1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * from: @(#)fdlibm.h 5.1 93/09/24
14  * $FreeBSD$
15  */
16 
17 #ifndef _MATH_PRIVATE_H_
18 #define	_MATH_PRIVATE_H_
19 
20 #include <sys/types.h>
21 #include <machine/endian.h>
22 
23 #include <stdint.h>
24 typedef uint32_t u_int32_t;
25 typedef uint64_t u_int64_t;
26 
27 /*
28  * The original fdlibm code used statements like:
29  *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
30  *	ix0 = *(n0+(int*)&x);			* high word of x *
31  *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
32  * to dig two 32 bit words out of the 64 bit IEEE floating point
33  * value.  That is non-ANSI, and, moreover, the gcc instruction
34  * scheduler gets it wrong.  We instead use the following macros.
35  * Unlike the original code, we determine the endianness at compile
36  * time, not at run time; I don't see much benefit to selecting
37  * endianness at run time.
38  */
39 
40 /*
41  * A union which permits us to convert between a double and two 32 bit
42  * ints.
43  */
44 
45 #ifdef __arm__
46 #if defined(__VFP_FP__) || defined(__ARM_EABI__)
47 #define	IEEE_WORD_ORDER	BYTE_ORDER
48 #else
49 #define	IEEE_WORD_ORDER	BIG_ENDIAN
50 #endif
51 #else /* __arm__ */
52 #define	IEEE_WORD_ORDER	BYTE_ORDER
53 #endif
54 
55 #if IEEE_WORD_ORDER == BIG_ENDIAN
56 
57 typedef union
58 {
59   double value;
60   struct
61   {
62     u_int32_t msw;
63     u_int32_t lsw;
64   } parts;
65   struct
66   {
67     u_int64_t w;
68   } xparts;
69 } ieee_double_shape_type;
70 
71 #endif
72 
73 #if IEEE_WORD_ORDER == LITTLE_ENDIAN
74 
75 typedef union
76 {
77   double value;
78   struct
79   {
80     u_int32_t lsw;
81     u_int32_t msw;
82   } parts;
83   struct
84   {
85     u_int64_t w;
86   } xparts;
87 } ieee_double_shape_type;
88 
89 #endif
90 
91 /* Get two 32 bit ints from a double.  */
92 
93 #define EXTRACT_WORDS(ix0,ix1,d)				\
94 do {								\
95   ieee_double_shape_type ew_u;					\
96   ew_u.value = (d);						\
97   (ix0) = ew_u.parts.msw;					\
98   (ix1) = ew_u.parts.lsw;					\
99 } while (0)
100 
101 /* Get a 64-bit int from a double. */
102 #define EXTRACT_WORD64(ix,d)					\
103 do {								\
104   ieee_double_shape_type ew_u;					\
105   ew_u.value = (d);						\
106   (ix) = ew_u.xparts.w;						\
107 } while (0)
108 
109 /* Get the more significant 32 bit int from a double.  */
110 
111 #define GET_HIGH_WORD(i,d)					\
112 do {								\
113   ieee_double_shape_type gh_u;					\
114   gh_u.value = (d);						\
115   (i) = gh_u.parts.msw;						\
116 } while (0)
117 
118 /* Get the less significant 32 bit int from a double.  */
119 
120 #define GET_LOW_WORD(i,d)					\
121 do {								\
122   ieee_double_shape_type gl_u;					\
123   gl_u.value = (d);						\
124   (i) = gl_u.parts.lsw;						\
125 } while (0)
126 
127 /* Set a double from two 32 bit ints.  */
128 
129 #define INSERT_WORDS(d,ix0,ix1)					\
130 do {								\
131   ieee_double_shape_type iw_u;					\
132   iw_u.parts.msw = (ix0);					\
133   iw_u.parts.lsw = (ix1);					\
134   (d) = iw_u.value;						\
135 } while (0)
136 
137 /* Set a double from a 64-bit int. */
138 #define INSERT_WORD64(d,ix)					\
139 do {								\
140   ieee_double_shape_type iw_u;					\
141   iw_u.xparts.w = (ix);						\
142   (d) = iw_u.value;						\
143 } while (0)
144 
145 /* Set the more significant 32 bits of a double from an int.  */
146 
147 #define SET_HIGH_WORD(d,v)					\
148 do {								\
149   ieee_double_shape_type sh_u;					\
150   sh_u.value = (d);						\
151   sh_u.parts.msw = (v);						\
152   (d) = sh_u.value;						\
153 } while (0)
154 
155 /* Set the less significant 32 bits of a double from an int.  */
156 
157 #define SET_LOW_WORD(d,v)					\
158 do {								\
159   ieee_double_shape_type sl_u;					\
160   sl_u.value = (d);						\
161   sl_u.parts.lsw = (v);						\
162   (d) = sl_u.value;						\
163 } while (0)
164 
165 /*
166  * A union which permits us to convert between a float and a 32 bit
167  * int.
168  */
169 
170 typedef union
171 {
172   float value;
173   /* FIXME: Assumes 32 bit int.  */
174   unsigned int word;
175 } ieee_float_shape_type;
176 
177 /* Get a 32 bit int from a float.  */
178 
179 #define GET_FLOAT_WORD(i,d)					\
180 do {								\
181   ieee_float_shape_type gf_u;					\
182   gf_u.value = (d);						\
183   (i) = gf_u.word;						\
184 } while (0)
185 
186 /* Set a float from a 32 bit int.  */
187 
188 #define SET_FLOAT_WORD(d,i)					\
189 do {								\
190   ieee_float_shape_type sf_u;					\
191   sf_u.word = (i);						\
192   (d) = sf_u.value;						\
193 } while (0)
194 
195 /*
196  * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
197  * double.
198  */
199 
200 #define	EXTRACT_LDBL80_WORDS(ix0,ix1,d)				\
201 do {								\
202   union IEEEl2bits ew_u;					\
203   ew_u.e = (d);							\
204   (ix0) = ew_u.xbits.expsign;					\
205   (ix1) = ew_u.xbits.man;					\
206 } while (0)
207 
208 /*
209  * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
210  * long double.
211  */
212 
213 #define	EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d)			\
214 do {								\
215   union IEEEl2bits ew_u;					\
216   ew_u.e = (d);							\
217   (ix0) = ew_u.xbits.expsign;					\
218   (ix1) = ew_u.xbits.manh;					\
219   (ix2) = ew_u.xbits.manl;					\
220 } while (0)
221 
222 /* Get expsign as a 16 bit int from a long double.  */
223 
224 #define	GET_LDBL_EXPSIGN(i,d)					\
225 do {								\
226   union IEEEl2bits ge_u;					\
227   ge_u.e = (d);							\
228   (i) = ge_u.xbits.expsign;					\
229 } while (0)
230 
231 /*
232  * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
233  * mantissa.
234  */
235 
236 #define	INSERT_LDBL80_WORDS(d,ix0,ix1)				\
237 do {								\
238   union IEEEl2bits iw_u;					\
239   iw_u.xbits.expsign = (ix0);					\
240   iw_u.xbits.man = (ix1);					\
241   (d) = iw_u.e;							\
242 } while (0)
243 
244 /*
245  * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
246  * comprising the mantissa.
247  */
248 
249 #define	INSERT_LDBL128_WORDS(d,ix0,ix1,ix2)			\
250 do {								\
251   union IEEEl2bits iw_u;					\
252   iw_u.xbits.expsign = (ix0);					\
253   iw_u.xbits.manh = (ix1);					\
254   iw_u.xbits.manl = (ix2);					\
255   (d) = iw_u.e;							\
256 } while (0)
257 
258 /* Set expsign of a long double from a 16 bit int.  */
259 
260 #define	SET_LDBL_EXPSIGN(d,v)					\
261 do {								\
262   union IEEEl2bits se_u;					\
263   se_u.e = (d);							\
264   se_u.xbits.expsign = (v);					\
265   (d) = se_u.e;							\
266 } while (0)
267 
268 #ifdef __i386__
269 /* Long double constants are broken on i386. */
270 #define	LD80C(m, ex, v) {						\
271 	.xbits.man = __CONCAT(m, ULL),					\
272 	.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),	\
273 }
274 #else
275 /* The above works on non-i386 too, but we use this to check v. */
276 #define	LD80C(m, ex, v)	{ .e = (v), }
277 #endif
278 
279 #ifdef FLT_EVAL_METHOD
280 /*
281  * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
282  */
283 #if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
284 #define	STRICT_ASSIGN(type, lval, rval)	((lval) = (rval))
285 #else
286 #define	STRICT_ASSIGN(type, lval, rval) do {	\
287 	volatile type __lval;			\
288 						\
289 	if (sizeof(type) >= sizeof(long double))	\
290 		(lval) = (rval);		\
291 	else {					\
292 		__lval = (rval);		\
293 		(lval) = __lval;		\
294 	}					\
295 } while (0)
296 #endif
297 #endif /* FLT_EVAL_METHOD */
298 
299 /* Support switching the mode to FP_PE if necessary. */
300 #if defined(__i386__) && !defined(NO_FPSETPREC)
301 #define	ENTERI()				\
302 	long double __retval;			\
303 	fp_prec_t __oprec;			\
304 						\
305 	if ((__oprec = fpgetprec()) != FP_PE)	\
306 		fpsetprec(FP_PE)
307 #define	RETURNI(x) do {				\
308 	__retval = (x);				\
309 	if (__oprec != FP_PE)			\
310 		fpsetprec(__oprec);		\
311 	RETURNF(__retval);			\
312 } while (0)
313 #else
314 #define	ENTERI(x)
315 #define	RETURNI(x)	RETURNF(x)
316 #endif
317 
318 /* Default return statement if hack*_t() is not used. */
319 #define      RETURNF(v)      return (v)
320 
321 /*
322  * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
323  * a == 0, but is slower.
324  */
325 #define	_2sum(a, b) do {	\
326 	__typeof(a) __s, __w;	\
327 				\
328 	__w = (a) + (b);	\
329 	__s = __w - (a);	\
330 	(b) = ((a) - (__w - __s)) + ((b) - __s); \
331 	(a) = __w;		\
332 } while (0)
333 
334 /*
335  * 2sumF algorithm.
336  *
337  * "Normalize" the terms in the infinite-precision expression a + b for
338  * the sum of 2 floating point values so that b is as small as possible
339  * relative to 'a'.  (The resulting 'a' is the value of the expression in
340  * the same precision as 'a' and the resulting b is the rounding error.)
341  * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
342  * exponent overflow or underflow must not occur.  This uses a Theorem of
343  * Dekker (1971).  See Knuth (1981) 4.2.2 Theorem C.  The name "TwoSum"
344  * is apparently due to Skewchuk (1997).
345  *
346  * For this to always work, assignment of a + b to 'a' must not retain any
347  * extra precision in a + b.  This is required by C standards but broken
348  * in many compilers.  The brokenness cannot be worked around using
349  * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
350  * algorithm would be destroyed by non-null strict assignments.  (The
351  * compilers are correct to be broken -- the efficiency of all floating
352  * point code calculations would be destroyed similarly if they forced the
353  * conversions.)
354  *
355  * Fortunately, a case that works well can usually be arranged by building
356  * any extra precision into the type of 'a' -- 'a' should have type float_t,
357  * double_t or long double.  b's type should be no larger than 'a's type.
358  * Callers should use these types with scopes as large as possible, to
359  * reduce their own extra-precision and efficiciency problems.  In
360  * particular, they shouldn't convert back and forth just to call here.
361  */
362 #ifdef DEBUG
363 #define	_2sumF(a, b) do {				\
364 	__typeof(a) __w;				\
365 	volatile __typeof(a) __ia, __ib, __r, __vw;	\
366 							\
367 	__ia = (a);					\
368 	__ib = (b);					\
369 	assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib));	\
370 							\
371 	__w = (a) + (b);				\
372 	(b) = ((a) - __w) + (b);			\
373 	(a) = __w;					\
374 							\
375 	/* The next 2 assertions are weak if (a) is already long double. */ \
376 	assert((long double)__ia + __ib == (long double)(a) + (b));	\
377 	__vw = __ia + __ib;				\
378 	__r = __ia - __vw;				\
379 	__r += __ib;					\
380 	assert(__vw == (a) && __r == (b));		\
381 } while (0)
382 #else /* !DEBUG */
383 #define	_2sumF(a, b) do {	\
384 	__typeof(a) __w;	\
385 				\
386 	__w = (a) + (b);	\
387 	(b) = ((a) - __w) + (b); \
388 	(a) = __w;		\
389 } while (0)
390 #endif /* DEBUG */
391 
392 /*
393  * Set x += c, where x is represented in extra precision as a + b.
394  * x must be sufficiently normalized and sufficiently larger than c,
395  * and the result is then sufficiently normalized.
396  *
397  * The details of ordering are that |a| must be >= |c| (so that (a, c)
398  * can be normalized without extra work to swap 'a' with c).  The details of
399  * the normalization are that b must be small relative to the normalized 'a'.
400  * Normalization of (a, c) makes the normalized c tiny relative to the
401  * normalized a, so b remains small relative to 'a' in the result.  However,
402  * b need not ever be tiny relative to 'a'.  For example, b might be about
403  * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
404  * That is usually enough, and adding c (which by normalization is about
405  * 2**53 times smaller than a) cannot change b significantly.  However,
406  * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
407  * significantly relative to b.  The caller must ensure that significant
408  * cancellation doesn't occur, either by having c of the same sign as 'a',
409  * or by having |c| a few percent smaller than |a|.  Pre-normalization of
410  * (a, b) may help.
411  *
412  * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
413  * exercise 19).  We gain considerable efficiency by requiring the terms to
414  * be sufficiently normalized and sufficiently increasing.
415  */
416 #define	_3sumF(a, b, c) do {	\
417 	__typeof(a) __tmp;	\
418 				\
419 	__tmp = (c);		\
420 	_2sumF(__tmp, (a));	\
421 	(b) += (a);		\
422 	(a) = __tmp;		\
423 } while (0)
424 
425 /*
426  * Common routine to process the arguments to nan(), nanf(), and nanl().
427  */
428 void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
429 
430 #ifdef _COMPLEX_H
431 
432 /*
433  * C99 specifies that complex numbers have the same representation as
434  * an array of two elements, where the first element is the real part
435  * and the second element is the imaginary part.
436  */
437 typedef union {
438 	float complex f;
439 	float a[2];
440 } float_complex;
441 typedef union {
442 	double complex f;
443 	double a[2];
444 } double_complex;
445 typedef union {
446 	long double complex f;
447 	long double a[2];
448 } long_double_complex;
449 #define	REALPART(z)	((z).a[0])
450 #define	IMAGPART(z)	((z).a[1])
451 
452 /*
453  * Inline functions that can be used to construct complex values.
454  *
455  * The C99 standard intends x+I*y to be used for this, but x+I*y is
456  * currently unusable in general since gcc introduces many overflow,
457  * underflow, sign and efficiency bugs by rewriting I*y as
458  * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
459  * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
460  * to -0.0+I*0.0.
461  */
462 static __inline float complex
cpackf(float x,float y)463 cpackf(float x, float y)
464 {
465 	float_complex z;
466 
467 	REALPART(z) = x;
468 	IMAGPART(z) = y;
469 	return (z.f);
470 }
471 
472 static __inline double complex
cpack(double x,double y)473 cpack(double x, double y)
474 {
475 	double_complex z;
476 
477 	REALPART(z) = x;
478 	IMAGPART(z) = y;
479 	return (z.f);
480 }
481 
482 static __inline long double complex
cpackl(long double x,long double y)483 cpackl(long double x, long double y)
484 {
485 	long_double_complex z;
486 
487 	REALPART(z) = x;
488 	IMAGPART(z) = y;
489 	return (z.f);
490 }
491 #endif /* _COMPLEX_H */
492 
493 #ifdef __GNUCLIKE_ASM
494 
495 /* Asm versions of some functions. */
496 
497 #ifdef __amd64__
498 static __inline int
irint(double x)499 irint(double x)
500 {
501 	int n;
502 
503 	asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
504 	return (n);
505 }
506 #define	HAVE_EFFICIENT_IRINT
507 #endif
508 
509 #ifdef __i386__
510 static __inline int
irint(double x)511 irint(double x)
512 {
513 	int n;
514 
515 	asm("fistl %0" : "=m" (n) : "t" (x));
516 	return (n);
517 }
518 #define	HAVE_EFFICIENT_IRINT
519 #endif
520 
521 #if defined(__amd64__) || defined(__i386__)
522 static __inline int
irintl(long double x)523 irintl(long double x)
524 {
525 	int n;
526 
527 	asm("fistl %0" : "=m" (n) : "t" (x));
528 	return (n);
529 }
530 #define	HAVE_EFFICIENT_IRINTL
531 #endif
532 
533 #endif /* __GNUCLIKE_ASM */
534 
535 #ifdef DEBUG
536 #if defined(__amd64__) || defined(__i386__)
537 #define	breakpoint()	asm("int $3")
538 #else
539 #include <signal.h>
540 
541 #define	breakpoint()	raise(SIGTRAP)
542 #endif
543 #endif
544 
545 /* Write a pari script to test things externally. */
546 #ifdef DOPRINT
547 #include <stdio.h>
548 
549 #ifndef DOPRINT_SWIZZLE
550 #define	DOPRINT_SWIZZLE		0
551 #endif
552 
553 #ifdef DOPRINT_LD80
554 
555 #define	DOPRINT_START(xp) do {						\
556 	uint64_t __lx;							\
557 	uint16_t __hx;							\
558 									\
559 	/* Hack to give more-problematic args. */			\
560 	EXTRACT_LDBL80_WORDS(__hx, __lx, *xp);				\
561 	__lx ^= DOPRINT_SWIZZLE;					\
562 	INSERT_LDBL80_WORDS(*xp, __hx, __lx);				\
563 	printf("x = %.21Lg; ", (long double)*xp);			\
564 } while (0)
565 #define	DOPRINT_END1(v)							\
566 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
567 #define	DOPRINT_END2(hi, lo)						\
568 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
569 	    (long double)(hi), (long double)(lo))
570 
571 #elif defined(DOPRINT_D64)
572 
573 #define	DOPRINT_START(xp) do {						\
574 	uint32_t __hx, __lx;						\
575 									\
576 	EXTRACT_WORDS(__hx, __lx, *xp);					\
577 	__lx ^= DOPRINT_SWIZZLE;					\
578 	INSERT_WORDS(*xp, __hx, __lx);					\
579 	printf("x = %.21Lg; ", (long double)*xp);			\
580 } while (0)
581 #define	DOPRINT_END1(v)							\
582 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
583 #define	DOPRINT_END2(hi, lo)						\
584 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
585 	    (long double)(hi), (long double)(lo))
586 
587 #elif defined(DOPRINT_F32)
588 
589 #define	DOPRINT_START(xp) do {						\
590 	uint32_t __hx;							\
591 									\
592 	GET_FLOAT_WORD(__hx, *xp);					\
593 	__hx ^= DOPRINT_SWIZZLE;					\
594 	SET_FLOAT_WORD(*xp, __hx);					\
595 	printf("x = %.21Lg; ", (long double)*xp);			\
596 } while (0)
597 #define	DOPRINT_END1(v)							\
598 	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
599 #define	DOPRINT_END2(hi, lo)						\
600 	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
601 	    (long double)(hi), (long double)(lo))
602 
603 #else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
604 
605 #ifndef DOPRINT_SWIZZLE_HIGH
606 #define	DOPRINT_SWIZZLE_HIGH	0
607 #endif
608 
609 #define	DOPRINT_START(xp) do {						\
610 	uint64_t __lx, __llx;						\
611 	uint16_t __hx;							\
612 									\
613 	EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp);			\
614 	__llx ^= DOPRINT_SWIZZLE;					\
615 	__lx ^= DOPRINT_SWIZZLE_HIGH;					\
616 	INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx);			\
617 	printf("x = %.36Lg; ", (long double)*xp);					\
618 } while (0)
619 #define	DOPRINT_END1(v)							\
620 	printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
621 #define	DOPRINT_END2(hi, lo)						\
622 	printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n",		\
623 	    (long double)(hi), (long double)(lo))
624 
625 #endif /* DOPRINT_LD80 */
626 
627 #else /* !DOPRINT */
628 #define	DOPRINT_START(xp)
629 #define	DOPRINT_END1(v)
630 #define	DOPRINT_END2(hi, lo)
631 #endif /* DOPRINT */
632 
633 #define	RETURNP(x) do {			\
634 	DOPRINT_END1(x);		\
635 	RETURNF(x);			\
636 } while (0)
637 #define	RETURNPI(x) do {		\
638 	DOPRINT_END1(x);		\
639 	RETURNI(x);			\
640 } while (0)
641 #define	RETURN2P(x, y) do {		\
642 	DOPRINT_END2((x), (y));		\
643 	RETURNF((x) + (y));		\
644 } while (0)
645 #define	RETURN2PI(x, y) do {		\
646 	DOPRINT_END2((x), (y));		\
647 	RETURNI((x) + (y));		\
648 } while (0)
649 #ifdef STRUCT_RETURN
650 #define	RETURNSP(rp) do {		\
651 	if (!(rp)->lo_set)		\
652 		RETURNP((rp)->hi);	\
653 	RETURN2P((rp)->hi, (rp)->lo);	\
654 } while (0)
655 #define	RETURNSPI(rp) do {		\
656 	if (!(rp)->lo_set)		\
657 		RETURNPI((rp)->hi);	\
658 	RETURN2PI((rp)->hi, (rp)->lo);	\
659 } while (0)
660 #endif
661 #define	SUM2P(x, y) ({			\
662 	const __typeof (x) __x = (x);	\
663 	const __typeof (y) __y = (y);	\
664 					\
665 	DOPRINT_END2(__x, __y);		\
666 	__x + __y;			\
667 })
668 
669 /*
670  * ieee style elementary functions
671  *
672  * We rename functions here to improve other sources' diffability
673  * against fdlibm.
674  */
675 #define	__ieee754_sqrt	sqrt
676 #define	__ieee754_acos	acos
677 #define	__ieee754_acosh	acosh
678 #define	__ieee754_log	log
679 #define	__ieee754_log2	log2
680 #define	__ieee754_atanh	atanh
681 #define	__ieee754_asin	asin
682 #define	__ieee754_atan2	atan2
683 #define	__ieee754_exp	exp
684 #define	__ieee754_cosh	cosh
685 #define	__ieee754_fmod	fmod
686 #define	__ieee754_pow	pow
687 #define	__ieee754_lgamma lgamma
688 #define	__ieee754_gamma	gamma
689 #define	__ieee754_lgamma_r lgamma_r
690 #define	__ieee754_gamma_r gamma_r
691 #define	__ieee754_log10	log10
692 #define	__ieee754_sinh	sinh
693 #define	__ieee754_hypot	hypot
694 #define	__ieee754_j0	j0
695 #define	__ieee754_j1	j1
696 #define	__ieee754_y0	y0
697 #define	__ieee754_y1	y1
698 #define	__ieee754_jn	jn
699 #define	__ieee754_yn	yn
700 #define	__ieee754_remainder remainder
701 #define	__ieee754_scalb	scalb
702 #define	__ieee754_sqrtf	sqrtf
703 #define	__ieee754_acosf	acosf
704 #define	__ieee754_acoshf acoshf
705 #define	__ieee754_logf	logf
706 #define	__ieee754_atanhf atanhf
707 #define	__ieee754_asinf	asinf
708 #define	__ieee754_atan2f atan2f
709 #define	__ieee754_expf	expf
710 #define	__ieee754_coshf	coshf
711 #define	__ieee754_fmodf	fmodf
712 #define	__ieee754_powf	powf
713 #define	__ieee754_lgammaf lgammaf
714 #define	__ieee754_gammaf gammaf
715 #define	__ieee754_lgammaf_r lgammaf_r
716 #define	__ieee754_gammaf_r gammaf_r
717 #define	__ieee754_log10f log10f
718 #define	__ieee754_log2f log2f
719 #define	__ieee754_sinhf	sinhf
720 #define	__ieee754_hypotf hypotf
721 #define	__ieee754_j0f	j0f
722 #define	__ieee754_j1f	j1f
723 #define	__ieee754_y0f	y0f
724 #define	__ieee754_y1f	y1f
725 #define	__ieee754_jnf	jnf
726 #define	__ieee754_ynf	ynf
727 #define	__ieee754_remainderf remainderf
728 #define	__ieee754_scalbf scalbf
729 
730 /* fdlibm kernel function */
731 int	__kernel_rem_pio2(double*,double*,int,int,int);
732 
733 /* double precision kernel functions */
734 #ifndef INLINE_REM_PIO2
735 int	__ieee754_rem_pio2(double,double*);
736 #endif
737 double	__kernel_sin(double,double,int);
738 double	__kernel_cos(double,double);
739 double	__kernel_tan(double,double,int);
740 double	__ldexp_exp(double,int);
741 #ifdef _COMPLEX_H
742 double complex __ldexp_cexp(double complex,int);
743 #endif
744 
745 /* float precision kernel functions */
746 #ifndef INLINE_REM_PIO2F
747 int	__ieee754_rem_pio2f(float,double*);
748 #endif
749 #ifndef INLINE_KERNEL_SINDF
750 float	__kernel_sindf(double);
751 #endif
752 #ifndef INLINE_KERNEL_COSDF
753 float	__kernel_cosdf(double);
754 #endif
755 #ifndef INLINE_KERNEL_TANDF
756 float	__kernel_tandf(double,int);
757 #endif
758 float	__ldexp_expf(float,int);
759 #ifdef _COMPLEX_H
760 float complex __ldexp_cexpf(float complex,int);
761 #endif
762 
763 /* long double precision kernel functions */
764 long double __kernel_sinl(long double, long double, int);
765 long double __kernel_cosl(long double, long double);
766 long double __kernel_tanl(long double, long double, int);
767 
768 #endif /* !_MATH_PRIVATE_H_ */
769