1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "./vpx_config.h"
12 #include "vpx_dsp/vpx_dsp_common.h"
13 #include "vpx_mem/vpx_mem.h"
14 #include "vp9/common/vp9_entropymode.h"
15 #include "vp9/common/vp9_thread_common.h"
16 #include "vp9/common/vp9_reconinter.h"
17 #include "vp9/common/vp9_loopfilter.h"
18
19 #if CONFIG_MULTITHREAD
mutex_lock(pthread_mutex_t * const mutex)20 static INLINE void mutex_lock(pthread_mutex_t *const mutex) {
21 const int kMaxTryLocks = 4000;
22 int locked = 0;
23 int i;
24
25 for (i = 0; i < kMaxTryLocks; ++i) {
26 if (!pthread_mutex_trylock(mutex)) {
27 locked = 1;
28 break;
29 }
30 }
31
32 if (!locked) pthread_mutex_lock(mutex);
33 }
34 #endif // CONFIG_MULTITHREAD
35
sync_read(VP9LfSync * const lf_sync,int r,int c)36 static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) {
37 #if CONFIG_MULTITHREAD
38 const int nsync = lf_sync->sync_range;
39
40 if (r && !(c & (nsync - 1))) {
41 pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1];
42 mutex_lock(mutex);
43
44 while (c > lf_sync->cur_sb_col[r - 1] - nsync) {
45 pthread_cond_wait(&lf_sync->cond_[r - 1], mutex);
46 }
47 pthread_mutex_unlock(mutex);
48 }
49 #else
50 (void)lf_sync;
51 (void)r;
52 (void)c;
53 #endif // CONFIG_MULTITHREAD
54 }
55
sync_write(VP9LfSync * const lf_sync,int r,int c,const int sb_cols)56 static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c,
57 const int sb_cols) {
58 #if CONFIG_MULTITHREAD
59 const int nsync = lf_sync->sync_range;
60 int cur;
61 // Only signal when there are enough filtered SB for next row to run.
62 int sig = 1;
63
64 if (c < sb_cols - 1) {
65 cur = c;
66 if (c % nsync) sig = 0;
67 } else {
68 cur = sb_cols + nsync;
69 }
70
71 if (sig) {
72 mutex_lock(&lf_sync->mutex_[r]);
73
74 lf_sync->cur_sb_col[r] = cur;
75
76 pthread_cond_signal(&lf_sync->cond_[r]);
77 pthread_mutex_unlock(&lf_sync->mutex_[r]);
78 }
79 #else
80 (void)lf_sync;
81 (void)r;
82 (void)c;
83 (void)sb_cols;
84 #endif // CONFIG_MULTITHREAD
85 }
86
87 // Implement row loopfiltering for each thread.
thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,VP9_COMMON * const cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only,VP9LfSync * const lf_sync)88 static INLINE void thread_loop_filter_rows(
89 const YV12_BUFFER_CONFIG *const frame_buffer, VP9_COMMON *const cm,
90 struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop,
91 int y_only, VP9LfSync *const lf_sync) {
92 const int num_planes = y_only ? 1 : MAX_MB_PLANE;
93 const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2;
94 int mi_row, mi_col;
95 enum lf_path path;
96 if (y_only)
97 path = LF_PATH_444;
98 else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
99 path = LF_PATH_420;
100 else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
101 path = LF_PATH_444;
102 else
103 path = LF_PATH_SLOW;
104
105 for (mi_row = start; mi_row < stop;
106 mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) {
107 MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
108 LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
109
110 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
111 const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
112 const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
113 int plane;
114
115 sync_read(lf_sync, r, c);
116
117 vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
118
119 vp9_adjust_mask(cm, mi_row, mi_col, lfm);
120
121 vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
122 for (plane = 1; plane < num_planes; ++plane) {
123 switch (path) {
124 case LF_PATH_420:
125 vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
126 break;
127 case LF_PATH_444:
128 vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
129 break;
130 case LF_PATH_SLOW:
131 vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
132 mi_row, mi_col);
133 break;
134 }
135 }
136
137 sync_write(lf_sync, r, c, sb_cols);
138 }
139 }
140 }
141
142 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(VP9LfSync * const lf_sync,LFWorkerData * const lf_data)143 static int loop_filter_row_worker(VP9LfSync *const lf_sync,
144 LFWorkerData *const lf_data) {
145 thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
146 lf_data->start, lf_data->stop, lf_data->y_only,
147 lf_sync);
148 return 1;
149 }
150
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only,VPxWorker * workers,int nworkers,VP9LfSync * lf_sync)151 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
152 struct macroblockd_plane planes[MAX_MB_PLANE],
153 int start, int stop, int y_only,
154 VPxWorker *workers, int nworkers,
155 VP9LfSync *lf_sync) {
156 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
157 // Number of superblock rows and cols
158 const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
159 // Decoder may allocate more threads than number of tiles based on user's
160 // input.
161 const int tile_cols = 1 << cm->log2_tile_cols;
162 const int num_workers = VPXMIN(nworkers, tile_cols);
163 int i;
164
165 if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
166 num_workers > lf_sync->num_workers) {
167 vp9_loop_filter_dealloc(lf_sync);
168 vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
169 }
170
171 // Initialize cur_sb_col to -1 for all SB rows.
172 memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
173
174 // Set up loopfilter thread data.
175 // The decoder is capping num_workers because it has been observed that using
176 // more threads on the loopfilter than there are cores will hurt performance
177 // on Android. This is because the system will only schedule the tile decode
178 // workers on cores equal to the number of tile columns. Then if the decoder
179 // tries to use more threads for the loopfilter, it will hurt performance
180 // because of contention. If the multithreading code changes in the future
181 // then the number of workers used by the loopfilter should be revisited.
182 for (i = 0; i < num_workers; ++i) {
183 VPxWorker *const worker = &workers[i];
184 LFWorkerData *const lf_data = &lf_sync->lfdata[i];
185
186 worker->hook = (VPxWorkerHook)loop_filter_row_worker;
187 worker->data1 = lf_sync;
188 worker->data2 = lf_data;
189
190 // Loopfilter data
191 vp9_loop_filter_data_reset(lf_data, frame, cm, planes);
192 lf_data->start = start + i * MI_BLOCK_SIZE;
193 lf_data->stop = stop;
194 lf_data->y_only = y_only;
195
196 // Start loopfiltering
197 if (i == num_workers - 1) {
198 winterface->execute(worker);
199 } else {
200 winterface->launch(worker);
201 }
202 }
203
204 // Wait till all rows are finished
205 for (i = 0; i < num_workers; ++i) {
206 winterface->sync(&workers[i]);
207 }
208 }
209
vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int frame_filter_level,int y_only,int partial_frame,VPxWorker * workers,int num_workers,VP9LfSync * lf_sync)210 void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
211 struct macroblockd_plane planes[MAX_MB_PLANE],
212 int frame_filter_level, int y_only,
213 int partial_frame, VPxWorker *workers,
214 int num_workers, VP9LfSync *lf_sync) {
215 int start_mi_row, end_mi_row, mi_rows_to_filter;
216
217 if (!frame_filter_level) return;
218
219 start_mi_row = 0;
220 mi_rows_to_filter = cm->mi_rows;
221 if (partial_frame && cm->mi_rows > 8) {
222 start_mi_row = cm->mi_rows >> 1;
223 start_mi_row &= 0xfffffff8;
224 mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
225 }
226 end_mi_row = start_mi_row + mi_rows_to_filter;
227 vp9_loop_filter_frame_init(cm, frame_filter_level);
228
229 loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only,
230 workers, num_workers, lf_sync);
231 }
232
233 // Set up nsync by width.
get_sync_range(int width)234 static INLINE int get_sync_range(int width) {
235 // nsync numbers are picked by testing. For example, for 4k
236 // video, using 4 gives best performance.
237 if (width < 640)
238 return 1;
239 else if (width <= 1280)
240 return 2;
241 else if (width <= 4096)
242 return 4;
243 else
244 return 8;
245 }
246
247 // Allocate memory for lf row synchronization
vp9_loop_filter_alloc(VP9LfSync * lf_sync,VP9_COMMON * cm,int rows,int width,int num_workers)248 void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows,
249 int width, int num_workers) {
250 lf_sync->rows = rows;
251 #if CONFIG_MULTITHREAD
252 {
253 int i;
254
255 CHECK_MEM_ERROR(cm, lf_sync->mutex_,
256 vpx_malloc(sizeof(*lf_sync->mutex_) * rows));
257 if (lf_sync->mutex_) {
258 for (i = 0; i < rows; ++i) {
259 pthread_mutex_init(&lf_sync->mutex_[i], NULL);
260 }
261 }
262
263 CHECK_MEM_ERROR(cm, lf_sync->cond_,
264 vpx_malloc(sizeof(*lf_sync->cond_) * rows));
265 if (lf_sync->cond_) {
266 for (i = 0; i < rows; ++i) {
267 pthread_cond_init(&lf_sync->cond_[i], NULL);
268 }
269 }
270 }
271 #endif // CONFIG_MULTITHREAD
272
273 CHECK_MEM_ERROR(cm, lf_sync->lfdata,
274 vpx_malloc(num_workers * sizeof(*lf_sync->lfdata)));
275 lf_sync->num_workers = num_workers;
276
277 CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col,
278 vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows));
279
280 // Set up nsync.
281 lf_sync->sync_range = get_sync_range(width);
282 }
283
284 // Deallocate lf synchronization related mutex and data
vp9_loop_filter_dealloc(VP9LfSync * lf_sync)285 void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) {
286 if (lf_sync != NULL) {
287 #if CONFIG_MULTITHREAD
288 int i;
289
290 if (lf_sync->mutex_ != NULL) {
291 for (i = 0; i < lf_sync->rows; ++i) {
292 pthread_mutex_destroy(&lf_sync->mutex_[i]);
293 }
294 vpx_free(lf_sync->mutex_);
295 }
296 if (lf_sync->cond_ != NULL) {
297 for (i = 0; i < lf_sync->rows; ++i) {
298 pthread_cond_destroy(&lf_sync->cond_[i]);
299 }
300 vpx_free(lf_sync->cond_);
301 }
302 #endif // CONFIG_MULTITHREAD
303 vpx_free(lf_sync->lfdata);
304 vpx_free(lf_sync->cur_sb_col);
305 // clear the structure as the source of this call may be a resize in which
306 // case this call will be followed by an _alloc() which may fail.
307 vp9_zero(*lf_sync);
308 }
309 }
310
311 // Accumulate frame counts.
vp9_accumulate_frame_counts(FRAME_COUNTS * accum,const FRAME_COUNTS * counts,int is_dec)312 void vp9_accumulate_frame_counts(FRAME_COUNTS *accum,
313 const FRAME_COUNTS *counts, int is_dec) {
314 int i, j, k, l, m;
315
316 for (i = 0; i < BLOCK_SIZE_GROUPS; i++)
317 for (j = 0; j < INTRA_MODES; j++)
318 accum->y_mode[i][j] += counts->y_mode[i][j];
319
320 for (i = 0; i < INTRA_MODES; i++)
321 for (j = 0; j < INTRA_MODES; j++)
322 accum->uv_mode[i][j] += counts->uv_mode[i][j];
323
324 for (i = 0; i < PARTITION_CONTEXTS; i++)
325 for (j = 0; j < PARTITION_TYPES; j++)
326 accum->partition[i][j] += counts->partition[i][j];
327
328 if (is_dec) {
329 int n;
330 for (i = 0; i < TX_SIZES; i++)
331 for (j = 0; j < PLANE_TYPES; j++)
332 for (k = 0; k < REF_TYPES; k++)
333 for (l = 0; l < COEF_BANDS; l++)
334 for (m = 0; m < COEFF_CONTEXTS; m++) {
335 accum->eob_branch[i][j][k][l][m] +=
336 counts->eob_branch[i][j][k][l][m];
337 for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
338 accum->coef[i][j][k][l][m][n] += counts->coef[i][j][k][l][m][n];
339 }
340 } else {
341 for (i = 0; i < TX_SIZES; i++)
342 for (j = 0; j < PLANE_TYPES; j++)
343 for (k = 0; k < REF_TYPES; k++)
344 for (l = 0; l < COEF_BANDS; l++)
345 for (m = 0; m < COEFF_CONTEXTS; m++)
346 accum->eob_branch[i][j][k][l][m] +=
347 counts->eob_branch[i][j][k][l][m];
348 // In the encoder, coef is only updated at frame
349 // level, so not need to accumulate it here.
350 // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
351 // accum->coef[i][j][k][l][m][n] +=
352 // counts->coef[i][j][k][l][m][n];
353 }
354
355 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
356 for (j = 0; j < SWITCHABLE_FILTERS; j++)
357 accum->switchable_interp[i][j] += counts->switchable_interp[i][j];
358
359 for (i = 0; i < INTER_MODE_CONTEXTS; i++)
360 for (j = 0; j < INTER_MODES; j++)
361 accum->inter_mode[i][j] += counts->inter_mode[i][j];
362
363 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
364 for (j = 0; j < 2; j++)
365 accum->intra_inter[i][j] += counts->intra_inter[i][j];
366
367 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
368 for (j = 0; j < 2; j++) accum->comp_inter[i][j] += counts->comp_inter[i][j];
369
370 for (i = 0; i < REF_CONTEXTS; i++)
371 for (j = 0; j < 2; j++)
372 for (k = 0; k < 2; k++)
373 accum->single_ref[i][j][k] += counts->single_ref[i][j][k];
374
375 for (i = 0; i < REF_CONTEXTS; i++)
376 for (j = 0; j < 2; j++) accum->comp_ref[i][j] += counts->comp_ref[i][j];
377
378 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
379 for (j = 0; j < TX_SIZES; j++)
380 accum->tx.p32x32[i][j] += counts->tx.p32x32[i][j];
381
382 for (j = 0; j < TX_SIZES - 1; j++)
383 accum->tx.p16x16[i][j] += counts->tx.p16x16[i][j];
384
385 for (j = 0; j < TX_SIZES - 2; j++)
386 accum->tx.p8x8[i][j] += counts->tx.p8x8[i][j];
387 }
388
389 for (i = 0; i < TX_SIZES; i++)
390 accum->tx.tx_totals[i] += counts->tx.tx_totals[i];
391
392 for (i = 0; i < SKIP_CONTEXTS; i++)
393 for (j = 0; j < 2; j++) accum->skip[i][j] += counts->skip[i][j];
394
395 for (i = 0; i < MV_JOINTS; i++) accum->mv.joints[i] += counts->mv.joints[i];
396
397 for (k = 0; k < 2; k++) {
398 nmv_component_counts *const comps = &accum->mv.comps[k];
399 const nmv_component_counts *const comps_t = &counts->mv.comps[k];
400
401 for (i = 0; i < 2; i++) {
402 comps->sign[i] += comps_t->sign[i];
403 comps->class0_hp[i] += comps_t->class0_hp[i];
404 comps->hp[i] += comps_t->hp[i];
405 }
406
407 for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i];
408
409 for (i = 0; i < CLASS0_SIZE; i++) {
410 comps->class0[i] += comps_t->class0[i];
411 for (j = 0; j < MV_FP_SIZE; j++)
412 comps->class0_fp[i][j] += comps_t->class0_fp[i][j];
413 }
414
415 for (i = 0; i < MV_OFFSET_BITS; i++)
416 for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j];
417
418 for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i];
419 }
420 }
421