1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_X87
6
7 #include "src/codegen.h"
8 #include "src/deoptimizer.h"
9 #include "src/full-codegen/full-codegen.h"
10 #include "src/register-configuration.h"
11 #include "src/safepoint-table.h"
12 #include "src/x87/frames-x87.h"
13
14 namespace v8 {
15 namespace internal {
16
17 const int Deoptimizer::table_entry_size_ = 10;
18
19
patch_size()20 int Deoptimizer::patch_size() {
21 return Assembler::kCallInstructionLength;
22 }
23
24
EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code)25 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
26 Isolate* isolate = code->GetIsolate();
27 HandleScope scope(isolate);
28
29 // Compute the size of relocation information needed for the code
30 // patching in Deoptimizer::PatchCodeForDeoptimization below.
31 int min_reloc_size = 0;
32 int prev_pc_offset = 0;
33 DeoptimizationInputData* deopt_data =
34 DeoptimizationInputData::cast(code->deoptimization_data());
35 for (int i = 0; i < deopt_data->DeoptCount(); i++) {
36 int pc_offset = deopt_data->Pc(i)->value();
37 if (pc_offset == -1) continue;
38 pc_offset = pc_offset + 1; // We will encode the pc offset after the call.
39 DCHECK_GE(pc_offset, prev_pc_offset);
40 int pc_delta = pc_offset - prev_pc_offset;
41 // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
42 // if encodable with small pc delta encoding and up to 6 bytes
43 // otherwise.
44 if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
45 min_reloc_size += 2;
46 } else {
47 min_reloc_size += 6;
48 }
49 prev_pc_offset = pc_offset;
50 }
51
52 // If the relocation information is not big enough we create a new
53 // relocation info object that is padded with comments to make it
54 // big enough for lazy doptimization.
55 int reloc_length = code->relocation_info()->length();
56 if (min_reloc_size > reloc_length) {
57 int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
58 // Padding needed.
59 int min_padding = min_reloc_size - reloc_length;
60 // Number of comments needed to take up at least that much space.
61 int additional_comments =
62 (min_padding + comment_reloc_size - 1) / comment_reloc_size;
63 // Actual padding size.
64 int padding = additional_comments * comment_reloc_size;
65 // Allocate new relocation info and copy old relocation to the end
66 // of the new relocation info array because relocation info is
67 // written and read backwards.
68 Factory* factory = isolate->factory();
69 Handle<ByteArray> new_reloc =
70 factory->NewByteArray(reloc_length + padding, TENURED);
71 MemCopy(new_reloc->GetDataStartAddress() + padding,
72 code->relocation_info()->GetDataStartAddress(), reloc_length);
73 // Create a relocation writer to write the comments in the padding
74 // space. Use position 0 for everything to ensure short encoding.
75 RelocInfoWriter reloc_info_writer(
76 new_reloc->GetDataStartAddress() + padding, 0);
77 intptr_t comment_string
78 = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
79 RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL);
80 for (int i = 0; i < additional_comments; ++i) {
81 #ifdef DEBUG
82 byte* pos_before = reloc_info_writer.pos();
83 #endif
84 reloc_info_writer.Write(&rinfo);
85 DCHECK(RelocInfo::kMinRelocCommentSize ==
86 pos_before - reloc_info_writer.pos());
87 }
88 // Replace relocation information on the code object.
89 code->set_relocation_info(*new_reloc);
90 }
91 }
92
93
PatchCodeForDeoptimization(Isolate * isolate,Code * code)94 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
95 Address code_start_address = code->instruction_start();
96
97 if (FLAG_zap_code_space) {
98 // Fail hard and early if we enter this code object again.
99 byte* pointer = code->FindCodeAgeSequence();
100 if (pointer != NULL) {
101 pointer += kNoCodeAgeSequenceLength;
102 } else {
103 pointer = code->instruction_start();
104 }
105 CodePatcher patcher(isolate, pointer, 1);
106 patcher.masm()->int3();
107
108 DeoptimizationInputData* data =
109 DeoptimizationInputData::cast(code->deoptimization_data());
110 int osr_offset = data->OsrPcOffset()->value();
111 if (osr_offset > 0) {
112 CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
113 1);
114 osr_patcher.masm()->int3();
115 }
116 }
117
118 // We will overwrite the code's relocation info in-place. Relocation info
119 // is written backward. The relocation info is the payload of a byte
120 // array. Later on we will slide this to the start of the byte array and
121 // create a filler object in the remaining space.
122 ByteArray* reloc_info = code->relocation_info();
123 Address reloc_end_address = reloc_info->address() + reloc_info->Size();
124 RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
125
126 // Since the call is a relative encoding, write new
127 // reloc info. We do not need any of the existing reloc info because the
128 // existing code will not be used again (we zap it in debug builds).
129 //
130 // Emit call to lazy deoptimization at all lazy deopt points.
131 DeoptimizationInputData* deopt_data =
132 DeoptimizationInputData::cast(code->deoptimization_data());
133 #ifdef DEBUG
134 Address prev_call_address = NULL;
135 #endif
136 // For each LLazyBailout instruction insert a call to the corresponding
137 // deoptimization entry.
138 for (int i = 0; i < deopt_data->DeoptCount(); i++) {
139 if (deopt_data->Pc(i)->value() == -1) continue;
140 // Patch lazy deoptimization entry.
141 Address call_address = code_start_address + deopt_data->Pc(i)->value();
142 CodePatcher patcher(isolate, call_address, patch_size());
143 Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
144 patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
145 // We use RUNTIME_ENTRY for deoptimization bailouts.
146 RelocInfo rinfo(isolate, call_address + 1, // 1 after the call opcode.
147 RelocInfo::RUNTIME_ENTRY,
148 reinterpret_cast<intptr_t>(deopt_entry), NULL);
149 reloc_info_writer.Write(&rinfo);
150 DCHECK_GE(reloc_info_writer.pos(),
151 reloc_info->address() + ByteArray::kHeaderSize);
152 DCHECK(prev_call_address == NULL ||
153 call_address >= prev_call_address + patch_size());
154 DCHECK(call_address + patch_size() <= code->instruction_end());
155 #ifdef DEBUG
156 prev_call_address = call_address;
157 #endif
158 }
159
160 // Move the relocation info to the beginning of the byte array.
161 const int new_reloc_length = reloc_end_address - reloc_info_writer.pos();
162 MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length);
163
164 // Right trim the relocation info to free up remaining space.
165 const int delta = reloc_info->length() - new_reloc_length;
166 if (delta > 0) {
167 isolate->heap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
168 reloc_info, delta);
169 }
170 }
171
172
SetPlatformCompiledStubRegisters(FrameDescription * output_frame,CodeStubDescriptor * descriptor)173 void Deoptimizer::SetPlatformCompiledStubRegisters(
174 FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
175 intptr_t handler =
176 reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
177 int params = descriptor->GetHandlerParameterCount();
178 output_frame->SetRegister(eax.code(), params);
179 output_frame->SetRegister(ebx.code(), handler);
180 }
181
182
CopyDoubleRegisters(FrameDescription * output_frame)183 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
184 for (int i = 0; i < X87Register::kMaxNumRegisters; ++i) {
185 double double_value = input_->GetDoubleRegister(i);
186 output_frame->SetDoubleRegister(i, double_value);
187 }
188 }
189
190 #define __ masm()->
191
Generate()192 void Deoptimizer::TableEntryGenerator::Generate() {
193 GeneratePrologue();
194
195 // Save all general purpose registers before messing with them.
196 const int kNumberOfRegisters = Register::kNumRegisters;
197
198 const int kDoubleRegsSize = kDoubleSize * X87Register::kMaxNumRegisters;
199
200 // Reserve space for x87 fp registers.
201 __ sub(esp, Immediate(kDoubleRegsSize));
202
203 __ pushad();
204
205 ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
206 __ mov(Operand::StaticVariable(c_entry_fp_address), ebp);
207
208 // GP registers are safe to use now.
209 // Save used x87 fp registers in correct position of previous reserve space.
210 Label loop, done;
211 // Get the layout of x87 stack.
212 __ sub(esp, Immediate(kPointerSize));
213 __ fistp_s(MemOperand(esp, 0));
214 __ pop(eax);
215 // Preserve stack layout in edi
216 __ mov(edi, eax);
217 // Get the x87 stack depth, the first 3 bits.
218 __ mov(ecx, eax);
219 __ and_(ecx, 0x7);
220 __ j(zero, &done, Label::kNear);
221
222 __ bind(&loop);
223 __ shr(eax, 0x3);
224 __ mov(ebx, eax);
225 __ and_(ebx, 0x7); // Extract the st_x index into ebx.
226 // Pop TOS to the correct position. The disp(0x20) is due to pushad.
227 // The st_i should be saved to (esp + ebx * kDoubleSize + 0x20).
228 __ fstp_d(Operand(esp, ebx, times_8, 0x20));
229 __ dec(ecx); // Decrease stack depth.
230 __ j(not_zero, &loop, Label::kNear);
231 __ bind(&done);
232
233 const int kSavedRegistersAreaSize =
234 kNumberOfRegisters * kPointerSize + kDoubleRegsSize;
235
236 // Get the bailout id from the stack.
237 __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
238
239 // Get the address of the location in the code object
240 // and compute the fp-to-sp delta in register edx.
241 __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
242 __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
243
244 __ sub(edx, ebp);
245 __ neg(edx);
246
247 __ push(edi);
248 // Allocate a new deoptimizer object.
249 __ PrepareCallCFunction(6, eax);
250 __ mov(eax, Immediate(0));
251 Label context_check;
252 __ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
253 __ JumpIfSmi(edi, &context_check);
254 __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
255 __ bind(&context_check);
256 __ mov(Operand(esp, 0 * kPointerSize), eax); // Function.
257 __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type.
258 __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id.
259 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0.
260 __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta.
261 __ mov(Operand(esp, 5 * kPointerSize),
262 Immediate(ExternalReference::isolate_address(isolate())));
263 {
264 AllowExternalCallThatCantCauseGC scope(masm());
265 __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
266 }
267
268 __ pop(edi);
269
270 // Preserve deoptimizer object in register eax and get the input
271 // frame descriptor pointer.
272 __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
273
274 // Fill in the input registers.
275 for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
276 int offset = (i * kPointerSize) + FrameDescription::registers_offset();
277 __ pop(Operand(ebx, offset));
278 }
279
280 int double_regs_offset = FrameDescription::double_registers_offset();
281 const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
282 // Fill in the double input registers.
283 for (int i = 0; i < X87Register::kMaxNumAllocatableRegisters; ++i) {
284 int code = config->GetAllocatableDoubleCode(i);
285 int dst_offset = code * kDoubleSize + double_regs_offset;
286 int src_offset = code * kDoubleSize;
287 __ fld_d(Operand(esp, src_offset));
288 __ fstp_d(Operand(ebx, dst_offset));
289 }
290
291 // Clear FPU all exceptions.
292 // TODO(ulan): Find out why the TOP register is not zero here in some cases,
293 // and check that the generated code never deoptimizes with unbalanced stack.
294 __ fnclex();
295
296 // Remove the bailout id, return address and the double registers.
297 __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
298
299 // Compute a pointer to the unwinding limit in register ecx; that is
300 // the first stack slot not part of the input frame.
301 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
302 __ add(ecx, esp);
303
304 // Unwind the stack down to - but not including - the unwinding
305 // limit and copy the contents of the activation frame to the input
306 // frame description.
307 __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
308 Label pop_loop_header;
309 __ jmp(&pop_loop_header);
310 Label pop_loop;
311 __ bind(&pop_loop);
312 __ pop(Operand(edx, 0));
313 __ add(edx, Immediate(sizeof(uint32_t)));
314 __ bind(&pop_loop_header);
315 __ cmp(ecx, esp);
316 __ j(not_equal, &pop_loop);
317
318 // Compute the output frame in the deoptimizer.
319 __ push(edi);
320 __ push(eax);
321 __ PrepareCallCFunction(1, ebx);
322 __ mov(Operand(esp, 0 * kPointerSize), eax);
323 {
324 AllowExternalCallThatCantCauseGC scope(masm());
325 __ CallCFunction(
326 ExternalReference::compute_output_frames_function(isolate()), 1);
327 }
328 __ pop(eax);
329 __ pop(edi);
330 __ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));
331
332 // Replace the current (input) frame with the output frames.
333 Label outer_push_loop, inner_push_loop,
334 outer_loop_header, inner_loop_header;
335 // Outer loop state: eax = current FrameDescription**, edx = one past the
336 // last FrameDescription**.
337 __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
338 __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
339 __ lea(edx, Operand(eax, edx, times_4, 0));
340 __ jmp(&outer_loop_header);
341 __ bind(&outer_push_loop);
342 // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
343 __ mov(ebx, Operand(eax, 0));
344 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
345 __ jmp(&inner_loop_header);
346 __ bind(&inner_push_loop);
347 __ sub(ecx, Immediate(sizeof(uint32_t)));
348 __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
349 __ bind(&inner_loop_header);
350 __ test(ecx, ecx);
351 __ j(not_zero, &inner_push_loop);
352 __ add(eax, Immediate(kPointerSize));
353 __ bind(&outer_loop_header);
354 __ cmp(eax, edx);
355 __ j(below, &outer_push_loop);
356
357
358 // In case of a failed STUB, we have to restore the x87 stack.
359 // x87 stack layout is in edi.
360 Label loop2, done2;
361 // Get the x87 stack depth, the first 3 bits.
362 __ mov(ecx, edi);
363 __ and_(ecx, 0x7);
364 __ j(zero, &done2, Label::kNear);
365
366 __ lea(ecx, Operand(ecx, ecx, times_2, 0));
367 __ bind(&loop2);
368 __ mov(eax, edi);
369 __ shr_cl(eax);
370 __ and_(eax, 0x7);
371 __ fld_d(Operand(ebx, eax, times_8, double_regs_offset));
372 __ sub(ecx, Immediate(0x3));
373 __ j(not_zero, &loop2, Label::kNear);
374 __ bind(&done2);
375
376 // Push state, pc, and continuation from the last output frame.
377 __ push(Operand(ebx, FrameDescription::state_offset()));
378 __ push(Operand(ebx, FrameDescription::pc_offset()));
379 __ push(Operand(ebx, FrameDescription::continuation_offset()));
380
381
382 // Push the registers from the last output frame.
383 for (int i = 0; i < kNumberOfRegisters; i++) {
384 int offset = (i * kPointerSize) + FrameDescription::registers_offset();
385 __ push(Operand(ebx, offset));
386 }
387
388 // Restore the registers from the stack.
389 __ popad();
390
391 // Return to the continuation point.
392 __ ret(0);
393 }
394
395
GeneratePrologue()396 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
397 // Create a sequence of deoptimization entries.
398 Label done;
399 for (int i = 0; i < count(); i++) {
400 int start = masm()->pc_offset();
401 USE(start);
402 __ push_imm32(i);
403 __ jmp(&done);
404 DCHECK(masm()->pc_offset() - start == table_entry_size_);
405 }
406 __ bind(&done);
407 }
408
409
SetCallerPc(unsigned offset,intptr_t value)410 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
411 SetFrameSlot(offset, value);
412 }
413
414
SetCallerFp(unsigned offset,intptr_t value)415 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
416 SetFrameSlot(offset, value);
417 }
418
419
SetCallerConstantPool(unsigned offset,intptr_t value)420 void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
421 // No embedded constant pool support.
422 UNREACHABLE();
423 }
424
425
426 #undef __
427
428
429 } // namespace internal
430 } // namespace v8
431
432 #endif // V8_TARGET_ARCH_X87
433