1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_S390
6
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/codegen.h"
12 #include "src/ic/handler-compiler.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/isolate.h"
16 #include "src/regexp/jsregexp.h"
17 #include "src/regexp/regexp-macro-assembler.h"
18 #include "src/runtime/runtime.h"
19 #include "src/s390/code-stubs-s390.h"
20
21 namespace v8 {
22 namespace internal {
23
24 #define __ ACCESS_MASM(masm)
25
Generate(MacroAssembler * masm)26 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
27 __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
28 __ StoreP(r3, MemOperand(sp, r1));
29 __ push(r3);
30 __ push(r4);
31 __ AddP(r2, r2, Operand(3));
32 __ TailCallRuntime(Runtime::kNewArray);
33 }
34
InitializeDescriptor(CodeStubDescriptor * descriptor)35 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
36 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
37 descriptor->Initialize(r2, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
38 }
39
InitializeDescriptor(CodeStubDescriptor * descriptor)40 void FastFunctionBindStub::InitializeDescriptor(
41 CodeStubDescriptor* descriptor) {
42 Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
43 descriptor->Initialize(r2, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
44 }
45
46 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
47 Condition cond);
48 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
49 Register rhs, Label* lhs_not_nan,
50 Label* slow, bool strict);
51 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
52 Register rhs);
53
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)54 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
55 ExternalReference miss) {
56 // Update the static counter each time a new code stub is generated.
57 isolate()->counters()->code_stubs()->Increment();
58
59 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
60 int param_count = descriptor.GetRegisterParameterCount();
61 {
62 // Call the runtime system in a fresh internal frame.
63 FrameScope scope(masm, StackFrame::INTERNAL);
64 DCHECK(param_count == 0 ||
65 r2.is(descriptor.GetRegisterParameter(param_count - 1)));
66 // Push arguments
67 for (int i = 0; i < param_count; ++i) {
68 __ push(descriptor.GetRegisterParameter(i));
69 }
70 __ CallExternalReference(miss, param_count);
71 }
72
73 __ Ret();
74 }
75
Generate(MacroAssembler * masm)76 void DoubleToIStub::Generate(MacroAssembler* masm) {
77 Label out_of_range, only_low, negate, done, fastpath_done;
78 Register input_reg = source();
79 Register result_reg = destination();
80 DCHECK(is_truncating());
81
82 int double_offset = offset();
83
84 // Immediate values for this stub fit in instructions, so it's safe to use ip.
85 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
86 Register scratch_low =
87 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
88 Register scratch_high =
89 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
90 DoubleRegister double_scratch = kScratchDoubleReg;
91
92 __ push(scratch);
93 // Account for saved regs if input is sp.
94 if (input_reg.is(sp)) double_offset += kPointerSize;
95
96 if (!skip_fastpath()) {
97 // Load double input.
98 __ LoadDouble(double_scratch, MemOperand(input_reg, double_offset));
99
100 // Do fast-path convert from double to int.
101 __ ConvertDoubleToInt64(double_scratch,
102 #if !V8_TARGET_ARCH_S390X
103 scratch,
104 #endif
105 result_reg, d0);
106
107 // Test for overflow
108 #if V8_TARGET_ARCH_S390X
109 __ TestIfInt32(result_reg, r0);
110 #else
111 __ TestIfInt32(scratch, result_reg, r0);
112 #endif
113 __ beq(&fastpath_done, Label::kNear);
114 }
115
116 __ Push(scratch_high, scratch_low);
117 // Account for saved regs if input is sp.
118 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
119
120 __ LoadlW(scratch_high,
121 MemOperand(input_reg, double_offset + Register::kExponentOffset));
122 __ LoadlW(scratch_low,
123 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
124
125 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
126 // Load scratch with exponent - 1. This is faster than loading
127 // with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
128 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
129 __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
130 // If exponent is greater than or equal to 84, the 32 less significant
131 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
132 // the result is 0.
133 // Compare exponent with 84 (compare exponent - 1 with 83).
134 __ CmpP(scratch, Operand(83));
135 __ bge(&out_of_range, Label::kNear);
136
137 // If we reach this code, 31 <= exponent <= 83.
138 // So, we don't have to handle cases where 0 <= exponent <= 20 for
139 // which we would need to shift right the high part of the mantissa.
140 // Scratch contains exponent - 1.
141 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
142 __ Load(r0, Operand(51));
143 __ SubP(scratch, r0, scratch);
144 __ CmpP(scratch, Operand::Zero());
145 __ ble(&only_low, Label::kNear);
146 // 21 <= exponent <= 51, shift scratch_low and scratch_high
147 // to generate the result.
148 __ ShiftRight(scratch_low, scratch_low, scratch);
149 // Scratch contains: 52 - exponent.
150 // We needs: exponent - 20.
151 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
152 __ Load(r0, Operand(32));
153 __ SubP(scratch, r0, scratch);
154 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
155 // Set the implicit 1 before the mantissa part in scratch_high.
156 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
157 __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
158 __ ShiftLeftP(r0, r0, Operand(16));
159 __ OrP(result_reg, result_reg, r0);
160 __ ShiftLeft(r0, result_reg, scratch);
161 __ OrP(result_reg, scratch_low, r0);
162 __ b(&negate, Label::kNear);
163
164 __ bind(&out_of_range);
165 __ mov(result_reg, Operand::Zero());
166 __ b(&done, Label::kNear);
167
168 __ bind(&only_low);
169 // 52 <= exponent <= 83, shift only scratch_low.
170 // On entry, scratch contains: 52 - exponent.
171 __ LoadComplementRR(scratch, scratch);
172 __ ShiftLeft(result_reg, scratch_low, scratch);
173
174 __ bind(&negate);
175 // If input was positive, scratch_high ASR 31 equals 0 and
176 // scratch_high LSR 31 equals zero.
177 // New result = (result eor 0) + 0 = result.
178 // If the input was negative, we have to negate the result.
179 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
180 // New result = (result eor 0xffffffff) + 1 = 0 - result.
181 __ ShiftRightArith(r0, scratch_high, Operand(31));
182 #if V8_TARGET_ARCH_S390X
183 __ lgfr(r0, r0);
184 __ ShiftRightP(r0, r0, Operand(32));
185 #endif
186 __ XorP(result_reg, r0);
187 __ ShiftRight(r0, scratch_high, Operand(31));
188 __ AddP(result_reg, r0);
189
190 __ bind(&done);
191 __ Pop(scratch_high, scratch_low);
192
193 __ bind(&fastpath_done);
194 __ pop(scratch);
195
196 __ Ret();
197 }
198
199 // Handle the case where the lhs and rhs are the same object.
200 // Equality is almost reflexive (everything but NaN), so this is a test
201 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond)202 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
203 Condition cond) {
204 Label not_identical;
205 Label heap_number, return_equal;
206 __ CmpP(r2, r3);
207 __ bne(¬_identical);
208
209 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
210 // so we do the second best thing - test it ourselves.
211 // They are both equal and they are not both Smis so both of them are not
212 // Smis. If it's not a heap number, then return equal.
213 if (cond == lt || cond == gt) {
214 // Call runtime on identical JSObjects.
215 __ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
216 __ bge(slow);
217 // Call runtime on identical symbols since we need to throw a TypeError.
218 __ CmpP(r6, Operand(SYMBOL_TYPE));
219 __ beq(slow);
220 // Call runtime on identical SIMD values since we must throw a TypeError.
221 __ CmpP(r6, Operand(SIMD128_VALUE_TYPE));
222 __ beq(slow);
223 } else {
224 __ CompareObjectType(r2, r6, r6, HEAP_NUMBER_TYPE);
225 __ beq(&heap_number);
226 // Comparing JS objects with <=, >= is complicated.
227 if (cond != eq) {
228 __ CmpP(r6, Operand(FIRST_JS_RECEIVER_TYPE));
229 __ bge(slow);
230 // Call runtime on identical symbols since we need to throw a TypeError.
231 __ CmpP(r6, Operand(SYMBOL_TYPE));
232 __ beq(slow);
233 // Call runtime on identical SIMD values since we must throw a TypeError.
234 __ CmpP(r6, Operand(SIMD128_VALUE_TYPE));
235 __ beq(slow);
236 // Normally here we fall through to return_equal, but undefined is
237 // special: (undefined == undefined) == true, but
238 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
239 if (cond == le || cond == ge) {
240 __ CmpP(r6, Operand(ODDBALL_TYPE));
241 __ bne(&return_equal);
242 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
243 __ bne(&return_equal);
244 if (cond == le) {
245 // undefined <= undefined should fail.
246 __ LoadImmP(r2, Operand(GREATER));
247 } else {
248 // undefined >= undefined should fail.
249 __ LoadImmP(r2, Operand(LESS));
250 }
251 __ Ret();
252 }
253 }
254 }
255
256 __ bind(&return_equal);
257 if (cond == lt) {
258 __ LoadImmP(r2, Operand(GREATER)); // Things aren't less than themselves.
259 } else if (cond == gt) {
260 __ LoadImmP(r2, Operand(LESS)); // Things aren't greater than themselves.
261 } else {
262 __ LoadImmP(r2, Operand(EQUAL)); // Things are <=, >=, ==, === themselves
263 }
264 __ Ret();
265
266 // For less and greater we don't have to check for NaN since the result of
267 // x < x is false regardless. For the others here is some code to check
268 // for NaN.
269 if (cond != lt && cond != gt) {
270 __ bind(&heap_number);
271 // It is a heap number, so return non-equal if it's NaN and equal if it's
272 // not NaN.
273
274 // The representation of NaN values has all exponent bits (52..62) set,
275 // and not all mantissa bits (0..51) clear.
276 // Read top bits of double representation (second word of value).
277 __ LoadlW(r4, FieldMemOperand(r2, HeapNumber::kExponentOffset));
278 // Test that exponent bits are all set.
279 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
280 __ ExtractBitMask(r5, r4, HeapNumber::kExponentMask);
281 __ CmpLogicalP(r5, Operand(0x7ff));
282 __ bne(&return_equal);
283
284 // Shift out flag and all exponent bits, retaining only mantissa.
285 __ sll(r4, Operand(HeapNumber::kNonMantissaBitsInTopWord));
286 // Or with all low-bits of mantissa.
287 __ LoadlW(r5, FieldMemOperand(r2, HeapNumber::kMantissaOffset));
288 __ OrP(r2, r5, r4);
289 __ CmpP(r2, Operand::Zero());
290 // For equal we already have the right value in r2: Return zero (equal)
291 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
292 // not (it's a NaN). For <= and >= we need to load r0 with the failing
293 // value if it's a NaN.
294 if (cond != eq) {
295 Label not_equal;
296 __ bne(¬_equal, Label::kNear);
297 // All-zero means Infinity means equal.
298 __ Ret();
299 __ bind(¬_equal);
300 if (cond == le) {
301 __ LoadImmP(r2, Operand(GREATER)); // NaN <= NaN should fail.
302 } else {
303 __ LoadImmP(r2, Operand(LESS)); // NaN >= NaN should fail.
304 }
305 }
306 __ Ret();
307 }
308 // No fall through here.
309
310 __ bind(¬_identical);
311 }
312
313 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)314 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
315 Register rhs, Label* lhs_not_nan,
316 Label* slow, bool strict) {
317 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
318
319 Label rhs_is_smi;
320 __ JumpIfSmi(rhs, &rhs_is_smi);
321
322 // Lhs is a Smi. Check whether the rhs is a heap number.
323 __ CompareObjectType(rhs, r5, r6, HEAP_NUMBER_TYPE);
324 if (strict) {
325 // If rhs is not a number and lhs is a Smi then strict equality cannot
326 // succeed. Return non-equal
327 // If rhs is r2 then there is already a non zero value in it.
328 Label skip;
329 __ beq(&skip, Label::kNear);
330 if (!rhs.is(r2)) {
331 __ mov(r2, Operand(NOT_EQUAL));
332 }
333 __ Ret();
334 __ bind(&skip);
335 } else {
336 // Smi compared non-strictly with a non-Smi non-heap-number. Call
337 // the runtime.
338 __ bne(slow);
339 }
340
341 // Lhs is a smi, rhs is a number.
342 // Convert lhs to a double in d7.
343 __ SmiToDouble(d7, lhs);
344 // Load the double from rhs, tagged HeapNumber r2, to d6.
345 __ LoadDouble(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
346
347 // We now have both loaded as doubles but we can skip the lhs nan check
348 // since it's a smi.
349 __ b(lhs_not_nan);
350
351 __ bind(&rhs_is_smi);
352 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
353 __ CompareObjectType(lhs, r6, r6, HEAP_NUMBER_TYPE);
354 if (strict) {
355 // If lhs is not a number and rhs is a smi then strict equality cannot
356 // succeed. Return non-equal.
357 // If lhs is r2 then there is already a non zero value in it.
358 Label skip;
359 __ beq(&skip, Label::kNear);
360 if (!lhs.is(r2)) {
361 __ mov(r2, Operand(NOT_EQUAL));
362 }
363 __ Ret();
364 __ bind(&skip);
365 } else {
366 // Smi compared non-strictly with a non-smi non-heap-number. Call
367 // the runtime.
368 __ bne(slow);
369 }
370
371 // Rhs is a smi, lhs is a heap number.
372 // Load the double from lhs, tagged HeapNumber r3, to d7.
373 __ LoadDouble(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
374 // Convert rhs to a double in d6.
375 __ SmiToDouble(d6, rhs);
376 // Fall through to both_loaded_as_doubles.
377 }
378
379 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)380 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
381 Register rhs) {
382 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
383
384 // If either operand is a JS object or an oddball value, then they are
385 // not equal since their pointers are different.
386 // There is no test for undetectability in strict equality.
387 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
388 Label first_non_object;
389 // Get the type of the first operand into r4 and compare it with
390 // FIRST_JS_RECEIVER_TYPE.
391 __ CompareObjectType(rhs, r4, r4, FIRST_JS_RECEIVER_TYPE);
392 __ blt(&first_non_object, Label::kNear);
393
394 // Return non-zero (r2 is not zero)
395 Label return_not_equal;
396 __ bind(&return_not_equal);
397 __ Ret();
398
399 __ bind(&first_non_object);
400 // Check for oddballs: true, false, null, undefined.
401 __ CmpP(r4, Operand(ODDBALL_TYPE));
402 __ beq(&return_not_equal);
403
404 __ CompareObjectType(lhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
405 __ bge(&return_not_equal);
406
407 // Check for oddballs: true, false, null, undefined.
408 __ CmpP(r5, Operand(ODDBALL_TYPE));
409 __ beq(&return_not_equal);
410
411 // Now that we have the types we might as well check for
412 // internalized-internalized.
413 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
414 __ OrP(r4, r4, r5);
415 __ AndP(r0, r4, Operand(kIsNotStringMask | kIsNotInternalizedMask));
416 __ beq(&return_not_equal);
417 }
418
419 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)420 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
421 Register rhs,
422 Label* both_loaded_as_doubles,
423 Label* not_heap_numbers, Label* slow) {
424 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
425
426 __ CompareObjectType(rhs, r5, r4, HEAP_NUMBER_TYPE);
427 __ bne(not_heap_numbers);
428 __ LoadP(r4, FieldMemOperand(lhs, HeapObject::kMapOffset));
429 __ CmpP(r4, r5);
430 __ bne(slow); // First was a heap number, second wasn't. Go slow case.
431
432 // Both are heap numbers. Load them up then jump to the code we have
433 // for that.
434 __ LoadDouble(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
435 __ LoadDouble(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
436
437 __ b(both_loaded_as_doubles);
438 }
439
440 // Fast negative check for internalized-to-internalized equality or receiver
441 // equality. Also handles the undetectable receiver to null/undefined
442 // comparison.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * runtime_call)443 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
444 Register lhs, Register rhs,
445 Label* possible_strings,
446 Label* runtime_call) {
447 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
448
449 // r4 is object type of rhs.
450 Label object_test, return_equal, return_unequal, undetectable;
451 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
452 __ mov(r0, Operand(kIsNotStringMask));
453 __ AndP(r0, r4);
454 __ bne(&object_test, Label::kNear);
455 __ mov(r0, Operand(kIsNotInternalizedMask));
456 __ AndP(r0, r4);
457 __ bne(possible_strings);
458 __ CompareObjectType(lhs, r5, r5, FIRST_NONSTRING_TYPE);
459 __ bge(runtime_call);
460 __ mov(r0, Operand(kIsNotInternalizedMask));
461 __ AndP(r0, r5);
462 __ bne(possible_strings);
463
464 // Both are internalized. We already checked they weren't the same pointer so
465 // they are not equal. Return non-equal by returning the non-zero object
466 // pointer in r2.
467 __ Ret();
468
469 __ bind(&object_test);
470 __ LoadP(r4, FieldMemOperand(lhs, HeapObject::kMapOffset));
471 __ LoadP(r5, FieldMemOperand(rhs, HeapObject::kMapOffset));
472 __ LoadlB(r6, FieldMemOperand(r4, Map::kBitFieldOffset));
473 __ LoadlB(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
474 __ AndP(r0, r6, Operand(1 << Map::kIsUndetectable));
475 __ bne(&undetectable);
476 __ AndP(r0, r7, Operand(1 << Map::kIsUndetectable));
477 __ bne(&return_unequal);
478
479 __ CompareInstanceType(r4, r4, FIRST_JS_RECEIVER_TYPE);
480 __ blt(runtime_call);
481 __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
482 __ blt(runtime_call);
483
484 __ bind(&return_unequal);
485 // Return non-equal by returning the non-zero object pointer in r2.
486 __ Ret();
487
488 __ bind(&undetectable);
489 __ AndP(r0, r7, Operand(1 << Map::kIsUndetectable));
490 __ beq(&return_unequal);
491
492 // If both sides are JSReceivers, then the result is false according to
493 // the HTML specification, which says that only comparisons with null or
494 // undefined are affected by special casing for document.all.
495 __ CompareInstanceType(r4, r4, ODDBALL_TYPE);
496 __ beq(&return_equal);
497 __ CompareInstanceType(r5, r5, ODDBALL_TYPE);
498 __ bne(&return_unequal);
499
500 __ bind(&return_equal);
501 __ LoadImmP(r2, Operand(EQUAL));
502 __ Ret();
503 }
504
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)505 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
506 Register scratch,
507 CompareICState::State expected,
508 Label* fail) {
509 Label ok;
510 if (expected == CompareICState::SMI) {
511 __ JumpIfNotSmi(input, fail);
512 } else if (expected == CompareICState::NUMBER) {
513 __ JumpIfSmi(input, &ok);
514 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
515 DONT_DO_SMI_CHECK);
516 }
517 // We could be strict about internalized/non-internalized here, but as long as
518 // hydrogen doesn't care, the stub doesn't have to care either.
519 __ bind(&ok);
520 }
521
522 // On entry r3 and r4 are the values to be compared.
523 // On exit r2 is 0, positive or negative to indicate the result of
524 // the comparison.
GenerateGeneric(MacroAssembler * masm)525 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
526 Register lhs = r3;
527 Register rhs = r2;
528 Condition cc = GetCondition();
529
530 Label miss;
531 CompareICStub_CheckInputType(masm, lhs, r4, left(), &miss);
532 CompareICStub_CheckInputType(masm, rhs, r5, right(), &miss);
533
534 Label slow; // Call builtin.
535 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
536
537 Label not_two_smis, smi_done;
538 __ OrP(r4, r3, r2);
539 __ JumpIfNotSmi(r4, ¬_two_smis);
540 __ SmiUntag(r3);
541 __ SmiUntag(r2);
542 __ SubP(r2, r3, r2);
543 __ Ret();
544 __ bind(¬_two_smis);
545
546 // NOTICE! This code is only reached after a smi-fast-case check, so
547 // it is certain that at least one operand isn't a smi.
548
549 // Handle the case where the objects are identical. Either returns the answer
550 // or goes to slow. Only falls through if the objects were not identical.
551 EmitIdenticalObjectComparison(masm, &slow, cc);
552
553 // If either is a Smi (we know that not both are), then they can only
554 // be strictly equal if the other is a HeapNumber.
555 STATIC_ASSERT(kSmiTag == 0);
556 DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
557 __ AndP(r4, lhs, rhs);
558 __ JumpIfNotSmi(r4, ¬_smis);
559 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
560 // 1) Return the answer.
561 // 2) Go to slow.
562 // 3) Fall through to both_loaded_as_doubles.
563 // 4) Jump to lhs_not_nan.
564 // In cases 3 and 4 we have found out we were dealing with a number-number
565 // comparison. The double values of the numbers have been loaded
566 // into d7 and d6.
567 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
568
569 __ bind(&both_loaded_as_doubles);
570 // The arguments have been converted to doubles and stored in d6 and d7
571 __ bind(&lhs_not_nan);
572 Label no_nan;
573 __ cdbr(d7, d6);
574
575 Label nan, equal, less_than;
576 __ bunordered(&nan);
577 __ beq(&equal, Label::kNear);
578 __ blt(&less_than, Label::kNear);
579 __ LoadImmP(r2, Operand(GREATER));
580 __ Ret();
581 __ bind(&equal);
582 __ LoadImmP(r2, Operand(EQUAL));
583 __ Ret();
584 __ bind(&less_than);
585 __ LoadImmP(r2, Operand(LESS));
586 __ Ret();
587
588 __ bind(&nan);
589 // If one of the sides was a NaN then the v flag is set. Load r2 with
590 // whatever it takes to make the comparison fail, since comparisons with NaN
591 // always fail.
592 if (cc == lt || cc == le) {
593 __ LoadImmP(r2, Operand(GREATER));
594 } else {
595 __ LoadImmP(r2, Operand(LESS));
596 }
597 __ Ret();
598
599 __ bind(¬_smis);
600 // At this point we know we are dealing with two different objects,
601 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
602 if (strict()) {
603 // This returns non-equal for some object types, or falls through if it
604 // was not lucky.
605 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
606 }
607
608 Label check_for_internalized_strings;
609 Label flat_string_check;
610 // Check for heap-number-heap-number comparison. Can jump to slow case,
611 // or load both doubles into r2, r3, r4, r5 and jump to the code that handles
612 // that case. If the inputs are not doubles then jumps to
613 // check_for_internalized_strings.
614 // In this case r4 will contain the type of rhs_. Never falls through.
615 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
616 &check_for_internalized_strings,
617 &flat_string_check);
618
619 __ bind(&check_for_internalized_strings);
620 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
621 // internalized strings.
622 if (cc == eq && !strict()) {
623 // Returns an answer for two internalized strings or two detectable objects.
624 // Otherwise jumps to string case or not both strings case.
625 // Assumes that r4 is the type of rhs_ on entry.
626 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
627 &slow);
628 }
629
630 // Check for both being sequential one-byte strings,
631 // and inline if that is the case.
632 __ bind(&flat_string_check);
633
634 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r4, r5, &slow);
635
636 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r4,
637 r5);
638 if (cc == eq) {
639 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r4, r5);
640 } else {
641 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r4, r5, r6);
642 }
643 // Never falls through to here.
644
645 __ bind(&slow);
646
647 if (cc == eq) {
648 {
649 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
650 __ Push(lhs, rhs);
651 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
652 }
653 // Turn true into 0 and false into some non-zero value.
654 STATIC_ASSERT(EQUAL == 0);
655 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
656 __ SubP(r2, r2, r3);
657 __ Ret();
658 } else {
659 __ Push(lhs, rhs);
660 int ncr; // NaN compare result
661 if (cc == lt || cc == le) {
662 ncr = GREATER;
663 } else {
664 DCHECK(cc == gt || cc == ge); // remaining cases
665 ncr = LESS;
666 }
667 __ LoadSmiLiteral(r2, Smi::FromInt(ncr));
668 __ push(r2);
669
670 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
671 // tagged as a small integer.
672 __ TailCallRuntime(Runtime::kCompare);
673 }
674
675 __ bind(&miss);
676 GenerateMiss(masm);
677 }
678
Generate(MacroAssembler * masm)679 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
680 // We don't allow a GC during a store buffer overflow so there is no need to
681 // store the registers in any particular way, but we do have to store and
682 // restore them.
683 __ MultiPush(kJSCallerSaved | r14.bit());
684 if (save_doubles()) {
685 __ MultiPushDoubles(kCallerSavedDoubles);
686 }
687 const int argument_count = 1;
688 const int fp_argument_count = 0;
689 const Register scratch = r3;
690
691 AllowExternalCallThatCantCauseGC scope(masm);
692 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
693 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
694 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
695 argument_count);
696 if (save_doubles()) {
697 __ MultiPopDoubles(kCallerSavedDoubles);
698 }
699 __ MultiPop(kJSCallerSaved | r14.bit());
700 __ Ret();
701 }
702
Generate(MacroAssembler * masm)703 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
704 __ PushSafepointRegisters();
705 __ b(r14);
706 }
707
Generate(MacroAssembler * masm)708 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
709 __ PopSafepointRegisters();
710 __ b(r14);
711 }
712
Generate(MacroAssembler * masm)713 void MathPowStub::Generate(MacroAssembler* masm) {
714 const Register exponent = MathPowTaggedDescriptor::exponent();
715 DCHECK(exponent.is(r4));
716 const DoubleRegister double_base = d1;
717 const DoubleRegister double_exponent = d2;
718 const DoubleRegister double_result = d3;
719 const DoubleRegister double_scratch = d0;
720 const Register scratch = r1;
721 const Register scratch2 = r9;
722
723 Label call_runtime, done, int_exponent;
724 if (exponent_type() == TAGGED) {
725 // Base is already in double_base.
726 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
727
728 __ LoadDouble(double_exponent,
729 FieldMemOperand(exponent, HeapNumber::kValueOffset));
730 }
731
732 if (exponent_type() != INTEGER) {
733 // Detect integer exponents stored as double.
734 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
735 double_scratch);
736 __ beq(&int_exponent, Label::kNear);
737
738 __ push(r14);
739 {
740 AllowExternalCallThatCantCauseGC scope(masm);
741 __ PrepareCallCFunction(0, 2, scratch);
742 __ MovToFloatParameters(double_base, double_exponent);
743 __ CallCFunction(
744 ExternalReference::power_double_double_function(isolate()), 0, 2);
745 }
746 __ pop(r14);
747 __ MovFromFloatResult(double_result);
748 __ b(&done);
749 }
750
751 // Calculate power with integer exponent.
752 __ bind(&int_exponent);
753
754 // Get two copies of exponent in the registers scratch and exponent.
755 if (exponent_type() == INTEGER) {
756 __ LoadRR(scratch, exponent);
757 } else {
758 // Exponent has previously been stored into scratch as untagged integer.
759 __ LoadRR(exponent, scratch);
760 }
761 __ ldr(double_scratch, double_base); // Back up base.
762 __ LoadImmP(scratch2, Operand(1));
763 __ ConvertIntToDouble(scratch2, double_result);
764
765 // Get absolute value of exponent.
766 Label positive_exponent;
767 __ CmpP(scratch, Operand::Zero());
768 __ bge(&positive_exponent, Label::kNear);
769 __ LoadComplementRR(scratch, scratch);
770 __ bind(&positive_exponent);
771
772 Label while_true, no_carry, loop_end;
773 __ bind(&while_true);
774 __ mov(scratch2, Operand(1));
775 __ AndP(scratch2, scratch);
776 __ beq(&no_carry, Label::kNear);
777 __ mdbr(double_result, double_scratch);
778 __ bind(&no_carry);
779 __ ShiftRightP(scratch, scratch, Operand(1));
780 __ LoadAndTestP(scratch, scratch);
781 __ beq(&loop_end, Label::kNear);
782 __ mdbr(double_scratch, double_scratch);
783 __ b(&while_true);
784 __ bind(&loop_end);
785
786 __ CmpP(exponent, Operand::Zero());
787 __ bge(&done);
788
789 // get 1/double_result:
790 __ ldr(double_scratch, double_result);
791 __ LoadImmP(scratch2, Operand(1));
792 __ ConvertIntToDouble(scratch2, double_result);
793 __ ddbr(double_result, double_scratch);
794
795 // Test whether result is zero. Bail out to check for subnormal result.
796 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
797 __ lzdr(kDoubleRegZero);
798 __ cdbr(double_result, kDoubleRegZero);
799 __ bne(&done, Label::kNear);
800 // double_exponent may not containe the exponent value if the input was a
801 // smi. We set it with exponent value before bailing out.
802 __ ConvertIntToDouble(exponent, double_exponent);
803
804 // Returning or bailing out.
805 __ push(r14);
806 {
807 AllowExternalCallThatCantCauseGC scope(masm);
808 __ PrepareCallCFunction(0, 2, scratch);
809 __ MovToFloatParameters(double_base, double_exponent);
810 __ CallCFunction(
811 ExternalReference::power_double_double_function(isolate()), 0, 2);
812 }
813 __ pop(r14);
814 __ MovFromFloatResult(double_result);
815
816 __ bind(&done);
817 __ Ret();
818 }
819
NeedsImmovableCode()820 bool CEntryStub::NeedsImmovableCode() { return true; }
821
GenerateStubsAheadOfTime(Isolate * isolate)822 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
823 CEntryStub::GenerateAheadOfTime(isolate);
824 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
825 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
826 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
827 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
828 CreateWeakCellStub::GenerateAheadOfTime(isolate);
829 BinaryOpICStub::GenerateAheadOfTime(isolate);
830 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
831 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
832 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
833 StoreFastElementStub::GenerateAheadOfTime(isolate);
834 }
835
GenerateAheadOfTime(Isolate * isolate)836 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
837 StoreRegistersStateStub stub(isolate);
838 stub.GetCode();
839 }
840
GenerateAheadOfTime(Isolate * isolate)841 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
842 RestoreRegistersStateStub stub(isolate);
843 stub.GetCode();
844 }
845
GenerateFPStubs(Isolate * isolate)846 void CodeStub::GenerateFPStubs(Isolate* isolate) {
847 SaveFPRegsMode mode = kSaveFPRegs;
848 CEntryStub(isolate, 1, mode).GetCode();
849 StoreBufferOverflowStub(isolate, mode).GetCode();
850 isolate->set_fp_stubs_generated(true);
851 }
852
GenerateAheadOfTime(Isolate * isolate)853 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
854 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
855 stub.GetCode();
856 }
857
Generate(MacroAssembler * masm)858 void CEntryStub::Generate(MacroAssembler* masm) {
859 // Called from JavaScript; parameters are on stack as if calling JS function.
860 // r2: number of arguments including receiver
861 // r3: pointer to builtin function
862 // fp: frame pointer (restored after C call)
863 // sp: stack pointer (restored as callee's sp after C call)
864 // cp: current context (C callee-saved)
865 //
866 // If argv_in_register():
867 // r4: pointer to the first argument
868 ProfileEntryHookStub::MaybeCallEntryHook(masm);
869
870 __ LoadRR(r7, r3);
871
872 if (argv_in_register()) {
873 // Move argv into the correct register.
874 __ LoadRR(r3, r4);
875 } else {
876 // Compute the argv pointer.
877 __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
878 __ lay(r3, MemOperand(r3, sp, -kPointerSize));
879 }
880
881 // Enter the exit frame that transitions from JavaScript to C++.
882 FrameScope scope(masm, StackFrame::MANUAL);
883
884 // Need at least one extra slot for return address location.
885 int arg_stack_space = 1;
886
887 // Pass buffer for return value on stack if necessary
888 bool needs_return_buffer =
889 result_size() > 2 ||
890 (result_size() == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS);
891 if (needs_return_buffer) {
892 arg_stack_space += result_size();
893 }
894
895 #if V8_TARGET_ARCH_S390X
896 // 64-bit linux pass Argument object by reference not value
897 arg_stack_space += 2;
898 #endif
899
900 __ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit()
901 ? StackFrame::BUILTIN_EXIT
902 : StackFrame::EXIT);
903
904 // Store a copy of argc, argv in callee-saved registers for later.
905 __ LoadRR(r6, r2);
906 __ LoadRR(r8, r3);
907 // r2, r6: number of arguments including receiver (C callee-saved)
908 // r3, r8: pointer to the first argument
909 // r7: pointer to builtin function (C callee-saved)
910
911 // Result returned in registers or stack, depending on result size and ABI.
912
913 Register isolate_reg = r4;
914 if (needs_return_buffer) {
915 // The return value is 16-byte non-scalar value.
916 // Use frame storage reserved by calling function to pass return
917 // buffer as implicit first argument in R2. Shfit original parameters
918 // by one register each.
919 __ LoadRR(r4, r3);
920 __ LoadRR(r3, r2);
921 __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
922 isolate_reg = r5;
923 }
924 // Call C built-in.
925 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
926
927 Register target = r7;
928
929 // To let the GC traverse the return address of the exit frames, we need to
930 // know where the return address is. The CEntryStub is unmovable, so
931 // we can store the address on the stack to be able to find it again and
932 // we never have to restore it, because it will not change.
933 {
934 Label return_label;
935 __ larl(r14, &return_label); // Generate the return addr of call later.
936 __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
937
938 // zLinux ABI requires caller's frame to have sufficient space for callee
939 // preserved regsiter save area.
940 // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
941 __ b(target);
942 __ bind(&return_label);
943 // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
944 }
945
946 // If return value is on the stack, pop it to registers.
947 if (needs_return_buffer) {
948 if (result_size() > 2) __ LoadP(r4, MemOperand(r2, 2 * kPointerSize));
949 __ LoadP(r3, MemOperand(r2, kPointerSize));
950 __ LoadP(r2, MemOperand(r2));
951 }
952
953 // Check result for exception sentinel.
954 Label exception_returned;
955 __ CompareRoot(r2, Heap::kExceptionRootIndex);
956 __ beq(&exception_returned, Label::kNear);
957
958 // Check that there is no pending exception, otherwise we
959 // should have returned the exception sentinel.
960 if (FLAG_debug_code) {
961 Label okay;
962 ExternalReference pending_exception_address(
963 Isolate::kPendingExceptionAddress, isolate());
964 __ mov(r1, Operand(pending_exception_address));
965 __ LoadP(r1, MemOperand(r1));
966 __ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
967 // Cannot use check here as it attempts to generate call into runtime.
968 __ beq(&okay, Label::kNear);
969 __ stop("Unexpected pending exception");
970 __ bind(&okay);
971 }
972
973 // Exit C frame and return.
974 // r2:r3: result
975 // sp: stack pointer
976 // fp: frame pointer
977 Register argc;
978 if (argv_in_register()) {
979 // We don't want to pop arguments so set argc to no_reg.
980 argc = no_reg;
981 } else {
982 // r6: still holds argc (callee-saved).
983 argc = r6;
984 }
985 __ LeaveExitFrame(save_doubles(), argc, true);
986 __ b(r14);
987
988 // Handling of exception.
989 __ bind(&exception_returned);
990
991 ExternalReference pending_handler_context_address(
992 Isolate::kPendingHandlerContextAddress, isolate());
993 ExternalReference pending_handler_code_address(
994 Isolate::kPendingHandlerCodeAddress, isolate());
995 ExternalReference pending_handler_offset_address(
996 Isolate::kPendingHandlerOffsetAddress, isolate());
997 ExternalReference pending_handler_fp_address(
998 Isolate::kPendingHandlerFPAddress, isolate());
999 ExternalReference pending_handler_sp_address(
1000 Isolate::kPendingHandlerSPAddress, isolate());
1001
1002 // Ask the runtime for help to determine the handler. This will set r3 to
1003 // contain the current pending exception, don't clobber it.
1004 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1005 isolate());
1006 {
1007 FrameScope scope(masm, StackFrame::MANUAL);
1008 __ PrepareCallCFunction(3, 0, r2);
1009 __ LoadImmP(r2, Operand::Zero());
1010 __ LoadImmP(r3, Operand::Zero());
1011 __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
1012 __ CallCFunction(find_handler, 3);
1013 }
1014
1015 // Retrieve the handler context, SP and FP.
1016 __ mov(cp, Operand(pending_handler_context_address));
1017 __ LoadP(cp, MemOperand(cp));
1018 __ mov(sp, Operand(pending_handler_sp_address));
1019 __ LoadP(sp, MemOperand(sp));
1020 __ mov(fp, Operand(pending_handler_fp_address));
1021 __ LoadP(fp, MemOperand(fp));
1022
1023 // If the handler is a JS frame, restore the context to the frame. Note that
1024 // the context will be set to (cp == 0) for non-JS frames.
1025 Label skip;
1026 __ CmpP(cp, Operand::Zero());
1027 __ beq(&skip, Label::kNear);
1028 __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1029 __ bind(&skip);
1030
1031 // Compute the handler entry address and jump to it.
1032 __ mov(r3, Operand(pending_handler_code_address));
1033 __ LoadP(r3, MemOperand(r3));
1034 __ mov(r4, Operand(pending_handler_offset_address));
1035 __ LoadP(r4, MemOperand(r4));
1036 __ AddP(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
1037 __ AddP(ip, r3, r4);
1038 __ Jump(ip);
1039 }
1040
Generate(MacroAssembler * masm)1041 void JSEntryStub::Generate(MacroAssembler* masm) {
1042 // r2: code entry
1043 // r3: function
1044 // r4: receiver
1045 // r5: argc
1046 // r6: argv
1047
1048 Label invoke, handler_entry, exit;
1049
1050 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1051
1052 // saving floating point registers
1053 #if V8_TARGET_ARCH_S390X
1054 // 64bit ABI requires f8 to f15 be saved
1055 __ lay(sp, MemOperand(sp, -8 * kDoubleSize));
1056 __ std(d8, MemOperand(sp));
1057 __ std(d9, MemOperand(sp, 1 * kDoubleSize));
1058 __ std(d10, MemOperand(sp, 2 * kDoubleSize));
1059 __ std(d11, MemOperand(sp, 3 * kDoubleSize));
1060 __ std(d12, MemOperand(sp, 4 * kDoubleSize));
1061 __ std(d13, MemOperand(sp, 5 * kDoubleSize));
1062 __ std(d14, MemOperand(sp, 6 * kDoubleSize));
1063 __ std(d15, MemOperand(sp, 7 * kDoubleSize));
1064 #else
1065 // 31bit ABI requires you to store f4 and f6:
1066 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
1067 __ lay(sp, MemOperand(sp, -2 * kDoubleSize));
1068 __ std(d4, MemOperand(sp));
1069 __ std(d6, MemOperand(sp, kDoubleSize));
1070 #endif
1071
1072 // zLinux ABI
1073 // Incoming parameters:
1074 // r2: code entry
1075 // r3: function
1076 // r4: receiver
1077 // r5: argc
1078 // r6: argv
1079 // Requires us to save the callee-preserved registers r6-r13
1080 // General convention is to also save r14 (return addr) and
1081 // sp/r15 as well in a single STM/STMG
1082 __ lay(sp, MemOperand(sp, -10 * kPointerSize));
1083 __ StoreMultipleP(r6, sp, MemOperand(sp, 0));
1084
1085 // Set up the reserved register for 0.0.
1086 // __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
1087
1088 // Push a frame with special values setup to mark it as an entry frame.
1089 // Bad FP (-1)
1090 // SMI Marker
1091 // SMI Marker
1092 // kCEntryFPAddress
1093 // Frame type
1094 __ lay(sp, MemOperand(sp, -5 * kPointerSize));
1095 // Push a bad frame pointer to fail if it is used.
1096 __ LoadImmP(r10, Operand(-1));
1097
1098 int marker = type();
1099 __ LoadSmiLiteral(r9, Smi::FromInt(marker));
1100 __ LoadSmiLiteral(r8, Smi::FromInt(marker));
1101 // Save copies of the top frame descriptor on the stack.
1102 __ mov(r7, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1103 __ LoadP(r7, MemOperand(r7));
1104 __ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize));
1105 // Set up frame pointer for the frame to be pushed.
1106 // Need to add kPointerSize, because sp has one extra
1107 // frame already for the frame type being pushed later.
1108 __ lay(fp,
1109 MemOperand(sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize));
1110
1111 // If this is the outermost JS call, set js_entry_sp value.
1112 Label non_outermost_js;
1113 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1114 __ mov(r7, Operand(ExternalReference(js_entry_sp)));
1115 __ LoadAndTestP(r8, MemOperand(r7));
1116 __ bne(&non_outermost_js, Label::kNear);
1117 __ StoreP(fp, MemOperand(r7));
1118 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1119 Label cont;
1120 __ b(&cont, Label::kNear);
1121 __ bind(&non_outermost_js);
1122 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
1123
1124 __ bind(&cont);
1125 __ StoreP(ip, MemOperand(sp)); // frame-type
1126
1127 // Jump to a faked try block that does the invoke, with a faked catch
1128 // block that sets the pending exception.
1129 __ b(&invoke, Label::kNear);
1130
1131 __ bind(&handler_entry);
1132 handler_offset_ = handler_entry.pos();
1133 // Caught exception: Store result (exception) in the pending exception
1134 // field in the JSEnv and return a failure sentinel. Coming in here the
1135 // fp will be invalid because the PushStackHandler below sets it to 0 to
1136 // signal the existence of the JSEntry frame.
1137 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1138 isolate())));
1139
1140 __ StoreP(r2, MemOperand(ip));
1141 __ LoadRoot(r2, Heap::kExceptionRootIndex);
1142 __ b(&exit, Label::kNear);
1143
1144 // Invoke: Link this frame into the handler chain.
1145 __ bind(&invoke);
1146 // Must preserve r2-r6.
1147 __ PushStackHandler();
1148 // If an exception not caught by another handler occurs, this handler
1149 // returns control to the code after the b(&invoke) above, which
1150 // restores all kCalleeSaved registers (including cp and fp) to their
1151 // saved values before returning a failure to C.
1152
1153 // Invoke the function by calling through JS entry trampoline builtin.
1154 // Notice that we cannot store a reference to the trampoline code directly in
1155 // this stub, because runtime stubs are not traversed when doing GC.
1156
1157 // Expected registers by Builtins::JSEntryTrampoline
1158 // r2: code entry
1159 // r3: function
1160 // r4: receiver
1161 // r5: argc
1162 // r6: argv
1163 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1164 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1165 isolate());
1166 __ mov(ip, Operand(construct_entry));
1167 } else {
1168 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1169 __ mov(ip, Operand(entry));
1170 }
1171 __ LoadP(ip, MemOperand(ip)); // deref address
1172
1173 // Branch and link to JSEntryTrampoline.
1174 // the address points to the start of the code object, skip the header
1175 __ AddP(ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1176 Label return_addr;
1177 // __ basr(r14, ip);
1178 __ larl(r14, &return_addr);
1179 __ b(ip);
1180 __ bind(&return_addr);
1181
1182 // Unlink this frame from the handler chain.
1183 __ PopStackHandler();
1184
1185 __ bind(&exit); // r2 holds result
1186 // Check if the current stack frame is marked as the outermost JS frame.
1187 Label non_outermost_js_2;
1188 __ pop(r7);
1189 __ CmpSmiLiteral(r7, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
1190 __ bne(&non_outermost_js_2, Label::kNear);
1191 __ mov(r8, Operand::Zero());
1192 __ mov(r7, Operand(ExternalReference(js_entry_sp)));
1193 __ StoreP(r8, MemOperand(r7));
1194 __ bind(&non_outermost_js_2);
1195
1196 // Restore the top frame descriptors from the stack.
1197 __ pop(r5);
1198 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1199 __ StoreP(r5, MemOperand(ip));
1200
1201 // Reset the stack to the callee saved registers.
1202 __ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset));
1203
1204 // Reload callee-saved preserved regs, return address reg (r14) and sp
1205 __ LoadMultipleP(r6, sp, MemOperand(sp, 0));
1206 __ la(sp, MemOperand(sp, 10 * kPointerSize));
1207
1208 // saving floating point registers
1209 #if V8_TARGET_ARCH_S390X
1210 // 64bit ABI requires f8 to f15 be saved
1211 __ ld(d8, MemOperand(sp));
1212 __ ld(d9, MemOperand(sp, 1 * kDoubleSize));
1213 __ ld(d10, MemOperand(sp, 2 * kDoubleSize));
1214 __ ld(d11, MemOperand(sp, 3 * kDoubleSize));
1215 __ ld(d12, MemOperand(sp, 4 * kDoubleSize));
1216 __ ld(d13, MemOperand(sp, 5 * kDoubleSize));
1217 __ ld(d14, MemOperand(sp, 6 * kDoubleSize));
1218 __ ld(d15, MemOperand(sp, 7 * kDoubleSize));
1219 __ la(sp, MemOperand(sp, 8 * kDoubleSize));
1220 #else
1221 // 31bit ABI requires you to store f4 and f6:
1222 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
1223 __ ld(d4, MemOperand(sp));
1224 __ ld(d6, MemOperand(sp, kDoubleSize));
1225 __ la(sp, MemOperand(sp, 2 * kDoubleSize));
1226 #endif
1227
1228 __ b(r14);
1229 }
1230
Generate(MacroAssembler * masm)1231 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1232 Label miss;
1233 Register receiver = LoadDescriptor::ReceiverRegister();
1234 // Ensure that the vector and slot registers won't be clobbered before
1235 // calling the miss handler.
1236 DCHECK(!AreAliased(r6, r7, LoadWithVectorDescriptor::VectorRegister(),
1237 LoadWithVectorDescriptor::SlotRegister()));
1238
1239 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6,
1240 r7, &miss);
1241 __ bind(&miss);
1242 PropertyAccessCompiler::TailCallBuiltin(
1243 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1244 }
1245
Generate(MacroAssembler * masm)1246 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1247 // Return address is in lr.
1248 Label miss;
1249
1250 Register receiver = LoadDescriptor::ReceiverRegister();
1251 Register index = LoadDescriptor::NameRegister();
1252 Register scratch = r7;
1253 Register result = r2;
1254 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1255 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1256 result.is(LoadWithVectorDescriptor::SlotRegister()));
1257
1258 // StringCharAtGenerator doesn't use the result register until it's passed
1259 // the different miss possibilities. If it did, we would have a conflict
1260 // when FLAG_vector_ics is true.
1261 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1262 &miss, // When not a string.
1263 &miss, // When not a number.
1264 &miss, // When index out of range.
1265 RECEIVER_IS_STRING);
1266 char_at_generator.GenerateFast(masm);
1267 __ Ret();
1268
1269 StubRuntimeCallHelper call_helper;
1270 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1271
1272 __ bind(&miss);
1273 PropertyAccessCompiler::TailCallBuiltin(
1274 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1275 }
1276
Generate(MacroAssembler * masm)1277 void RegExpExecStub::Generate(MacroAssembler* masm) {
1278 // Just jump directly to runtime if native RegExp is not selected at compile
1279 // time or if regexp entry in generated code is turned off runtime switch or
1280 // at compilation.
1281 #ifdef V8_INTERPRETED_REGEXP
1282 __ TailCallRuntime(Runtime::kRegExpExec);
1283 #else // V8_INTERPRETED_REGEXP
1284
1285 // Stack frame on entry.
1286 // sp[0]: last_match_info (expected JSArray)
1287 // sp[4]: previous index
1288 // sp[8]: subject string
1289 // sp[12]: JSRegExp object
1290
1291 const int kLastMatchInfoOffset = 0 * kPointerSize;
1292 const int kPreviousIndexOffset = 1 * kPointerSize;
1293 const int kSubjectOffset = 2 * kPointerSize;
1294 const int kJSRegExpOffset = 3 * kPointerSize;
1295
1296 Label runtime, br_over, encoding_type_UC16;
1297
1298 // Allocation of registers for this function. These are in callee save
1299 // registers and will be preserved by the call to the native RegExp code, as
1300 // this code is called using the normal C calling convention. When calling
1301 // directly from generated code the native RegExp code will not do a GC and
1302 // therefore the content of these registers are safe to use after the call.
1303 Register subject = r6;
1304 Register regexp_data = r7;
1305 Register last_match_info_elements = r8;
1306 Register code = r9;
1307
1308 __ CleanseP(r14);
1309
1310 // Ensure register assigments are consistent with callee save masks
1311 DCHECK(subject.bit() & kCalleeSaved);
1312 DCHECK(regexp_data.bit() & kCalleeSaved);
1313 DCHECK(last_match_info_elements.bit() & kCalleeSaved);
1314 DCHECK(code.bit() & kCalleeSaved);
1315
1316 // Ensure that a RegExp stack is allocated.
1317 ExternalReference address_of_regexp_stack_memory_address =
1318 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1319 ExternalReference address_of_regexp_stack_memory_size =
1320 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1321 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
1322 __ LoadAndTestP(r2, MemOperand(r2));
1323 __ beq(&runtime);
1324
1325 // Check that the first argument is a JSRegExp object.
1326 __ LoadP(r2, MemOperand(sp, kJSRegExpOffset));
1327 __ JumpIfSmi(r2, &runtime);
1328 __ CompareObjectType(r2, r3, r3, JS_REGEXP_TYPE);
1329 __ bne(&runtime);
1330
1331 // Check that the RegExp has been compiled (data contains a fixed array).
1332 __ LoadP(regexp_data, FieldMemOperand(r2, JSRegExp::kDataOffset));
1333 if (FLAG_debug_code) {
1334 __ TestIfSmi(regexp_data);
1335 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
1336 __ CompareObjectType(regexp_data, r2, r2, FIXED_ARRAY_TYPE);
1337 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1338 }
1339
1340 // regexp_data: RegExp data (FixedArray)
1341 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1342 __ LoadP(r2, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1343 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
1344 __ CmpSmiLiteral(r2, Smi::FromInt(JSRegExp::IRREGEXP), r0);
1345 __ bne(&runtime);
1346
1347 // regexp_data: RegExp data (FixedArray)
1348 // Check that the number of captures fit in the static offsets vector buffer.
1349 __ LoadP(r4,
1350 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1351 // Check (number_of_captures + 1) * 2 <= offsets vector size
1352 // Or number_of_captures * 2 <= offsets vector size - 2
1353 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1354 // SmiUntag (which is a nop for 32-bit).
1355 __ SmiToShortArrayOffset(r4, r4);
1356 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1357 __ CmpLogicalP(r4, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1358 __ bgt(&runtime);
1359
1360 // Reset offset for possibly sliced string.
1361 __ LoadImmP(ip, Operand::Zero());
1362 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1363 __ JumpIfSmi(subject, &runtime);
1364 __ LoadRR(r5, subject); // Make a copy of the original subject string.
1365 // subject: subject string
1366 // r5: subject string
1367 // regexp_data: RegExp data (FixedArray)
1368 // Handle subject string according to its encoding and representation:
1369 // (1) Sequential string? If yes, go to (4).
1370 // (2) Sequential or cons? If not, go to (5).
1371 // (3) Cons string. If the string is flat, replace subject with first string
1372 // and go to (1). Otherwise bail out to runtime.
1373 // (4) Sequential string. Load regexp code according to encoding.
1374 // (E) Carry on.
1375 /// [...]
1376
1377 // Deferred code at the end of the stub:
1378 // (5) Long external string? If not, go to (7).
1379 // (6) External string. Make it, offset-wise, look like a sequential string.
1380 // Go to (4).
1381 // (7) Short external string or not a string? If yes, bail out to runtime.
1382 // (8) Sliced string. Replace subject with parent. Go to (1).
1383
1384 Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1385 not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
1386
1387 __ bind(&check_underlying);
1388 __ LoadP(r2, FieldMemOperand(subject, HeapObject::kMapOffset));
1389 __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
1390
1391 // (1) Sequential string? If yes, go to (4).
1392
1393 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1394 kShortExternalStringMask) == 0x93);
1395 __ mov(r3, Operand(kIsNotStringMask | kStringRepresentationMask |
1396 kShortExternalStringMask));
1397 __ AndP(r3, r2);
1398 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1399 __ beq(&seq_string, Label::kNear); // Go to (4).
1400
1401 // (2) Sequential or cons? If not, go to (5).
1402 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1403 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1404 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1405 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1406 STATIC_ASSERT(kExternalStringTag < 0xffffu);
1407 __ CmpP(r3, Operand(kExternalStringTag));
1408 __ bge(¬_seq_nor_cons); // Go to (5).
1409
1410 // (3) Cons string. Check that it's flat.
1411 // Replace subject with first string and reload instance type.
1412 __ LoadP(r2, FieldMemOperand(subject, ConsString::kSecondOffset));
1413 __ CompareRoot(r2, Heap::kempty_stringRootIndex);
1414 __ bne(&runtime);
1415 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1416 __ b(&check_underlying);
1417
1418 // (4) Sequential string. Load regexp code according to encoding.
1419 __ bind(&seq_string);
1420 // subject: sequential subject string (or look-alike, external string)
1421 // r5: original subject string
1422 // Load previous index and check range before r5 is overwritten. We have to
1423 // use r5 instead of subject here because subject might have been only made
1424 // to look like a sequential string when it actually is an external string.
1425 __ LoadP(r3, MemOperand(sp, kPreviousIndexOffset));
1426 __ JumpIfNotSmi(r3, &runtime);
1427 __ LoadP(r5, FieldMemOperand(r5, String::kLengthOffset));
1428 __ CmpLogicalP(r5, r3);
1429 __ ble(&runtime);
1430 __ SmiUntag(r3);
1431
1432 STATIC_ASSERT(4 == kOneByteStringTag);
1433 STATIC_ASSERT(kTwoByteStringTag == 0);
1434 STATIC_ASSERT(kStringEncodingMask == 4);
1435 __ ExtractBitMask(r5, r2, kStringEncodingMask, SetRC);
1436 __ beq(&encoding_type_UC16, Label::kNear);
1437 __ LoadP(code,
1438 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1439 __ b(&br_over, Label::kNear);
1440 __ bind(&encoding_type_UC16);
1441 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1442 __ bind(&br_over);
1443
1444 // (E) Carry on. String handling is done.
1445 // code: irregexp code
1446 // Check that the irregexp code has been generated for the actual string
1447 // encoding. If it has, the field contains a code object otherwise it contains
1448 // a smi (code flushing support).
1449 __ JumpIfSmi(code, &runtime);
1450
1451 // r3: previous index
1452 // r5: encoding of subject string (1 if one_byte, 0 if two_byte);
1453 // code: Address of generated regexp code
1454 // subject: Subject string
1455 // regexp_data: RegExp data (FixedArray)
1456 // All checks done. Now push arguments for native regexp code.
1457 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r2, r4);
1458
1459 // Isolates: note we add an additional parameter here (isolate pointer).
1460 const int kRegExpExecuteArguments = 10;
1461 const int kParameterRegisters = 5;
1462 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1463
1464 // Stack pointer now points to cell where return address is to be written.
1465 // Arguments are before that on the stack or in registers.
1466
1467 // Argument 10 (in stack parameter area): Pass current isolate address.
1468 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
1469 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1470 4 * kPointerSize));
1471
1472 // Argument 9 is a dummy that reserves the space used for
1473 // the return address added by the ExitFrame in native calls.
1474 __ mov(r2, Operand::Zero());
1475 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1476 3 * kPointerSize));
1477
1478 // Argument 8: Indicate that this is a direct call from JavaScript.
1479 __ mov(r2, Operand(1));
1480 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1481 2 * kPointerSize));
1482
1483 // Argument 7: Start (high end) of backtracking stack memory area.
1484 __ mov(r2, Operand(address_of_regexp_stack_memory_address));
1485 __ LoadP(r2, MemOperand(r2, 0));
1486 __ mov(r1, Operand(address_of_regexp_stack_memory_size));
1487 __ LoadP(r1, MemOperand(r1, 0));
1488 __ AddP(r2, r1);
1489 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1490 1 * kPointerSize));
1491
1492 // Argument 6: Set the number of capture registers to zero to force
1493 // global egexps to behave as non-global. This does not affect non-global
1494 // regexps.
1495 __ mov(r2, Operand::Zero());
1496 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1497 0 * kPointerSize));
1498
1499 // Argument 1 (r2): Subject string.
1500 // Load the length from the original subject string from the previous stack
1501 // frame. Therefore we have to use fp, which points exactly to 15 pointer
1502 // sizes below the previous sp. (Because creating a new stack frame pushes
1503 // the previous fp onto the stack and moves up sp by 2 * kPointerSize and
1504 // 13 registers saved on the stack previously)
1505 __ LoadP(r2, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1506
1507 // Argument 2 (r3): Previous index.
1508 // Already there
1509 __ AddP(r1, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1510
1511 // Argument 5 (r6): static offsets vector buffer.
1512 __ mov(
1513 r6,
1514 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
1515
1516 // For arguments 4 (r5) and 3 (r4) get string length, calculate start of data
1517 // and calculate the shift of the index (0 for one-byte and 1 for two byte).
1518 __ XorP(r5, Operand(1));
1519 // If slice offset is not 0, load the length from the original sliced string.
1520 // Argument 3, r4: Start of string data
1521 // Prepare start and end index of the input.
1522 __ ShiftLeftP(ip, ip, r5);
1523 __ AddP(ip, r1, ip);
1524 __ ShiftLeftP(r4, r3, r5);
1525 __ AddP(r4, ip, r4);
1526
1527 // Argument 4, r5: End of string data
1528 __ LoadP(r1, FieldMemOperand(r2, String::kLengthOffset));
1529 __ SmiUntag(r1);
1530 __ ShiftLeftP(r0, r1, r5);
1531 __ AddP(r5, ip, r0);
1532
1533 // Locate the code entry and call it.
1534 __ AddP(code, Operand(Code::kHeaderSize - kHeapObjectTag));
1535
1536 DirectCEntryStub stub(isolate());
1537 stub.GenerateCall(masm, code);
1538
1539 __ LeaveExitFrame(false, no_reg, true);
1540
1541 // r2: result (int32)
1542 // subject: subject string -- needed to reload
1543 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1544
1545 // regexp_data: RegExp data (callee saved)
1546 // last_match_info_elements: Last match info elements (callee saved)
1547 // Check the result.
1548 Label success;
1549 __ Cmp32(r2, Operand(1));
1550 // We expect exactly one result since we force the called regexp to behave
1551 // as non-global.
1552 __ beq(&success);
1553 Label failure;
1554 __ Cmp32(r2, Operand(NativeRegExpMacroAssembler::FAILURE));
1555 __ beq(&failure);
1556 __ Cmp32(r2, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1557 // If not exception it can only be retry. Handle that in the runtime system.
1558 __ bne(&runtime);
1559 // Result must now be exception. If there is no pending exception already a
1560 // stack overflow (on the backtrack stack) was detected in RegExp code but
1561 // haven't created the exception yet. Handle that in the runtime system.
1562 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1563 __ mov(r3, Operand(isolate()->factory()->the_hole_value()));
1564 __ mov(r4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1565 isolate())));
1566 __ LoadP(r2, MemOperand(r4, 0));
1567 __ CmpP(r2, r3);
1568 __ beq(&runtime);
1569
1570 // For exception, throw the exception again.
1571 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1572
1573 __ bind(&failure);
1574 // For failure and exception return null.
1575 __ mov(r2, Operand(isolate()->factory()->null_value()));
1576 __ la(sp, MemOperand(sp, (4 * kPointerSize)));
1577 __ Ret();
1578
1579 // Process the result from the native regexp code.
1580 __ bind(&success);
1581 __ LoadP(r3,
1582 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1583 // Calculate number of capture registers (number_of_captures + 1) * 2.
1584 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1585 // SmiUntag (which is a nop for 32-bit).
1586 __ SmiToShortArrayOffset(r3, r3);
1587 __ AddP(r3, Operand(2));
1588
1589 // Check that the last match info is a FixedArray.
1590 __ LoadP(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
1591 __ JumpIfSmi(last_match_info_elements, &runtime);
1592 // Check that the object has fast elements.
1593 __ LoadP(r2,
1594 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1595 __ CompareRoot(r2, Heap::kFixedArrayMapRootIndex);
1596 __ bne(&runtime);
1597 // Check that the last match info has space for the capture registers and the
1598 // additional information.
1599 __ LoadP(
1600 r2, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1601 __ AddP(r4, r3, Operand(RegExpMatchInfo::kLastMatchOverhead));
1602 __ SmiUntag(r0, r2);
1603 __ CmpP(r4, r0);
1604 __ bgt(&runtime);
1605
1606 // r3: number of capture registers
1607 // subject: subject string
1608 // Store the capture count.
1609 __ SmiTag(r4, r3);
1610 __ StoreP(r4, FieldMemOperand(last_match_info_elements,
1611 RegExpMatchInfo::kNumberOfCapturesOffset));
1612 // Store last subject and last input.
1613 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1614 RegExpMatchInfo::kLastSubjectOffset));
1615 __ LoadRR(r4, subject);
1616 __ RecordWriteField(last_match_info_elements,
1617 RegExpMatchInfo::kLastSubjectOffset, subject, r9,
1618 kLRHasNotBeenSaved, kDontSaveFPRegs);
1619 __ LoadRR(subject, r4);
1620 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1621 RegExpMatchInfo::kLastInputOffset));
1622 __ RecordWriteField(last_match_info_elements,
1623 RegExpMatchInfo::kLastInputOffset, subject, r9,
1624 kLRHasNotBeenSaved, kDontSaveFPRegs);
1625
1626 // Get the static offsets vector filled by the native regexp code.
1627 ExternalReference address_of_static_offsets_vector =
1628 ExternalReference::address_of_static_offsets_vector(isolate());
1629 __ mov(r4, Operand(address_of_static_offsets_vector));
1630
1631 // r3: number of capture registers
1632 // r4: offsets vector
1633 Label next_capture;
1634 // Capture register counter starts from number of capture registers and
1635 // counts down until wrapping after zero.
1636 __ AddP(r2, last_match_info_elements,
1637 Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag -
1638 kPointerSize));
1639 __ AddP(r4, Operand(-kIntSize)); // bias down for lwzu
1640 __ bind(&next_capture);
1641 // Read the value from the static offsets vector buffer.
1642 __ ly(r5, MemOperand(r4, kIntSize));
1643 __ lay(r4, MemOperand(r4, kIntSize));
1644 // Store the smi value in the last match info.
1645 __ SmiTag(r5);
1646 __ StoreP(r5, MemOperand(r2, kPointerSize));
1647 __ lay(r2, MemOperand(r2, kPointerSize));
1648 __ BranchOnCount(r3, &next_capture);
1649
1650 // Return last match info.
1651 __ LoadRR(r2, last_match_info_elements);
1652 __ la(sp, MemOperand(sp, (4 * kPointerSize)));
1653 __ Ret();
1654
1655 // Do the runtime call to execute the regexp.
1656 __ bind(&runtime);
1657 __ TailCallRuntime(Runtime::kRegExpExec);
1658
1659 // Deferred code for string handling.
1660 // (5) Long external string? If not, go to (7).
1661 __ bind(¬_seq_nor_cons);
1662 // Compare flags are still set.
1663 __ bgt(¬_long_external, Label::kNear); // Go to (7).
1664
1665 // (6) External string. Make it, offset-wise, look like a sequential string.
1666 __ bind(&external_string);
1667 __ LoadP(r2, FieldMemOperand(subject, HeapObject::kMapOffset));
1668 __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
1669 if (FLAG_debug_code) {
1670 // Assert that we do not have a cons or slice (indirect strings) here.
1671 // Sequential strings have already been ruled out.
1672 STATIC_ASSERT(kIsIndirectStringMask == 1);
1673 __ tmll(r2, Operand(kIsIndirectStringMask));
1674 __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
1675 }
1676 __ LoadP(subject,
1677 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1678 // Move the pointer so that offset-wise, it looks like a sequential string.
1679 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1680 __ SubP(subject, subject,
1681 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1682 __ b(&seq_string); // Go to (4).
1683
1684 // (7) Short external string or not a string? If yes, bail out to runtime.
1685 __ bind(¬_long_external);
1686 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
1687 __ mov(r0, Operand(kIsNotStringMask | kShortExternalStringMask));
1688 __ AndP(r0, r3);
1689 __ bne(&runtime);
1690
1691 // (8) Sliced string. Replace subject with parent. Go to (4).
1692 // Load offset into ip and replace subject string with parent.
1693 __ LoadP(ip, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1694 __ SmiUntag(ip);
1695 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1696 __ b(&check_underlying); // Go to (4).
1697 #endif // V8_INTERPRETED_REGEXP
1698 }
1699
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1700 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1701 // r2 : number of arguments to the construct function
1702 // r3 : the function to call
1703 // r4 : feedback vector
1704 // r5 : slot in feedback vector (Smi)
1705 FrameScope scope(masm, StackFrame::INTERNAL);
1706
1707 // Number-of-arguments register must be smi-tagged to call out.
1708 __ SmiTag(r2);
1709 __ Push(r5, r4, r3, r2);
1710 __ Push(cp);
1711
1712 __ CallStub(stub);
1713
1714 __ Pop(cp);
1715 __ Pop(r5, r4, r3, r2);
1716 __ SmiUntag(r2);
1717 }
1718
GenerateRecordCallTarget(MacroAssembler * masm)1719 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1720 // Cache the called function in a feedback vector slot. Cache states
1721 // are uninitialized, monomorphic (indicated by a JSFunction), and
1722 // megamorphic.
1723 // r2 : number of arguments to the construct function
1724 // r3 : the function to call
1725 // r4 : feedback vector
1726 // r5 : slot in feedback vector (Smi)
1727 Label initialize, done, miss, megamorphic, not_array_function;
1728
1729 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
1730 masm->isolate()->heap()->megamorphic_symbol());
1731 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
1732 masm->isolate()->heap()->uninitialized_symbol());
1733
1734 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
1735
1736 // Load the cache state into r7.
1737 __ SmiToPtrArrayOffset(r7, r5);
1738 __ AddP(r7, r4, r7);
1739 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
1740
1741 // A monomorphic cache hit or an already megamorphic state: invoke the
1742 // function without changing the state.
1743 // We don't know if r7 is a WeakCell or a Symbol, but it's harmless to read at
1744 // this position in a symbol (see static asserts in type-feedback-vector.h).
1745 Label check_allocation_site;
1746 Register feedback_map = r8;
1747 Register weak_value = r9;
1748 __ LoadP(weak_value, FieldMemOperand(r7, WeakCell::kValueOffset));
1749 __ CmpP(r3, weak_value);
1750 __ beq(&done, Label::kNear);
1751 __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
1752 __ beq(&done, Label::kNear);
1753 __ LoadP(feedback_map, FieldMemOperand(r7, HeapObject::kMapOffset));
1754 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1755 __ bne(&check_allocation_site);
1756
1757 // If the weak cell is cleared, we have a new chance to become monomorphic.
1758 __ JumpIfSmi(weak_value, &initialize);
1759 __ b(&megamorphic);
1760
1761 __ bind(&check_allocation_site);
1762 // If we came here, we need to see if we are the array function.
1763 // If we didn't have a matching function, and we didn't find the megamorph
1764 // sentinel, then we have in the slot either some other function or an
1765 // AllocationSite.
1766 __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
1767 __ bne(&miss);
1768
1769 // Make sure the function is the Array() function
1770 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
1771 __ CmpP(r3, r7);
1772 __ bne(&megamorphic);
1773 __ b(&done, Label::kNear);
1774
1775 __ bind(&miss);
1776
1777 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1778 // megamorphic.
1779 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
1780 __ beq(&initialize);
1781 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1782 // write-barrier is needed.
1783 __ bind(&megamorphic);
1784 __ SmiToPtrArrayOffset(r7, r5);
1785 __ AddP(r7, r4, r7);
1786 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
1787 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
1788 __ jmp(&done);
1789
1790 // An uninitialized cache is patched with the function
1791 __ bind(&initialize);
1792
1793 // Make sure the function is the Array() function.
1794 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
1795 __ CmpP(r3, r7);
1796 __ bne(¬_array_function);
1797
1798 // The target function is the Array constructor,
1799 // Create an AllocationSite if we don't already have it, store it in the
1800 // slot.
1801 CreateAllocationSiteStub create_stub(masm->isolate());
1802 CallStubInRecordCallTarget(masm, &create_stub);
1803 __ b(&done, Label::kNear);
1804
1805 __ bind(¬_array_function);
1806
1807 CreateWeakCellStub weak_cell_stub(masm->isolate());
1808 CallStubInRecordCallTarget(masm, &weak_cell_stub);
1809
1810 __ bind(&done);
1811
1812 // Increment the call count for all function calls.
1813 __ SmiToPtrArrayOffset(r7, r5);
1814 __ AddP(r7, r4, r7);
1815
1816 __ LoadP(r6, FieldMemOperand(r7, count_offset));
1817 __ AddSmiLiteral(r6, r6, Smi::FromInt(1), r0);
1818 __ StoreP(r6, FieldMemOperand(r7, count_offset), r0);
1819 }
1820
Generate(MacroAssembler * masm)1821 void CallConstructStub::Generate(MacroAssembler* masm) {
1822 // r2 : number of arguments
1823 // r3 : the function to call
1824 // r4 : feedback vector
1825 // r5 : slot in feedback vector (Smi, for RecordCallTarget)
1826
1827 Label non_function;
1828 // Check that the function is not a smi.
1829 __ JumpIfSmi(r3, &non_function);
1830 // Check that the function is a JSFunction.
1831 __ CompareObjectType(r3, r7, r7, JS_FUNCTION_TYPE);
1832 __ bne(&non_function);
1833
1834 GenerateRecordCallTarget(masm);
1835
1836 __ SmiToPtrArrayOffset(r7, r5);
1837 __ AddP(r7, r4, r7);
1838 // Put the AllocationSite from the feedback vector into r4, or undefined.
1839 __ LoadP(r4, FieldMemOperand(r7, FixedArray::kHeaderSize));
1840 __ LoadP(r7, FieldMemOperand(r4, AllocationSite::kMapOffset));
1841 __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
1842 Label feedback_register_initialized;
1843 __ beq(&feedback_register_initialized);
1844 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
1845 __ bind(&feedback_register_initialized);
1846
1847 __ AssertUndefinedOrAllocationSite(r4, r7);
1848
1849 // Pass function as new target.
1850 __ LoadRR(r5, r3);
1851
1852 // Tail call to the function-specific construct stub (still in the caller
1853 // context at this point).
1854 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
1855 __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset));
1856 __ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
1857 __ JumpToJSEntry(ip);
1858
1859 __ bind(&non_function);
1860 __ LoadRR(r5, r3);
1861 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1862 }
1863
1864 // Note: feedback_vector and slot are clobbered after the call.
IncrementCallCount(MacroAssembler * masm,Register feedback_vector,Register slot,Register temp)1865 static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector,
1866 Register slot, Register temp) {
1867 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
1868 __ SmiToPtrArrayOffset(temp, slot);
1869 __ AddP(feedback_vector, feedback_vector, temp);
1870 __ LoadP(slot, FieldMemOperand(feedback_vector, count_offset));
1871 __ AddSmiLiteral(slot, slot, Smi::FromInt(1), temp);
1872 __ StoreP(slot, FieldMemOperand(feedback_vector, count_offset), temp);
1873 }
1874
HandleArrayCase(MacroAssembler * masm,Label * miss)1875 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
1876 // r2 - number of arguments
1877 // r3 - function
1878 // r5 - slot id
1879 // r4 - vector
1880 // r6 - allocation site (loaded from vector[slot])
1881 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
1882 __ CmpP(r3, r7);
1883 __ bne(miss);
1884
1885 // Increment the call count for monomorphic function calls.
1886 IncrementCallCount(masm, r4, r5, r1);
1887
1888 __ LoadRR(r4, r6);
1889 __ LoadRR(r5, r3);
1890 ArrayConstructorStub stub(masm->isolate());
1891 __ TailCallStub(&stub);
1892 }
1893
Generate(MacroAssembler * masm)1894 void CallICStub::Generate(MacroAssembler* masm) {
1895 // r2 - number of arguments
1896 // r3 - function
1897 // r5 - slot id (Smi)
1898 // r4 - vector
1899 Label extra_checks_or_miss, call, call_function, call_count_incremented;
1900
1901 // The checks. First, does r3 match the recorded monomorphic target?
1902 __ SmiToPtrArrayOffset(r8, r5);
1903 __ AddP(r8, r4, r8);
1904 __ LoadP(r6, FieldMemOperand(r8, FixedArray::kHeaderSize));
1905
1906 // We don't know that we have a weak cell. We might have a private symbol
1907 // or an AllocationSite, but the memory is safe to examine.
1908 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
1909 // FixedArray.
1910 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
1911 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
1912 // computed, meaning that it can't appear to be a pointer. If the low bit is
1913 // 0, then hash is computed, but the 0 bit prevents the field from appearing
1914 // to be a pointer.
1915 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
1916 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
1917 WeakCell::kValueOffset &&
1918 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
1919
1920 __ LoadP(r7, FieldMemOperand(r6, WeakCell::kValueOffset));
1921 __ CmpP(r3, r7);
1922 __ bne(&extra_checks_or_miss, Label::kNear);
1923
1924 // The compare above could have been a SMI/SMI comparison. Guard against this
1925 // convincing us that we have a monomorphic JSFunction.
1926 __ JumpIfSmi(r3, &extra_checks_or_miss);
1927
1928 __ bind(&call_function);
1929
1930 // Increment the call count for monomorphic function calls.
1931 IncrementCallCount(masm, r4, r5, r1);
1932
1933 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
1934 tail_call_mode()),
1935 RelocInfo::CODE_TARGET);
1936
1937 __ bind(&extra_checks_or_miss);
1938 Label uninitialized, miss, not_allocation_site;
1939
1940 __ CompareRoot(r6, Heap::kmegamorphic_symbolRootIndex);
1941 __ beq(&call);
1942
1943 // Verify that r6 contains an AllocationSite
1944 __ LoadP(r7, FieldMemOperand(r6, HeapObject::kMapOffset));
1945 __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
1946 __ bne(¬_allocation_site);
1947
1948 // We have an allocation site.
1949 HandleArrayCase(masm, &miss);
1950
1951 __ bind(¬_allocation_site);
1952
1953 // The following cases attempt to handle MISS cases without going to the
1954 // runtime.
1955 if (FLAG_trace_ic) {
1956 __ b(&miss);
1957 }
1958
1959 __ CompareRoot(r6, Heap::kuninitialized_symbolRootIndex);
1960 __ beq(&uninitialized);
1961
1962 // We are going megamorphic. If the feedback is a JSFunction, it is fine
1963 // to handle it here. More complex cases are dealt with in the runtime.
1964 __ AssertNotSmi(r6);
1965 __ CompareObjectType(r6, r7, r7, JS_FUNCTION_TYPE);
1966 __ bne(&miss);
1967 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
1968 __ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
1969
1970 __ bind(&call);
1971
1972 // Increment the call count for megamorphic function calls.
1973 IncrementCallCount(masm, r4, r5, r1);
1974
1975 __ bind(&call_count_incremented);
1976 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
1977 RelocInfo::CODE_TARGET);
1978
1979 __ bind(&uninitialized);
1980
1981 // We are going monomorphic, provided we actually have a JSFunction.
1982 __ JumpIfSmi(r3, &miss);
1983
1984 // Goto miss case if we do not have a function.
1985 __ CompareObjectType(r3, r6, r6, JS_FUNCTION_TYPE);
1986 __ bne(&miss);
1987
1988 // Make sure the function is not the Array() function, which requires special
1989 // behavior on MISS.
1990 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r6);
1991 __ CmpP(r3, r6);
1992 __ beq(&miss);
1993
1994 // Make sure the function belongs to the same native context.
1995 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kContextOffset));
1996 __ LoadP(r6, ContextMemOperand(r6, Context::NATIVE_CONTEXT_INDEX));
1997 __ LoadP(ip, NativeContextMemOperand());
1998 __ CmpP(r6, ip);
1999 __ bne(&miss);
2000
2001 // Store the function. Use a stub since we need a frame for allocation.
2002 // r4 - vector
2003 // r5 - slot
2004 // r3 - function
2005 {
2006 FrameScope scope(masm, StackFrame::INTERNAL);
2007 CreateWeakCellStub create_stub(masm->isolate());
2008 __ SmiTag(r2);
2009 __ Push(r2, r4, r5, cp, r3);
2010 __ CallStub(&create_stub);
2011 __ Pop(r4, r5, cp, r3);
2012 __ Pop(r2);
2013 __ SmiUntag(r2);
2014 }
2015
2016 __ b(&call_function);
2017
2018 // We are here because tracing is on or we encountered a MISS case we can't
2019 // handle here.
2020 __ bind(&miss);
2021 GenerateMiss(masm);
2022
2023 __ b(&call_count_incremented);
2024 }
2025
GenerateMiss(MacroAssembler * masm)2026 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2027 FrameScope scope(masm, StackFrame::INTERNAL);
2028
2029 // Preserve the number of arguments as Smi.
2030 __ SmiTag(r2);
2031
2032 // Push the receiver and the function and feedback info.
2033 __ Push(r2, r3, r4, r5);
2034
2035 // Call the entry.
2036 __ CallRuntime(Runtime::kCallIC_Miss);
2037
2038 // Move result to r3 and exit the internal frame.
2039 __ LoadRR(r3, r2);
2040
2041 // Restore number of arguments.
2042 __ Pop(r2);
2043 __ SmiUntag(r2);
2044 }
2045
2046 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)2047 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2048 // If the receiver is a smi trigger the non-string case.
2049 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2050 __ JumpIfSmi(object_, receiver_not_string_);
2051
2052 // Fetch the instance type of the receiver into result register.
2053 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2054 __ LoadlB(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2055 // If the receiver is not a string trigger the non-string case.
2056 __ mov(r0, Operand(kIsNotStringMask));
2057 __ AndP(r0, result_);
2058 __ bne(receiver_not_string_);
2059 }
2060
2061 // If the index is non-smi trigger the non-smi case.
2062 __ JumpIfNotSmi(index_, &index_not_smi_);
2063 __ bind(&got_smi_index_);
2064
2065 // Check for index out of range.
2066 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
2067 __ CmpLogicalP(ip, index_);
2068 __ ble(index_out_of_range_);
2069
2070 __ SmiUntag(index_);
2071
2072 StringCharLoadGenerator::Generate(masm, object_, index_, result_,
2073 &call_runtime_);
2074
2075 __ SmiTag(result_);
2076 __ bind(&exit_);
2077 }
2078
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)2079 void StringCharCodeAtGenerator::GenerateSlow(
2080 MacroAssembler* masm, EmbedMode embed_mode,
2081 const RuntimeCallHelper& call_helper) {
2082 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2083
2084 // Index is not a smi.
2085 __ bind(&index_not_smi_);
2086 // If index is a heap number, try converting it to an integer.
2087 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
2088 DONT_DO_SMI_CHECK);
2089 call_helper.BeforeCall(masm);
2090 if (embed_mode == PART_OF_IC_HANDLER) {
2091 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2092 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2093 } else {
2094 // index_ is consumed by runtime conversion function.
2095 __ Push(object_, index_);
2096 }
2097 __ CallRuntime(Runtime::kNumberToSmi);
2098 // Save the conversion result before the pop instructions below
2099 // have a chance to overwrite it.
2100 __ Move(index_, r2);
2101 if (embed_mode == PART_OF_IC_HANDLER) {
2102 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2103 LoadWithVectorDescriptor::SlotRegister(), object_);
2104 } else {
2105 __ pop(object_);
2106 }
2107 // Reload the instance type.
2108 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2109 __ LoadlB(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2110 call_helper.AfterCall(masm);
2111 // If index is still not a smi, it must be out of range.
2112 __ JumpIfNotSmi(index_, index_out_of_range_);
2113 // Otherwise, return to the fast path.
2114 __ b(&got_smi_index_);
2115
2116 // Call runtime. We get here when the receiver is a string and the
2117 // index is a number, but the code of getting the actual character
2118 // is too complex (e.g., when the string needs to be flattened).
2119 __ bind(&call_runtime_);
2120 call_helper.BeforeCall(masm);
2121 __ SmiTag(index_);
2122 __ Push(object_, index_);
2123 __ CallRuntime(Runtime::kStringCharCodeAtRT);
2124 __ Move(result_, r2);
2125 call_helper.AfterCall(masm);
2126 __ b(&exit_);
2127
2128 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2129 }
2130
2131 // -------------------------------------------------------------------------
2132 // StringCharFromCodeGenerator
2133
GenerateFast(MacroAssembler * masm)2134 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2135 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2136 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
2137 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCodeU));
2138 __ OrP(r0, r0, Operand(kSmiTagMask));
2139 __ AndP(r0, code_, r0);
2140 __ bne(&slow_case_);
2141
2142 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2143 // At this point code register contains smi tagged one-byte char code.
2144 __ LoadRR(r0, code_);
2145 __ SmiToPtrArrayOffset(code_, code_);
2146 __ AddP(result_, code_);
2147 __ LoadRR(code_, r0);
2148 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2149 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2150 __ beq(&slow_case_);
2151 __ bind(&exit_);
2152 }
2153
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2154 void StringCharFromCodeGenerator::GenerateSlow(
2155 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2156 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2157
2158 __ bind(&slow_case_);
2159 call_helper.BeforeCall(masm);
2160 __ push(code_);
2161 __ CallRuntime(Runtime::kStringCharFromCode);
2162 __ Move(result_, r2);
2163 call_helper.AfterCall(masm);
2164 __ b(&exit_);
2165
2166 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2167 }
2168
2169 enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 };
2170
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)2171 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
2172 Register src, Register count,
2173 Register scratch,
2174 String::Encoding encoding) {
2175 if (FLAG_debug_code) {
2176 // Check that destination is word aligned.
2177 __ mov(r0, Operand(kPointerAlignmentMask));
2178 __ AndP(r0, dest);
2179 __ Check(eq, kDestinationOfCopyNotAligned, cr0);
2180 }
2181
2182 // Nothing to do for zero characters.
2183 Label done;
2184 if (encoding == String::TWO_BYTE_ENCODING) {
2185 // double the length
2186 __ AddP(count, count, count);
2187 __ beq(&done, Label::kNear);
2188 } else {
2189 __ CmpP(count, Operand::Zero());
2190 __ beq(&done, Label::kNear);
2191 }
2192
2193 // Copy count bytes from src to dst.
2194 Label byte_loop;
2195 // TODO(joransiu): Convert into MVC loop
2196 __ bind(&byte_loop);
2197 __ LoadlB(scratch, MemOperand(src));
2198 __ la(src, MemOperand(src, 1));
2199 __ stc(scratch, MemOperand(dest));
2200 __ la(dest, MemOperand(dest, 1));
2201 __ BranchOnCount(count, &byte_loop);
2202
2203 __ bind(&done);
2204 }
2205
2206
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)2207 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2208 Register left,
2209 Register right,
2210 Register scratch1,
2211 Register scratch2) {
2212 Register length = scratch1;
2213
2214 // Compare lengths.
2215 Label strings_not_equal, check_zero_length;
2216 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
2217 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2218 __ CmpP(length, scratch2);
2219 __ beq(&check_zero_length);
2220 __ bind(&strings_not_equal);
2221 __ LoadSmiLiteral(r2, Smi::FromInt(NOT_EQUAL));
2222 __ Ret();
2223
2224 // Check if the length is zero.
2225 Label compare_chars;
2226 __ bind(&check_zero_length);
2227 STATIC_ASSERT(kSmiTag == 0);
2228 __ CmpP(length, Operand::Zero());
2229 __ bne(&compare_chars);
2230 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2231 __ Ret();
2232
2233 // Compare characters.
2234 __ bind(&compare_chars);
2235 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2236 &strings_not_equal);
2237
2238 // Characters are equal.
2239 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2240 __ Ret();
2241 }
2242
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)2243 void StringHelper::GenerateCompareFlatOneByteStrings(
2244 MacroAssembler* masm, Register left, Register right, Register scratch1,
2245 Register scratch2, Register scratch3) {
2246 Label skip, result_not_equal, compare_lengths;
2247 // Find minimum length and length difference.
2248 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
2249 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2250 __ SubP(scratch3, scratch1, scratch2 /*, LeaveOE, SetRC*/);
2251 // Removing RC looks okay here.
2252 Register length_delta = scratch3;
2253 __ ble(&skip, Label::kNear);
2254 __ LoadRR(scratch1, scratch2);
2255 __ bind(&skip);
2256 Register min_length = scratch1;
2257 STATIC_ASSERT(kSmiTag == 0);
2258 __ CmpP(min_length, Operand::Zero());
2259 __ beq(&compare_lengths);
2260
2261 // Compare loop.
2262 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2263 &result_not_equal);
2264
2265 // Compare lengths - strings up to min-length are equal.
2266 __ bind(&compare_lengths);
2267 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2268 // Use length_delta as result if it's zero.
2269 __ LoadRR(r2, length_delta);
2270 __ CmpP(length_delta, Operand::Zero());
2271 __ bind(&result_not_equal);
2272 // Conditionally update the result based either on length_delta or
2273 // the last comparion performed in the loop above.
2274 Label less_equal, equal;
2275 __ ble(&less_equal);
2276 __ LoadSmiLiteral(r2, Smi::FromInt(GREATER));
2277 __ Ret();
2278 __ bind(&less_equal);
2279 __ beq(&equal);
2280 __ LoadSmiLiteral(r2, Smi::FromInt(LESS));
2281 __ bind(&equal);
2282 __ Ret();
2283 }
2284
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Label * chars_not_equal)2285 void StringHelper::GenerateOneByteCharsCompareLoop(
2286 MacroAssembler* masm, Register left, Register right, Register length,
2287 Register scratch1, Label* chars_not_equal) {
2288 // Change index to run from -length to -1 by adding length to string
2289 // start. This means that loop ends when index reaches zero, which
2290 // doesn't need an additional compare.
2291 __ SmiUntag(length);
2292 __ AddP(scratch1, length,
2293 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2294 __ AddP(left, scratch1);
2295 __ AddP(right, scratch1);
2296 __ LoadComplementRR(length, length);
2297 Register index = length; // index = -length;
2298
2299 // Compare loop.
2300 Label loop;
2301 __ bind(&loop);
2302 __ LoadlB(scratch1, MemOperand(left, index));
2303 __ LoadlB(r0, MemOperand(right, index));
2304 __ CmpP(scratch1, r0);
2305 __ bne(chars_not_equal);
2306 __ AddP(index, Operand(1));
2307 __ CmpP(index, Operand::Zero());
2308 __ bne(&loop);
2309 }
2310
Generate(MacroAssembler * masm)2311 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2312 // ----------- S t a t e -------------
2313 // -- r3 : left
2314 // -- r2 : right
2315 // r3: second string
2316 // -----------------------------------
2317
2318 // Load r4 with the allocation site. We stick an undefined dummy value here
2319 // and replace it with the real allocation site later when we instantiate this
2320 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2321 __ Move(r4, isolate()->factory()->undefined_value());
2322
2323 // Make sure that we actually patched the allocation site.
2324 if (FLAG_debug_code) {
2325 __ TestIfSmi(r4);
2326 __ Assert(ne, kExpectedAllocationSite, cr0);
2327 __ push(r4);
2328 __ LoadP(r4, FieldMemOperand(r4, HeapObject::kMapOffset));
2329 __ CompareRoot(r4, Heap::kAllocationSiteMapRootIndex);
2330 __ pop(r4);
2331 __ Assert(eq, kExpectedAllocationSite);
2332 }
2333
2334 // Tail call into the stub that handles binary operations with allocation
2335 // sites.
2336 BinaryOpWithAllocationSiteStub stub(isolate(), state());
2337 __ TailCallStub(&stub);
2338 }
2339
GenerateBooleans(MacroAssembler * masm)2340 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2341 DCHECK_EQ(CompareICState::BOOLEAN, state());
2342 Label miss;
2343
2344 __ CheckMap(r3, r4, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2345 __ CheckMap(r2, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2346 if (!Token::IsEqualityOp(op())) {
2347 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
2348 __ AssertSmi(r3);
2349 __ LoadP(r2, FieldMemOperand(r2, Oddball::kToNumberOffset));
2350 __ AssertSmi(r2);
2351 }
2352 __ SubP(r2, r3, r2);
2353 __ Ret();
2354
2355 __ bind(&miss);
2356 GenerateMiss(masm);
2357 }
2358
GenerateSmis(MacroAssembler * masm)2359 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2360 DCHECK(state() == CompareICState::SMI);
2361 Label miss;
2362 __ OrP(r4, r3, r2);
2363 __ JumpIfNotSmi(r4, &miss);
2364
2365 if (GetCondition() == eq) {
2366 // For equality we do not care about the sign of the result.
2367 // __ sub(r2, r2, r3, SetCC);
2368 __ SubP(r2, r2, r3);
2369 } else {
2370 // Untag before subtracting to avoid handling overflow.
2371 __ SmiUntag(r3);
2372 __ SmiUntag(r2);
2373 __ SubP(r2, r3, r2);
2374 }
2375 __ Ret();
2376
2377 __ bind(&miss);
2378 GenerateMiss(masm);
2379 }
2380
GenerateNumbers(MacroAssembler * masm)2381 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2382 DCHECK(state() == CompareICState::NUMBER);
2383
2384 Label generic_stub;
2385 Label unordered, maybe_undefined1, maybe_undefined2;
2386 Label miss;
2387 Label equal, less_than;
2388
2389 if (left() == CompareICState::SMI) {
2390 __ JumpIfNotSmi(r3, &miss);
2391 }
2392 if (right() == CompareICState::SMI) {
2393 __ JumpIfNotSmi(r2, &miss);
2394 }
2395
2396 // Inlining the double comparison and falling back to the general compare
2397 // stub if NaN is involved.
2398 // Load left and right operand.
2399 Label done, left, left_smi, right_smi;
2400 __ JumpIfSmi(r2, &right_smi);
2401 __ CheckMap(r2, r4, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
2402 DONT_DO_SMI_CHECK);
2403 __ LoadDouble(d1, FieldMemOperand(r2, HeapNumber::kValueOffset));
2404 __ b(&left);
2405 __ bind(&right_smi);
2406 __ SmiToDouble(d1, r2);
2407
2408 __ bind(&left);
2409 __ JumpIfSmi(r3, &left_smi);
2410 __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
2411 DONT_DO_SMI_CHECK);
2412 __ LoadDouble(d0, FieldMemOperand(r3, HeapNumber::kValueOffset));
2413 __ b(&done);
2414 __ bind(&left_smi);
2415 __ SmiToDouble(d0, r3);
2416
2417 __ bind(&done);
2418
2419 // Compare operands
2420 __ cdbr(d0, d1);
2421
2422 // Don't base result on status bits when a NaN is involved.
2423 __ bunordered(&unordered);
2424
2425 // Return a result of -1, 0, or 1, based on status bits.
2426 __ beq(&equal);
2427 __ blt(&less_than);
2428 // assume greater than
2429 __ LoadImmP(r2, Operand(GREATER));
2430 __ Ret();
2431 __ bind(&equal);
2432 __ LoadImmP(r2, Operand(EQUAL));
2433 __ Ret();
2434 __ bind(&less_than);
2435 __ LoadImmP(r2, Operand(LESS));
2436 __ Ret();
2437
2438 __ bind(&unordered);
2439 __ bind(&generic_stub);
2440 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2441 CompareICState::GENERIC, CompareICState::GENERIC);
2442 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2443
2444 __ bind(&maybe_undefined1);
2445 if (Token::IsOrderedRelationalCompareOp(op())) {
2446 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
2447 __ bne(&miss);
2448 __ JumpIfSmi(r3, &unordered);
2449 __ CompareObjectType(r3, r4, r4, HEAP_NUMBER_TYPE);
2450 __ bne(&maybe_undefined2);
2451 __ b(&unordered);
2452 }
2453
2454 __ bind(&maybe_undefined2);
2455 if (Token::IsOrderedRelationalCompareOp(op())) {
2456 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
2457 __ beq(&unordered);
2458 }
2459
2460 __ bind(&miss);
2461 GenerateMiss(masm);
2462 }
2463
GenerateInternalizedStrings(MacroAssembler * masm)2464 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2465 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2466 Label miss, not_equal;
2467
2468 // Registers containing left and right operands respectively.
2469 Register left = r3;
2470 Register right = r2;
2471 Register tmp1 = r4;
2472 Register tmp2 = r5;
2473
2474 // Check that both operands are heap objects.
2475 __ JumpIfEitherSmi(left, right, &miss);
2476
2477 // Check that both operands are symbols.
2478 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2479 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2480 __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2481 __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2482 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2483 __ OrP(tmp1, tmp1, tmp2);
2484 __ AndP(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2485 __ bne(&miss);
2486
2487 // Internalized strings are compared by identity.
2488 __ CmpP(left, right);
2489 __ bne(¬_equal);
2490 // Make sure r2 is non-zero. At this point input operands are
2491 // guaranteed to be non-zero.
2492 DCHECK(right.is(r2));
2493 STATIC_ASSERT(EQUAL == 0);
2494 STATIC_ASSERT(kSmiTag == 0);
2495 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2496 __ bind(¬_equal);
2497 __ Ret();
2498
2499 __ bind(&miss);
2500 GenerateMiss(masm);
2501 }
2502
GenerateUniqueNames(MacroAssembler * masm)2503 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2504 DCHECK(state() == CompareICState::UNIQUE_NAME);
2505 DCHECK(GetCondition() == eq);
2506 Label miss;
2507
2508 // Registers containing left and right operands respectively.
2509 Register left = r3;
2510 Register right = r2;
2511 Register tmp1 = r4;
2512 Register tmp2 = r5;
2513
2514 // Check that both operands are heap objects.
2515 __ JumpIfEitherSmi(left, right, &miss);
2516
2517 // Check that both operands are unique names. This leaves the instance
2518 // types loaded in tmp1 and tmp2.
2519 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2520 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2521 __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2522 __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2523
2524 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2525 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2526
2527 // Unique names are compared by identity.
2528 __ CmpP(left, right);
2529 __ bne(&miss);
2530 // Make sure r2 is non-zero. At this point input operands are
2531 // guaranteed to be non-zero.
2532 DCHECK(right.is(r2));
2533 STATIC_ASSERT(EQUAL == 0);
2534 STATIC_ASSERT(kSmiTag == 0);
2535 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2536 __ Ret();
2537
2538 __ bind(&miss);
2539 GenerateMiss(masm);
2540 }
2541
GenerateStrings(MacroAssembler * masm)2542 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2543 DCHECK(state() == CompareICState::STRING);
2544 Label miss, not_identical, is_symbol;
2545
2546 bool equality = Token::IsEqualityOp(op());
2547
2548 // Registers containing left and right operands respectively.
2549 Register left = r3;
2550 Register right = r2;
2551 Register tmp1 = r4;
2552 Register tmp2 = r5;
2553 Register tmp3 = r6;
2554 Register tmp4 = r7;
2555
2556 // Check that both operands are heap objects.
2557 __ JumpIfEitherSmi(left, right, &miss);
2558
2559 // Check that both operands are strings. This leaves the instance
2560 // types loaded in tmp1 and tmp2.
2561 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2562 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2563 __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2564 __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2565 STATIC_ASSERT(kNotStringTag != 0);
2566 __ OrP(tmp3, tmp1, tmp2);
2567 __ AndP(r0, tmp3, Operand(kIsNotStringMask));
2568 __ bne(&miss);
2569
2570 // Fast check for identical strings.
2571 __ CmpP(left, right);
2572 STATIC_ASSERT(EQUAL == 0);
2573 STATIC_ASSERT(kSmiTag == 0);
2574 __ bne(¬_identical);
2575 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2576 __ Ret();
2577 __ bind(¬_identical);
2578
2579 // Handle not identical strings.
2580
2581 // Check that both strings are internalized strings. If they are, we're done
2582 // because we already know they are not identical. We know they are both
2583 // strings.
2584 if (equality) {
2585 DCHECK(GetCondition() == eq);
2586 STATIC_ASSERT(kInternalizedTag == 0);
2587 __ OrP(tmp3, tmp1, tmp2);
2588 __ AndP(r0, tmp3, Operand(kIsNotInternalizedMask));
2589 __ bne(&is_symbol);
2590 // Make sure r2 is non-zero. At this point input operands are
2591 // guaranteed to be non-zero.
2592 DCHECK(right.is(r2));
2593 __ Ret();
2594 __ bind(&is_symbol);
2595 }
2596
2597 // Check that both strings are sequential one-byte.
2598 Label runtime;
2599 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
2600 &runtime);
2601
2602 // Compare flat one-byte strings. Returns when done.
2603 if (equality) {
2604 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
2605 tmp2);
2606 } else {
2607 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2608 tmp2, tmp3);
2609 }
2610
2611 // Handle more complex cases in runtime.
2612 __ bind(&runtime);
2613 if (equality) {
2614 {
2615 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2616 __ Push(left, right);
2617 __ CallRuntime(Runtime::kStringEqual);
2618 }
2619 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
2620 __ SubP(r2, r2, r3);
2621 __ Ret();
2622 } else {
2623 __ Push(left, right);
2624 __ TailCallRuntime(Runtime::kStringCompare);
2625 }
2626
2627 __ bind(&miss);
2628 GenerateMiss(masm);
2629 }
2630
GenerateReceivers(MacroAssembler * masm)2631 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2632 DCHECK_EQ(CompareICState::RECEIVER, state());
2633 Label miss;
2634 __ AndP(r4, r3, r2);
2635 __ JumpIfSmi(r4, &miss);
2636
2637 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2638 __ CompareObjectType(r2, r4, r4, FIRST_JS_RECEIVER_TYPE);
2639 __ blt(&miss);
2640 __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
2641 __ blt(&miss);
2642
2643 DCHECK(GetCondition() == eq);
2644 __ SubP(r2, r2, r3);
2645 __ Ret();
2646
2647 __ bind(&miss);
2648 GenerateMiss(masm);
2649 }
2650
GenerateKnownReceivers(MacroAssembler * masm)2651 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2652 Label miss;
2653 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2654 __ AndP(r4, r3, r2);
2655 __ JumpIfSmi(r4, &miss);
2656 __ GetWeakValue(r6, cell);
2657 __ LoadP(r4, FieldMemOperand(r2, HeapObject::kMapOffset));
2658 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
2659 __ CmpP(r4, r6);
2660 __ bne(&miss);
2661 __ CmpP(r5, r6);
2662 __ bne(&miss);
2663
2664 if (Token::IsEqualityOp(op())) {
2665 __ SubP(r2, r2, r3);
2666 __ Ret();
2667 } else {
2668 if (op() == Token::LT || op() == Token::LTE) {
2669 __ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
2670 } else {
2671 __ LoadSmiLiteral(r4, Smi::FromInt(LESS));
2672 }
2673 __ Push(r3, r2, r4);
2674 __ TailCallRuntime(Runtime::kCompare);
2675 }
2676
2677 __ bind(&miss);
2678 GenerateMiss(masm);
2679 }
2680
GenerateMiss(MacroAssembler * masm)2681 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2682 {
2683 // Call the runtime system in a fresh internal frame.
2684 FrameScope scope(masm, StackFrame::INTERNAL);
2685 __ Push(r3, r2);
2686 __ Push(r3, r2);
2687 __ LoadSmiLiteral(r0, Smi::FromInt(op()));
2688 __ push(r0);
2689 __ CallRuntime(Runtime::kCompareIC_Miss);
2690 // Compute the entry point of the rewritten stub.
2691 __ AddP(r4, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
2692 // Restore registers.
2693 __ Pop(r3, r2);
2694 }
2695
2696 __ JumpToJSEntry(r4);
2697 }
2698
2699 // This stub is paired with DirectCEntryStub::GenerateCall
Generate(MacroAssembler * masm)2700 void DirectCEntryStub::Generate(MacroAssembler* masm) {
2701 __ CleanseP(r14);
2702
2703 __ b(ip); // Callee will return to R14 directly
2704 }
2705
GenerateCall(MacroAssembler * masm,Register target)2706 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
2707 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
2708 // Native AIX/S390X Linux use a function descriptor.
2709 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
2710 __ LoadP(target, MemOperand(target, 0)); // Instruction address
2711 #else
2712 // ip needs to be set for DirectCEentryStub::Generate, and also
2713 // for ABI_CALL_VIA_IP.
2714 __ Move(ip, target);
2715 #endif
2716
2717 __ call(GetCode(), RelocInfo::CODE_TARGET); // Call the stub.
2718 }
2719
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)2720 void NameDictionaryLookupStub::GenerateNegativeLookup(
2721 MacroAssembler* masm, Label* miss, Label* done, Register receiver,
2722 Register properties, Handle<Name> name, Register scratch0) {
2723 DCHECK(name->IsUniqueName());
2724 // If names of slots in range from 1 to kProbes - 1 for the hash value are
2725 // not equal to the name and kProbes-th slot is not used (its name is the
2726 // undefined value), it guarantees the hash table doesn't contain the
2727 // property. It's true even if some slots represent deleted properties
2728 // (their names are the hole value).
2729 for (int i = 0; i < kInlinedProbes; i++) {
2730 // scratch0 points to properties hash.
2731 // Compute the masked index: (hash + i + i * i) & mask.
2732 Register index = scratch0;
2733 // Capacity is smi 2^n.
2734 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
2735 __ SubP(index, Operand(1));
2736 __ LoadSmiLiteral(
2737 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
2738 __ AndP(index, ip);
2739
2740 // Scale the index by multiplying by the entry size.
2741 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2742 __ ShiftLeftP(ip, index, Operand(1));
2743 __ AddP(index, ip); // index *= 3.
2744
2745 Register entity_name = scratch0;
2746 // Having undefined at this place means the name is not contained.
2747 Register tmp = properties;
2748 __ SmiToPtrArrayOffset(ip, index);
2749 __ AddP(tmp, properties, ip);
2750 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
2751
2752 DCHECK(!tmp.is(entity_name));
2753 __ CompareRoot(entity_name, Heap::kUndefinedValueRootIndex);
2754 __ beq(done);
2755
2756 // Stop if found the property.
2757 __ CmpP(entity_name, Operand(Handle<Name>(name)));
2758 __ beq(miss);
2759
2760 Label good;
2761 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
2762 __ beq(&good);
2763
2764 // Check if the entry name is not a unique name.
2765 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
2766 __ LoadlB(entity_name,
2767 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
2768 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
2769 __ bind(&good);
2770
2771 // Restore the properties.
2772 __ LoadP(properties,
2773 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2774 }
2775
2776 const int spill_mask = (r0.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() |
2777 r4.bit() | r3.bit() | r2.bit());
2778
2779 __ LoadRR(r0, r14);
2780 __ MultiPush(spill_mask);
2781
2782 __ LoadP(r2, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2783 __ mov(r3, Operand(Handle<Name>(name)));
2784 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
2785 __ CallStub(&stub);
2786 __ CmpP(r2, Operand::Zero());
2787
2788 __ MultiPop(spill_mask); // MultiPop does not touch condition flags
2789 __ LoadRR(r14, r0);
2790
2791 __ beq(done);
2792 __ bne(miss);
2793 }
2794
2795 // Probe the name dictionary in the |elements| register. Jump to the
2796 // |done| label if a property with the given name is found. Jump to
2797 // the |miss| label otherwise.
2798 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)2799 void NameDictionaryLookupStub::GeneratePositiveLookup(
2800 MacroAssembler* masm, Label* miss, Label* done, Register elements,
2801 Register name, Register scratch1, Register scratch2) {
2802 DCHECK(!elements.is(scratch1));
2803 DCHECK(!elements.is(scratch2));
2804 DCHECK(!name.is(scratch1));
2805 DCHECK(!name.is(scratch2));
2806
2807 __ AssertName(name);
2808
2809 // Compute the capacity mask.
2810 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
2811 __ SmiUntag(scratch1); // convert smi to int
2812 __ SubP(scratch1, Operand(1));
2813
2814 // Generate an unrolled loop that performs a few probes before
2815 // giving up. Measurements done on Gmail indicate that 2 probes
2816 // cover ~93% of loads from dictionaries.
2817 for (int i = 0; i < kInlinedProbes; i++) {
2818 // Compute the masked index: (hash + i + i * i) & mask.
2819 __ LoadlW(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
2820 if (i > 0) {
2821 // Add the probe offset (i + i * i) left shifted to avoid right shifting
2822 // the hash in a separate instruction. The value hash + i + i * i is right
2823 // shifted in the following and instruction.
2824 DCHECK(NameDictionary::GetProbeOffset(i) <
2825 1 << (32 - Name::kHashFieldOffset));
2826 __ AddP(scratch2,
2827 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2828 }
2829 __ srl(scratch2, Operand(String::kHashShift));
2830 __ AndP(scratch2, scratch1);
2831
2832 // Scale the index by multiplying by the entry size.
2833 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2834 // scratch2 = scratch2 * 3.
2835 __ ShiftLeftP(ip, scratch2, Operand(1));
2836 __ AddP(scratch2, ip);
2837
2838 // Check if the key is identical to the name.
2839 __ ShiftLeftP(ip, scratch2, Operand(kPointerSizeLog2));
2840 __ AddP(scratch2, elements, ip);
2841 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
2842 __ CmpP(name, ip);
2843 __ beq(done);
2844 }
2845
2846 const int spill_mask = (r0.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() |
2847 r4.bit() | r3.bit() | r2.bit()) &
2848 ~(scratch1.bit() | scratch2.bit());
2849
2850 __ LoadRR(r0, r14);
2851 __ MultiPush(spill_mask);
2852 if (name.is(r2)) {
2853 DCHECK(!elements.is(r3));
2854 __ LoadRR(r3, name);
2855 __ LoadRR(r2, elements);
2856 } else {
2857 __ LoadRR(r2, elements);
2858 __ LoadRR(r3, name);
2859 }
2860 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
2861 __ CallStub(&stub);
2862 __ LoadRR(r1, r2);
2863 __ LoadRR(scratch2, r4);
2864 __ MultiPop(spill_mask);
2865 __ LoadRR(r14, r0);
2866
2867 __ CmpP(r1, Operand::Zero());
2868 __ bne(done);
2869 __ beq(miss);
2870 }
2871
Generate(MacroAssembler * masm)2872 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2873 // This stub overrides SometimesSetsUpAFrame() to return false. That means
2874 // we cannot call anything that could cause a GC from this stub.
2875 // Registers:
2876 // result: NameDictionary to probe
2877 // r3: key
2878 // dictionary: NameDictionary to probe.
2879 // index: will hold an index of entry if lookup is successful.
2880 // might alias with result_.
2881 // Returns:
2882 // result_ is zero if lookup failed, non zero otherwise.
2883
2884 Register result = r2;
2885 Register dictionary = r2;
2886 Register key = r3;
2887 Register index = r4;
2888 Register mask = r5;
2889 Register hash = r6;
2890 Register undefined = r7;
2891 Register entry_key = r8;
2892 Register scratch = r8;
2893
2894 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2895
2896 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
2897 __ SmiUntag(mask);
2898 __ SubP(mask, Operand(1));
2899
2900 __ LoadlW(hash, FieldMemOperand(key, String::kHashFieldOffset));
2901
2902 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
2903
2904 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2905 // Compute the masked index: (hash + i + i * i) & mask.
2906 // Capacity is smi 2^n.
2907 if (i > 0) {
2908 // Add the probe offset (i + i * i) left shifted to avoid right shifting
2909 // the hash in a separate instruction. The value hash + i + i * i is right
2910 // shifted in the following and instruction.
2911 DCHECK(NameDictionary::GetProbeOffset(i) <
2912 1 << (32 - Name::kHashFieldOffset));
2913 __ AddP(index, hash,
2914 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2915 } else {
2916 __ LoadRR(index, hash);
2917 }
2918 __ ShiftRight(r0, index, Operand(String::kHashShift));
2919 __ AndP(index, r0, mask);
2920
2921 // Scale the index by multiplying by the entry size.
2922 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2923 __ ShiftLeftP(scratch, index, Operand(1));
2924 __ AddP(index, scratch); // index *= 3.
2925
2926 __ ShiftLeftP(scratch, index, Operand(kPointerSizeLog2));
2927 __ AddP(index, dictionary, scratch);
2928 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
2929
2930 // Having undefined at this place means the name is not contained.
2931 __ CmpP(entry_key, undefined);
2932 __ beq(¬_in_dictionary);
2933
2934 // Stop if found the property.
2935 __ CmpP(entry_key, key);
2936 __ beq(&in_dictionary);
2937
2938 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2939 // Check if the entry name is not a unique name.
2940 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
2941 __ LoadlB(entry_key,
2942 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
2943 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
2944 }
2945 }
2946
2947 __ bind(&maybe_in_dictionary);
2948 // If we are doing negative lookup then probing failure should be
2949 // treated as a lookup success. For positive lookup probing failure
2950 // should be treated as lookup failure.
2951 if (mode() == POSITIVE_LOOKUP) {
2952 __ LoadImmP(result, Operand::Zero());
2953 __ Ret();
2954 }
2955
2956 __ bind(&in_dictionary);
2957 __ LoadImmP(result, Operand(1));
2958 __ Ret();
2959
2960 __ bind(¬_in_dictionary);
2961 __ LoadImmP(result, Operand::Zero());
2962 __ Ret();
2963 }
2964
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)2965 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2966 Isolate* isolate) {
2967 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
2968 stub1.GetCode();
2969 // Hydrogen code stubs need stub2 at snapshot time.
2970 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2971 stub2.GetCode();
2972 }
2973
2974 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
2975 // the value has just been written into the object, now this stub makes sure
2976 // we keep the GC informed. The word in the object where the value has been
2977 // written is in the address register.
Generate(MacroAssembler * masm)2978 void RecordWriteStub::Generate(MacroAssembler* masm) {
2979 Label skip_to_incremental_noncompacting;
2980 Label skip_to_incremental_compacting;
2981
2982 // The first two branch instructions are generated with labels so as to
2983 // get the offset fixed up correctly by the bind(Label*) call. We patch
2984 // it back and forth between branch condition True and False
2985 // when we start and stop incremental heap marking.
2986 // See RecordWriteStub::Patch for details.
2987
2988 // Clear the bit, branch on True for NOP action initially
2989 __ b(CC_NOP, &skip_to_incremental_noncompacting);
2990 __ b(CC_NOP, &skip_to_incremental_compacting);
2991
2992 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2993 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2994 MacroAssembler::kReturnAtEnd);
2995 }
2996 __ Ret();
2997
2998 __ bind(&skip_to_incremental_noncompacting);
2999 GenerateIncremental(masm, INCREMENTAL);
3000
3001 __ bind(&skip_to_incremental_compacting);
3002 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3003
3004 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3005 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3006 // patching not required on S390 as the initial path is effectively NOP
3007 }
3008
GenerateIncremental(MacroAssembler * masm,Mode mode)3009 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3010 regs_.Save(masm);
3011
3012 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3013 Label dont_need_remembered_set;
3014
3015 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3016 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3017 regs_.scratch0(), &dont_need_remembered_set);
3018
3019 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
3020 &dont_need_remembered_set);
3021
3022 // First notify the incremental marker if necessary, then update the
3023 // remembered set.
3024 CheckNeedsToInformIncrementalMarker(
3025 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3026 InformIncrementalMarker(masm);
3027 regs_.Restore(masm);
3028 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3029 MacroAssembler::kReturnAtEnd);
3030
3031 __ bind(&dont_need_remembered_set);
3032 }
3033
3034 CheckNeedsToInformIncrementalMarker(
3035 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3036 InformIncrementalMarker(masm);
3037 regs_.Restore(masm);
3038 __ Ret();
3039 }
3040
InformIncrementalMarker(MacroAssembler * masm)3041 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3042 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3043 int argument_count = 3;
3044 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3045 Register address =
3046 r2.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3047 DCHECK(!address.is(regs_.object()));
3048 DCHECK(!address.is(r2));
3049 __ LoadRR(address, regs_.address());
3050 __ LoadRR(r2, regs_.object());
3051 __ LoadRR(r3, address);
3052 __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
3053
3054 AllowExternalCallThatCantCauseGC scope(masm);
3055 __ CallCFunction(
3056 ExternalReference::incremental_marking_record_write_function(isolate()),
3057 argument_count);
3058 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3059 }
3060
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)3061 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3062 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
3063 Mode mode) {
3064 Label on_black;
3065 Label need_incremental;
3066 Label need_incremental_pop_scratch;
3067
3068 // Let's look at the color of the object: If it is not black we don't have
3069 // to inform the incremental marker.
3070 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3071
3072 regs_.Restore(masm);
3073 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3074 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3075 MacroAssembler::kReturnAtEnd);
3076 } else {
3077 __ Ret();
3078 }
3079
3080 __ bind(&on_black);
3081
3082 // Get the value from the slot.
3083 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3084
3085 if (mode == INCREMENTAL_COMPACTION) {
3086 Label ensure_not_white;
3087
3088 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3089 regs_.scratch1(), // Scratch.
3090 MemoryChunk::kEvacuationCandidateMask, eq,
3091 &ensure_not_white);
3092
3093 __ CheckPageFlag(regs_.object(),
3094 regs_.scratch1(), // Scratch.
3095 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
3096 &need_incremental);
3097
3098 __ bind(&ensure_not_white);
3099 }
3100
3101 // We need extra registers for this, so we push the object and the address
3102 // register temporarily.
3103 __ Push(regs_.object(), regs_.address());
3104 __ JumpIfWhite(regs_.scratch0(), // The value.
3105 regs_.scratch1(), // Scratch.
3106 regs_.object(), // Scratch.
3107 regs_.address(), // Scratch.
3108 &need_incremental_pop_scratch);
3109 __ Pop(regs_.object(), regs_.address());
3110
3111 regs_.Restore(masm);
3112 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3113 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3114 MacroAssembler::kReturnAtEnd);
3115 } else {
3116 __ Ret();
3117 }
3118
3119 __ bind(&need_incremental_pop_scratch);
3120 __ Pop(regs_.object(), regs_.address());
3121
3122 __ bind(&need_incremental);
3123
3124 // Fall through when we need to inform the incremental marker.
3125 }
3126
Generate(MacroAssembler * masm)3127 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3128 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3129 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3130 int parameter_count_offset =
3131 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
3132 __ LoadP(r3, MemOperand(fp, parameter_count_offset));
3133 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3134 __ AddP(r3, Operand(1));
3135 }
3136 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3137 __ ShiftLeftP(r3, r3, Operand(kPointerSizeLog2));
3138 __ la(sp, MemOperand(r3, sp));
3139 __ Ret();
3140 }
3141
Generate(MacroAssembler * masm)3142 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3143 __ EmitLoadTypeFeedbackVector(r4);
3144 CallICStub stub(isolate(), state());
3145 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3146 }
3147
HandleArrayCases(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,bool is_polymorphic,Label * miss)3148 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3149 Register receiver_map, Register scratch1,
3150 Register scratch2, bool is_polymorphic,
3151 Label* miss) {
3152 // feedback initially contains the feedback array
3153 Label next_loop, prepare_next;
3154 Label start_polymorphic;
3155
3156 Register cached_map = scratch1;
3157
3158 __ LoadP(cached_map,
3159 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3160 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3161 __ CmpP(receiver_map, cached_map);
3162 __ bne(&start_polymorphic, Label::kNear);
3163 // found, now call handler.
3164 Register handler = feedback;
3165 __ LoadP(handler,
3166 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3167 __ AddP(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3168 __ Jump(ip);
3169
3170 Register length = scratch2;
3171 __ bind(&start_polymorphic);
3172 __ LoadP(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3173 if (!is_polymorphic) {
3174 // If the IC could be monomorphic we have to make sure we don't go past the
3175 // end of the feedback array.
3176 __ CmpSmiLiteral(length, Smi::FromInt(2), r0);
3177 __ beq(miss);
3178 }
3179
3180 Register too_far = length;
3181 Register pointer_reg = feedback;
3182
3183 // +-----+------+------+-----+-----+ ... ----+
3184 // | map | len | wm0 | h0 | wm1 | hN |
3185 // +-----+------+------+-----+-----+ ... ----+
3186 // 0 1 2 len-1
3187 // ^ ^
3188 // | |
3189 // pointer_reg too_far
3190 // aka feedback scratch2
3191 // also need receiver_map
3192 // use cached_map (scratch1) to look in the weak map values.
3193 __ SmiToPtrArrayOffset(r0, length);
3194 __ AddP(too_far, feedback, r0);
3195 __ AddP(too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3196 __ AddP(pointer_reg, feedback,
3197 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
3198
3199 __ bind(&next_loop);
3200 __ LoadP(cached_map, MemOperand(pointer_reg));
3201 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3202 __ CmpP(receiver_map, cached_map);
3203 __ bne(&prepare_next, Label::kNear);
3204 __ LoadP(handler, MemOperand(pointer_reg, kPointerSize));
3205 __ AddP(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3206 __ Jump(ip);
3207
3208 __ bind(&prepare_next);
3209 __ AddP(pointer_reg, Operand(kPointerSize * 2));
3210 __ CmpP(pointer_reg, too_far);
3211 __ blt(&next_loop, Label::kNear);
3212
3213 // We exhausted our array of map handler pairs.
3214 __ b(miss);
3215 }
3216
HandleMonomorphicCase(MacroAssembler * masm,Register receiver,Register receiver_map,Register feedback,Register vector,Register slot,Register scratch,Label * compare_map,Label * load_smi_map,Label * try_array)3217 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3218 Register receiver_map, Register feedback,
3219 Register vector, Register slot,
3220 Register scratch, Label* compare_map,
3221 Label* load_smi_map, Label* try_array) {
3222 __ JumpIfSmi(receiver, load_smi_map);
3223 __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
3224 __ bind(compare_map);
3225 Register cached_map = scratch;
3226 // Move the weak map into the weak_cell register.
3227 __ LoadP(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
3228 __ CmpP(cached_map, receiver_map);
3229 __ bne(try_array);
3230 Register handler = feedback;
3231 __ SmiToPtrArrayOffset(r1, slot);
3232 __ LoadP(handler,
3233 FieldMemOperand(r1, vector, FixedArray::kHeaderSize + kPointerSize));
3234 __ AddP(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3235 __ Jump(ip);
3236 }
3237
Generate(MacroAssembler * masm)3238 void KeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3239 __ EmitLoadTypeFeedbackVector(StoreWithVectorDescriptor::VectorRegister());
3240 KeyedStoreICStub stub(isolate(), state());
3241 stub.GenerateForTrampoline(masm);
3242 }
3243
Generate(MacroAssembler * masm)3244 void KeyedStoreICStub::Generate(MacroAssembler* masm) {
3245 GenerateImpl(masm, false);
3246 }
3247
GenerateForTrampoline(MacroAssembler * masm)3248 void KeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3249 GenerateImpl(masm, true);
3250 }
3251
HandlePolymorphicStoreCase(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,Label * miss)3252 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
3253 Register receiver_map, Register scratch1,
3254 Register scratch2, Label* miss) {
3255 // feedback initially contains the feedback array
3256 Label next_loop, prepare_next;
3257 Label start_polymorphic;
3258 Label transition_call;
3259
3260 Register cached_map = scratch1;
3261 Register too_far = scratch2;
3262 Register pointer_reg = feedback;
3263 __ LoadP(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3264
3265 // +-----+------+------+-----+-----+-----+ ... ----+
3266 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
3267 // +-----+------+------+-----+-----+ ----+ ... ----+
3268 // 0 1 2 len-1
3269 // ^ ^
3270 // | |
3271 // pointer_reg too_far
3272 // aka feedback scratch2
3273 // also need receiver_map
3274 // use cached_map (scratch1) to look in the weak map values.
3275 __ SmiToPtrArrayOffset(r0, too_far);
3276 __ AddP(too_far, feedback, r0);
3277 __ AddP(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3278 __ AddP(pointer_reg, feedback,
3279 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
3280
3281 __ bind(&next_loop);
3282 __ LoadP(cached_map, MemOperand(pointer_reg));
3283 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3284 __ CmpP(receiver_map, cached_map);
3285 __ bne(&prepare_next);
3286 // Is it a transitioning store?
3287 __ LoadP(too_far, MemOperand(pointer_reg, kPointerSize));
3288 __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex);
3289 __ bne(&transition_call);
3290 __ LoadP(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
3291 __ AddP(ip, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
3292 __ Jump(ip);
3293
3294 __ bind(&transition_call);
3295 __ LoadP(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
3296 __ JumpIfSmi(too_far, miss);
3297
3298 __ LoadP(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
3299
3300 // Load the map into the correct register.
3301 DCHECK(feedback.is(StoreTransitionDescriptor::MapRegister()));
3302 __ LoadRR(feedback, too_far);
3303
3304 __ AddP(ip, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
3305 __ Jump(ip);
3306
3307 __ bind(&prepare_next);
3308 __ AddP(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
3309 __ CmpLogicalP(pointer_reg, too_far);
3310 __ blt(&next_loop);
3311
3312 // We exhausted our array of map handler pairs.
3313 __ b(miss);
3314 }
3315
GenerateImpl(MacroAssembler * masm,bool in_frame)3316 void KeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3317 Register receiver = StoreWithVectorDescriptor::ReceiverRegister(); // r3
3318 Register key = StoreWithVectorDescriptor::NameRegister(); // r4
3319 Register vector = StoreWithVectorDescriptor::VectorRegister(); // r5
3320 Register slot = StoreWithVectorDescriptor::SlotRegister(); // r6
3321 DCHECK(StoreWithVectorDescriptor::ValueRegister().is(r2)); // r2
3322 Register feedback = r7;
3323 Register receiver_map = r8;
3324 Register scratch1 = r9;
3325
3326 __ SmiToPtrArrayOffset(r0, slot);
3327 __ AddP(feedback, vector, r0);
3328 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3329
3330 // Try to quickly handle the monomorphic case without knowing for sure
3331 // if we have a weak cell in feedback. We do know it's safe to look
3332 // at WeakCell::kValueOffset.
3333 Label try_array, load_smi_map, compare_map;
3334 Label not_array, miss;
3335 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3336 scratch1, &compare_map, &load_smi_map, &try_array);
3337
3338 __ bind(&try_array);
3339 // Is it a fixed array?
3340 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3341 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3342 __ bne(¬_array);
3343
3344 // We have a polymorphic element handler.
3345 Label polymorphic, try_poly_name;
3346 __ bind(&polymorphic);
3347
3348 Register scratch2 = ip;
3349
3350 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
3351 &miss);
3352
3353 __ bind(¬_array);
3354 // Is it generic?
3355 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3356 __ bne(&try_poly_name);
3357 Handle<Code> megamorphic_stub =
3358 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3359 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
3360
3361 __ bind(&try_poly_name);
3362 // We might have a name in feedback, and a fixed array in the next slot.
3363 __ CmpP(key, feedback);
3364 __ bne(&miss);
3365 // If the name comparison succeeded, we know we have a fixed array with
3366 // at least one map/handler pair.
3367 __ SmiToPtrArrayOffset(r0, slot);
3368 __ AddP(feedback, vector, r0);
3369 __ LoadP(feedback,
3370 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
3371 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
3372 &miss);
3373
3374 __ bind(&miss);
3375 KeyedStoreIC::GenerateMiss(masm);
3376
3377 __ bind(&load_smi_map);
3378 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3379 __ b(&compare_map);
3380 }
3381
MaybeCallEntryHook(MacroAssembler * masm)3382 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
3383 if (masm->isolate()->function_entry_hook() != NULL) {
3384 PredictableCodeSizeScope predictable(masm,
3385 #if V8_TARGET_ARCH_S390X
3386 40);
3387 #elif V8_HOST_ARCH_S390
3388 36);
3389 #else
3390 32);
3391 #endif
3392 ProfileEntryHookStub stub(masm->isolate());
3393 __ CleanseP(r14);
3394 __ Push(r14, ip);
3395 __ CallStub(&stub); // BRASL
3396 __ Pop(r14, ip);
3397 }
3398 }
3399
Generate(MacroAssembler * masm)3400 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
3401 // The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call.
3402 #if V8_TARGET_ARCH_S390X
3403 const int32_t kReturnAddressDistanceFromFunctionStart =
3404 Assembler::kCallTargetAddressOffset + 18; // LAY + STG * 2
3405 #elif V8_HOST_ARCH_S390
3406 const int32_t kReturnAddressDistanceFromFunctionStart =
3407 Assembler::kCallTargetAddressOffset + 18; // NILH + LAY + ST * 2
3408 #else
3409 const int32_t kReturnAddressDistanceFromFunctionStart =
3410 Assembler::kCallTargetAddressOffset + 14; // LAY + ST * 2
3411 #endif
3412
3413 // This should contain all kJSCallerSaved registers.
3414 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
3415 r7.bit(); // Saved stack pointer.
3416
3417 // We also save r14+ip, so count here is one higher than the mask indicates.
3418 const int32_t kNumSavedRegs = kNumJSCallerSaved + 3;
3419
3420 // Save all caller-save registers as this may be called from anywhere.
3421 __ CleanseP(r14);
3422 __ LoadRR(ip, r14);
3423 __ MultiPush(kSavedRegs | ip.bit());
3424
3425 // Compute the function's address for the first argument.
3426
3427 __ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart));
3428
3429 // The caller's return address is two slots above the saved temporaries.
3430 // Grab that for the second argument to the hook.
3431 __ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize));
3432
3433 // Align the stack if necessary.
3434 int frame_alignment = masm->ActivationFrameAlignment();
3435 if (frame_alignment > kPointerSize) {
3436 __ LoadRR(r7, sp);
3437 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
3438 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
3439 }
3440
3441 #if !defined(USE_SIMULATOR)
3442 uintptr_t entry_hook =
3443 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
3444 __ mov(ip, Operand(entry_hook));
3445
3446 #if ABI_USES_FUNCTION_DESCRIPTORS
3447 // Function descriptor
3448 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
3449 __ LoadP(ip, MemOperand(ip, 0));
3450 // ip already set.
3451 #endif
3452 #endif
3453
3454 // zLinux ABI requires caller's frame to have sufficient space for callee
3455 // preserved regsiter save area.
3456 __ LoadImmP(r0, Operand::Zero());
3457 __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize -
3458 kNumRequiredStackFrameSlots * kPointerSize));
3459 __ StoreP(r0, MemOperand(sp));
3460 #if defined(USE_SIMULATOR)
3461 // Under the simulator we need to indirect the entry hook through a
3462 // trampoline function at a known address.
3463 // It additionally takes an isolate as a third parameter
3464 __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
3465
3466 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
3467 __ mov(ip, Operand(ExternalReference(
3468 &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
3469 #endif
3470 __ Call(ip);
3471
3472 // zLinux ABI requires caller's frame to have sufficient space for callee
3473 // preserved regsiter save area.
3474 __ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize +
3475 kNumRequiredStackFrameSlots * kPointerSize));
3476
3477 // Restore the stack pointer if needed.
3478 if (frame_alignment > kPointerSize) {
3479 __ LoadRR(sp, r7);
3480 }
3481
3482 // Also pop lr to get Ret(0).
3483 __ MultiPop(kSavedRegs | ip.bit());
3484 __ LoadRR(r14, ip);
3485 __ Ret();
3486 }
3487
3488 template <class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)3489 static void CreateArrayDispatch(MacroAssembler* masm,
3490 AllocationSiteOverrideMode mode) {
3491 if (mode == DISABLE_ALLOCATION_SITES) {
3492 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
3493 __ TailCallStub(&stub);
3494 } else if (mode == DONT_OVERRIDE) {
3495 int last_index =
3496 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
3497 for (int i = 0; i <= last_index; ++i) {
3498 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3499 __ CmpP(r5, Operand(kind));
3500 T stub(masm->isolate(), kind);
3501 __ TailCallStub(&stub, eq);
3502 }
3503
3504 // If we reached this point there is a problem.
3505 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3506 } else {
3507 UNREACHABLE();
3508 }
3509 }
3510
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)3511 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
3512 AllocationSiteOverrideMode mode) {
3513 // r4 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
3514 // r5 - kind (if mode != DISABLE_ALLOCATION_SITES)
3515 // r2 - number of arguments
3516 // r3 - constructor?
3517 // sp[0] - last argument
3518 Label normal_sequence;
3519 if (mode == DONT_OVERRIDE) {
3520 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3521 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3522 STATIC_ASSERT(FAST_ELEMENTS == 2);
3523 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3524 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
3525 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
3526
3527 // is the low bit set? If so, we are holey and that is good.
3528 __ AndP(r0, r5, Operand(1));
3529 __ bne(&normal_sequence);
3530 }
3531
3532 // look at the first argument
3533 __ LoadP(r7, MemOperand(sp, 0));
3534 __ CmpP(r7, Operand::Zero());
3535 __ beq(&normal_sequence);
3536
3537 if (mode == DISABLE_ALLOCATION_SITES) {
3538 ElementsKind initial = GetInitialFastElementsKind();
3539 ElementsKind holey_initial = GetHoleyElementsKind(initial);
3540
3541 ArraySingleArgumentConstructorStub stub_holey(
3542 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
3543 __ TailCallStub(&stub_holey);
3544
3545 __ bind(&normal_sequence);
3546 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
3547 DISABLE_ALLOCATION_SITES);
3548 __ TailCallStub(&stub);
3549 } else if (mode == DONT_OVERRIDE) {
3550 // We are going to create a holey array, but our kind is non-holey.
3551 // Fix kind and retry (only if we have an allocation site in the slot).
3552 __ AddP(r5, r5, Operand(1));
3553 if (FLAG_debug_code) {
3554 __ LoadP(r7, FieldMemOperand(r4, 0));
3555 __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
3556 __ Assert(eq, kExpectedAllocationSite);
3557 }
3558
3559 // Save the resulting elements kind in type info. We can't just store r5
3560 // in the AllocationSite::transition_info field because elements kind is
3561 // restricted to a portion of the field...upper bits need to be left alone.
3562 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3563 __ LoadP(r6, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
3564 __ AddSmiLiteral(r6, r6, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
3565 __ StoreP(r6, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
3566
3567 __ bind(&normal_sequence);
3568 int last_index =
3569 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
3570 for (int i = 0; i <= last_index; ++i) {
3571 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3572 __ CmpP(r5, Operand(kind));
3573 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
3574 __ TailCallStub(&stub, eq);
3575 }
3576
3577 // If we reached this point there is a problem.
3578 __ Abort(kUnexpectedElementsKindInArrayConstructor);
3579 } else {
3580 UNREACHABLE();
3581 }
3582 }
3583
3584 template <class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)3585 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
3586 int to_index =
3587 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
3588 for (int i = 0; i <= to_index; ++i) {
3589 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
3590 T stub(isolate, kind);
3591 stub.GetCode();
3592 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
3593 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
3594 stub1.GetCode();
3595 }
3596 }
3597 }
3598
GenerateStubsAheadOfTime(Isolate * isolate)3599 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
3600 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
3601 isolate);
3602 ArrayNArgumentsConstructorStub stub(isolate);
3603 stub.GetCode();
3604 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
3605 for (int i = 0; i < 2; i++) {
3606 // For internal arrays we only need a few things
3607 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
3608 stubh1.GetCode();
3609 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
3610 stubh2.GetCode();
3611 }
3612 }
3613
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)3614 void ArrayConstructorStub::GenerateDispatchToArrayStub(
3615 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
3616 Label not_zero_case, not_one_case;
3617 __ CmpP(r2, Operand::Zero());
3618 __ bne(¬_zero_case);
3619 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
3620
3621 __ bind(¬_zero_case);
3622 __ CmpP(r2, Operand(1));
3623 __ bgt(¬_one_case);
3624 CreateArrayDispatchOneArgument(masm, mode);
3625
3626 __ bind(¬_one_case);
3627 ArrayNArgumentsConstructorStub stub(masm->isolate());
3628 __ TailCallStub(&stub);
3629 }
3630
Generate(MacroAssembler * masm)3631 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
3632 // ----------- S t a t e -------------
3633 // -- r2 : argc (only if argument_count() == ANY)
3634 // -- r3 : constructor
3635 // -- r4 : AllocationSite or undefined
3636 // -- r5 : new target
3637 // -- sp[0] : return address
3638 // -- sp[4] : last argument
3639 // -----------------------------------
3640
3641 if (FLAG_debug_code) {
3642 // The array construct code is only set for the global and natives
3643 // builtin Array functions which always have maps.
3644
3645 // Initial map for the builtin Array function should be a map.
3646 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
3647 // Will both indicate a NULL and a Smi.
3648 __ TestIfSmi(r6);
3649 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
3650 __ CompareObjectType(r6, r6, r7, MAP_TYPE);
3651 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
3652
3653 // We should either have undefined in r4 or a valid AllocationSite
3654 __ AssertUndefinedOrAllocationSite(r4, r6);
3655 }
3656
3657 // Enter the context of the Array function.
3658 __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
3659
3660 Label subclassing;
3661 __ CmpP(r5, r3);
3662 __ bne(&subclassing, Label::kNear);
3663
3664 Label no_info;
3665 // Get the elements kind and case on that.
3666 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
3667 __ beq(&no_info);
3668
3669 __ LoadP(r5, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
3670 __ SmiUntag(r5);
3671 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3672 __ AndP(r5, Operand(AllocationSite::ElementsKindBits::kMask));
3673 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
3674
3675 __ bind(&no_info);
3676 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
3677
3678 __ bind(&subclassing);
3679 __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
3680 __ StoreP(r3, MemOperand(sp, r1));
3681 __ AddP(r2, r2, Operand(3));
3682 __ Push(r5, r4);
3683 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
3684 }
3685
GenerateCase(MacroAssembler * masm,ElementsKind kind)3686 void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
3687 ElementsKind kind) {
3688 __ CmpLogicalP(r2, Operand(1));
3689
3690 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
3691 __ TailCallStub(&stub0, lt);
3692
3693 ArrayNArgumentsConstructorStub stubN(isolate());
3694 __ TailCallStub(&stubN, gt);
3695
3696 if (IsFastPackedElementsKind(kind)) {
3697 // We might need to create a holey array
3698 // look at the first argument
3699 __ LoadP(r5, MemOperand(sp, 0));
3700 __ CmpP(r5, Operand::Zero());
3701
3702 InternalArraySingleArgumentConstructorStub stub1_holey(
3703 isolate(), GetHoleyElementsKind(kind));
3704 __ TailCallStub(&stub1_holey, ne);
3705 }
3706
3707 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
3708 __ TailCallStub(&stub1);
3709 }
3710
Generate(MacroAssembler * masm)3711 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
3712 // ----------- S t a t e -------------
3713 // -- r2 : argc
3714 // -- r3 : constructor
3715 // -- sp[0] : return address
3716 // -- sp[4] : last argument
3717 // -----------------------------------
3718
3719 if (FLAG_debug_code) {
3720 // The array construct code is only set for the global and natives
3721 // builtin Array functions which always have maps.
3722
3723 // Initial map for the builtin Array function should be a map.
3724 __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
3725 // Will both indicate a NULL and a Smi.
3726 __ TestIfSmi(r5);
3727 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
3728 __ CompareObjectType(r5, r5, r6, MAP_TYPE);
3729 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
3730 }
3731
3732 // Figure out the right elements kind
3733 __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
3734 // Load the map's "bit field 2" into |result|.
3735 __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
3736 // Retrieve elements_kind from bit field 2.
3737 __ DecodeField<Map::ElementsKindBits>(r5);
3738
3739 if (FLAG_debug_code) {
3740 Label done;
3741 __ CmpP(r5, Operand(FAST_ELEMENTS));
3742 __ beq(&done);
3743 __ CmpP(r5, Operand(FAST_HOLEY_ELEMENTS));
3744 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
3745 __ bind(&done);
3746 }
3747
3748 Label fast_elements_case;
3749 __ CmpP(r5, Operand(FAST_ELEMENTS));
3750 __ beq(&fast_elements_case);
3751 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3752
3753 __ bind(&fast_elements_case);
3754 GenerateCase(masm, FAST_ELEMENTS);
3755 }
3756
Generate(MacroAssembler * masm)3757 void FastNewObjectStub::Generate(MacroAssembler* masm) {
3758 // ----------- S t a t e -------------
3759 // -- r3 : target
3760 // -- r5 : new target
3761 // -- cp : context
3762 // -- lr : return address
3763 // -----------------------------------
3764 __ AssertFunction(r3);
3765 __ AssertReceiver(r5);
3766
3767 // Verify that the new target is a JSFunction.
3768 Label new_object;
3769 __ CompareObjectType(r5, r4, r4, JS_FUNCTION_TYPE);
3770 __ bne(&new_object);
3771
3772 // Load the initial map and verify that it's in fact a map.
3773 __ LoadP(r4, FieldMemOperand(r5, JSFunction::kPrototypeOrInitialMapOffset));
3774 __ JumpIfSmi(r4, &new_object);
3775 __ CompareObjectType(r4, r2, r2, MAP_TYPE);
3776 __ bne(&new_object);
3777
3778 // Fall back to runtime if the target differs from the new target's
3779 // initial map constructor.
3780 __ LoadP(r2, FieldMemOperand(r4, Map::kConstructorOrBackPointerOffset));
3781 __ CmpP(r2, r3);
3782 __ bne(&new_object);
3783
3784 // Allocate the JSObject on the heap.
3785 Label allocate, done_allocate;
3786 __ LoadlB(r6, FieldMemOperand(r4, Map::kInstanceSizeOffset));
3787 __ Allocate(r6, r2, r7, r8, &allocate, SIZE_IN_WORDS);
3788 __ bind(&done_allocate);
3789
3790 // Initialize the JSObject fields.
3791 __ StoreP(r4, FieldMemOperand(r2, JSObject::kMapOffset));
3792 __ LoadRoot(r5, Heap::kEmptyFixedArrayRootIndex);
3793 __ StoreP(r5, FieldMemOperand(r2, JSObject::kPropertiesOffset));
3794 __ StoreP(r5, FieldMemOperand(r2, JSObject::kElementsOffset));
3795 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
3796 __ AddP(r3, r2, Operand(JSObject::kHeaderSize - kHeapObjectTag));
3797
3798 // ----------- S t a t e -------------
3799 // -- r2 : result (tagged)
3800 // -- r3 : result fields (untagged)
3801 // -- r7 : result end (untagged)
3802 // -- r4 : initial map
3803 // -- cp : context
3804 // -- lr : return address
3805 // -----------------------------------
3806
3807 // Perform in-object slack tracking if requested.
3808 Label slack_tracking;
3809 STATIC_ASSERT(Map::kNoSlackTracking == 0);
3810 __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
3811 __ LoadlW(r5, FieldMemOperand(r4, Map::kBitField3Offset));
3812 __ DecodeField<Map::ConstructionCounter>(r9, r5);
3813 __ LoadAndTestP(r9, r9);
3814 __ bne(&slack_tracking);
3815 {
3816 // Initialize all in-object fields with undefined.
3817 __ InitializeFieldsWithFiller(r3, r7, r8);
3818
3819 __ Ret();
3820 }
3821 __ bind(&slack_tracking);
3822 {
3823 // Decrease generous allocation count.
3824 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
3825 __ Add32(r5, r5, Operand(-(1 << Map::ConstructionCounter::kShift)));
3826 __ StoreW(r5, FieldMemOperand(r4, Map::kBitField3Offset));
3827
3828 // Initialize the in-object fields with undefined.
3829 __ LoadlB(r6, FieldMemOperand(r4, Map::kUnusedPropertyFieldsOffset));
3830 __ ShiftLeftP(r6, r6, Operand(kPointerSizeLog2));
3831 __ SubP(r6, r7, r6);
3832 __ InitializeFieldsWithFiller(r3, r6, r8);
3833
3834 // Initialize the remaining (reserved) fields with one pointer filler map.
3835 __ LoadRoot(r8, Heap::kOnePointerFillerMapRootIndex);
3836 __ InitializeFieldsWithFiller(r3, r7, r8);
3837
3838 // Check if we can finalize the instance size.
3839 __ CmpP(r9, Operand(Map::kSlackTrackingCounterEnd));
3840 __ Ret(ne);
3841
3842 // Finalize the instance size.
3843 {
3844 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3845 __ Push(r2, r4);
3846 __ CallRuntime(Runtime::kFinalizeInstanceSize);
3847 __ Pop(r2);
3848 }
3849 __ Ret();
3850 }
3851
3852 // Fall back to %AllocateInNewSpace.
3853 __ bind(&allocate);
3854 {
3855 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3856 STATIC_ASSERT(kSmiTag == 0);
3857 __ ShiftLeftP(r6, r6,
3858 Operand(kPointerSizeLog2 + kSmiTagSize + kSmiShiftSize));
3859 __ Push(r4, r6);
3860 __ CallRuntime(Runtime::kAllocateInNewSpace);
3861 __ Pop(r4);
3862 }
3863 __ LoadlB(r7, FieldMemOperand(r4, Map::kInstanceSizeOffset));
3864 __ ShiftLeftP(r7, r7, Operand(kPointerSizeLog2));
3865 __ AddP(r7, r2, r7);
3866 __ SubP(r7, r7, Operand(kHeapObjectTag));
3867 __ b(&done_allocate);
3868
3869 // Fall back to %NewObject.
3870 __ bind(&new_object);
3871 __ Push(r3, r5);
3872 __ TailCallRuntime(Runtime::kNewObject);
3873 }
3874
Generate(MacroAssembler * masm)3875 void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
3876 // ----------- S t a t e -------------
3877 // -- r3 : function
3878 // -- cp : context
3879 // -- fp : frame pointer
3880 // -- lr : return address
3881 // -----------------------------------
3882 __ AssertFunction(r3);
3883
3884 // Make r4 point to the JavaScript frame.
3885 __ LoadRR(r4, fp);
3886 if (skip_stub_frame()) {
3887 // For Ignition we need to skip the handler/stub frame to reach the
3888 // JavaScript frame for the function.
3889 __ LoadP(r4, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
3890 }
3891 if (FLAG_debug_code) {
3892 Label ok;
3893 __ LoadP(ip, MemOperand(r4, StandardFrameConstants::kFunctionOffset));
3894 __ CmpP(ip, r3);
3895 __ b(&ok, Label::kNear);
3896 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
3897 __ bind(&ok);
3898 }
3899
3900 // Check if we have rest parameters (only possible if we have an
3901 // arguments adaptor frame below the function frame).
3902 Label no_rest_parameters;
3903 __ LoadP(r4, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
3904 __ LoadP(ip, MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset));
3905 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3906 __ bne(&no_rest_parameters);
3907
3908 // Check if the arguments adaptor frame contains more arguments than
3909 // specified by the function's internal formal parameter count.
3910 Label rest_parameters;
3911 __ LoadP(r2, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset));
3912 __ LoadP(r5, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
3913 __ LoadW(
3914 r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
3915 #if V8_TARGET_ARCH_S390X
3916 __ SmiTag(r5);
3917 #endif
3918 __ SubP(r2, r2, r5);
3919 __ bgt(&rest_parameters);
3920
3921 // Return an empty rest parameter array.
3922 __ bind(&no_rest_parameters);
3923 {
3924 // ----------- S t a t e -------------
3925 // -- cp : context
3926 // -- lr : return address
3927 // -----------------------------------
3928
3929 // Allocate an empty rest parameter array.
3930 Label allocate, done_allocate;
3931 __ Allocate(JSArray::kSize, r2, r3, r4, &allocate, NO_ALLOCATION_FLAGS);
3932 __ bind(&done_allocate);
3933
3934 // Setup the rest parameter array in r0.
3935 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r3);
3936 __ StoreP(r3, FieldMemOperand(r2, JSArray::kMapOffset), r0);
3937 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
3938 __ StoreP(r3, FieldMemOperand(r2, JSArray::kPropertiesOffset), r0);
3939 __ StoreP(r3, FieldMemOperand(r2, JSArray::kElementsOffset), r0);
3940 __ LoadImmP(r3, Operand::Zero());
3941 __ StoreP(r3, FieldMemOperand(r2, JSArray::kLengthOffset), r0);
3942 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
3943 __ Ret();
3944
3945 // Fall back to %AllocateInNewSpace.
3946 __ bind(&allocate);
3947 {
3948 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3949 __ Push(Smi::FromInt(JSArray::kSize));
3950 __ CallRuntime(Runtime::kAllocateInNewSpace);
3951 }
3952 __ b(&done_allocate);
3953 }
3954
3955 __ bind(&rest_parameters);
3956 {
3957 // Compute the pointer to the first rest parameter (skippping the receiver).
3958 __ SmiToPtrArrayOffset(r8, r2);
3959 __ AddP(r4, r4, r8);
3960 __ AddP(r4, r4, Operand(StandardFrameConstants::kCallerSPOffset));
3961
3962 // ----------- S t a t e -------------
3963 // -- cp : context
3964 // -- r2 : number of rest parameters (tagged)
3965 // -- r3 : function
3966 // -- r4 : pointer just past first rest parameters
3967 // -- r8 : size of rest parameters
3968 // -- lr : return address
3969 // -----------------------------------
3970
3971 // Allocate space for the rest parameter array plus the backing store.
3972 Label allocate, done_allocate;
3973 __ mov(r9, Operand(JSArray::kSize + FixedArray::kHeaderSize));
3974 __ AddP(r9, r9, r8);
3975 __ Allocate(r9, r5, r6, r7, &allocate, NO_ALLOCATION_FLAGS);
3976 __ bind(&done_allocate);
3977
3978 // Setup the elements array in r5.
3979 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
3980 __ StoreP(r3, FieldMemOperand(r5, FixedArray::kMapOffset), r0);
3981 __ StoreP(r2, FieldMemOperand(r5, FixedArray::kLengthOffset), r0);
3982 __ AddP(r6, r5,
3983 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
3984 {
3985 Label loop;
3986 __ SmiUntag(r1, r2);
3987 // __ mtctr(r0);
3988 __ bind(&loop);
3989 __ lay(r4, MemOperand(r4, -kPointerSize));
3990 __ LoadP(ip, MemOperand(r4));
3991 __ la(r6, MemOperand(r6, kPointerSize));
3992 __ StoreP(ip, MemOperand(r6));
3993 // __ bdnz(&loop);
3994 __ BranchOnCount(r1, &loop);
3995 __ AddP(r6, r6, Operand(kPointerSize));
3996 }
3997
3998 // Setup the rest parameter array in r6.
3999 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r3);
4000 __ StoreP(r3, MemOperand(r6, JSArray::kMapOffset));
4001 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
4002 __ StoreP(r3, MemOperand(r6, JSArray::kPropertiesOffset));
4003 __ StoreP(r5, MemOperand(r6, JSArray::kElementsOffset));
4004 __ StoreP(r2, MemOperand(r6, JSArray::kLengthOffset));
4005 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4006 __ AddP(r2, r6, Operand(kHeapObjectTag));
4007 __ Ret();
4008
4009 // Fall back to %AllocateInNewSpace (if not too big).
4010 Label too_big_for_new_space;
4011 __ bind(&allocate);
4012 __ CmpP(r9, Operand(kMaxRegularHeapObjectSize));
4013 __ bgt(&too_big_for_new_space);
4014 {
4015 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4016 __ SmiTag(r9);
4017 __ Push(r2, r4, r9);
4018 __ CallRuntime(Runtime::kAllocateInNewSpace);
4019 __ LoadRR(r5, r2);
4020 __ Pop(r2, r4);
4021 }
4022 __ b(&done_allocate);
4023
4024 // Fall back to %NewRestParameter.
4025 __ bind(&too_big_for_new_space);
4026 __ push(r3);
4027 __ TailCallRuntime(Runtime::kNewRestParameter);
4028 }
4029 }
4030
Generate(MacroAssembler * masm)4031 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
4032 // ----------- S t a t e -------------
4033 // -- r3 : function
4034 // -- cp : context
4035 // -- fp : frame pointer
4036 // -- lr : return address
4037 // -----------------------------------
4038 __ AssertFunction(r3);
4039
4040 // Make r9 point to the JavaScript frame.
4041 __ LoadRR(r9, fp);
4042 if (skip_stub_frame()) {
4043 // For Ignition we need to skip the handler/stub frame to reach the
4044 // JavaScript frame for the function.
4045 __ LoadP(r9, MemOperand(r9, StandardFrameConstants::kCallerFPOffset));
4046 }
4047 if (FLAG_debug_code) {
4048 Label ok;
4049 __ LoadP(ip, MemOperand(r9, StandardFrameConstants::kFunctionOffset));
4050 __ CmpP(ip, r3);
4051 __ beq(&ok, Label::kNear);
4052 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4053 __ bind(&ok);
4054 }
4055
4056 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
4057 __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
4058 __ LoadW(
4059 r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
4060 #if V8_TARGET_ARCH_S390X
4061 __ SmiTag(r4);
4062 #endif
4063 __ SmiToPtrArrayOffset(r5, r4);
4064 __ AddP(r5, r9, r5);
4065 __ AddP(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
4066
4067 // r3 : function
4068 // r4 : number of parameters (tagged)
4069 // r5 : parameters pointer
4070 // r9 : JavaScript frame pointer
4071 // Registers used over whole function:
4072 // r7 : arguments count (tagged)
4073 // r8 : mapped parameter count (tagged)
4074
4075 // Check if the calling frame is an arguments adaptor frame.
4076 Label adaptor_frame, try_allocate, runtime;
4077 __ LoadP(r6, MemOperand(r9, StandardFrameConstants::kCallerFPOffset));
4078 __ LoadP(r2, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
4079 __ CmpSmiLiteral(r2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4080 __ beq(&adaptor_frame);
4081
4082 // No adaptor, parameter count = argument count.
4083 __ LoadRR(r7, r4);
4084 __ LoadRR(r8, r4);
4085 __ b(&try_allocate);
4086
4087 // We have an adaptor frame. Patch the parameters pointer.
4088 __ bind(&adaptor_frame);
4089 __ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
4090 __ SmiToPtrArrayOffset(r5, r7);
4091 __ AddP(r5, r5, r6);
4092 __ AddP(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
4093
4094 // r7 = argument count (tagged)
4095 // r8 = parameter count (tagged)
4096 // Compute the mapped parameter count = min(r4, r7) in r8.
4097 __ CmpP(r4, r7);
4098 Label skip;
4099 __ LoadRR(r8, r4);
4100 __ blt(&skip);
4101 __ LoadRR(r8, r7);
4102 __ bind(&skip);
4103
4104 __ bind(&try_allocate);
4105
4106 // Compute the sizes of backing store, parameter map, and arguments object.
4107 // 1. Parameter map, has 2 extra words containing context and backing store.
4108 const int kParameterMapHeaderSize =
4109 FixedArray::kHeaderSize + 2 * kPointerSize;
4110 // If there are no mapped parameters, we do not need the parameter_map.
4111 __ CmpSmiLiteral(r8, Smi::kZero, r0);
4112 Label skip2, skip3;
4113 __ bne(&skip2);
4114 __ LoadImmP(r1, Operand::Zero());
4115 __ b(&skip3);
4116 __ bind(&skip2);
4117 __ SmiToPtrArrayOffset(r1, r8);
4118 __ AddP(r1, r1, Operand(kParameterMapHeaderSize));
4119 __ bind(&skip3);
4120
4121 // 2. Backing store.
4122 __ SmiToPtrArrayOffset(r6, r7);
4123 __ AddP(r1, r1, r6);
4124 __ AddP(r1, r1, Operand(FixedArray::kHeaderSize));
4125
4126 // 3. Arguments object.
4127 __ AddP(r1, r1, Operand(JSSloppyArgumentsObject::kSize));
4128
4129 // Do the allocation of all three objects in one go.
4130 __ Allocate(r1, r2, r1, r6, &runtime, NO_ALLOCATION_FLAGS);
4131
4132 // r2 = address of new object(s) (tagged)
4133 // r4 = argument count (smi-tagged)
4134 // Get the arguments boilerplate from the current native context into r3.
4135 const int kNormalOffset =
4136 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
4137 const int kAliasedOffset =
4138 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
4139
4140 __ LoadP(r6, NativeContextMemOperand());
4141 __ CmpP(r8, Operand::Zero());
4142 Label skip4, skip5;
4143 __ bne(&skip4);
4144 __ LoadP(r6, MemOperand(r6, kNormalOffset));
4145 __ b(&skip5);
4146 __ bind(&skip4);
4147 __ LoadP(r6, MemOperand(r6, kAliasedOffset));
4148 __ bind(&skip5);
4149
4150 // r2 = address of new object (tagged)
4151 // r4 = argument count (smi-tagged)
4152 // r6 = address of arguments map (tagged)
4153 // r8 = mapped parameter count (tagged)
4154 __ StoreP(r6, FieldMemOperand(r2, JSObject::kMapOffset), r0);
4155 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
4156 __ StoreP(r1, FieldMemOperand(r2, JSObject::kPropertiesOffset), r0);
4157 __ StoreP(r1, FieldMemOperand(r2, JSObject::kElementsOffset), r0);
4158
4159 // Set up the callee in-object property.
4160 __ AssertNotSmi(r3);
4161 __ StoreP(r3, FieldMemOperand(r2, JSSloppyArgumentsObject::kCalleeOffset),
4162 r0);
4163
4164 // Use the length (smi tagged) and set that as an in-object property too.
4165 __ AssertSmi(r7);
4166 __ StoreP(r7, FieldMemOperand(r2, JSSloppyArgumentsObject::kLengthOffset),
4167 r0);
4168
4169 // Set up the elements pointer in the allocated arguments object.
4170 // If we allocated a parameter map, r6 will point there, otherwise
4171 // it will point to the backing store.
4172 __ AddP(r6, r2, Operand(JSSloppyArgumentsObject::kSize));
4173 __ StoreP(r6, FieldMemOperand(r2, JSObject::kElementsOffset), r0);
4174
4175 // r2 = address of new object (tagged)
4176 // r4 = argument count (tagged)
4177 // r6 = address of parameter map or backing store (tagged)
4178 // r8 = mapped parameter count (tagged)
4179 // Initialize parameter map. If there are no mapped arguments, we're done.
4180 Label skip_parameter_map;
4181 __ CmpSmiLiteral(r8, Smi::kZero, r0);
4182 Label skip6;
4183 __ bne(&skip6);
4184 // Move backing store address to r3, because it is
4185 // expected there when filling in the unmapped arguments.
4186 __ LoadRR(r3, r6);
4187 __ b(&skip_parameter_map);
4188 __ bind(&skip6);
4189
4190 __ LoadRoot(r7, Heap::kSloppyArgumentsElementsMapRootIndex);
4191 __ StoreP(r7, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
4192 __ AddSmiLiteral(r7, r8, Smi::FromInt(2), r0);
4193 __ StoreP(r7, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
4194 __ StoreP(cp, FieldMemOperand(r6, FixedArray::kHeaderSize + 0 * kPointerSize),
4195 r0);
4196 __ SmiToPtrArrayOffset(r7, r8);
4197 __ AddP(r7, r7, r6);
4198 __ AddP(r7, r7, Operand(kParameterMapHeaderSize));
4199 __ StoreP(r7, FieldMemOperand(r6, FixedArray::kHeaderSize + 1 * kPointerSize),
4200 r0);
4201
4202 // Copy the parameter slots and the holes in the arguments.
4203 // We need to fill in mapped_parameter_count slots. They index the context,
4204 // where parameters are stored in reverse order, at
4205 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4206 // The mapped parameter thus need to get indices
4207 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4208 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4209 // We loop from right to left.
4210 Label parameters_loop;
4211 __ LoadRR(r7, r8);
4212 __ AddSmiLiteral(r1, r4, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
4213 __ SubP(r1, r1, r8);
4214 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
4215 __ SmiToPtrArrayOffset(r3, r7);
4216 __ AddP(r3, r3, r6);
4217 __ AddP(r3, r3, Operand(kParameterMapHeaderSize));
4218
4219 // r3 = address of backing store (tagged)
4220 // r6 = address of parameter map (tagged)
4221 // r7 = temporary scratch (a.o., for address calculation)
4222 // r9 = temporary scratch (a.o., for address calculation)
4223 // ip = the hole value
4224 __ SmiUntag(r7);
4225 __ push(r4);
4226 __ LoadRR(r4, r7);
4227 __ ShiftLeftP(r7, r7, Operand(kPointerSizeLog2));
4228 __ AddP(r9, r3, r7);
4229 __ AddP(r7, r6, r7);
4230 __ AddP(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4231 __ AddP(r7, r7, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4232
4233 __ bind(¶meters_loop);
4234 __ StoreP(r1, MemOperand(r7, -kPointerSize));
4235 __ lay(r7, MemOperand(r7, -kPointerSize));
4236 __ StoreP(ip, MemOperand(r9, -kPointerSize));
4237 __ lay(r9, MemOperand(r9, -kPointerSize));
4238 __ AddSmiLiteral(r1, r1, Smi::FromInt(1), r0);
4239 __ BranchOnCount(r4, ¶meters_loop);
4240 __ pop(r4);
4241
4242 // Restore r7 = argument count (tagged).
4243 __ LoadP(r7, FieldMemOperand(r2, JSSloppyArgumentsObject::kLengthOffset));
4244
4245 __ bind(&skip_parameter_map);
4246 // r2 = address of new object (tagged)
4247 // r3 = address of backing store (tagged)
4248 // r7 = argument count (tagged)
4249 // r8 = mapped parameter count (tagged)
4250 // r1 = scratch
4251 // Copy arguments header and remaining slots (if there are any).
4252 __ LoadRoot(r1, Heap::kFixedArrayMapRootIndex);
4253 __ StoreP(r1, FieldMemOperand(r3, FixedArray::kMapOffset), r0);
4254 __ StoreP(r7, FieldMemOperand(r3, FixedArray::kLengthOffset), r0);
4255 __ SubP(r1, r7, r8);
4256 __ Ret(eq);
4257
4258 Label arguments_loop;
4259 __ SmiUntag(r1);
4260 __ LoadRR(r4, r1);
4261
4262 __ SmiToPtrArrayOffset(r0, r8);
4263 __ SubP(r5, r5, r0);
4264 __ AddP(r1, r3, r0);
4265 __ AddP(r1, r1,
4266 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
4267
4268 __ bind(&arguments_loop);
4269 __ LoadP(r6, MemOperand(r5, -kPointerSize));
4270 __ lay(r5, MemOperand(r5, -kPointerSize));
4271 __ StoreP(r6, MemOperand(r1, kPointerSize));
4272 __ la(r1, MemOperand(r1, kPointerSize));
4273 __ BranchOnCount(r4, &arguments_loop);
4274
4275 // Return.
4276 __ Ret();
4277
4278 // Do the runtime call to allocate the arguments object.
4279 // r7 = argument count (tagged)
4280 __ bind(&runtime);
4281 __ Push(r3, r5, r7);
4282 __ TailCallRuntime(Runtime::kNewSloppyArguments);
4283 }
4284
Generate(MacroAssembler * masm)4285 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
4286 // ----------- S t a t e -------------
4287 // -- r3 : function
4288 // -- cp : context
4289 // -- fp : frame pointer
4290 // -- lr : return address
4291 // -----------------------------------
4292 __ AssertFunction(r3);
4293
4294 // Make r4 point to the JavaScript frame.
4295 __ LoadRR(r4, fp);
4296 if (skip_stub_frame()) {
4297 // For Ignition we need to skip the handler/stub frame to reach the
4298 // JavaScript frame for the function.
4299 __ LoadP(r4, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
4300 }
4301 if (FLAG_debug_code) {
4302 Label ok;
4303 __ LoadP(ip, MemOperand(r4, StandardFrameConstants::kFunctionOffset));
4304 __ CmpP(ip, r3);
4305 __ beq(&ok, Label::kNear);
4306 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4307 __ bind(&ok);
4308 }
4309
4310 // Check if we have an arguments adaptor frame below the function frame.
4311 Label arguments_adaptor, arguments_done;
4312 __ LoadP(r5, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
4313 __ LoadP(ip, MemOperand(r5, CommonFrameConstants::kContextOrFrameTypeOffset));
4314 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4315 __ beq(&arguments_adaptor);
4316 {
4317 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
4318 __ LoadW(r2, FieldMemOperand(
4319 r6, SharedFunctionInfo::kFormalParameterCountOffset));
4320 #if V8_TARGET_ARCH_S390X
4321 __ SmiTag(r2);
4322 #endif
4323 __ SmiToPtrArrayOffset(r8, r2);
4324 __ AddP(r4, r4, r8);
4325 }
4326 __ b(&arguments_done);
4327 __ bind(&arguments_adaptor);
4328 {
4329 __ LoadP(r2, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
4330 __ SmiToPtrArrayOffset(r8, r2);
4331 __ AddP(r4, r5, r8);
4332 }
4333 __ bind(&arguments_done);
4334 __ AddP(r4, r4, Operand(StandardFrameConstants::kCallerSPOffset));
4335
4336 // ----------- S t a t e -------------
4337 // -- cp : context
4338 // -- r2 : number of rest parameters (tagged)
4339 // -- r3 : function
4340 // -- r4 : pointer just past first rest parameters
4341 // -- r8 : size of rest parameters
4342 // -- lr : return address
4343 // -----------------------------------
4344
4345 // Allocate space for the strict arguments object plus the backing store.
4346 Label allocate, done_allocate;
4347 __ mov(r9, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
4348 __ AddP(r9, r9, r8);
4349 __ Allocate(r9, r5, r6, r7, &allocate, NO_ALLOCATION_FLAGS);
4350 __ bind(&done_allocate);
4351
4352 // Setup the elements array in r5.
4353 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4354 __ StoreP(r3, FieldMemOperand(r5, FixedArray::kMapOffset), r0);
4355 __ StoreP(r2, FieldMemOperand(r5, FixedArray::kLengthOffset), r0);
4356 __ AddP(r6, r5,
4357 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
4358 {
4359 Label loop, done_loop;
4360 __ SmiUntag(r1, r2);
4361 __ LoadAndTestP(r1, r1);
4362 __ beq(&done_loop);
4363 __ bind(&loop);
4364 __ lay(r4, MemOperand(r4, -kPointerSize));
4365 __ LoadP(ip, MemOperand(r4));
4366 __ la(r6, MemOperand(r6, kPointerSize));
4367 __ StoreP(ip, MemOperand(r6));
4368 __ BranchOnCount(r1, &loop);
4369 __ bind(&done_loop);
4370 __ AddP(r6, r6, Operand(kPointerSize));
4371 }
4372
4373 // Setup the rest parameter array in r6.
4374 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, r3);
4375 __ StoreP(r3, MemOperand(r6, JSStrictArgumentsObject::kMapOffset));
4376 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
4377 __ StoreP(r3, MemOperand(r6, JSStrictArgumentsObject::kPropertiesOffset));
4378 __ StoreP(r5, MemOperand(r6, JSStrictArgumentsObject::kElementsOffset));
4379 __ StoreP(r2, MemOperand(r6, JSStrictArgumentsObject::kLengthOffset));
4380 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
4381 __ AddP(r2, r6, Operand(kHeapObjectTag));
4382 __ Ret();
4383
4384 // Fall back to %AllocateInNewSpace (if not too big).
4385 Label too_big_for_new_space;
4386 __ bind(&allocate);
4387 __ CmpP(r9, Operand(kMaxRegularHeapObjectSize));
4388 __ bgt(&too_big_for_new_space);
4389 {
4390 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4391 __ SmiTag(r9);
4392 __ Push(r2, r4, r9);
4393 __ CallRuntime(Runtime::kAllocateInNewSpace);
4394 __ LoadRR(r5, r2);
4395 __ Pop(r2, r4);
4396 }
4397 __ b(&done_allocate);
4398
4399 // Fall back to %NewStrictArguments.
4400 __ bind(&too_big_for_new_space);
4401 __ push(r3);
4402 __ TailCallRuntime(Runtime::kNewStrictArguments);
4403 }
4404
AddressOffset(ExternalReference ref0,ExternalReference ref1)4405 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
4406 return ref0.address() - ref1.address();
4407 }
4408
4409 // Calls an API function. Allocates HandleScope, extracts returned value
4410 // from handle and propagates exceptions. Restores context. stack_space
4411 // - space to be unwound on exit (includes the call JS arguments space and
4412 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,MemOperand * stack_space_operand,MemOperand return_value_operand,MemOperand * context_restore_operand)4413 static void CallApiFunctionAndReturn(MacroAssembler* masm,
4414 Register function_address,
4415 ExternalReference thunk_ref,
4416 int stack_space,
4417 MemOperand* stack_space_operand,
4418 MemOperand return_value_operand,
4419 MemOperand* context_restore_operand) {
4420 Isolate* isolate = masm->isolate();
4421 ExternalReference next_address =
4422 ExternalReference::handle_scope_next_address(isolate);
4423 const int kNextOffset = 0;
4424 const int kLimitOffset = AddressOffset(
4425 ExternalReference::handle_scope_limit_address(isolate), next_address);
4426 const int kLevelOffset = AddressOffset(
4427 ExternalReference::handle_scope_level_address(isolate), next_address);
4428
4429 // Additional parameter is the address of the actual callback.
4430 DCHECK(function_address.is(r3) || function_address.is(r4));
4431 Register scratch = r5;
4432
4433 __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
4434 __ LoadlB(scratch, MemOperand(scratch, 0));
4435 __ CmpP(scratch, Operand::Zero());
4436
4437 Label profiler_disabled;
4438 Label end_profiler_check;
4439 __ beq(&profiler_disabled, Label::kNear);
4440 __ mov(scratch, Operand(thunk_ref));
4441 __ b(&end_profiler_check, Label::kNear);
4442 __ bind(&profiler_disabled);
4443 __ LoadRR(scratch, function_address);
4444 __ bind(&end_profiler_check);
4445
4446 // Allocate HandleScope in callee-save registers.
4447 // r9 - next_address
4448 // r6 - next_address->kNextOffset
4449 // r7 - next_address->kLimitOffset
4450 // r8 - next_address->kLevelOffset
4451 __ mov(r9, Operand(next_address));
4452 __ LoadP(r6, MemOperand(r9, kNextOffset));
4453 __ LoadP(r7, MemOperand(r9, kLimitOffset));
4454 __ LoadlW(r8, MemOperand(r9, kLevelOffset));
4455 __ AddP(r8, Operand(1));
4456 __ StoreW(r8, MemOperand(r9, kLevelOffset));
4457
4458 if (FLAG_log_timer_events) {
4459 FrameScope frame(masm, StackFrame::MANUAL);
4460 __ PushSafepointRegisters();
4461 __ PrepareCallCFunction(1, r2);
4462 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
4463 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
4464 1);
4465 __ PopSafepointRegisters();
4466 }
4467
4468 // Native call returns to the DirectCEntry stub which redirects to the
4469 // return address pushed on stack (could have moved after GC).
4470 // DirectCEntry stub itself is generated early and never moves.
4471 DirectCEntryStub stub(isolate);
4472 stub.GenerateCall(masm, scratch);
4473
4474 if (FLAG_log_timer_events) {
4475 FrameScope frame(masm, StackFrame::MANUAL);
4476 __ PushSafepointRegisters();
4477 __ PrepareCallCFunction(1, r2);
4478 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
4479 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
4480 1);
4481 __ PopSafepointRegisters();
4482 }
4483
4484 Label promote_scheduled_exception;
4485 Label delete_allocated_handles;
4486 Label leave_exit_frame;
4487 Label return_value_loaded;
4488
4489 // load value from ReturnValue
4490 __ LoadP(r2, return_value_operand);
4491 __ bind(&return_value_loaded);
4492 // No more valid handles (the result handle was the last one). Restore
4493 // previous handle scope.
4494 __ StoreP(r6, MemOperand(r9, kNextOffset));
4495 if (__ emit_debug_code()) {
4496 __ LoadlW(r3, MemOperand(r9, kLevelOffset));
4497 __ CmpP(r3, r8);
4498 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
4499 }
4500 __ SubP(r8, Operand(1));
4501 __ StoreW(r8, MemOperand(r9, kLevelOffset));
4502 __ CmpP(r7, MemOperand(r9, kLimitOffset));
4503 __ bne(&delete_allocated_handles, Label::kNear);
4504
4505 // Leave the API exit frame.
4506 __ bind(&leave_exit_frame);
4507 bool restore_context = context_restore_operand != NULL;
4508 if (restore_context) {
4509 __ LoadP(cp, *context_restore_operand);
4510 }
4511 // LeaveExitFrame expects unwind space to be in a register.
4512 if (stack_space_operand != NULL) {
4513 __ l(r6, *stack_space_operand);
4514 } else {
4515 __ mov(r6, Operand(stack_space));
4516 }
4517 __ LeaveExitFrame(false, r6, !restore_context, stack_space_operand != NULL);
4518
4519 // Check if the function scheduled an exception.
4520 __ mov(r7, Operand(ExternalReference::scheduled_exception_address(isolate)));
4521 __ LoadP(r7, MemOperand(r7));
4522 __ CompareRoot(r7, Heap::kTheHoleValueRootIndex);
4523 __ bne(&promote_scheduled_exception, Label::kNear);
4524
4525 __ b(r14);
4526
4527 // Re-throw by promoting a scheduled exception.
4528 __ bind(&promote_scheduled_exception);
4529 __ TailCallRuntime(Runtime::kPromoteScheduledException);
4530
4531 // HandleScope limit has changed. Delete allocated extensions.
4532 __ bind(&delete_allocated_handles);
4533 __ StoreP(r7, MemOperand(r9, kLimitOffset));
4534 __ LoadRR(r6, r2);
4535 __ PrepareCallCFunction(1, r7);
4536 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
4537 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
4538 1);
4539 __ LoadRR(r2, r6);
4540 __ b(&leave_exit_frame, Label::kNear);
4541 }
4542
Generate(MacroAssembler * masm)4543 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
4544 // ----------- S t a t e -------------
4545 // -- r2 : callee
4546 // -- r6 : call_data
4547 // -- r4 : holder
4548 // -- r3 : api_function_address
4549 // -- cp : context
4550 // --
4551 // -- sp[0] : last argument
4552 // -- ...
4553 // -- sp[(argc - 1)* 4] : first argument
4554 // -- sp[argc * 4] : receiver
4555 // -----------------------------------
4556
4557 Register callee = r2;
4558 Register call_data = r6;
4559 Register holder = r4;
4560 Register api_function_address = r3;
4561 Register context = cp;
4562
4563 typedef FunctionCallbackArguments FCA;
4564
4565 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4566 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4567 STATIC_ASSERT(FCA::kDataIndex == 4);
4568 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4569 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4570 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4571 STATIC_ASSERT(FCA::kHolderIndex == 0);
4572 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
4573 STATIC_ASSERT(FCA::kArgsLength == 8);
4574
4575 // new target
4576 __ PushRoot(Heap::kUndefinedValueRootIndex);
4577
4578 // context save
4579 __ push(context);
4580 if (!is_lazy()) {
4581 // load context from callee
4582 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4583 }
4584
4585 // callee
4586 __ push(callee);
4587
4588 // call data
4589 __ push(call_data);
4590
4591 Register scratch = call_data;
4592 if (!call_data_undefined()) {
4593 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4594 }
4595 // return value
4596 __ push(scratch);
4597 // return value default
4598 __ push(scratch);
4599 // isolate
4600 __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
4601 __ push(scratch);
4602 // holder
4603 __ push(holder);
4604
4605 // Prepare arguments.
4606 __ LoadRR(scratch, sp);
4607
4608 // Allocate the v8::Arguments structure in the arguments' space since
4609 // it's not controlled by GC.
4610 // S390 LINUX ABI:
4611 //
4612 // Create 4 extra slots on stack:
4613 // [0] space for DirectCEntryStub's LR save
4614 // [1-3] FunctionCallbackInfo
4615 const int kApiStackSpace = 4;
4616 const int kFunctionCallbackInfoOffset =
4617 (kStackFrameExtraParamSlot + 1) * kPointerSize;
4618
4619 FrameScope frame_scope(masm, StackFrame::MANUAL);
4620 __ EnterExitFrame(false, kApiStackSpace);
4621
4622 DCHECK(!api_function_address.is(r2) && !scratch.is(r2));
4623 // r2 = FunctionCallbackInfo&
4624 // Arguments is after the return address.
4625 __ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset));
4626 // FunctionCallbackInfo::implicit_args_
4627 __ StoreP(scratch, MemOperand(r2, 0 * kPointerSize));
4628 // FunctionCallbackInfo::values_
4629 __ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
4630 __ StoreP(ip, MemOperand(r2, 1 * kPointerSize));
4631 // FunctionCallbackInfo::length_ = argc
4632 __ LoadImmP(ip, Operand(argc()));
4633 __ StoreW(ip, MemOperand(r2, 2 * kPointerSize));
4634
4635 ExternalReference thunk_ref =
4636 ExternalReference::invoke_function_callback(masm->isolate());
4637
4638 AllowExternalCallThatCantCauseGC scope(masm);
4639 MemOperand context_restore_operand(
4640 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4641 // Stores return the first js argument
4642 int return_value_offset = 0;
4643 if (is_store()) {
4644 return_value_offset = 2 + FCA::kArgsLength;
4645 } else {
4646 return_value_offset = 2 + FCA::kReturnValueOffset;
4647 }
4648 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4649 int stack_space = 0;
4650 MemOperand length_operand =
4651 MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize);
4652 MemOperand* stack_space_operand = &length_operand;
4653 stack_space = argc() + FCA::kArgsLength + 1;
4654 stack_space_operand = NULL;
4655 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
4656 stack_space_operand, return_value_operand,
4657 &context_restore_operand);
4658 }
4659
Generate(MacroAssembler * masm)4660 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4661 int arg0Slot = 0;
4662 int accessorInfoSlot = 0;
4663 int apiStackSpace = 0;
4664 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
4665 // name below the exit frame to make GC aware of them.
4666 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
4667 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
4668 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
4669 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
4670 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
4671 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
4672 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
4673 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
4674
4675 Register receiver = ApiGetterDescriptor::ReceiverRegister();
4676 Register holder = ApiGetterDescriptor::HolderRegister();
4677 Register callback = ApiGetterDescriptor::CallbackRegister();
4678 Register scratch = r6;
4679 DCHECK(!AreAliased(receiver, holder, callback, scratch));
4680
4681 Register api_function_address = r4;
4682
4683 __ push(receiver);
4684 // Push data from AccessorInfo.
4685 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
4686 __ push(scratch);
4687 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4688 __ Push(scratch, scratch);
4689 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
4690 __ Push(scratch, holder);
4691 __ Push(Smi::kZero); // should_throw_on_error -> false
4692 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
4693 __ push(scratch);
4694
4695 // v8::PropertyCallbackInfo::args_ array and name handle.
4696 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4697
4698 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
4699 __ LoadRR(r2, sp); // r2 = Handle<Name>
4700 __ AddP(r3, r2, Operand(1 * kPointerSize)); // r3 = v8::PCI::args_
4701
4702 // If ABI passes Handles (pointer-sized struct) in a register:
4703 //
4704 // Create 2 extra slots on stack:
4705 // [0] space for DirectCEntryStub's LR save
4706 // [1] AccessorInfo&
4707 //
4708 // Otherwise:
4709 //
4710 // Create 3 extra slots on stack:
4711 // [0] space for DirectCEntryStub's LR save
4712 // [1] copy of Handle (first arg)
4713 // [2] AccessorInfo&
4714 if (ABI_PASSES_HANDLES_IN_REGS) {
4715 accessorInfoSlot = kStackFrameExtraParamSlot + 1;
4716 apiStackSpace = 2;
4717 } else {
4718 arg0Slot = kStackFrameExtraParamSlot + 1;
4719 accessorInfoSlot = arg0Slot + 1;
4720 apiStackSpace = 3;
4721 }
4722
4723 FrameScope frame_scope(masm, StackFrame::MANUAL);
4724 __ EnterExitFrame(false, apiStackSpace);
4725
4726 if (!ABI_PASSES_HANDLES_IN_REGS) {
4727 // pass 1st arg by reference
4728 __ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize));
4729 __ AddP(r2, sp, Operand(arg0Slot * kPointerSize));
4730 }
4731
4732 // Create v8::PropertyCallbackInfo object on the stack and initialize
4733 // it's args_ field.
4734 __ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize));
4735 __ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize));
4736 // r3 = v8::PropertyCallbackInfo&
4737
4738 ExternalReference thunk_ref =
4739 ExternalReference::invoke_accessor_getter_callback(isolate());
4740
4741 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
4742 __ LoadP(api_function_address,
4743 FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
4744
4745 // +3 is to skip prolog, return address and name handle.
4746 MemOperand return_value_operand(
4747 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
4748 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
4749 kStackUnwindSpace, NULL, return_value_operand, NULL);
4750 }
4751
4752 #undef __
4753
4754 } // namespace internal
4755 } // namespace v8
4756
4757 #endif // V8_TARGET_ARCH_S390
4758