHeapAllocation no_gc;
504 FixedArray* one_byte_cache = heap->single_character_string_cache();
505 Object* undefined = heap->undefined_value();
506 int i;
507 WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
508 for (i = 0; i < length; ++i) {
509 Object* value = one_byte_cache->get(chars[i]);
510 if (value == undefined) break;
511 elements->set(i, value, mode);
512 }
513 if (i < length) {
514 DCHECK(Smi::kZero == 0);
515 memset(elements->data_start() + i, 0, kPointerSize * (length - i));
516 }
517 #ifdef DEBUG
518 for (int j = 0; j < length; ++j) {
519 Object* element = elements->get(j);
520 DCHECK(element == Smi::kZero ||
521 (element->IsString() && String::cast(element)->LooksValid()));
522 }
523 #endif
524 return i;
525 }
526
527
528 // Converts a String to JSArray.
529 // For example, "foo" => ["f", "o", "o"].
RUNTIME_FUNCTION(Runtime_StringToArray)530 RUNTIME_FUNCTION(Runtime_StringToArray) {
531 HandleScope scope(isolate);
532 DCHECK(args.length() == 2);
533 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
534 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
535
536 s = String::Flatten(s);
537 const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
538
539 Handle<FixedArray> elements;
540 int position = 0;
541 if (s->IsFlat() && s->IsOneByteRepresentation()) {
542 // Try using cached chars where possible.
543 elements = isolate->factory()->NewUninitializedFixedArray(length);
544
545 DisallowHeapAllocation no_gc;
546 String::FlatContent content = s->GetFlatContent();
547 if (content.IsOneByte()) {
548 Vector<const uint8_t> chars = content.ToOneByteVector();
549 // Note, this will initialize all elements (not only the prefix)
550 // to prevent GC from seeing partially initialized array.
551 position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
552 *elements, length);
553 } else {
554 MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
555 length);
556 }
557 } else {
558 elements = isolate->factory()->NewFixedArray(length);
559 }
560 for (int i = position; i < length; ++i) {
561 Handle<Object> str =
562 isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
563 elements->set(i, *str);
564 }
565
566 #ifdef DEBUG
567 for (int i = 0; i < length; ++i) {
568 DCHECK(String::cast(elements->get(i))->length() == 1);
569 }
570 #endif
571
572 return *isolate->factory()->NewJSArrayWithElements(elements);
573 }
574
575
ToUpperOverflows(uc32 character)576 static inline bool ToUpperOverflows(uc32 character) {
577 // y with umlauts and the micro sign are the only characters that stop
578 // fitting into one-byte when converting to uppercase.
579 static const uc32 yuml_code = 0xff;
580 static const uc32 micro_code = 0xb5;
581 return (character == yuml_code || character == micro_code);
582 }
583
584
585 template <class Converter>
ConvertCaseHelper(Isolate * isolate,String * string,SeqString * result,int result_length,unibrow::Mapping<Converter,128> * mapping)586 MUST_USE_RESULT static Object* ConvertCaseHelper(
587 Isolate* isolate, String* string, SeqString* result, int result_length,
588 unibrow::Mapping<Converter, 128>* mapping) {
589 DisallowHeapAllocation no_gc;
590 // We try this twice, once with the assumption that the result is no longer
591 // than the input and, if that assumption breaks, again with the exact
592 // length. This may not be pretty, but it is nicer than what was here before
593 // and I hereby claim my vaffel-is.
594 //
595 // NOTE: This assumes that the upper/lower case of an ASCII
596 // character is also ASCII. This is currently the case, but it
597 // might break in the future if we implement more context and locale
598 // dependent upper/lower conversions.
599 bool has_changed_character = false;
600
601 // Convert all characters to upper case, assuming that they will fit
602 // in the buffer
603 StringCharacterStream stream(string);
604 unibrow::uchar chars[Converter::kMaxWidth];
605 // We can assume that the string is not empty
606 uc32 current = stream.GetNext();
607 bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
608 for (int i = 0; i < result_length;) {
609 bool has_next = stream.HasMore();
610 uc32 next = has_next ? stream.GetNext() : 0;
611 int char_length = mapping->get(current, next, chars);
612 if (char_length == 0) {
613 // The case conversion of this character is the character itself.
614 result->Set(i, current);
615 i++;
616 } else if (char_length == 1 &&
617 (ignore_overflow || !ToUpperOverflows(current))) {
618 // Common case: converting the letter resulted in one character.
619 DCHECK(static_cast<uc32>(chars[0]) != current);
620 result->Set(i, chars[0]);
621 has_changed_character = true;
622 i++;
623 } else if (result_length == string->length()) {
624 bool overflows = ToUpperOverflows(current);
625 // We've assumed that the result would be as long as the
626 // input but here is a character that converts to several
627 // characters. No matter, we calculate the exact length
628 // of the result and try the whole thing again.
629 //
630 // Note that this leaves room for optimization. We could just
631 // memcpy what we already have to the result string. Also,
632 // the result string is the last object allocated we could
633 // "realloc" it and probably, in the vast majority of cases,
634 // extend the existing string to be able to hold the full
635 // result.
636 int next_length = 0;
637 if (has_next) {
638 next_length = mapping->get(next, 0, chars);
639 if (next_length == 0) next_length = 1;
640 }
641 int current_length = i + char_length + next_length;
642 while (stream.HasMore()) {
643 current = stream.GetNext();
644 overflows |= ToUpperOverflows(current);
645 // NOTE: we use 0 as the next character here because, while
646 // the next character may affect what a character converts to,
647 // it does not in any case affect the length of what it convert
648 // to.
649 int char_length = mapping->get(current, 0, chars);
650 if (char_length == 0) char_length = 1;
651 current_length += char_length;
652 if (current_length > String::kMaxLength) {
653 AllowHeapAllocation allocate_error_and_return;
654 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
655 NewInvalidStringLengthError());
656 }
657 }
658 // Try again with the real length. Return signed if we need
659 // to allocate a two-byte string for to uppercase.
660 return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
661 : Smi::FromInt(current_length);
662 } else {
663 for (int j = 0; j < char_length; j++) {
664 result->Set(i, chars[j]);
665 i++;
666 }
667 has_changed_character = true;
668 }
669 current = next;
670 }
671 if (has_changed_character) {
672 return result;
673 } else {
674 // If we didn't actually change anything in doing the conversion
675 // we simple return the result and let the converted string
676 // become garbage; there is no reason to keep two identical strings
677 // alive.
678 return string;
679 }
680 }
681
682
683 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
684 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
685
686 // Given a word and two range boundaries returns a word with high bit
687 // set in every byte iff the corresponding input byte was strictly in
688 // the range (m, n). All the other bits in the result are cleared.
689 // This function is only useful when it can be inlined and the
690 // boundaries are statically known.
691 // Requires: all bytes in the input word and the boundaries must be
692 // ASCII (less than 0x7F).
AsciiRangeMask(uintptr_t w,char m,char n)693 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
694 // Use strict inequalities since in edge cases the function could be
695 // further simplified.
696 DCHECK(0 < m && m < n);
697 // Has high bit set in every w byte less than n.
698 uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
699 // Has high bit set in every w byte greater than m.
700 uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
701 return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
702 }
703
704
705 #ifdef DEBUG
CheckFastAsciiConvert(char * dst,const char * src,int length,bool changed,bool is_to_lower)706 static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
707 bool changed, bool is_to_lower) {
708 bool expected_changed = false;
709 for (int i = 0; i < length; i++) {
710 if (dst[i] == src[i]) continue;
711 expected_changed = true;
712 if (is_to_lower) {
713 DCHECK('A' <= src[i] && src[i] <= 'Z');
714 DCHECK(dst[i] == src[i] + ('a' - 'A'));
715 } else {
716 DCHECK('a' <= src[i] && src[i] <= 'z');
717 DCHECK(dst[i] == src[i] - ('a' - 'A'));
718 }
719 }
720 return (expected_changed == changed);
721 }
722 #endif
723
724
725 template <class Converter>
FastAsciiConvert(char * dst,const char * src,int length,bool * changed_out)726 static bool FastAsciiConvert(char* dst, const char* src, int length,
727 bool* changed_out) {
728 #ifdef DEBUG
729 char* saved_dst = dst;
730 const char* saved_src = src;
731 #endif
732 DisallowHeapAllocation no_gc;
733 // We rely on the distance between upper and lower case letters
734 // being a known power of 2.
735 DCHECK('a' - 'A' == (1 << 5));
736 // Boundaries for the range of input characters than require conversion.
737 static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
738 static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
739 bool changed = false;
740 uintptr_t or_acc = 0;
741 const char* const limit = src + length;
742
743 // dst is newly allocated and always aligned.
744 DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
745 // Only attempt processing one word at a time if src is also aligned.
746 if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
747 // Process the prefix of the input that requires no conversion one aligned
748 // (machine) word at a time.
749 while (src <= limit - sizeof(uintptr_t)) {
750 const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
751 or_acc |= w;
752 if (AsciiRangeMask(w, lo, hi) != 0) {
753 changed = true;
754 break;
755 }
756 *reinterpret_cast<uintptr_t*>(dst) = w;
757 src += sizeof(uintptr_t);
758 dst += sizeof(uintptr_t);
759 }
760 // Process the remainder of the input performing conversion when
761 // required one word at a time.
762 while (src <= limit - sizeof(uintptr_t)) {
763 const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
764 or_acc |= w;
765 uintptr_t m = AsciiRangeMask(w, lo, hi);
766 // The mask has high (7th) bit set in every byte that needs
767 // conversion and we know that the distance between cases is
768 // 1 << 5.
769 *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
770 src += sizeof(uintptr_t);
771 dst += sizeof(uintptr_t);
772 }
773 }
774 // Process the last few bytes of the input (or the whole input if
775 // unaligned access is not supported).
776 while (src < limit) {
777 char c = *src;
778 or_acc |= c;
779 if (lo < c && c < hi) {
780 c ^= (1 << 5);
781 changed = true;
782 }
783 *dst = c;
784 ++src;
785 ++dst;
786 }
787
788 if ((or_acc & kAsciiMask) != 0) return false;
789
790 DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
791 Converter::kIsToLower));
792
793 *changed_out = changed;
794 return true;
795 }
796
797
798 template <class Converter>
ConvertCase(Handle<String> s,Isolate * isolate,unibrow::Mapping<Converter,128> * mapping)799 MUST_USE_RESULT static Object* ConvertCase(
800 Handle<String> s, Isolate* isolate,
801 unibrow::Mapping<Converter, 128>* mapping) {
802 s = String::Flatten(s);
803 int length = s->length();
804 // Assume that the string is not empty; we need this assumption later
805 if (length == 0) return *s;
806
807 // Simpler handling of ASCII strings.
808 //
809 // NOTE: This assumes that the upper/lower case of an ASCII
810 // character is also ASCII. This is currently the case, but it
811 // might break in the future if we implement more context and locale
812 // dependent upper/lower conversions.
813 if (s->IsOneByteRepresentationUnderneath()) {
814 // Same length as input.
815 Handle<SeqOneByteString> result =
816 isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
817 DisallowHeapAllocation no_gc;
818 String::FlatContent flat_content = s->GetFlatContent();
819 DCHECK(flat_content.IsFlat());
820 bool has_changed_character = false;
821 bool is_ascii = FastAsciiConvert<Converter>(
822 reinterpret_cast<char*>(result->GetChars()),
823 reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
824 length, &has_changed_character);
825 // If not ASCII, we discard the result and take the 2 byte path.
826 if (is_ascii) return has_changed_character ? *result : *s;
827 }
828
829 Handle<SeqString> result; // Same length as input.
830 if (s->IsOneByteRepresentation()) {
831 result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
832 } else {
833 result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
834 }
835
836 Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
837 if (answer->IsException(isolate) || answer->IsString()) return answer;
838
839 DCHECK(answer->IsSmi());
840 length = Smi::cast(answer)->value();
841 if (s->IsOneByteRepresentation() && length > 0) {
842 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
843 isolate, result, isolate->factory()->NewRawOneByteString(length));
844 } else {
845 if (length < 0) length = -length;
846 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
847 isolate, result, isolate->factory()->NewRawTwoByteString(length));
848 }
849 return ConvertCaseHelper(isolate, *s, *result, length, mapping);
850 }
851
852
RUNTIME_FUNCTION(Runtime_StringToLowerCase)853 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
854 HandleScope scope(isolate);
855 DCHECK_EQ(args.length(), 1);
856 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
857 return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
858 }
859
860
RUNTIME_FUNCTION(Runtime_StringToUpperCase)861 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
862 HandleScope scope(isolate);
863 DCHECK_EQ(args.length(), 1);
864 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
865 return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
866 }
867
RUNTIME_FUNCTION(Runtime_StringLessThan)868 RUNTIME_FUNCTION(Runtime_StringLessThan) {
869 HandleScope handle_scope(isolate);
870 DCHECK_EQ(2, args.length());
871 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
872 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
873 switch (String::Compare(x, y)) {
874 case ComparisonResult::kLessThan:
875 return isolate->heap()->true_value();
876 case ComparisonResult::kEqual:
877 case ComparisonResult::kGreaterThan:
878 return isolate->heap()->false_value();
879 case ComparisonResult::kUndefined:
880 break;
881 }
882 UNREACHABLE();
883 return Smi::kZero;
884 }
885
RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual)886 RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual) {
887 HandleScope handle_scope(isolate);
888 DCHECK_EQ(2, args.length());
889 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
890 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
891 switch (String::Compare(x, y)) {
892 case ComparisonResult::kEqual:
893 case ComparisonResult::kLessThan:
894 return isolate->heap()->true_value();
895 case ComparisonResult::kGreaterThan:
896 return isolate->heap()->false_value();
897 case ComparisonResult::kUndefined:
898 break;
899 }
900 UNREACHABLE();
901 return Smi::kZero;
902 }
903
RUNTIME_FUNCTION(Runtime_StringGreaterThan)904 RUNTIME_FUNCTION(Runtime_StringGreaterThan) {
905 HandleScope handle_scope(isolate);
906 DCHECK_EQ(2, args.length());
907 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
908 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
909 switch (String::Compare(x, y)) {
910 case ComparisonResult::kGreaterThan:
911 return isolate->heap()->true_value();
912 case ComparisonResult::kEqual:
913 case ComparisonResult::kLessThan:
914 return isolate->heap()->false_value();
915 case ComparisonResult::kUndefined:
916 break;
917 }
918 UNREACHABLE();
919 return Smi::kZero;
920 }
921
RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual)922 RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual) {
923 HandleScope handle_scope(isolate);
924 DCHECK_EQ(2, args.length());
925 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
926 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
927 switch (String::Compare(x, y)) {
928 case ComparisonResult::kEqual:
929 case ComparisonResult::kGreaterThan:
930 return isolate->heap()->true_value();
931 case ComparisonResult::kLessThan:
932 return isolate->heap()->false_value();
933 case ComparisonResult::kUndefined:
934 break;
935 }
936 UNREACHABLE();
937 return Smi::kZero;
938 }
939
RUNTIME_FUNCTION(Runtime_StringEqual)940 RUNTIME_FUNCTION(Runtime_StringEqual) {
941 HandleScope handle_scope(isolate);
942 DCHECK_EQ(2, args.length());
943 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
944 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
945 return isolate->heap()->ToBoolean(String::Equals(x, y));
946 }
947
RUNTIME_FUNCTION(Runtime_StringNotEqual)948 RUNTIME_FUNCTION(Runtime_StringNotEqual) {
949 HandleScope handle_scope(isolate);
950 DCHECK_EQ(2, args.length());
951 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
952 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
953 return isolate->heap()->ToBoolean(!String::Equals(x, y));
954 }
955
RUNTIME_FUNCTION(Runtime_FlattenString)956 RUNTIME_FUNCTION(Runtime_FlattenString) {
957 HandleScope scope(isolate);
958 DCHECK(args.length() == 1);
959 CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
960 return *String::Flatten(str);
961 }
962
963
RUNTIME_FUNCTION(Runtime_StringCharFromCode)964 RUNTIME_FUNCTION(Runtime_StringCharFromCode) {
965 HandleScope handlescope(isolate);
966 DCHECK_EQ(1, args.length());
967 if (args[0]->IsNumber()) {
968 CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
969 code &= 0xffff;
970 return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
971 }
972 return isolate->heap()->empty_string();
973 }
974
RUNTIME_FUNCTION(Runtime_ExternalStringGetChar)975 RUNTIME_FUNCTION(Runtime_ExternalStringGetChar) {
976 SealHandleScope shs(isolate);
977 DCHECK_EQ(2, args.length());
978 CONVERT_ARG_CHECKED(ExternalString, string, 0);
979 CONVERT_INT32_ARG_CHECKED(index, 1);
980 return Smi::FromInt(string->Get(index));
981 }
982
RUNTIME_FUNCTION(Runtime_StringCharCodeAt)983 RUNTIME_FUNCTION(Runtime_StringCharCodeAt) {
984 SealHandleScope shs(isolate);
985 DCHECK(args.length() == 2);
986 if (!args[0]->IsString()) return isolate->heap()->undefined_value();
987 if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
988 if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
989 return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
990 }
991
992 } // namespace internal
993 } // namespace v8
994