1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/syscall.h>
29 #include <time.h>
30 #include <unistd.h>
31 #include <unwind.h>
32
33 #include <atomic>
34 #include <vector>
35
36 #include "private/bionic_constants.h"
37 #include "private/bionic_macros.h"
38 #include "private/ScopeGuard.h"
39 #include "BionicDeathTest.h"
40 #include "ScopedSignalHandler.h"
41 #include "utils.h"
42
TEST(pthread,pthread_key_create)43 TEST(pthread, pthread_key_create) {
44 pthread_key_t key;
45 ASSERT_EQ(0, pthread_key_create(&key, NULL));
46 ASSERT_EQ(0, pthread_key_delete(key));
47 // Can't delete a key that's already been deleted.
48 ASSERT_EQ(EINVAL, pthread_key_delete(key));
49 }
50
TEST(pthread,pthread_keys_max)51 TEST(pthread, pthread_keys_max) {
52 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
53 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
54 }
55
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)56 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
57 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
58 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
59 }
60
TEST(pthread,pthread_key_many_distinct)61 TEST(pthread, pthread_key_many_distinct) {
62 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
63 // pthread keys, but We should be able to allocate at least this many keys.
64 int nkeys = PTHREAD_KEYS_MAX / 2;
65 std::vector<pthread_key_t> keys;
66
67 auto scope_guard = make_scope_guard([&keys]{
68 for (const auto& key : keys) {
69 EXPECT_EQ(0, pthread_key_delete(key));
70 }
71 });
72
73 for (int i = 0; i < nkeys; ++i) {
74 pthread_key_t key;
75 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
76 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
77 keys.push_back(key);
78 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
79 }
80
81 for (int i = keys.size() - 1; i >= 0; --i) {
82 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
83 pthread_key_t key = keys.back();
84 keys.pop_back();
85 ASSERT_EQ(0, pthread_key_delete(key));
86 }
87 }
88
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)89 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
90 std::vector<pthread_key_t> keys;
91 int rv = 0;
92
93 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
94 // be more than we are allowed to allocate now.
95 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
96 pthread_key_t key;
97 rv = pthread_key_create(&key, NULL);
98 if (rv == EAGAIN) {
99 break;
100 }
101 EXPECT_EQ(0, rv);
102 keys.push_back(key);
103 }
104
105 // Don't leak keys.
106 for (const auto& key : keys) {
107 EXPECT_EQ(0, pthread_key_delete(key));
108 }
109 keys.clear();
110
111 // We should have eventually reached the maximum number of keys and received
112 // EAGAIN.
113 ASSERT_EQ(EAGAIN, rv);
114 }
115
TEST(pthread,pthread_key_delete)116 TEST(pthread, pthread_key_delete) {
117 void* expected = reinterpret_cast<void*>(1234);
118 pthread_key_t key;
119 ASSERT_EQ(0, pthread_key_create(&key, NULL));
120 ASSERT_EQ(0, pthread_setspecific(key, expected));
121 ASSERT_EQ(expected, pthread_getspecific(key));
122 ASSERT_EQ(0, pthread_key_delete(key));
123 // After deletion, pthread_getspecific returns NULL.
124 ASSERT_EQ(NULL, pthread_getspecific(key));
125 // And you can't use pthread_setspecific with the deleted key.
126 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
127 }
128
TEST(pthread,pthread_key_fork)129 TEST(pthread, pthread_key_fork) {
130 void* expected = reinterpret_cast<void*>(1234);
131 pthread_key_t key;
132 ASSERT_EQ(0, pthread_key_create(&key, NULL));
133 ASSERT_EQ(0, pthread_setspecific(key, expected));
134 ASSERT_EQ(expected, pthread_getspecific(key));
135
136 pid_t pid = fork();
137 ASSERT_NE(-1, pid) << strerror(errno);
138
139 if (pid == 0) {
140 // The surviving thread inherits all the forking thread's TLS values...
141 ASSERT_EQ(expected, pthread_getspecific(key));
142 _exit(99);
143 }
144
145 AssertChildExited(pid, 99);
146
147 ASSERT_EQ(expected, pthread_getspecific(key));
148 ASSERT_EQ(0, pthread_key_delete(key));
149 }
150
DirtyKeyFn(void * key)151 static void* DirtyKeyFn(void* key) {
152 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
153 }
154
TEST(pthread,pthread_key_dirty)155 TEST(pthread, pthread_key_dirty) {
156 pthread_key_t key;
157 ASSERT_EQ(0, pthread_key_create(&key, NULL));
158
159 size_t stack_size = 640 * 1024;
160 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
161 ASSERT_NE(MAP_FAILED, stack);
162 memset(stack, 0xff, stack_size);
163
164 pthread_attr_t attr;
165 ASSERT_EQ(0, pthread_attr_init(&attr));
166 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
167
168 pthread_t t;
169 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
170
171 void* result;
172 ASSERT_EQ(0, pthread_join(t, &result));
173 ASSERT_EQ(nullptr, result); // Not ~0!
174
175 ASSERT_EQ(0, munmap(stack, stack_size));
176 ASSERT_EQ(0, pthread_key_delete(key));
177 }
178
TEST(pthread,static_pthread_key_used_before_creation)179 TEST(pthread, static_pthread_key_used_before_creation) {
180 #if defined(__BIONIC__)
181 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
182 // So here tests if the static/global default value 0 can be detected as invalid key.
183 static pthread_key_t key;
184 ASSERT_EQ(nullptr, pthread_getspecific(key));
185 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
186 ASSERT_EQ(EINVAL, pthread_key_delete(key));
187 #else
188 GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
189 #endif
190 }
191
IdFn(void * arg)192 static void* IdFn(void* arg) {
193 return arg;
194 }
195
196 class SpinFunctionHelper {
197 public:
SpinFunctionHelper()198 SpinFunctionHelper() {
199 SpinFunctionHelper::spin_flag_ = true;
200 }
~SpinFunctionHelper()201 ~SpinFunctionHelper() {
202 UnSpin();
203 }
GetFunction()204 auto GetFunction() -> void* (*)(void*) {
205 return SpinFunctionHelper::SpinFn;
206 }
207
UnSpin()208 void UnSpin() {
209 SpinFunctionHelper::spin_flag_ = false;
210 }
211
212 private:
SpinFn(void *)213 static void* SpinFn(void*) {
214 while (spin_flag_) {}
215 return NULL;
216 }
217 static std::atomic<bool> spin_flag_;
218 };
219
220 // It doesn't matter if spin_flag_ is used in several tests,
221 // because it is always set to false after each test. Each thread
222 // loops on spin_flag_ can find it becomes false at some time.
223 std::atomic<bool> SpinFunctionHelper::spin_flag_;
224
JoinFn(void * arg)225 static void* JoinFn(void* arg) {
226 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
227 }
228
AssertDetached(pthread_t t,bool is_detached)229 static void AssertDetached(pthread_t t, bool is_detached) {
230 pthread_attr_t attr;
231 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
232 int detach_state;
233 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
234 pthread_attr_destroy(&attr);
235 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
236 }
237
MakeDeadThread(pthread_t & t)238 static void MakeDeadThread(pthread_t& t) {
239 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
240 ASSERT_EQ(0, pthread_join(t, NULL));
241 }
242
TEST(pthread,pthread_create)243 TEST(pthread, pthread_create) {
244 void* expected_result = reinterpret_cast<void*>(123);
245 // Can we create a thread?
246 pthread_t t;
247 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
248 // If we join, do we get the expected value back?
249 void* result;
250 ASSERT_EQ(0, pthread_join(t, &result));
251 ASSERT_EQ(expected_result, result);
252 }
253
TEST(pthread,pthread_create_EAGAIN)254 TEST(pthread, pthread_create_EAGAIN) {
255 pthread_attr_t attributes;
256 ASSERT_EQ(0, pthread_attr_init(&attributes));
257 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
258
259 pthread_t t;
260 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
261 }
262
TEST(pthread,pthread_no_join_after_detach)263 TEST(pthread, pthread_no_join_after_detach) {
264 SpinFunctionHelper spin_helper;
265
266 pthread_t t1;
267 ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
268
269 // After a pthread_detach...
270 ASSERT_EQ(0, pthread_detach(t1));
271 AssertDetached(t1, true);
272
273 // ...pthread_join should fail.
274 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
275 }
276
TEST(pthread,pthread_no_op_detach_after_join)277 TEST(pthread, pthread_no_op_detach_after_join) {
278 SpinFunctionHelper spin_helper;
279
280 pthread_t t1;
281 ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
282
283 // If thread 2 is already waiting to join thread 1...
284 pthread_t t2;
285 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
286
287 sleep(1); // (Give t2 a chance to call pthread_join.)
288
289 #if defined(__BIONIC__)
290 ASSERT_EQ(EINVAL, pthread_detach(t1));
291 #else
292 ASSERT_EQ(0, pthread_detach(t1));
293 #endif
294 AssertDetached(t1, false);
295
296 spin_helper.UnSpin();
297
298 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
299 void* join_result;
300 ASSERT_EQ(0, pthread_join(t2, &join_result));
301 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
302 }
303
TEST(pthread,pthread_join_self)304 TEST(pthread, pthread_join_self) {
305 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
306 }
307
308 struct TestBug37410 {
309 pthread_t main_thread;
310 pthread_mutex_t mutex;
311
mainTestBug37410312 static void main() {
313 TestBug37410 data;
314 data.main_thread = pthread_self();
315 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
316 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
317
318 pthread_t t;
319 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
320
321 // Wait for the thread to be running...
322 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
323 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
324
325 // ...and exit.
326 pthread_exit(NULL);
327 }
328
329 private:
thread_fnTestBug37410330 static void* thread_fn(void* arg) {
331 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
332
333 // Let the main thread know we're running.
334 pthread_mutex_unlock(&data->mutex);
335
336 // And wait for the main thread to exit.
337 pthread_join(data->main_thread, NULL);
338
339 return NULL;
340 }
341 };
342
343 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
344 // run this test (which exits normally) in its own process.
345
346 class pthread_DeathTest : public BionicDeathTest {};
347
TEST_F(pthread_DeathTest,pthread_bug_37410)348 TEST_F(pthread_DeathTest, pthread_bug_37410) {
349 // http://code.google.com/p/android/issues/detail?id=37410
350 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
351 }
352
SignalHandlerFn(void * arg)353 static void* SignalHandlerFn(void* arg) {
354 sigset_t wait_set;
355 sigfillset(&wait_set);
356 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
357 }
358
TEST(pthread,pthread_sigmask)359 TEST(pthread, pthread_sigmask) {
360 // Check that SIGUSR1 isn't blocked.
361 sigset_t original_set;
362 sigemptyset(&original_set);
363 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
364 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
365
366 // Block SIGUSR1.
367 sigset_t set;
368 sigemptyset(&set);
369 sigaddset(&set, SIGUSR1);
370 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
371
372 // Check that SIGUSR1 is blocked.
373 sigset_t final_set;
374 sigemptyset(&final_set);
375 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
376 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
377 // ...and that sigprocmask agrees with pthread_sigmask.
378 sigemptyset(&final_set);
379 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
380 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
381
382 // Spawn a thread that calls sigwait and tells us what it received.
383 pthread_t signal_thread;
384 int received_signal = -1;
385 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
386
387 // Send that thread SIGUSR1.
388 pthread_kill(signal_thread, SIGUSR1);
389
390 // See what it got.
391 void* join_result;
392 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
393 ASSERT_EQ(SIGUSR1, received_signal);
394 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
395
396 // Restore the original signal mask.
397 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
398 }
399
test_pthread_setname_np__pthread_getname_np(pthread_t t)400 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
401 ASSERT_EQ(0, pthread_setname_np(t, "short"));
402 char name[32];
403 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
404 ASSERT_STREQ("short", name);
405
406 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
407 ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
408 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
409 ASSERT_STREQ("123456789012345", name);
410
411 ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
412
413 // The passed-in buffer should be at least 16 bytes.
414 ASSERT_EQ(0, pthread_getname_np(t, name, 16));
415 ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
416 }
417
TEST(pthread,pthread_setname_np__pthread_getname_np__self)418 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
419 test_pthread_setname_np__pthread_getname_np(pthread_self());
420 }
421
TEST(pthread,pthread_setname_np__pthread_getname_np__other)422 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
423 SpinFunctionHelper spin_helper;
424
425 pthread_t t;
426 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
427 test_pthread_setname_np__pthread_getname_np(t);
428 spin_helper.UnSpin();
429 ASSERT_EQ(0, pthread_join(t, nullptr));
430 }
431
432 // http://b/28051133: a kernel misfeature means that you can't change the
433 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)434 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
435 ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
436
437 SpinFunctionHelper spin_helper;
438
439 pthread_t t;
440 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
441 test_pthread_setname_np__pthread_getname_np(t);
442 spin_helper.UnSpin();
443 ASSERT_EQ(0, pthread_join(t, nullptr));
444 }
445
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)446 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
447 pthread_t dead_thread;
448 MakeDeadThread(dead_thread);
449
450 EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"), "invalid pthread_t");
451 }
452
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)453 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
454 pthread_t null_thread = 0;
455 EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
456 }
457
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)458 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
459 pthread_t dead_thread;
460 MakeDeadThread(dead_thread);
461
462 char name[64];
463 EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)), "invalid pthread_t");
464 }
465
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)466 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
467 pthread_t null_thread = 0;
468
469 char name[64];
470 EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
471 }
472
TEST(pthread,pthread_kill__0)473 TEST(pthread, pthread_kill__0) {
474 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
475 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
476 }
477
TEST(pthread,pthread_kill__invalid_signal)478 TEST(pthread, pthread_kill__invalid_signal) {
479 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
480 }
481
pthread_kill__in_signal_handler_helper(int signal_number)482 static void pthread_kill__in_signal_handler_helper(int signal_number) {
483 static int count = 0;
484 ASSERT_EQ(SIGALRM, signal_number);
485 if (++count == 1) {
486 // Can we call pthread_kill from a signal handler?
487 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
488 }
489 }
490
TEST(pthread,pthread_kill__in_signal_handler)491 TEST(pthread, pthread_kill__in_signal_handler) {
492 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
493 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
494 }
495
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)496 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
497 pthread_t dead_thread;
498 MakeDeadThread(dead_thread);
499
500 EXPECT_DEATH(pthread_detach(dead_thread), "invalid pthread_t");
501 }
502
TEST_F(pthread_DeathTest,pthread_detach__null_thread)503 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
504 pthread_t null_thread = 0;
505 EXPECT_EQ(ESRCH, pthread_detach(null_thread));
506 }
507
TEST(pthread,pthread_getcpuclockid__clock_gettime)508 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
509 SpinFunctionHelper spin_helper;
510
511 pthread_t t;
512 ASSERT_EQ(0, pthread_create(&t, NULL, spin_helper.GetFunction(), NULL));
513
514 clockid_t c;
515 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
516 timespec ts;
517 ASSERT_EQ(0, clock_gettime(c, &ts));
518 spin_helper.UnSpin();
519 ASSERT_EQ(0, pthread_join(t, nullptr));
520 }
521
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)522 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
523 pthread_t dead_thread;
524 MakeDeadThread(dead_thread);
525
526 clockid_t c;
527 EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c), "invalid pthread_t");
528 }
529
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)530 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
531 pthread_t null_thread = 0;
532 clockid_t c;
533 EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
534 }
535
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)536 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
537 pthread_t dead_thread;
538 MakeDeadThread(dead_thread);
539
540 int policy;
541 sched_param param;
542 EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m), "invalid pthread_t");
543 }
544
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)545 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
546 pthread_t null_thread = 0;
547 int policy;
548 sched_param param;
549 EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m));
550 }
551
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)552 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
553 pthread_t dead_thread;
554 MakeDeadThread(dead_thread);
555
556 int policy = 0;
557 sched_param param;
558 EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m), "invalid pthread_t");
559 }
560
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)561 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
562 pthread_t null_thread = 0;
563 int policy = 0;
564 sched_param param;
565 EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m));
566 }
567
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)568 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
569 pthread_t dead_thread;
570 MakeDeadThread(dead_thread);
571
572 EXPECT_DEATH(pthread_join(dead_thread, NULL), "invalid pthread_t");
573 }
574
TEST_F(pthread_DeathTest,pthread_join__null_thread)575 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
576 pthread_t null_thread = 0;
577 EXPECT_EQ(ESRCH, pthread_join(null_thread, NULL));
578 }
579
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)580 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
581 pthread_t dead_thread;
582 MakeDeadThread(dead_thread);
583
584 EXPECT_DEATH(pthread_kill(dead_thread, 0), "invalid pthread_t");
585 }
586
TEST_F(pthread_DeathTest,pthread_kill__null_thread)587 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
588 pthread_t null_thread = 0;
589 EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
590 }
591
TEST(pthread,pthread_join__multijoin)592 TEST(pthread, pthread_join__multijoin) {
593 SpinFunctionHelper spin_helper;
594
595 pthread_t t1;
596 ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
597
598 pthread_t t2;
599 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
600
601 sleep(1); // (Give t2 a chance to call pthread_join.)
602
603 // Multiple joins to the same thread should fail.
604 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
605
606 spin_helper.UnSpin();
607
608 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
609 void* join_result;
610 ASSERT_EQ(0, pthread_join(t2, &join_result));
611 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
612 }
613
TEST(pthread,pthread_join__race)614 TEST(pthread, pthread_join__race) {
615 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
616 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
617 for (size_t i = 0; i < 1024; ++i) {
618 size_t stack_size = 640*1024;
619 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
620
621 pthread_attr_t a;
622 pthread_attr_init(&a);
623 pthread_attr_setstack(&a, stack, stack_size);
624
625 pthread_t t;
626 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
627 ASSERT_EQ(0, pthread_join(t, NULL));
628 ASSERT_EQ(0, munmap(stack, stack_size));
629 }
630 }
631
GetActualGuardSizeFn(void * arg)632 static void* GetActualGuardSizeFn(void* arg) {
633 pthread_attr_t attributes;
634 pthread_getattr_np(pthread_self(), &attributes);
635 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
636 return NULL;
637 }
638
GetActualGuardSize(const pthread_attr_t & attributes)639 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
640 size_t result;
641 pthread_t t;
642 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
643 pthread_join(t, NULL);
644 return result;
645 }
646
GetActualStackSizeFn(void * arg)647 static void* GetActualStackSizeFn(void* arg) {
648 pthread_attr_t attributes;
649 pthread_getattr_np(pthread_self(), &attributes);
650 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
651 return NULL;
652 }
653
GetActualStackSize(const pthread_attr_t & attributes)654 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
655 size_t result;
656 pthread_t t;
657 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
658 pthread_join(t, NULL);
659 return result;
660 }
661
TEST(pthread,pthread_attr_setguardsize)662 TEST(pthread, pthread_attr_setguardsize) {
663 pthread_attr_t attributes;
664 ASSERT_EQ(0, pthread_attr_init(&attributes));
665
666 // Get the default guard size.
667 size_t default_guard_size;
668 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
669
670 // No such thing as too small: will be rounded up to one page by pthread_create.
671 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
672 size_t guard_size;
673 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
674 ASSERT_EQ(128U, guard_size);
675 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
676
677 // Large enough and a multiple of the page size.
678 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
679 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
680 ASSERT_EQ(32*1024U, guard_size);
681
682 // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
683 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
684 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
685 ASSERT_EQ(32*1024U + 1, guard_size);
686 }
687
TEST(pthread,pthread_attr_setstacksize)688 TEST(pthread, pthread_attr_setstacksize) {
689 pthread_attr_t attributes;
690 ASSERT_EQ(0, pthread_attr_init(&attributes));
691
692 // Get the default stack size.
693 size_t default_stack_size;
694 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
695
696 // Too small.
697 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
698 size_t stack_size;
699 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
700 ASSERT_EQ(default_stack_size, stack_size);
701 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
702
703 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
704 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
705 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
706 ASSERT_EQ(32*1024U, stack_size);
707 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
708
709 // Large enough but not aligned; will be rounded up by pthread_create.
710 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
711 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
712 ASSERT_EQ(32*1024U + 1, stack_size);
713 #if defined(__BIONIC__)
714 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
715 #else // __BIONIC__
716 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
717 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
718 #endif // __BIONIC__
719 }
720
TEST(pthread,pthread_rwlockattr_smoke)721 TEST(pthread, pthread_rwlockattr_smoke) {
722 pthread_rwlockattr_t attr;
723 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
724
725 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
726 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
727 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
728 int pshared;
729 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
730 ASSERT_EQ(pshared_value_array[i], pshared);
731 }
732
733 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
734 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
735 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
736 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
737 int kind;
738 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
739 ASSERT_EQ(kind_array[i], kind);
740 }
741
742 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
743 }
744
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)745 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
746 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
747 pthread_rwlock_t lock2;
748 ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
749 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
750 }
751
TEST(pthread,pthread_rwlock_smoke)752 TEST(pthread, pthread_rwlock_smoke) {
753 pthread_rwlock_t l;
754 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
755
756 // Single read lock
757 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
758 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
759
760 // Multiple read lock
761 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
762 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
763 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
764 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
765
766 // Write lock
767 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
768 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
769
770 // Try writer lock
771 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
772 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
773 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
774 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
775
776 // Try reader lock
777 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
778 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
779 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
780 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
781 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
782
783 // Try writer lock after unlock
784 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
785 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
786
787 // EDEADLK in "read after write"
788 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
789 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
790 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
791
792 // EDEADLK in "write after write"
793 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
794 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
795 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
796
797 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
798 }
799
800 struct RwlockWakeupHelperArg {
801 pthread_rwlock_t lock;
802 enum Progress {
803 LOCK_INITIALIZED,
804 LOCK_WAITING,
805 LOCK_RELEASED,
806 LOCK_ACCESSED,
807 LOCK_TIMEDOUT,
808 };
809 std::atomic<Progress> progress;
810 std::atomic<pid_t> tid;
811 std::function<int (pthread_rwlock_t*)> trylock_function;
812 std::function<int (pthread_rwlock_t*)> lock_function;
813 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
814 };
815
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)816 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
817 arg->tid = gettid();
818 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
819 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
820
821 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
822 ASSERT_EQ(0, arg->lock_function(&arg->lock));
823 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
824 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
825
826 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
827 }
828
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)829 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
830 RwlockWakeupHelperArg wakeup_arg;
831 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
832 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
833 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
834 wakeup_arg.tid = 0;
835 wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
836 wakeup_arg.lock_function = lock_function;
837
838 pthread_t thread;
839 ASSERT_EQ(0, pthread_create(&thread, NULL,
840 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
841 WaitUntilThreadSleep(wakeup_arg.tid);
842 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
843
844 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
845 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
846
847 ASSERT_EQ(0, pthread_join(thread, NULL));
848 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
849 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
850 }
851
TEST(pthread,pthread_rwlock_reader_wakeup_writer)852 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
853 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
854 }
855
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)856 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
857 timespec ts;
858 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
859 ts.tv_sec += 1;
860 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
861 return pthread_rwlock_timedwrlock(lock, &ts);
862 });
863 }
864
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)865 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
866 RwlockWakeupHelperArg wakeup_arg;
867 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
868 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
869 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
870 wakeup_arg.tid = 0;
871 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
872 wakeup_arg.lock_function = lock_function;
873
874 pthread_t thread;
875 ASSERT_EQ(0, pthread_create(&thread, NULL,
876 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
877 WaitUntilThreadSleep(wakeup_arg.tid);
878 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
879
880 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
881 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
882
883 ASSERT_EQ(0, pthread_join(thread, NULL));
884 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
885 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
886 }
887
TEST(pthread,pthread_rwlock_writer_wakeup_reader)888 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
889 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
890 }
891
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)892 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
893 timespec ts;
894 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
895 ts.tv_sec += 1;
896 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
897 return pthread_rwlock_timedrdlock(lock, &ts);
898 });
899 }
900
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)901 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
902 arg->tid = gettid();
903 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
904 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
905
906 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
907
908 timespec ts;
909 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
910 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
911 ts.tv_nsec = -1;
912 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
913 ts.tv_nsec = NS_PER_S;
914 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
915 ts.tv_nsec = NS_PER_S - 1;
916 ts.tv_sec = -1;
917 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
918 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
919 ts.tv_sec += 1;
920 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
921 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
922 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
923 }
924
TEST(pthread,pthread_rwlock_timedrdlock_timeout)925 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
926 RwlockWakeupHelperArg wakeup_arg;
927 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
928 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
929 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
930 wakeup_arg.tid = 0;
931 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
932 wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
933
934 pthread_t thread;
935 ASSERT_EQ(0, pthread_create(&thread, nullptr,
936 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
937 WaitUntilThreadSleep(wakeup_arg.tid);
938 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
939
940 ASSERT_EQ(0, pthread_join(thread, nullptr));
941 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
942 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
943 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
944 }
945
TEST(pthread,pthread_rwlock_timedwrlock_timeout)946 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
947 RwlockWakeupHelperArg wakeup_arg;
948 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
949 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
950 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
951 wakeup_arg.tid = 0;
952 wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
953 wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
954
955 pthread_t thread;
956 ASSERT_EQ(0, pthread_create(&thread, nullptr,
957 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
958 WaitUntilThreadSleep(wakeup_arg.tid);
959 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
960
961 ASSERT_EQ(0, pthread_join(thread, nullptr));
962 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
963 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
964 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
965 }
966
967 class RwlockKindTestHelper {
968 private:
969 struct ThreadArg {
970 RwlockKindTestHelper* helper;
971 std::atomic<pid_t>& tid;
972
ThreadArgRwlockKindTestHelper::ThreadArg973 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
974 : helper(helper), tid(tid) { }
975 };
976
977 public:
978 pthread_rwlock_t lock;
979
980 public:
RwlockKindTestHelper(int kind_type)981 explicit RwlockKindTestHelper(int kind_type) {
982 InitRwlock(kind_type);
983 }
984
~RwlockKindTestHelper()985 ~RwlockKindTestHelper() {
986 DestroyRwlock();
987 }
988
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)989 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
990 tid = 0;
991 ThreadArg* arg = new ThreadArg(this, tid);
992 ASSERT_EQ(0, pthread_create(&thread, NULL,
993 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
994 }
995
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)996 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
997 tid = 0;
998 ThreadArg* arg = new ThreadArg(this, tid);
999 ASSERT_EQ(0, pthread_create(&thread, NULL,
1000 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1001 }
1002
1003 private:
InitRwlock(int kind_type)1004 void InitRwlock(int kind_type) {
1005 pthread_rwlockattr_t attr;
1006 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1007 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1008 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1009 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1010 }
1011
DestroyRwlock()1012 void DestroyRwlock() {
1013 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1014 }
1015
WriterThreadFn(ThreadArg * arg)1016 static void WriterThreadFn(ThreadArg* arg) {
1017 arg->tid = gettid();
1018
1019 RwlockKindTestHelper* helper = arg->helper;
1020 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1021 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1022 delete arg;
1023 }
1024
ReaderThreadFn(ThreadArg * arg)1025 static void ReaderThreadFn(ThreadArg* arg) {
1026 arg->tid = gettid();
1027
1028 RwlockKindTestHelper* helper = arg->helper;
1029 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1030 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1031 delete arg;
1032 }
1033 };
1034
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1035 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1036 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1037 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1038
1039 pthread_t writer_thread;
1040 std::atomic<pid_t> writer_tid;
1041 helper.CreateWriterThread(writer_thread, writer_tid);
1042 WaitUntilThreadSleep(writer_tid);
1043
1044 pthread_t reader_thread;
1045 std::atomic<pid_t> reader_tid;
1046 helper.CreateReaderThread(reader_thread, reader_tid);
1047 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
1048
1049 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1050 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
1051 }
1052
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1053 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1054 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1055 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1056
1057 pthread_t writer_thread;
1058 std::atomic<pid_t> writer_tid;
1059 helper.CreateWriterThread(writer_thread, writer_tid);
1060 WaitUntilThreadSleep(writer_tid);
1061
1062 pthread_t reader_thread;
1063 std::atomic<pid_t> reader_tid;
1064 helper.CreateReaderThread(reader_thread, reader_tid);
1065 WaitUntilThreadSleep(reader_tid);
1066
1067 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1068 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
1069 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
1070 }
1071
1072 static int g_once_fn_call_count = 0;
OnceFn()1073 static void OnceFn() {
1074 ++g_once_fn_call_count;
1075 }
1076
TEST(pthread,pthread_once_smoke)1077 TEST(pthread, pthread_once_smoke) {
1078 pthread_once_t once_control = PTHREAD_ONCE_INIT;
1079 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1080 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1081 ASSERT_EQ(1, g_once_fn_call_count);
1082 }
1083
1084 static std::string pthread_once_1934122_result = "";
1085
Routine2()1086 static void Routine2() {
1087 pthread_once_1934122_result += "2";
1088 }
1089
Routine1()1090 static void Routine1() {
1091 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1092 pthread_once_1934122_result += "1";
1093 pthread_once(&once_control_2, &Routine2);
1094 }
1095
TEST(pthread,pthread_once_1934122)1096 TEST(pthread, pthread_once_1934122) {
1097 // Very old versions of Android couldn't call pthread_once from a
1098 // pthread_once init routine. http://b/1934122.
1099 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1100 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1101 ASSERT_EQ("12", pthread_once_1934122_result);
1102 }
1103
1104 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1105 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1106 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1107 static int g_atfork_parent_calls = 0;
AtForkParent1()1108 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1109 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1110 static int g_atfork_child_calls = 0;
AtForkChild1()1111 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1112 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1113
TEST(pthread,pthread_atfork_smoke)1114 TEST(pthread, pthread_atfork_smoke) {
1115 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1116 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1117
1118 pid_t pid = fork();
1119 ASSERT_NE(-1, pid) << strerror(errno);
1120
1121 // Child and parent calls are made in the order they were registered.
1122 if (pid == 0) {
1123 ASSERT_EQ(12, g_atfork_child_calls);
1124 _exit(0);
1125 }
1126 ASSERT_EQ(12, g_atfork_parent_calls);
1127
1128 // Prepare calls are made in the reverse order.
1129 ASSERT_EQ(21, g_atfork_prepare_calls);
1130 AssertChildExited(pid, 0);
1131 }
1132
TEST(pthread,pthread_attr_getscope)1133 TEST(pthread, pthread_attr_getscope) {
1134 pthread_attr_t attr;
1135 ASSERT_EQ(0, pthread_attr_init(&attr));
1136
1137 int scope;
1138 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1139 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1140 }
1141
TEST(pthread,pthread_condattr_init)1142 TEST(pthread, pthread_condattr_init) {
1143 pthread_condattr_t attr;
1144 pthread_condattr_init(&attr);
1145
1146 clockid_t clock;
1147 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1148 ASSERT_EQ(CLOCK_REALTIME, clock);
1149
1150 int pshared;
1151 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1152 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1153 }
1154
TEST(pthread,pthread_condattr_setclock)1155 TEST(pthread, pthread_condattr_setclock) {
1156 pthread_condattr_t attr;
1157 pthread_condattr_init(&attr);
1158
1159 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1160 clockid_t clock;
1161 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1162 ASSERT_EQ(CLOCK_REALTIME, clock);
1163
1164 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1165 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1166 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1167
1168 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1169 }
1170
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1171 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1172 #if defined(__BIONIC__)
1173 pthread_condattr_t attr;
1174 pthread_condattr_init(&attr);
1175
1176 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1177 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1178
1179 pthread_cond_t cond_var;
1180 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1181
1182 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1183 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1184
1185 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1186 clockid_t clock;
1187 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1188 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1189 int pshared;
1190 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1191 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1192 #else // !defined(__BIONIC__)
1193 GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1194 #endif // !defined(__BIONIC__)
1195 }
1196
1197 class pthread_CondWakeupTest : public ::testing::Test {
1198 protected:
1199 pthread_mutex_t mutex;
1200 pthread_cond_t cond;
1201
1202 enum Progress {
1203 INITIALIZED,
1204 WAITING,
1205 SIGNALED,
1206 FINISHED,
1207 };
1208 std::atomic<Progress> progress;
1209 pthread_t thread;
1210 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1211
1212 protected:
SetUp()1213 void SetUp() override {
1214 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1215 }
1216
InitCond(clockid_t clock=CLOCK_REALTIME)1217 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1218 pthread_condattr_t attr;
1219 ASSERT_EQ(0, pthread_condattr_init(&attr));
1220 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1221 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1222 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1223 }
1224
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1225 void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1226 progress = INITIALIZED;
1227 this->wait_function = wait_function;
1228 ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1229 while (progress != WAITING) {
1230 usleep(5000);
1231 }
1232 usleep(5000);
1233 }
1234
TearDown()1235 void TearDown() override {
1236 ASSERT_EQ(0, pthread_join(thread, nullptr));
1237 ASSERT_EQ(FINISHED, progress);
1238 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1239 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1240 }
1241
1242 private:
WaitThreadFn(pthread_CondWakeupTest * test)1243 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1244 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1245 test->progress = WAITING;
1246 while (test->progress == WAITING) {
1247 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1248 }
1249 ASSERT_EQ(SIGNALED, test->progress);
1250 test->progress = FINISHED;
1251 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1252 }
1253 };
1254
TEST_F(pthread_CondWakeupTest,signal_wait)1255 TEST_F(pthread_CondWakeupTest, signal_wait) {
1256 InitCond();
1257 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1258 return pthread_cond_wait(cond, mutex);
1259 });
1260 progress = SIGNALED;
1261 ASSERT_EQ(0, pthread_cond_signal(&cond));
1262 }
1263
TEST_F(pthread_CondWakeupTest,broadcast_wait)1264 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1265 InitCond();
1266 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1267 return pthread_cond_wait(cond, mutex);
1268 });
1269 progress = SIGNALED;
1270 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1271 }
1272
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1273 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1274 InitCond(CLOCK_REALTIME);
1275 timespec ts;
1276 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1277 ts.tv_sec += 1;
1278 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1279 return pthread_cond_timedwait(cond, mutex, &ts);
1280 });
1281 progress = SIGNALED;
1282 ASSERT_EQ(0, pthread_cond_signal(&cond));
1283 }
1284
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1285 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1286 InitCond(CLOCK_MONOTONIC);
1287 timespec ts;
1288 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1289 ts.tv_sec += 1;
1290 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1291 return pthread_cond_timedwait(cond, mutex, &ts);
1292 });
1293 progress = SIGNALED;
1294 ASSERT_EQ(0, pthread_cond_signal(&cond));
1295 }
1296
TEST(pthread,pthread_cond_timedwait_timeout)1297 TEST(pthread, pthread_cond_timedwait_timeout) {
1298 pthread_mutex_t mutex;
1299 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1300 pthread_cond_t cond;
1301 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1302 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1303 timespec ts;
1304 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1305 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1306 ts.tv_nsec = -1;
1307 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1308 ts.tv_nsec = NS_PER_S;
1309 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1310 ts.tv_nsec = NS_PER_S - 1;
1311 ts.tv_sec = -1;
1312 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1313 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1314 }
1315
TEST(pthread,pthread_attr_getstack__main_thread)1316 TEST(pthread, pthread_attr_getstack__main_thread) {
1317 // This test is only meaningful for the main thread, so make sure we're running on it!
1318 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1319
1320 // Get the main thread's attributes.
1321 pthread_attr_t attributes;
1322 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1323
1324 // Check that we correctly report that the main thread has no guard page.
1325 size_t guard_size;
1326 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1327 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1328
1329 // Get the stack base and the stack size (both ways).
1330 void* stack_base;
1331 size_t stack_size;
1332 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1333 size_t stack_size2;
1334 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1335
1336 // The two methods of asking for the stack size should agree.
1337 EXPECT_EQ(stack_size, stack_size2);
1338
1339 #if defined(__BIONIC__)
1340 // What does /proc/self/maps' [stack] line say?
1341 void* maps_stack_hi = NULL;
1342 std::vector<map_record> maps;
1343 ASSERT_TRUE(Maps::parse_maps(&maps));
1344 for (const auto& map : maps) {
1345 if (map.pathname == "[stack]") {
1346 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1347 break;
1348 }
1349 }
1350
1351 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1352 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1353 // region isn't very interesting.
1354 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1355
1356 // The stack size should correspond to RLIMIT_STACK.
1357 rlimit rl;
1358 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1359 uint64_t original_rlim_cur = rl.rlim_cur;
1360 if (rl.rlim_cur == RLIM_INFINITY) {
1361 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1362 }
1363 EXPECT_EQ(rl.rlim_cur, stack_size);
1364
1365 auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1366 rl.rlim_cur = original_rlim_cur;
1367 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1368 });
1369
1370 //
1371 // What if RLIMIT_STACK is smaller than the stack's current extent?
1372 //
1373 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1374 rl.rlim_max = RLIM_INFINITY;
1375 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1376
1377 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1378 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1379 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1380
1381 EXPECT_EQ(stack_size, stack_size2);
1382 ASSERT_EQ(1024U, stack_size);
1383
1384 //
1385 // What if RLIMIT_STACK isn't a whole number of pages?
1386 //
1387 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1388 rl.rlim_max = RLIM_INFINITY;
1389 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1390
1391 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1392 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1393 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1394
1395 EXPECT_EQ(stack_size, stack_size2);
1396 ASSERT_EQ(6666U, stack_size);
1397 #endif
1398 }
1399
1400 struct GetStackSignalHandlerArg {
1401 volatile bool done;
1402 void* signal_stack_base;
1403 size_t signal_stack_size;
1404 void* main_stack_base;
1405 size_t main_stack_size;
1406 };
1407
1408 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1409
getstack_signal_handler(int sig)1410 static void getstack_signal_handler(int sig) {
1411 ASSERT_EQ(SIGUSR1, sig);
1412 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1413 sleep(1);
1414 pthread_attr_t attr;
1415 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1416 void* stack_base;
1417 size_t stack_size;
1418 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1419
1420 // Verify if the stack used by the signal handler is the alternate stack just registered.
1421 ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1422 ASSERT_LT(static_cast<void*>(&attr),
1423 static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1424 getstack_signal_handler_arg.signal_stack_size);
1425
1426 // Verify if the main thread's stack got in the signal handler is correct.
1427 ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1428 ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1429
1430 getstack_signal_handler_arg.done = true;
1431 }
1432
1433 // The previous code obtained the main thread's stack by reading the entry in
1434 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1435 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1436 // switches a process while the main thread is in an alternate stack, then the kernel will label
1437 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1438 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1439 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1440 // This test is only meaningful for the main thread, so make sure we're running on it!
1441 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1442
1443 const size_t sig_stack_size = 16 * 1024;
1444 void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1445 -1, 0);
1446 ASSERT_NE(MAP_FAILED, sig_stack);
1447 stack_t ss;
1448 ss.ss_sp = sig_stack;
1449 ss.ss_size = sig_stack_size;
1450 ss.ss_flags = 0;
1451 stack_t oss;
1452 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1453
1454 pthread_attr_t attr;
1455 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1456 void* main_stack_base;
1457 size_t main_stack_size;
1458 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1459
1460 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1461 getstack_signal_handler_arg.done = false;
1462 getstack_signal_handler_arg.signal_stack_base = sig_stack;
1463 getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1464 getstack_signal_handler_arg.main_stack_base = main_stack_base;
1465 getstack_signal_handler_arg.main_stack_size = main_stack_size;
1466 kill(getpid(), SIGUSR1);
1467 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1468
1469 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1470 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1471 }
1472
pthread_attr_getstack_18908062_helper(void *)1473 static void pthread_attr_getstack_18908062_helper(void*) {
1474 char local_variable;
1475 pthread_attr_t attributes;
1476 pthread_getattr_np(pthread_self(), &attributes);
1477 void* stack_base;
1478 size_t stack_size;
1479 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1480
1481 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1482 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1483 ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1484 }
1485
1486 // Check whether something on stack is in the range of
1487 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1488 TEST(pthread, pthread_attr_getstack_18908062) {
1489 pthread_t t;
1490 ASSERT_EQ(0, pthread_create(&t, NULL,
1491 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1492 NULL));
1493 pthread_join(t, NULL);
1494 }
1495
1496 #if defined(__BIONIC__)
1497 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1498
pthread_gettid_np_helper(void * arg)1499 static void* pthread_gettid_np_helper(void* arg) {
1500 *reinterpret_cast<pid_t*>(arg) = gettid();
1501
1502 // Wait for our parent to call pthread_gettid_np on us before exiting.
1503 pthread_mutex_lock(&pthread_gettid_np_mutex);
1504 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1505 return NULL;
1506 }
1507 #endif
1508
TEST(pthread,pthread_gettid_np)1509 TEST(pthread, pthread_gettid_np) {
1510 #if defined(__BIONIC__)
1511 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1512
1513 // Ensure the other thread doesn't exit until after we've called
1514 // pthread_gettid_np on it.
1515 pthread_mutex_lock(&pthread_gettid_np_mutex);
1516
1517 pid_t t_gettid_result;
1518 pthread_t t;
1519 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1520
1521 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1522
1523 // Release the other thread and wait for it to exit.
1524 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1525 pthread_join(t, NULL);
1526
1527 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1528 #else
1529 GTEST_LOG_(INFO) << "This test does nothing.\n";
1530 #endif
1531 }
1532
1533 static size_t cleanup_counter = 0;
1534
AbortCleanupRoutine(void *)1535 static void AbortCleanupRoutine(void*) {
1536 abort();
1537 }
1538
CountCleanupRoutine(void *)1539 static void CountCleanupRoutine(void*) {
1540 ++cleanup_counter;
1541 }
1542
PthreadCleanupTester()1543 static void PthreadCleanupTester() {
1544 pthread_cleanup_push(CountCleanupRoutine, NULL);
1545 pthread_cleanup_push(CountCleanupRoutine, NULL);
1546 pthread_cleanup_push(AbortCleanupRoutine, NULL);
1547
1548 pthread_cleanup_pop(0); // Pop the abort without executing it.
1549 pthread_cleanup_pop(1); // Pop one count while executing it.
1550 ASSERT_EQ(1U, cleanup_counter);
1551 // Exit while the other count is still on the cleanup stack.
1552 pthread_exit(NULL);
1553
1554 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1555 pthread_cleanup_pop(0);
1556 }
1557
PthreadCleanupStartRoutine(void *)1558 static void* PthreadCleanupStartRoutine(void*) {
1559 PthreadCleanupTester();
1560 return NULL;
1561 }
1562
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1563 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1564 pthread_t t;
1565 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1566 pthread_join(t, NULL);
1567 ASSERT_EQ(2U, cleanup_counter);
1568 }
1569
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1570 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1571 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1572 }
1573
TEST(pthread,pthread_mutexattr_gettype)1574 TEST(pthread, pthread_mutexattr_gettype) {
1575 pthread_mutexattr_t attr;
1576 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1577
1578 int attr_type;
1579
1580 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1581 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1582 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1583
1584 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1585 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1586 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1587
1588 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1589 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1590 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1591
1592 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1593 }
1594
1595 struct PthreadMutex {
1596 pthread_mutex_t lock;
1597
PthreadMutexPthreadMutex1598 explicit PthreadMutex(int mutex_type) {
1599 init(mutex_type);
1600 }
1601
~PthreadMutexPthreadMutex1602 ~PthreadMutex() {
1603 destroy();
1604 }
1605
1606 private:
initPthreadMutex1607 void init(int mutex_type) {
1608 pthread_mutexattr_t attr;
1609 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1610 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1611 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1612 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1613 }
1614
destroyPthreadMutex1615 void destroy() {
1616 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1617 }
1618
1619 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1620 };
1621
TEST(pthread,pthread_mutex_lock_NORMAL)1622 TEST(pthread, pthread_mutex_lock_NORMAL) {
1623 PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1624
1625 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1626 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1627 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1628 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1629 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1630 }
1631
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1632 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1633 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1634
1635 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1636 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1637 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1638 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1639 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1640 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1641 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1642 }
1643
TEST(pthread,pthread_mutex_lock_RECURSIVE)1644 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1645 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1646
1647 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1648 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1649 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1650 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1651 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1652 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1653 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1654 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1655 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1656 }
1657
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1658 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1659 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1660 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1661 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1662 pthread_mutex_destroy(&lock_normal);
1663
1664 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1665 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1666 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1667 pthread_mutex_destroy(&lock_errorcheck);
1668
1669 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1670 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1671 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1672 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1673 }
1674 class MutexWakeupHelper {
1675 private:
1676 PthreadMutex m;
1677 enum Progress {
1678 LOCK_INITIALIZED,
1679 LOCK_WAITING,
1680 LOCK_RELEASED,
1681 LOCK_ACCESSED
1682 };
1683 std::atomic<Progress> progress;
1684 std::atomic<pid_t> tid;
1685
thread_fn(MutexWakeupHelper * helper)1686 static void thread_fn(MutexWakeupHelper* helper) {
1687 helper->tid = gettid();
1688 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1689 helper->progress = LOCK_WAITING;
1690
1691 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1692 ASSERT_EQ(LOCK_RELEASED, helper->progress);
1693 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1694
1695 helper->progress = LOCK_ACCESSED;
1696 }
1697
1698 public:
MutexWakeupHelper(int mutex_type)1699 explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1700 }
1701
test()1702 void test() {
1703 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1704 progress = LOCK_INITIALIZED;
1705 tid = 0;
1706
1707 pthread_t thread;
1708 ASSERT_EQ(0, pthread_create(&thread, NULL,
1709 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1710
1711 WaitUntilThreadSleep(tid);
1712 ASSERT_EQ(LOCK_WAITING, progress);
1713
1714 progress = LOCK_RELEASED;
1715 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1716
1717 ASSERT_EQ(0, pthread_join(thread, NULL));
1718 ASSERT_EQ(LOCK_ACCESSED, progress);
1719 }
1720 };
1721
TEST(pthread,pthread_mutex_NORMAL_wakeup)1722 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1723 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1724 helper.test();
1725 }
1726
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)1727 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1728 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1729 helper.test();
1730 }
1731
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)1732 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1733 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1734 helper.test();
1735 }
1736
TEST(pthread,pthread_mutex_owner_tid_limit)1737 TEST(pthread, pthread_mutex_owner_tid_limit) {
1738 #if defined(__BIONIC__) && !defined(__LP64__)
1739 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1740 ASSERT_TRUE(fp != NULL);
1741 long pid_max;
1742 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1743 fclose(fp);
1744 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1745 ASSERT_LE(pid_max, 65536);
1746 #else
1747 GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1748 #endif
1749 }
1750
TEST(pthread,pthread_mutex_timedlock)1751 TEST(pthread, pthread_mutex_timedlock) {
1752 pthread_mutex_t m;
1753 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
1754
1755 // If the mutex is already locked, pthread_mutex_timedlock should time out.
1756 ASSERT_EQ(0, pthread_mutex_lock(&m));
1757
1758 timespec ts;
1759 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1760 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1761 ts.tv_nsec = -1;
1762 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1763 ts.tv_nsec = NS_PER_S;
1764 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1765 ts.tv_nsec = NS_PER_S - 1;
1766 ts.tv_sec = -1;
1767 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1768
1769 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1770 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1771
1772 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1773 ts.tv_sec += 1;
1774 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1775
1776 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1777 ASSERT_EQ(0, pthread_mutex_destroy(&m));
1778 }
1779
1780 class StrictAlignmentAllocator {
1781 public:
allocate(size_t size,size_t alignment)1782 void* allocate(size_t size, size_t alignment) {
1783 char* p = new char[size + alignment * 2];
1784 allocated_array.push_back(p);
1785 while (!is_strict_aligned(p, alignment)) {
1786 ++p;
1787 }
1788 return p;
1789 }
1790
~StrictAlignmentAllocator()1791 ~StrictAlignmentAllocator() {
1792 for (const auto& p : allocated_array) {
1793 delete[] p;
1794 }
1795 }
1796
1797 private:
is_strict_aligned(char * p,size_t alignment)1798 bool is_strict_aligned(char* p, size_t alignment) {
1799 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1800 }
1801
1802 std::vector<char*> allocated_array;
1803 };
1804
TEST(pthread,pthread_types_allow_four_bytes_alignment)1805 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1806 #if defined(__BIONIC__)
1807 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1808 StrictAlignmentAllocator allocator;
1809 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1810 allocator.allocate(sizeof(pthread_mutex_t), 4));
1811 ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1812 ASSERT_EQ(0, pthread_mutex_lock(mutex));
1813 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1814 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1815
1816 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1817 allocator.allocate(sizeof(pthread_cond_t), 4));
1818 ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1819 ASSERT_EQ(0, pthread_cond_signal(cond));
1820 ASSERT_EQ(0, pthread_cond_broadcast(cond));
1821 ASSERT_EQ(0, pthread_cond_destroy(cond));
1822
1823 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1824 allocator.allocate(sizeof(pthread_rwlock_t), 4));
1825 ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1826 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1827 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1828 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1829 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1830 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1831
1832 #else
1833 GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1834 #endif
1835 }
1836
TEST(pthread,pthread_mutex_lock_null_32)1837 TEST(pthread, pthread_mutex_lock_null_32) {
1838 #if defined(__BIONIC__) && !defined(__LP64__)
1839 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
1840 // EINVAL in that case: http://b/19995172.
1841 //
1842 // We decorate the public defintion with _Nonnull so that people recompiling
1843 // their code with get a warning and might fix their bug, but need to pass
1844 // NULL here to test that we remain compatible.
1845 pthread_mutex_t* null_value = nullptr;
1846 ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
1847 #else
1848 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1849 #endif
1850 }
1851
TEST(pthread,pthread_mutex_unlock_null_32)1852 TEST(pthread, pthread_mutex_unlock_null_32) {
1853 #if defined(__BIONIC__) && !defined(__LP64__)
1854 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
1855 // EINVAL in that case: http://b/19995172.
1856 //
1857 // We decorate the public defintion with _Nonnull so that people recompiling
1858 // their code with get a warning and might fix their bug, but need to pass
1859 // NULL here to test that we remain compatible.
1860 pthread_mutex_t* null_value = nullptr;
1861 ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
1862 #else
1863 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1864 #endif
1865 }
1866
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)1867 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1868 #if defined(__BIONIC__) && defined(__LP64__)
1869 pthread_mutex_t* null_value = nullptr;
1870 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1871 #else
1872 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1873 #endif
1874 }
1875
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)1876 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1877 #if defined(__BIONIC__) && defined(__LP64__)
1878 pthread_mutex_t* null_value = nullptr;
1879 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1880 #else
1881 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1882 #endif
1883 }
1884
1885 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1886
1887 static volatile bool signal_handler_on_altstack_done;
1888
1889 __attribute__((__noinline__))
signal_handler_backtrace()1890 static void signal_handler_backtrace() {
1891 // Check if we have enough stack space for unwinding.
1892 int count = 0;
1893 _Unwind_Backtrace(FrameCounter, &count);
1894 ASSERT_GT(count, 0);
1895 }
1896
1897 __attribute__((__noinline__))
signal_handler_logging()1898 static void signal_handler_logging() {
1899 // Check if we have enough stack space for logging.
1900 std::string s(2048, '*');
1901 GTEST_LOG_(INFO) << s;
1902 signal_handler_on_altstack_done = true;
1903 }
1904
1905 __attribute__((__noinline__))
signal_handler_snprintf()1906 static void signal_handler_snprintf() {
1907 // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
1908 char buf[PATH_MAX + 2048];
1909 ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
1910 }
1911
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)1912 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1913 ASSERT_EQ(SIGUSR1, signo);
1914 signal_handler_backtrace();
1915 signal_handler_logging();
1916 signal_handler_snprintf();
1917 }
1918
TEST(pthread,big_enough_signal_stack)1919 TEST(pthread, big_enough_signal_stack) {
1920 signal_handler_on_altstack_done = false;
1921 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1922 kill(getpid(), SIGUSR1);
1923 ASSERT_TRUE(signal_handler_on_altstack_done);
1924 }
1925
TEST(pthread,pthread_barrierattr_smoke)1926 TEST(pthread, pthread_barrierattr_smoke) {
1927 pthread_barrierattr_t attr;
1928 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1929 int pshared;
1930 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1931 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1932 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1933 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1934 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1935 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1936 }
1937
1938 struct BarrierTestHelperData {
1939 size_t thread_count;
1940 pthread_barrier_t barrier;
1941 std::atomic<int> finished_mask;
1942 std::atomic<int> serial_thread_count;
1943 size_t iteration_count;
1944 std::atomic<size_t> finished_iteration_count;
1945
BarrierTestHelperDataBarrierTestHelperData1946 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
1947 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
1948 iteration_count(iteration_count), finished_iteration_count(0) {
1949 }
1950 };
1951
1952 struct BarrierTestHelperArg {
1953 int id;
1954 BarrierTestHelperData* data;
1955 };
1956
BarrierTestHelper(BarrierTestHelperArg * arg)1957 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1958 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
1959 int result = pthread_barrier_wait(&arg->data->barrier);
1960 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
1961 arg->data->serial_thread_count++;
1962 } else {
1963 ASSERT_EQ(0, result);
1964 }
1965 int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
1966 mask |= 1 << arg->id;
1967 if (mask == ((1 << arg->data->thread_count) - 1)) {
1968 ASSERT_EQ(1, arg->data->serial_thread_count);
1969 arg->data->finished_iteration_count++;
1970 arg->data->finished_mask = 0;
1971 arg->data->serial_thread_count = 0;
1972 }
1973 }
1974 }
1975
TEST(pthread,pthread_barrier_smoke)1976 TEST(pthread, pthread_barrier_smoke) {
1977 const size_t BARRIER_ITERATION_COUNT = 10;
1978 const size_t BARRIER_THREAD_COUNT = 10;
1979 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
1980 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
1981 std::vector<pthread_t> threads(data.thread_count);
1982 std::vector<BarrierTestHelperArg> args(threads.size());
1983 for (size_t i = 0; i < threads.size(); ++i) {
1984 args[i].id = i;
1985 args[i].data = &data;
1986 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1987 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1988 }
1989 for (size_t i = 0; i < threads.size(); ++i) {
1990 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1991 }
1992 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
1993 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
1994 }
1995
1996 struct BarrierDestroyTestArg {
1997 std::atomic<int> tid;
1998 pthread_barrier_t* barrier;
1999 };
2000
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2001 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2002 arg->tid = gettid();
2003 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2004 }
2005
TEST(pthread,pthread_barrier_destroy)2006 TEST(pthread, pthread_barrier_destroy) {
2007 pthread_barrier_t barrier;
2008 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2009 pthread_t thread;
2010 BarrierDestroyTestArg arg;
2011 arg.tid = 0;
2012 arg.barrier = &barrier;
2013 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2014 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2015 WaitUntilThreadSleep(arg.tid);
2016 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2017 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2018 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2019 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2020 ASSERT_EQ(0, pthread_join(thread, nullptr));
2021 #if defined(__BIONIC__)
2022 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2023 #endif
2024 }
2025
2026 struct BarrierOrderingTestHelperArg {
2027 pthread_barrier_t* barrier;
2028 size_t* array;
2029 size_t array_length;
2030 size_t id;
2031 };
2032
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2033 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2034 const size_t ITERATION_COUNT = 10000;
2035 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2036 arg->array[arg->id] = i;
2037 int result = pthread_barrier_wait(arg->barrier);
2038 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2039 for (size_t j = 0; j < arg->array_length; ++j) {
2040 ASSERT_EQ(i, arg->array[j]);
2041 }
2042 result = pthread_barrier_wait(arg->barrier);
2043 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2044 }
2045 }
2046
TEST(pthread,pthread_barrier_check_ordering)2047 TEST(pthread, pthread_barrier_check_ordering) {
2048 const size_t THREAD_COUNT = 4;
2049 pthread_barrier_t barrier;
2050 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2051 size_t array[THREAD_COUNT];
2052 std::vector<pthread_t> threads(THREAD_COUNT);
2053 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2054 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2055 args[i].barrier = &barrier;
2056 args[i].array = array;
2057 args[i].array_length = THREAD_COUNT;
2058 args[i].id = i;
2059 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2060 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2061 &args[i]));
2062 }
2063 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2064 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2065 }
2066 }
2067
TEST(pthread,pthread_spinlock_smoke)2068 TEST(pthread, pthread_spinlock_smoke) {
2069 pthread_spinlock_t lock;
2070 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2071 ASSERT_EQ(0, pthread_spin_trylock(&lock));
2072 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2073 ASSERT_EQ(0, pthread_spin_lock(&lock));
2074 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2075 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2076 ASSERT_EQ(0, pthread_spin_destroy(&lock));
2077 }
2078