1 /* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
2  * Use of this source code is governed by a BSD-style license that can be
3  * found in the LICENSE file.
4  */
5 
6 /* Host communication command constants for Chrome EC */
7 
8 #ifndef __CROS_EC_COMMANDS_H
9 #define __CROS_EC_COMMANDS_H
10 
11 /*
12  * Current version of this protocol
13  *
14  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
15  * determined in other ways.  Remove this once the kernel code no longer
16  * depends on it.
17  */
18 #define EC_PROTO_VERSION          0x00000002
19 
20 /* Command version mask */
21 #define EC_VER_MASK(version) (1UL << (version))
22 
23 /* I/O addresses for ACPI commands */
24 #define EC_LPC_ADDR_ACPI_DATA  0x62
25 #define EC_LPC_ADDR_ACPI_CMD   0x66
26 
27 /* I/O addresses for host command */
28 #define EC_LPC_ADDR_HOST_DATA  0x200
29 #define EC_LPC_ADDR_HOST_CMD   0x204
30 
31 /* I/O addresses for host command args and params */
32 /* Protocol version 2 */
33 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
34 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
35 					 * EC_PROTO2_MAX_PARAM_SIZE */
36 /* Protocol version 3 */
37 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
38 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
39 
40 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
41  * and they tell the kernel that so we have to think of it as two parts. */
42 #define EC_HOST_CMD_REGION0    0x800
43 #define EC_HOST_CMD_REGION1    0x880
44 #define EC_HOST_CMD_REGION_SIZE 0x80
45 
46 /* EC command register bit functions */
47 #define EC_LPC_CMDR_DATA	(1 << 0)  /* Data ready for host to read */
48 #define EC_LPC_CMDR_PENDING	(1 << 1)  /* Write pending to EC */
49 #define EC_LPC_CMDR_BUSY	(1 << 2)  /* EC is busy processing a command */
50 #define EC_LPC_CMDR_CMD		(1 << 3)  /* Last host write was a command */
51 #define EC_LPC_CMDR_ACPI_BRST	(1 << 4)  /* Burst mode (not used) */
52 #define EC_LPC_CMDR_SCI		(1 << 5)  /* SCI event is pending */
53 #define EC_LPC_CMDR_SMI		(1 << 6)  /* SMI event is pending */
54 
55 #define EC_LPC_ADDR_MEMMAP       0x900
56 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
57 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
58 
59 /* The offset address of each type of data in mapped memory. */
60 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
61 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
62 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
63 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
64 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
65 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
66 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
67 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
68 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
69 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
70 /* Unused 0x28 - 0x2f */
71 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
72 /* Unused 0x31 - 0x33 */
73 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
74 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
75 /* Battery values are all 32 bits */
76 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
77 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
78 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
79 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
80 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
81 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
82 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
83 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
84 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
85 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
86 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
87 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
88 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
89 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
90 /* Unused 0x84 - 0x8f */
91 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
92 /* Unused 0x91 */
93 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
94 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
95 /* 0x94 - 0x99: 1st Accelerometer */
96 /* 0x9a - 0x9f: 2nd Accelerometer */
97 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
98 /* Unused 0xa6 - 0xdf */
99 
100 /*
101  * ACPI is unable to access memory mapped data at or above this offset due to
102  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
103  * which might be needed by ACPI.
104  */
105 #define EC_MEMMAP_NO_ACPI 0xe0
106 
107 /* Define the format of the accelerometer mapped memory status byte. */
108 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
109 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
110 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
111 
112 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
113 #define EC_TEMP_SENSOR_ENTRIES     16
114 /*
115  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
116  *
117  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
118  */
119 #define EC_TEMP_SENSOR_B_ENTRIES      8
120 
121 /* Special values for mapped temperature sensors */
122 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
123 #define EC_TEMP_SENSOR_ERROR          0xfe
124 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
125 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
126 /*
127  * The offset of temperature value stored in mapped memory.  This allows
128  * reporting a temperature range of 200K to 454K = -73C to 181C.
129  */
130 #define EC_TEMP_SENSOR_OFFSET      200
131 
132 /*
133  * Number of ALS readings at EC_MEMMAP_ALS
134  */
135 #define EC_ALS_ENTRIES             2
136 
137 /*
138  * The default value a temperature sensor will return when it is present but
139  * has not been read this boot.  This is a reasonable number to avoid
140  * triggering alarms on the host.
141  */
142 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
143 
144 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
145 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
146 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
147 
148 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
149 #define EC_BATT_FLAG_AC_PRESENT   0x01
150 #define EC_BATT_FLAG_BATT_PRESENT 0x02
151 #define EC_BATT_FLAG_DISCHARGING  0x04
152 #define EC_BATT_FLAG_CHARGING     0x08
153 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
154 
155 /* Switch flags at EC_MEMMAP_SWITCHES */
156 #define EC_SWITCH_LID_OPEN               0x01
157 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
158 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
159 /* Was recovery requested via keyboard; now unused. */
160 #define EC_SWITCH_IGNORE1		 0x08
161 /* Recovery requested via dedicated signal (from servo board) */
162 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
163 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
164 #define EC_SWITCH_IGNORE0                0x20
165 
166 /* Host command interface flags */
167 /* Host command interface supports LPC args (LPC interface only) */
168 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
169 /* Host command interface supports version 3 protocol */
170 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
171 
172 /* Wireless switch flags */
173 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
174 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
175 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
176 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
177 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
178 
179 /*****************************************************************************/
180 /*
181  * ACPI commands
182  *
183  * These are valid ONLY on the ACPI command/data port.
184  */
185 
186 /*
187  * ACPI Read Embedded Controller
188  *
189  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
190  *
191  * Use the following sequence:
192  *
193  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
194  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
195  *    - Write address to EC_LPC_ADDR_ACPI_DATA
196  *    - Wait for EC_LPC_CMDR_DATA bit to set
197  *    - Read value from EC_LPC_ADDR_ACPI_DATA
198  */
199 #define EC_CMD_ACPI_READ 0x80
200 
201 /*
202  * ACPI Write Embedded Controller
203  *
204  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
205  *
206  * Use the following sequence:
207  *
208  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
209  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
210  *    - Write address to EC_LPC_ADDR_ACPI_DATA
211  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
212  *    - Write value to EC_LPC_ADDR_ACPI_DATA
213  */
214 #define EC_CMD_ACPI_WRITE 0x81
215 
216 /*
217  * ACPI Burst Enable Embedded Controller
218  *
219  * This enables burst mode on the EC to allow the host to issue several
220  * commands back-to-back. While in this mode, writes to mapped multi-byte
221  * data are locked out to ensure data consistency.
222  */
223 #define EC_CMD_ACPI_BURST_ENABLE 0x82
224 
225 /*
226  * ACPI Burst Disable Embedded Controller
227  *
228  * This disables burst mode on the EC and stops preventing EC writes to mapped
229  * multi-byte data.
230  */
231 #define EC_CMD_ACPI_BURST_DISABLE 0x83
232 
233 /*
234  * ACPI Query Embedded Controller
235  *
236  * This clears the lowest-order bit in the currently pending host events, and
237  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
238  * event 0x80000000 = 32), or 0 if no event was pending.
239  */
240 #define EC_CMD_ACPI_QUERY_EVENT 0x84
241 
242 /* Valid addresses in ACPI memory space, for read/write commands */
243 
244 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
245 #define EC_ACPI_MEM_VERSION            0x00
246 /*
247  * Test location; writing value here updates test compliment byte to (0xff -
248  * value).
249  */
250 #define EC_ACPI_MEM_TEST               0x01
251 /* Test compliment; writes here are ignored. */
252 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
253 
254 /* Keyboard backlight brightness percent (0 - 100) */
255 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
256 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
257 #define EC_ACPI_MEM_FAN_DUTY           0x04
258 
259 /*
260  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
261  * independent thresholds attached to them. The current value of the ID
262  * register determines which sensor is affected by the THRESHOLD and COMMIT
263  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
264  * as the memory-mapped sensors. The COMMIT register applies those settings.
265  *
266  * The spec does not mandate any way to read back the threshold settings
267  * themselves, but when a threshold is crossed the AP needs a way to determine
268  * which sensor(s) are responsible. Each reading of the ID register clears and
269  * returns one sensor ID that has crossed one of its threshold (in either
270  * direction) since the last read. A value of 0xFF means "no new thresholds
271  * have tripped". Setting or enabling the thresholds for a sensor will clear
272  * the unread event count for that sensor.
273  */
274 #define EC_ACPI_MEM_TEMP_ID            0x05
275 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
276 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
277 /*
278  * Here are the bits for the COMMIT register:
279  *   bit 0 selects the threshold index for the chosen sensor (0/1)
280  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
281  * Each write to the commit register affects one threshold.
282  */
283 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
284 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
285 /*
286  * Example:
287  *
288  * Set the thresholds for sensor 2 to 50 C and 60 C:
289  *   write 2 to [0x05]      --  select temp sensor 2
290  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
291  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
292  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
293  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
294  *
295  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
296  *   write 2 to [0x05]      --  select temp sensor 2
297  *   write 0x1 to [0x07]    --  disable threshold 1
298  */
299 
300 /* DPTF battery charging current limit */
301 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
302 
303 /* Charging limit is specified in 64 mA steps */
304 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
305 /* Value to disable DPTF battery charging limit */
306 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
307 
308 /*
309  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
310  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
311  */
312 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
313 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
314 
315 /* Current version of ACPI memory address space */
316 #define EC_ACPI_MEM_VERSION_CURRENT 2
317 
318 
319 /*
320  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
321  * is pre-processed to handle constants but the ASL compiler is unable to
322  * handle actual C code so keep it separate.
323  */
324 #ifndef __ACPI__
325 
326 /*
327  * Define __packed if someone hasn't beat us to it.  Linux kernel style
328  * checking prefers __packed over __attribute__((packed)).
329  */
330 #ifndef __packed
331 #define __packed __attribute__((packed))
332 #endif
333 
334 /* LPC command status byte masks */
335 /* EC has written a byte in the data register and host hasn't read it yet */
336 #define EC_LPC_STATUS_TO_HOST     0x01
337 /* Host has written a command/data byte and the EC hasn't read it yet */
338 #define EC_LPC_STATUS_FROM_HOST   0x02
339 /* EC is processing a command */
340 #define EC_LPC_STATUS_PROCESSING  0x04
341 /* Last write to EC was a command, not data */
342 #define EC_LPC_STATUS_LAST_CMD    0x08
343 /* EC is in burst mode */
344 #define EC_LPC_STATUS_BURST_MODE  0x10
345 /* SCI event is pending (requesting SCI query) */
346 #define EC_LPC_STATUS_SCI_PENDING 0x20
347 /* SMI event is pending (requesting SMI query) */
348 #define EC_LPC_STATUS_SMI_PENDING 0x40
349 /* (reserved) */
350 #define EC_LPC_STATUS_RESERVED    0x80
351 
352 /*
353  * EC is busy.  This covers both the EC processing a command, and the host has
354  * written a new command but the EC hasn't picked it up yet.
355  */
356 #define EC_LPC_STATUS_BUSY_MASK \
357 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
358 
359 /* Host command response codes */
360 enum ec_status {
361 	EC_RES_SUCCESS = 0,
362 	EC_RES_INVALID_COMMAND = 1,
363 	EC_RES_ERROR = 2,
364 	EC_RES_INVALID_PARAM = 3,
365 	EC_RES_ACCESS_DENIED = 4,
366 	EC_RES_INVALID_RESPONSE = 5,
367 	EC_RES_INVALID_VERSION = 6,
368 	EC_RES_INVALID_CHECKSUM = 7,
369 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
370 	EC_RES_UNAVAILABLE = 9,		/* No response available */
371 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
372 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
373 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
374 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
375 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
376 	EC_RES_BUS_ERROR = 15,          /* Communications bus error */
377 	EC_RES_BUSY = 16                /* Up but too busy.  Should retry */
378 };
379 
380 /*
381  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
382  * EC command uses code 0 to mean "no event pending".  We explicitly specify
383  * each value in the enum listing so they won't change if we delete/insert an
384  * item or rearrange the list (it needs to be stable across platforms, not
385  * just within a single compiled instance).
386  */
387 enum host_event_code {
388 	EC_HOST_EVENT_LID_CLOSED = 1,
389 	EC_HOST_EVENT_LID_OPEN = 2,
390 	EC_HOST_EVENT_POWER_BUTTON = 3,
391 	EC_HOST_EVENT_AC_CONNECTED = 4,
392 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
393 	EC_HOST_EVENT_BATTERY_LOW = 6,
394 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
395 	EC_HOST_EVENT_BATTERY = 8,
396 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
397 	EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
398 	EC_HOST_EVENT_THERMAL = 11,
399 	EC_HOST_EVENT_USB_CHARGER = 12,
400 	EC_HOST_EVENT_KEY_PRESSED = 13,
401 	/*
402 	 * EC has finished initializing the host interface.  The host can check
403 	 * for this event following sending a EC_CMD_REBOOT_EC command to
404 	 * determine when the EC is ready to accept subsequent commands.
405 	 */
406 	EC_HOST_EVENT_INTERFACE_READY = 14,
407 	/* Keyboard recovery combo has been pressed */
408 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
409 
410 	/* Shutdown due to thermal overload */
411 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
412 	/* Shutdown due to battery level too low */
413 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
414 
415 	/* Suggest that the AP throttle itself */
416 	EC_HOST_EVENT_THROTTLE_START = 18,
417 	/* Suggest that the AP resume normal speed */
418 	EC_HOST_EVENT_THROTTLE_STOP = 19,
419 
420 	/* Hang detect logic detected a hang and host event timeout expired */
421 	EC_HOST_EVENT_HANG_DETECT = 20,
422 	/* Hang detect logic detected a hang and warm rebooted the AP */
423 	EC_HOST_EVENT_HANG_REBOOT = 21,
424 
425 	/* PD MCU triggering host event */
426 	EC_HOST_EVENT_PD_MCU = 22,
427 
428 	/* Battery Status flags have changed */
429 	EC_HOST_EVENT_BATTERY_STATUS = 23,
430 
431 	/* EC encountered a panic, triggering a reset */
432 	EC_HOST_EVENT_PANIC = 24,
433 
434 	/* Keyboard fastboot combo has been pressed */
435 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
436 
437 	/*
438 	 * The high bit of the event mask is not used as a host event code.  If
439 	 * it reads back as set, then the entire event mask should be
440 	 * considered invalid by the host.  This can happen when reading the
441 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
442 	 * not initialized on the EC, or improperly configured on the host.
443 	 */
444 	EC_HOST_EVENT_INVALID = 32
445 };
446 /* Host event mask */
447 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
448 
449 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
450 struct ec_lpc_host_args {
451 	uint8_t flags;
452 	uint8_t command_version;
453 	uint8_t data_size;
454 	/*
455 	 * Checksum; sum of command + flags + command_version + data_size +
456 	 * all params/response data bytes.
457 	 */
458 	uint8_t checksum;
459 } __packed;
460 
461 /* Flags for ec_lpc_host_args.flags */
462 /*
463  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
464  * params.
465  *
466  * If EC gets a command and this flag is not set, this is an old-style command.
467  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
468  * unknown length.  EC must respond with an old-style response (that is,
469  * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
470  */
471 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
472 /*
473  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
474  *
475  * If EC responds to a command and this flag is not set, this is an old-style
476  * response.  Command version is 0 and response data from EC is at
477  * EC_LPC_ADDR_OLD_PARAM with unknown length.
478  */
479 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
480 
481 /*****************************************************************************/
482 /*
483  * Byte codes returned by EC over SPI interface.
484  *
485  * These can be used by the AP to debug the EC interface, and to determine
486  * when the EC is not in a state where it will ever get around to responding
487  * to the AP.
488  *
489  * Example of sequence of bytes read from EC for a current good transfer:
490  *   1. -                  - AP asserts chip select (CS#)
491  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
492  *   3. -                  - EC starts handling CS# interrupt
493  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
494  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
495  *                           bytes looking for EC_SPI_FRAME_START
496  *   6. -                  - EC finishes processing and sets up response
497  *   7. EC_SPI_FRAME_START - AP reads frame byte
498  *   8. (response packet)  - AP reads response packet
499  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
500  *   10 -                  - AP deasserts chip select
501  *   11 -                  - EC processes CS# interrupt and sets up DMA for
502  *                           next request
503  *
504  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
505  * the following byte values:
506  *   EC_SPI_OLD_READY
507  *   EC_SPI_RX_READY
508  *   EC_SPI_RECEIVING
509  *   EC_SPI_PROCESSING
510  *
511  * Then the EC found an error in the request, or was not ready for the request
512  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
513  * because the EC is unable to tell when the AP is done sending its request.
514  */
515 
516 /*
517  * Framing byte which precedes a response packet from the EC.  After sending a
518  * request, the AP will clock in bytes until it sees the framing byte, then
519  * clock in the response packet.
520  */
521 #define EC_SPI_FRAME_START    0xec
522 
523 /*
524  * Padding bytes which are clocked out after the end of a response packet.
525  */
526 #define EC_SPI_PAST_END       0xed
527 
528 /*
529  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
530  * that the AP will send a valid packet header (starting with
531  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
532  */
533 #define EC_SPI_RX_READY       0xf8
534 
535 /*
536  * EC has started receiving the request from the AP, but hasn't started
537  * processing it yet.
538  */
539 #define EC_SPI_RECEIVING      0xf9
540 
541 /* EC has received the entire request from the AP and is processing it. */
542 #define EC_SPI_PROCESSING     0xfa
543 
544 /*
545  * EC received bad data from the AP, such as a packet header with an invalid
546  * length.  EC will ignore all data until chip select deasserts.
547  */
548 #define EC_SPI_RX_BAD_DATA    0xfb
549 
550 /*
551  * EC received data from the AP before it was ready.  That is, the AP asserted
552  * chip select and started clocking data before the EC was ready to receive it.
553  * EC will ignore all data until chip select deasserts.
554  */
555 #define EC_SPI_NOT_READY      0xfc
556 
557 /*
558  * EC was ready to receive a request from the AP.  EC has treated the byte sent
559  * by the AP as part of a request packet, or (for old-style ECs) is processing
560  * a fully received packet but is not ready to respond yet.
561  */
562 #define EC_SPI_OLD_READY      0xfd
563 
564 /*****************************************************************************/
565 
566 /*
567  * Protocol version 2 for I2C and SPI send a request this way:
568  *
569  *	0	EC_CMD_VERSION0 + (command version)
570  *	1	Command number
571  *	2	Length of params = N
572  *	3..N+2	Params, if any
573  *	N+3	8-bit checksum of bytes 0..N+2
574  *
575  * The corresponding response is:
576  *
577  *	0	Result code (EC_RES_*)
578  *	1	Length of params = M
579  *	2..M+1	Params, if any
580  *	M+2	8-bit checksum of bytes 0..M+1
581  */
582 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
583 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
584 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
585 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
586 
587 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
588 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
589 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
590 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
591 
592 /* Parameter length was limited by the LPC interface */
593 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
594 
595 /* Maximum request and response packet sizes for protocol version 2 */
596 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
597 				    EC_PROTO2_MAX_PARAM_SIZE)
598 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
599 				     EC_PROTO2_MAX_PARAM_SIZE)
600 
601 /*****************************************************************************/
602 
603 /*
604  * Value written to legacy command port / prefix byte to indicate protocol
605  * 3+ structs are being used.  Usage is bus-dependent.
606  */
607 #define EC_COMMAND_PROTOCOL_3 0xda
608 
609 #define EC_HOST_REQUEST_VERSION 3
610 
611 /* Version 3 request from host */
612 struct ec_host_request {
613 	/* Struct version (=3)
614 	 *
615 	 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
616 	 * version it doesn't know how to parse.
617 	 */
618 	uint8_t struct_version;
619 
620 	/*
621 	 * Checksum of request and data; sum of all bytes including checksum
622 	 * should total to 0.
623 	 */
624 	uint8_t checksum;
625 
626 	/* Command code */
627 	uint16_t command;
628 
629 	/* Command version */
630 	uint8_t command_version;
631 
632 	/* Unused byte in current protocol version; set to 0 */
633 	uint8_t reserved;
634 
635 	/* Length of data which follows this header */
636 	uint16_t data_len;
637 } __packed;
638 
639 #define EC_HOST_RESPONSE_VERSION 3
640 
641 /* Version 3 response from EC */
642 struct ec_host_response {
643 	/* Struct version (=3) */
644 	uint8_t struct_version;
645 
646 	/*
647 	 * Checksum of response and data; sum of all bytes including checksum
648 	 * should total to 0.
649 	 */
650 	uint8_t checksum;
651 
652 	/* Result code (EC_RES_*) */
653 	uint16_t result;
654 
655 	/* Length of data which follows this header */
656 	uint16_t data_len;
657 
658 	/* Unused bytes in current protocol version; set to 0 */
659 	uint16_t reserved;
660 } __packed;
661 
662 /*****************************************************************************/
663 /*
664  * Notes on commands:
665  *
666  * Each command is an 16-bit command value.  Commands which take params or
667  * return response data specify structs for that data.  If no struct is
668  * specified, the command does not input or output data, respectively.
669  * Parameter/response length is implicit in the structs.  Some underlying
670  * communication protocols (I2C, SPI) may add length or checksum headers, but
671  * those are implementation-dependent and not defined here.
672  */
673 
674 /*****************************************************************************/
675 /* General / test commands */
676 
677 /*
678  * Get protocol version, used to deal with non-backward compatible protocol
679  * changes.
680  */
681 #define EC_CMD_PROTO_VERSION 0x00
682 
683 struct ec_response_proto_version {
684 	uint32_t version;
685 } __packed;
686 
687 /*
688  * Hello.  This is a simple command to test the EC is responsive to
689  * commands.
690  */
691 #define EC_CMD_HELLO 0x01
692 
693 struct ec_params_hello {
694 	uint32_t in_data;  /* Pass anything here */
695 } __packed;
696 
697 struct ec_response_hello {
698 	uint32_t out_data;  /* Output will be in_data + 0x01020304 */
699 } __packed;
700 
701 /* Get version number */
702 #define EC_CMD_GET_VERSION 0x02
703 
704 enum ec_current_image {
705 	EC_IMAGE_UNKNOWN = 0,
706 	EC_IMAGE_RO,
707 	EC_IMAGE_RW
708 };
709 
710 struct ec_response_get_version {
711 	/* Null-terminated version strings for RO, RW */
712 	char version_string_ro[32];
713 	char version_string_rw[32];
714 	char reserved[32];       /* Was previously RW-B string */
715 	uint32_t current_image;  /* One of ec_current_image */
716 } __packed;
717 
718 /* Read test */
719 #define EC_CMD_READ_TEST 0x03
720 
721 struct ec_params_read_test {
722 	uint32_t offset;   /* Starting value for read buffer */
723 	uint32_t size;     /* Size to read in bytes */
724 } __packed;
725 
726 struct ec_response_read_test {
727 	uint32_t data[32];
728 } __packed;
729 
730 /*
731  * Get build information
732  *
733  * Response is null-terminated string.
734  */
735 #define EC_CMD_GET_BUILD_INFO 0x04
736 
737 /* Get chip info */
738 #define EC_CMD_GET_CHIP_INFO 0x05
739 
740 struct ec_response_get_chip_info {
741 	/* Null-terminated strings */
742 	char vendor[32];
743 	char name[32];
744 	char revision[32];  /* Mask version */
745 } __packed;
746 
747 /* Get board HW version */
748 #define EC_CMD_GET_BOARD_VERSION 0x06
749 
750 struct ec_response_board_version {
751 	uint16_t board_version;  /* A monotonously incrementing number. */
752 } __packed;
753 
754 /*
755  * Read memory-mapped data.
756  *
757  * This is an alternate interface to memory-mapped data for bus protocols
758  * which don't support direct-mapped memory - I2C, SPI, etc.
759  *
760  * Response is params.size bytes of data.
761  */
762 #define EC_CMD_READ_MEMMAP 0x07
763 
764 struct ec_params_read_memmap {
765 	uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
766 	uint8_t size;     /* Size to read in bytes */
767 } __packed;
768 
769 /* Read versions supported for a command */
770 #define EC_CMD_GET_CMD_VERSIONS 0x08
771 
772 struct ec_params_get_cmd_versions {
773 	uint8_t cmd;      /* Command to check */
774 } __packed;
775 
776 struct ec_params_get_cmd_versions_v1 {
777 	uint16_t cmd;     /* Command to check */
778 } __packed;
779 
780 struct ec_response_get_cmd_versions {
781 	/*
782 	 * Mask of supported versions; use EC_VER_MASK() to compare with a
783 	 * desired version.
784 	 */
785 	uint32_t version_mask;
786 } __packed;
787 
788 /*
789  * Check EC communcations status (busy). This is needed on i2c/spi but not
790  * on lpc since it has its own out-of-band busy indicator.
791  *
792  * lpc must read the status from the command register. Attempting this on
793  * lpc will overwrite the args/parameter space and corrupt its data.
794  */
795 #define EC_CMD_GET_COMMS_STATUS		0x09
796 
797 /* Avoid using ec_status which is for return values */
798 enum ec_comms_status {
799 	EC_COMMS_STATUS_PROCESSING	= 1 << 0,	/* Processing cmd */
800 };
801 
802 struct ec_response_get_comms_status {
803 	uint32_t flags;		/* Mask of enum ec_comms_status */
804 } __packed;
805 
806 /* Fake a variety of responses, purely for testing purposes. */
807 #define EC_CMD_TEST_PROTOCOL		0x0a
808 
809 /* Tell the EC what to send back to us. */
810 struct ec_params_test_protocol {
811 	uint32_t ec_result;
812 	uint32_t ret_len;
813 	uint8_t buf[32];
814 } __packed;
815 
816 /* Here it comes... */
817 struct ec_response_test_protocol {
818 	uint8_t buf[32];
819 } __packed;
820 
821 /* Get prococol information */
822 #define EC_CMD_GET_PROTOCOL_INFO	0x0b
823 
824 /* Flags for ec_response_get_protocol_info.flags */
825 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
826 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
827 
828 struct ec_response_get_protocol_info {
829 	/* Fields which exist if at least protocol version 3 supported */
830 
831 	/* Bitmask of protocol versions supported (1 << n means version n)*/
832 	uint32_t protocol_versions;
833 
834 	/* Maximum request packet size, in bytes */
835 	uint16_t max_request_packet_size;
836 
837 	/* Maximum response packet size, in bytes */
838 	uint16_t max_response_packet_size;
839 
840 	/* Flags; see EC_PROTOCOL_INFO_* */
841 	uint32_t flags;
842 } __packed;
843 
844 
845 /*****************************************************************************/
846 /* Get/Set miscellaneous values */
847 
848 /* The upper byte of .flags tells what to do (nothing means "get") */
849 #define EC_GSV_SET        0x80000000
850 
851 /* The lower three bytes of .flags identifies the parameter, if that has
852    meaning for an individual command. */
853 #define EC_GSV_PARAM_MASK 0x00ffffff
854 
855 struct ec_params_get_set_value {
856 	uint32_t flags;
857 	uint32_t value;
858 } __packed;
859 
860 struct ec_response_get_set_value {
861 	uint32_t flags;
862 	uint32_t value;
863 } __packed;
864 
865 /* More than one command can use these structs to get/set paramters. */
866 #define EC_CMD_GSV_PAUSE_IN_S5	0x0c
867 /*      EC_CMD_GSV_BOOT_ON_AC   0xa3 (defined below) */
868 
869 /*****************************************************************************/
870 /* List the features supported by the firmware */
871 #define EC_CMD_GET_FEATURES  0x0d
872 
873 /* Supported features */
874 enum ec_feature_code {
875 	/*
876 	 * This image contains a limited set of features. Another image
877 	 * in RW partition may support more features.
878 	 */
879 	EC_FEATURE_LIMITED = 0,
880 	/*
881 	 * Commands for probing/reading/writing/erasing the flash in the
882 	 * EC are present.
883 	 */
884 	EC_FEATURE_FLASH = 1,
885 	/*
886 	 * Can control the fan speed directly.
887 	 */
888 	EC_FEATURE_PWM_FAN = 2,
889 	/*
890 	 * Can control the intensity of the keyboard backlight.
891 	 */
892 	EC_FEATURE_PWM_KEYB = 3,
893 	/*
894 	 * Support Google lightbar, introduced on Pixel.
895 	 */
896 	EC_FEATURE_LIGHTBAR = 4,
897 	/* Control of LEDs  */
898 	EC_FEATURE_LED = 5,
899 	/* Exposes an interface to control gyro and sensors.
900 	 * The host goes through the EC to access these sensors.
901 	 * In addition, the EC may provide composite sensors, like lid angle.
902 	 */
903 	EC_FEATURE_MOTION_SENSE = 6,
904 	/* The keyboard is controlled by the EC */
905 	EC_FEATURE_KEYB = 7,
906 	/* The AP can use part of the EC flash as persistent storage. */
907 	EC_FEATURE_PSTORE = 8,
908 	/* The EC monitors BIOS port 80h, and can return POST codes. */
909 	EC_FEATURE_PORT80 = 9,
910 	/*
911 	 * Thermal management: include TMP specific commands.
912 	 * Higher level than direct fan control.
913 	 */
914 	EC_FEATURE_THERMAL = 10,
915 	/* Can switch the screen backlight on/off */
916 	EC_FEATURE_BKLIGHT_SWITCH = 11,
917 	/* Can switch the wifi module on/off */
918 	EC_FEATURE_WIFI_SWITCH = 12,
919 	/* Monitor host events, through for example SMI or SCI */
920 	EC_FEATURE_HOST_EVENTS = 13,
921 	/* The EC exposes GPIO commands to control/monitor connected devices. */
922 	EC_FEATURE_GPIO = 14,
923 	/* The EC can send i2c messages to downstream devices. */
924 	EC_FEATURE_I2C = 15,
925 	/* Command to control charger are included */
926 	EC_FEATURE_CHARGER = 16,
927 	/* Simple battery support. */
928 	EC_FEATURE_BATTERY = 17,
929 	/*
930 	 * Support Smart battery protocol
931 	 * (Common Smart Battery System Interface Specification)
932 	 */
933 	EC_FEATURE_SMART_BATTERY = 18,
934 	/* EC can dectect when the host hangs. */
935 	EC_FEATURE_HANG_DETECT = 19,
936 	/* Report power information, for pit only */
937 	EC_FEATURE_PMU = 20,
938 	/* Another Cros EC device is present downstream of this one */
939 	EC_FEATURE_SUB_MCU = 21,
940 	/* Support USB Power delivery (PD) commands */
941 	EC_FEATURE_USB_PD = 22,
942 	/* Control USB multiplexer, for audio through USB port for instance. */
943 	EC_FEATURE_USB_MUX = 23,
944 	/* Motion Sensor code has an internal software FIFO */
945 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
946 	/* Support enabling/disabling booting the system on AC plug event */
947 	EC_FEATURE_BOOT_ON_AC = 25,
948 };
949 
950 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
951 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
952 struct ec_response_get_features {
953 	uint32_t flags[2];
954 } __packed;
955 
956 /*****************************************************************************/
957 /* Flash commands */
958 
959 /* Get flash info */
960 #define EC_CMD_FLASH_INFO 0x10
961 
962 /* Version 0 returns these fields */
963 struct ec_response_flash_info {
964 	/* Usable flash size, in bytes */
965 	uint32_t flash_size;
966 	/*
967 	 * Write block size.  Write offset and size must be a multiple
968 	 * of this.
969 	 */
970 	uint32_t write_block_size;
971 	/*
972 	 * Erase block size.  Erase offset and size must be a multiple
973 	 * of this.
974 	 */
975 	uint32_t erase_block_size;
976 	/*
977 	 * Protection block size.  Protection offset and size must be a
978 	 * multiple of this.
979 	 */
980 	uint32_t protect_block_size;
981 } __packed;
982 
983 /* Flags for version 1+ flash info command */
984 /* EC flash erases bits to 0 instead of 1 */
985 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
986 
987 /*
988  * Version 1 returns the same initial fields as version 0, with additional
989  * fields following.
990  *
991  * gcc anonymous structs don't seem to get along with the __packed directive;
992  * if they did we'd define the version 0 struct as a sub-struct of this one.
993  */
994 struct ec_response_flash_info_1 {
995 	/* Version 0 fields; see above for description */
996 	uint32_t flash_size;
997 	uint32_t write_block_size;
998 	uint32_t erase_block_size;
999 	uint32_t protect_block_size;
1000 
1001 	/* Version 1 adds these fields: */
1002 	/*
1003 	 * Ideal write size in bytes.  Writes will be fastest if size is
1004 	 * exactly this and offset is a multiple of this.  For example, an EC
1005 	 * may have a write buffer which can do half-page operations if data is
1006 	 * aligned, and a slower word-at-a-time write mode.
1007 	 */
1008 	uint32_t write_ideal_size;
1009 
1010 	/* Flags; see EC_FLASH_INFO_* */
1011 	uint32_t flags;
1012 } __packed;
1013 
1014 /*
1015  * Read flash
1016  *
1017  * Response is params.size bytes of data.
1018  */
1019 #define EC_CMD_FLASH_READ 0x11
1020 
1021 struct ec_params_flash_read {
1022 	uint32_t offset;   /* Byte offset to read */
1023 	uint32_t size;     /* Size to read in bytes */
1024 } __packed;
1025 
1026 /* Write flash */
1027 #define EC_CMD_FLASH_WRITE 0x12
1028 #define EC_VER_FLASH_WRITE 1
1029 
1030 /* Version 0 of the flash command supported only 64 bytes of data */
1031 #define EC_FLASH_WRITE_VER0_SIZE 64
1032 
1033 struct ec_params_flash_write {
1034 	uint32_t offset;   /* Byte offset to write */
1035 	uint32_t size;     /* Size to write in bytes */
1036 	/* Followed by data to write */
1037 } __packed;
1038 
1039 /* Erase flash */
1040 #define EC_CMD_FLASH_ERASE 0x13
1041 
1042 struct ec_params_flash_erase {
1043 	uint32_t offset;   /* Byte offset to erase */
1044 	uint32_t size;     /* Size to erase in bytes */
1045 } __packed;
1046 
1047 /*
1048  * Get/set flash protection.
1049  *
1050  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1051  * firmware write protect GPIO, not all flags will take effect immediately;
1052  * some flags require a subsequent hard reset to take effect.  Check the
1053  * returned flags bits to see what actually happened.
1054  *
1055  * If mask=0, simply returns the current flags state.
1056  */
1057 #define EC_CMD_FLASH_PROTECT 0x15
1058 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1059 
1060 /* Flags for flash protection */
1061 /* RO flash code protected when the EC boots */
1062 #define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
1063 /*
1064  * RO flash code protected now.  If this bit is set, at-boot status cannot
1065  * be changed.
1066  */
1067 #define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
1068 /* Entire flash code protected now, until reboot. */
1069 #define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
1070 /* Flash write protect GPIO is asserted now */
1071 #define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
1072 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1073 #define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
1074 /*
1075  * Error - flash protection is in inconsistent state.  At least one bank of
1076  * flash which should be protected is not protected.  Usually fixed by
1077  * re-requesting the desired flags, or by a hard reset if that fails.
1078  */
1079 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
1080 /* Entire flash code protected when the EC boots */
1081 #define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
1082 
1083 struct ec_params_flash_protect {
1084 	uint32_t mask;   /* Bits in flags to apply */
1085 	uint32_t flags;  /* New flags to apply */
1086 } __packed;
1087 
1088 struct ec_response_flash_protect {
1089 	/* Current value of flash protect flags */
1090 	uint32_t flags;
1091 	/*
1092 	 * Flags which are valid on this platform.  This allows the caller
1093 	 * to distinguish between flags which aren't set vs. flags which can't
1094 	 * be set on this platform.
1095 	 */
1096 	uint32_t valid_flags;
1097 	/* Flags which can be changed given the current protection state */
1098 	uint32_t writable_flags;
1099 } __packed;
1100 
1101 /*
1102  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1103  * write protect.  These commands may be reused with version > 0.
1104  */
1105 
1106 /* Get the region offset/size */
1107 #define EC_CMD_FLASH_REGION_INFO 0x16
1108 #define EC_VER_FLASH_REGION_INFO 1
1109 
1110 enum ec_flash_region {
1111 	/* Region which holds read-only EC image */
1112 	EC_FLASH_REGION_RO = 0,
1113 	/* Region which holds rewritable EC image */
1114 	EC_FLASH_REGION_RW,
1115 	/*
1116 	 * Region which should be write-protected in the factory (a superset of
1117 	 * EC_FLASH_REGION_RO)
1118 	 */
1119 	EC_FLASH_REGION_WP_RO,
1120 	/* Number of regions */
1121 	EC_FLASH_REGION_COUNT,
1122 };
1123 
1124 struct ec_params_flash_region_info {
1125 	uint32_t region;  /* enum ec_flash_region */
1126 } __packed;
1127 
1128 struct ec_response_flash_region_info {
1129 	uint32_t offset;
1130 	uint32_t size;
1131 } __packed;
1132 
1133 /* Read/write VbNvContext */
1134 #define EC_CMD_VBNV_CONTEXT 0x17
1135 #define EC_VER_VBNV_CONTEXT 1
1136 #define EC_VBNV_BLOCK_SIZE 16
1137 
1138 enum ec_vbnvcontext_op {
1139 	EC_VBNV_CONTEXT_OP_READ,
1140 	EC_VBNV_CONTEXT_OP_WRITE,
1141 };
1142 
1143 struct ec_params_vbnvcontext {
1144 	uint32_t op;
1145 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1146 } __packed;
1147 
1148 struct ec_response_vbnvcontext {
1149 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1150 } __packed;
1151 
1152 /*****************************************************************************/
1153 /* PWM commands */
1154 
1155 /* Get fan target RPM */
1156 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
1157 
1158 struct ec_response_pwm_get_fan_rpm {
1159 	uint32_t rpm;
1160 } __packed;
1161 
1162 /* Set target fan RPM */
1163 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
1164 
1165 /* Version 0 of input params */
1166 struct ec_params_pwm_set_fan_target_rpm_v0 {
1167 	uint32_t rpm;
1168 } __packed;
1169 
1170 /* Version 1 of input params */
1171 struct ec_params_pwm_set_fan_target_rpm_v1 {
1172 	uint32_t rpm;
1173 	uint8_t fan_idx;
1174 } __packed;
1175 
1176 /* Get keyboard backlight */
1177 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
1178 
1179 struct ec_response_pwm_get_keyboard_backlight {
1180 	uint8_t percent;
1181 	uint8_t enabled;
1182 } __packed;
1183 
1184 /* Set keyboard backlight */
1185 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
1186 
1187 struct ec_params_pwm_set_keyboard_backlight {
1188 	uint8_t percent;
1189 } __packed;
1190 
1191 /* Set target fan PWM duty cycle */
1192 #define EC_CMD_PWM_SET_FAN_DUTY 0x24
1193 
1194 /* Version 0 of input params */
1195 struct ec_params_pwm_set_fan_duty_v0 {
1196 	uint32_t percent;
1197 } __packed;
1198 
1199 /* Version 1 of input params */
1200 struct ec_params_pwm_set_fan_duty_v1 {
1201 	uint32_t percent;
1202 	uint8_t fan_idx;
1203 } __packed;
1204 
1205 /*****************************************************************************/
1206 /*
1207  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1208  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1209  * into a subcommand. We'll make separate structs for subcommands with
1210  * different input args, so that we know how much to expect.
1211  */
1212 #define EC_CMD_LIGHTBAR_CMD 0x28
1213 
1214 struct rgb_s {
1215 	uint8_t r, g, b;
1216 };
1217 
1218 #define LB_BATTERY_LEVELS 4
1219 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1220  * host command, but the alignment is the same regardless. Keep it that way.
1221  */
1222 struct lightbar_params_v0 {
1223 	/* Timing */
1224 	int32_t google_ramp_up;
1225 	int32_t google_ramp_down;
1226 	int32_t s3s0_ramp_up;
1227 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1228 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1229 	int32_t s0s3_ramp_down;
1230 	int32_t s3_sleep_for;
1231 	int32_t s3_ramp_up;
1232 	int32_t s3_ramp_down;
1233 
1234 	/* Oscillation */
1235 	uint8_t new_s0;
1236 	uint8_t osc_min[2];			/* AC=0/1 */
1237 	uint8_t osc_max[2];			/* AC=0/1 */
1238 	uint8_t w_ofs[2];			/* AC=0/1 */
1239 
1240 	/* Brightness limits based on the backlight and AC. */
1241 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1242 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1243 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1244 
1245 	/* Battery level thresholds */
1246 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1247 
1248 	/* Map [AC][battery_level] to color index */
1249 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1250 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1251 
1252 	/* Color palette */
1253 	struct rgb_s color[8];			/* 0-3 are Google colors */
1254 } __packed;
1255 
1256 struct lightbar_params_v1 {
1257 	/* Timing */
1258 	int32_t google_ramp_up;
1259 	int32_t google_ramp_down;
1260 	int32_t s3s0_ramp_up;
1261 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1262 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1263 	int32_t s0s3_ramp_down;
1264 	int32_t s3_sleep_for;
1265 	int32_t s3_ramp_up;
1266 	int32_t s3_ramp_down;
1267 	int32_t s5_ramp_up;
1268 	int32_t s5_ramp_down;
1269 	int32_t tap_tick_delay;
1270 	int32_t tap_gate_delay;
1271 	int32_t tap_display_time;
1272 
1273 	/* Tap-for-battery params */
1274 	uint8_t tap_pct_red;
1275 	uint8_t tap_pct_green;
1276 	uint8_t tap_seg_min_on;
1277 	uint8_t tap_seg_max_on;
1278 	uint8_t tap_seg_osc;
1279 	uint8_t tap_idx[3];
1280 
1281 	/* Oscillation */
1282 	uint8_t osc_min[2];			/* AC=0/1 */
1283 	uint8_t osc_max[2];			/* AC=0/1 */
1284 	uint8_t w_ofs[2];			/* AC=0/1 */
1285 
1286 	/* Brightness limits based on the backlight and AC. */
1287 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1288 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1289 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1290 
1291 	/* Battery level thresholds */
1292 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1293 
1294 	/* Map [AC][battery_level] to color index */
1295 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1296 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1297 
1298 	/* s5: single color pulse on inhibited power-up */
1299 	uint8_t s5_idx;
1300 
1301 	/* Color palette */
1302 	struct rgb_s color[8];			/* 0-3 are Google colors */
1303 } __packed;
1304 
1305 /* Lightbar command params v2
1306  * crbug.com/467716
1307  *
1308  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1309  * logical groups to make it more manageable ( < 120 bytes).
1310  *
1311  * NOTE: Each of these groups must be less than 120 bytes.
1312  */
1313 
1314 struct lightbar_params_v2_timing {
1315 	/* Timing */
1316 	int32_t google_ramp_up;
1317 	int32_t google_ramp_down;
1318 	int32_t s3s0_ramp_up;
1319 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1320 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1321 	int32_t s0s3_ramp_down;
1322 	int32_t s3_sleep_for;
1323 	int32_t s3_ramp_up;
1324 	int32_t s3_ramp_down;
1325 	int32_t s5_ramp_up;
1326 	int32_t s5_ramp_down;
1327 	int32_t tap_tick_delay;
1328 	int32_t tap_gate_delay;
1329 	int32_t tap_display_time;
1330 } __packed;
1331 
1332 struct lightbar_params_v2_tap {
1333 	/* Tap-for-battery params */
1334 	uint8_t tap_pct_red;
1335 	uint8_t tap_pct_green;
1336 	uint8_t tap_seg_min_on;
1337 	uint8_t tap_seg_max_on;
1338 	uint8_t tap_seg_osc;
1339 	uint8_t tap_idx[3];
1340 } __packed;
1341 
1342 struct lightbar_params_v2_oscillation {
1343 	/* Oscillation */
1344 	uint8_t osc_min[2];			/* AC=0/1 */
1345 	uint8_t osc_max[2];			/* AC=0/1 */
1346 	uint8_t w_ofs[2];			/* AC=0/1 */
1347 } __packed;
1348 
1349 struct lightbar_params_v2_brightness {
1350 	/* Brightness limits based on the backlight and AC. */
1351 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1352 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1353 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1354 } __packed;
1355 
1356 struct lightbar_params_v2_thresholds {
1357 	/* Battery level thresholds */
1358 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1359 } __packed;
1360 
1361 struct lightbar_params_v2_colors {
1362 	/* Map [AC][battery_level] to color index */
1363 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1364 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1365 
1366 	/* s5: single color pulse on inhibited power-up */
1367 	uint8_t s5_idx;
1368 
1369 	/* Color palette */
1370 	struct rgb_s color[8];			/* 0-3 are Google colors */
1371 } __packed;
1372 
1373 /* Lightbyte program. */
1374 #define EC_LB_PROG_LEN 192
1375 struct lightbar_program {
1376 	uint8_t size;
1377 	uint8_t data[EC_LB_PROG_LEN];
1378 };
1379 
1380 struct ec_params_lightbar {
1381 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1382 	union {
1383 		struct {
1384 			/* no args */
1385 		} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1386 			version, get_brightness, get_demo, suspend, resume,
1387 			get_params_v2_timing, get_params_v2_tap,
1388 			get_params_v2_osc, get_params_v2_bright,
1389 			get_params_v2_thlds, get_params_v2_colors;
1390 
1391 		struct {
1392 			uint8_t num;
1393 		} set_brightness, seq, demo;
1394 
1395 		struct {
1396 			uint8_t ctrl, reg, value;
1397 		} reg;
1398 
1399 		struct {
1400 			uint8_t led, red, green, blue;
1401 		} set_rgb;
1402 
1403 		struct {
1404 			uint8_t led;
1405 		} get_rgb;
1406 
1407 		struct {
1408 			uint8_t enable;
1409 		} manual_suspend_ctrl;
1410 
1411 		struct lightbar_params_v0 set_params_v0;
1412 		struct lightbar_params_v1 set_params_v1;
1413 
1414 		struct lightbar_params_v2_timing set_v2par_timing;
1415 		struct lightbar_params_v2_tap set_v2par_tap;
1416 		struct lightbar_params_v2_oscillation set_v2par_osc;
1417 		struct lightbar_params_v2_brightness set_v2par_bright;
1418 		struct lightbar_params_v2_thresholds set_v2par_thlds;
1419 		struct lightbar_params_v2_colors set_v2par_colors;
1420 
1421 		struct lightbar_program set_program;
1422 	};
1423 } __packed;
1424 
1425 struct ec_response_lightbar {
1426 	union {
1427 		struct {
1428 			struct {
1429 				uint8_t reg;
1430 				uint8_t ic0;
1431 				uint8_t ic1;
1432 			} vals[23];
1433 		} dump;
1434 
1435 		struct  {
1436 			uint8_t num;
1437 		} get_seq, get_brightness, get_demo;
1438 
1439 		struct lightbar_params_v0 get_params_v0;
1440 		struct lightbar_params_v1 get_params_v1;
1441 
1442 
1443 		struct lightbar_params_v2_timing get_params_v2_timing;
1444 		struct lightbar_params_v2_tap get_params_v2_tap;
1445 		struct lightbar_params_v2_oscillation get_params_v2_osc;
1446 		struct lightbar_params_v2_brightness get_params_v2_bright;
1447 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
1448 		struct lightbar_params_v2_colors get_params_v2_colors;
1449 
1450 		struct {
1451 			uint32_t num;
1452 			uint32_t flags;
1453 		} version;
1454 
1455 		struct {
1456 			uint8_t red, green, blue;
1457 		} get_rgb;
1458 
1459 		struct {
1460 			/* no return params */
1461 		} off, on, init, set_brightness, seq, reg, set_rgb,
1462 			demo, set_params_v0, set_params_v1,
1463 			set_program, manual_suspend_ctrl, suspend, resume,
1464 			set_v2par_timing, set_v2par_tap,
1465 			set_v2par_osc, set_v2par_bright, set_v2par_thlds,
1466 			set_v2par_colors;
1467 	};
1468 } __packed;
1469 
1470 /* Lightbar commands */
1471 enum lightbar_command {
1472 	LIGHTBAR_CMD_DUMP = 0,
1473 	LIGHTBAR_CMD_OFF = 1,
1474 	LIGHTBAR_CMD_ON = 2,
1475 	LIGHTBAR_CMD_INIT = 3,
1476 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1477 	LIGHTBAR_CMD_SEQ = 5,
1478 	LIGHTBAR_CMD_REG = 6,
1479 	LIGHTBAR_CMD_SET_RGB = 7,
1480 	LIGHTBAR_CMD_GET_SEQ = 8,
1481 	LIGHTBAR_CMD_DEMO = 9,
1482 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1483 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1484 	LIGHTBAR_CMD_VERSION = 12,
1485 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1486 	LIGHTBAR_CMD_GET_RGB = 14,
1487 	LIGHTBAR_CMD_GET_DEMO = 15,
1488 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1489 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1490 	LIGHTBAR_CMD_SET_PROGRAM = 18,
1491 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1492 	LIGHTBAR_CMD_SUSPEND = 20,
1493 	LIGHTBAR_CMD_RESUME = 21,
1494 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
1495 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
1496 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
1497 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
1498 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
1499 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
1500 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
1501 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
1502 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
1503 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
1504 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
1505 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
1506 	LIGHTBAR_NUM_CMDS
1507 };
1508 
1509 /*****************************************************************************/
1510 /* LED control commands */
1511 
1512 #define EC_CMD_LED_CONTROL 0x29
1513 
1514 enum ec_led_id {
1515 	/* LED to indicate battery state of charge */
1516 	EC_LED_ID_BATTERY_LED = 0,
1517 	/*
1518 	 * LED to indicate system power state (on or in suspend).
1519 	 * May be on power button or on C-panel.
1520 	 */
1521 	EC_LED_ID_POWER_LED,
1522 	/* LED on power adapter or its plug */
1523 	EC_LED_ID_ADAPTER_LED,
1524 
1525 	EC_LED_ID_COUNT
1526 };
1527 
1528 /* LED control flags */
1529 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1530 #define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1531 
1532 enum ec_led_colors {
1533 	EC_LED_COLOR_RED = 0,
1534 	EC_LED_COLOR_GREEN,
1535 	EC_LED_COLOR_BLUE,
1536 	EC_LED_COLOR_YELLOW,
1537 	EC_LED_COLOR_WHITE,
1538 
1539 	EC_LED_COLOR_COUNT
1540 };
1541 
1542 struct ec_params_led_control {
1543 	uint8_t led_id;     /* Which LED to control */
1544 	uint8_t flags;      /* Control flags */
1545 
1546 	uint8_t brightness[EC_LED_COLOR_COUNT];
1547 } __packed;
1548 
1549 struct ec_response_led_control {
1550 	/*
1551 	 * Available brightness value range.
1552 	 *
1553 	 * Range 0 means color channel not present.
1554 	 * Range 1 means on/off control.
1555 	 * Other values means the LED is control by PWM.
1556 	 */
1557 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
1558 } __packed;
1559 
1560 /*****************************************************************************/
1561 /* Verified boot commands */
1562 
1563 /*
1564  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1565  * reused for other purposes with version > 0.
1566  */
1567 
1568 /* Verified boot hash command */
1569 #define EC_CMD_VBOOT_HASH 0x2a
1570 
1571 struct ec_params_vboot_hash {
1572 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1573 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1574 	uint8_t nonce_size;      /* Nonce size; may be 0 */
1575 	uint8_t reserved0;       /* Reserved; set 0 */
1576 	uint32_t offset;         /* Offset in flash to hash */
1577 	uint32_t size;           /* Number of bytes to hash */
1578 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1579 } __packed;
1580 
1581 struct ec_response_vboot_hash {
1582 	uint8_t status;          /* enum ec_vboot_hash_status */
1583 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1584 	uint8_t digest_size;     /* Size of hash digest in bytes */
1585 	uint8_t reserved0;       /* Ignore; will be 0 */
1586 	uint32_t offset;         /* Offset in flash which was hashed */
1587 	uint32_t size;           /* Number of bytes hashed */
1588 	uint8_t hash_digest[64]; /* Hash digest data */
1589 } __packed;
1590 
1591 enum ec_vboot_hash_cmd {
1592 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1593 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1594 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1595 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1596 };
1597 
1598 enum ec_vboot_hash_type {
1599 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1600 };
1601 
1602 enum ec_vboot_hash_status {
1603 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1604 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1605 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1606 };
1607 
1608 /*
1609  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1610  * If one of these is specified, the EC will automatically update offset and
1611  * size to the correct values for the specified image (RO or RW).
1612  */
1613 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1614 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1615 
1616 /*****************************************************************************/
1617 /*
1618  * Motion sense commands. We'll make separate structs for sub-commands with
1619  * different input args, so that we know how much to expect.
1620  */
1621 #define EC_CMD_MOTION_SENSE_CMD 0x2b
1622 
1623 /* Motion sense commands */
1624 enum motionsense_command {
1625 	/*
1626 	 * Dump command returns all motion sensor data including motion sense
1627 	 * module flags and individual sensor flags.
1628 	 */
1629 	MOTIONSENSE_CMD_DUMP = 0,
1630 
1631 	/*
1632 	 * Info command returns data describing the details of a given sensor,
1633 	 * including enum motionsensor_type, enum motionsensor_location, and
1634 	 * enum motionsensor_chip.
1635 	 */
1636 	MOTIONSENSE_CMD_INFO = 1,
1637 
1638 	/*
1639 	 * EC Rate command is a setter/getter command for the EC sampling rate
1640 	 * in milliseconds.
1641 	 * It is per sensor, the EC run sample task  at the minimum of all
1642 	 * sensors EC_RATE.
1643 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
1644 	 * to collect all the sensor samples.
1645 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
1646 	 * to process of all motion sensors in milliseconds.
1647 	 */
1648 	MOTIONSENSE_CMD_EC_RATE = 2,
1649 
1650 	/*
1651 	 * Sensor ODR command is a setter/getter command for the output data
1652 	 * rate of a specific motion sensor in millihertz.
1653 	 */
1654 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
1655 
1656 	/*
1657 	 * Sensor range command is a setter/getter command for the range of
1658 	 * a specified motion sensor in +/-G's or +/- deg/s.
1659 	 */
1660 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1661 
1662 	/*
1663 	 * Setter/getter command for the keyboard wake angle. When the lid
1664 	 * angle is greater than this value, keyboard wake is disabled in S3,
1665 	 * and when the lid angle goes less than this value, keyboard wake is
1666 	 * enabled. Note, the lid angle measurement is an approximate,
1667 	 * un-calibrated value, hence the wake angle isn't exact.
1668 	 */
1669 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1670 
1671 	/*
1672 	 * Returns a single sensor data.
1673 	 */
1674 	MOTIONSENSE_CMD_DATA = 6,
1675 
1676 	/*
1677 	 * Return sensor fifo info.
1678 	 */
1679 	MOTIONSENSE_CMD_FIFO_INFO = 7,
1680 
1681 	/*
1682 	 * Insert a flush element in the fifo and return sensor fifo info.
1683 	 * The host can use that element to synchronize its operation.
1684 	 */
1685 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
1686 
1687 	/*
1688 	 * Return a portion of the fifo.
1689 	 */
1690 	MOTIONSENSE_CMD_FIFO_READ = 9,
1691 
1692 	/*
1693 	 * Perform low level calibration.
1694 	 * On sensors that support it, ask to do offset calibration.
1695 	 */
1696 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
1697 
1698 	/*
1699 	 * Sensor Offset command is a setter/getter command for the offset
1700 	 * used for calibration.
1701 	 * The offsets can be calculated by the host, or via
1702 	 * PERFORM_CALIB command.
1703 	 */
1704 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
1705 
1706 	/* Number of motionsense sub-commands. */
1707 	MOTIONSENSE_NUM_CMDS
1708 };
1709 
1710 /* List of motion sensor types. */
1711 enum motionsensor_type {
1712 	MOTIONSENSE_TYPE_ACCEL = 0,
1713 	MOTIONSENSE_TYPE_GYRO = 1,
1714 	MOTIONSENSE_TYPE_MAG = 2,
1715 	MOTIONSENSE_TYPE_PROX = 3,
1716 	MOTIONSENSE_TYPE_LIGHT = 4,
1717 	MOTIONSENSE_TYPE_MAX,
1718 };
1719 
1720 /* List of motion sensor locations. */
1721 enum motionsensor_location {
1722 	MOTIONSENSE_LOC_BASE = 0,
1723 	MOTIONSENSE_LOC_LID = 1,
1724 	MOTIONSENSE_LOC_MAX,
1725 };
1726 
1727 /* List of motion sensor chips. */
1728 enum motionsensor_chip {
1729 	MOTIONSENSE_CHIP_KXCJ9 = 0,
1730 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
1731 	MOTIONSENSE_CHIP_BMI160 = 2,
1732 	MOTIONSENSE_CHIP_SI1141 = 3,
1733 	MOTIONSENSE_CHIP_SI1142 = 4,
1734 	MOTIONSENSE_CHIP_SI1143 = 5,
1735 };
1736 
1737 struct ec_response_motion_sensor_data {
1738 	/* Flags for each sensor. */
1739 	uint8_t flags;
1740 	/* sensor number the data comes from */
1741 	uint8_t sensor_num;
1742 	/* Each sensor is up to 3-axis. */
1743 	union {
1744 		int16_t             data[3];
1745 		struct {
1746 			uint16_t    rsvd;
1747 			uint32_t    timestamp;
1748 		} __packed;
1749 	};
1750 } __packed;
1751 
1752 struct ec_response_motion_sense_fifo_info {
1753 	/* Size of the fifo */
1754 	uint16_t size;
1755 	/* Amount of space used in the fifo */
1756 	uint16_t count;
1757 	/* TImestamp recorded in us */
1758 	uint32_t timestamp;
1759 	/* Total amount of vector lost */
1760 	uint16_t total_lost;
1761 	/* Lost events since the last fifo_info, per sensors */
1762 	uint16_t lost[0];
1763 } __packed;
1764 
1765 struct ec_response_motion_sense_fifo_data {
1766 	uint32_t number_data;
1767 	struct ec_response_motion_sensor_data data[0];
1768 } __packed;
1769 /* Module flag masks used for the dump sub-command. */
1770 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1771 
1772 /* Sensor flag masks used for the dump sub-command. */
1773 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1774 
1775 /*
1776  * Flush entry for synchronisation.
1777  * data contains time stamp
1778  */
1779 #define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0)
1780 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1)
1781 
1782 /*
1783  * Send this value for the data element to only perform a read. If you
1784  * send any other value, the EC will interpret it as data to set and will
1785  * return the actual value set.
1786  */
1787 #define EC_MOTION_SENSE_NO_VALUE -1
1788 
1789 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
1790 
1791 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
1792 /* Set Calibration information */
1793 #define MOTION_SENSE_SET_OFFSET 1
1794 
1795 struct ec_params_motion_sense {
1796 	uint8_t cmd;
1797 	union {
1798 		/* Used for MOTIONSENSE_CMD_DUMP */
1799 		struct {
1800 			/*
1801 			 * Maximal number of sensor the host is expecting.
1802 			 * 0 means the host is only interested in the number
1803 			 * of sensors controlled by the EC.
1804 			 */
1805 			uint8_t max_sensor_count;
1806 		} dump;
1807 
1808 		/*
1809 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1810 		 */
1811 		struct {
1812 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
1813 			 * kb_wake_angle: angle to wakup AP.
1814 			 */
1815 			int16_t data;
1816 		} kb_wake_angle;
1817 
1818 		/* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
1819 		 * and MOTIONSENSE_CMD_PERFORM_CALIB. */
1820 		struct {
1821 			uint8_t sensor_num;
1822 		} info, data, fifo_flush, perform_calib;
1823 
1824 		/*
1825 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
1826 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
1827 		 */
1828 		struct {
1829 			uint8_t sensor_num;
1830 
1831 			/* Rounding flag, true for round-up, false for down. */
1832 			uint8_t roundup;
1833 
1834 			uint16_t reserved;
1835 
1836 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1837 			int32_t data;
1838 		} ec_rate, sensor_odr, sensor_range;
1839 
1840 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
1841 		struct {
1842 			uint8_t sensor_num;
1843 
1844 			/*
1845 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
1846 			 * the calibration information in the EC.
1847 			 * If unset, just retrieve calibration information.
1848 			 */
1849 			uint16_t flags;
1850 
1851 			/*
1852 			 * Temperature at calibration, in units of 0.01 C
1853 			 * 0x8000: invalid / unknown.
1854 			 * 0x0: 0C
1855 			 * 0x7fff: +327.67C
1856 			 */
1857 			int16_t temp;
1858 
1859 			/*
1860 			 * Offset for calibration.
1861 			 * Unit:
1862 			 * Accelerometer: 1/1024 g
1863 			 * Gyro:          1/1024 deg/s
1864 			 * Compass:       1/16 uT
1865 			 */
1866 			int16_t offset[3];
1867 		} __packed sensor_offset;
1868 
1869 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
1870 		struct {
1871 		} fifo_info;
1872 
1873 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
1874 		struct {
1875 			/*
1876 			 * Number of expected vector to return.
1877 			 * EC may return less or 0 if none available.
1878 			 */
1879 			uint32_t max_data_vector;
1880 		} fifo_read;
1881 	};
1882 } __packed;
1883 
1884 struct ec_response_motion_sense {
1885 	union {
1886 		/* Used for MOTIONSENSE_CMD_DUMP */
1887 		struct {
1888 			/* Flags representing the motion sensor module. */
1889 			uint8_t module_flags;
1890 
1891 			/* Number of sensors managed directly by the EC */
1892 			uint8_t sensor_count;
1893 
1894 			/*
1895 			 * sensor data is truncated if response_max is too small
1896 			 * for holding all the data.
1897 			 */
1898 			struct ec_response_motion_sensor_data sensor[0];
1899 		} dump;
1900 
1901 		/* Used for MOTIONSENSE_CMD_INFO. */
1902 		struct {
1903 			/* Should be element of enum motionsensor_type. */
1904 			uint8_t type;
1905 
1906 			/* Should be element of enum motionsensor_location. */
1907 			uint8_t location;
1908 
1909 			/* Should be element of enum motionsensor_chip. */
1910 			uint8_t chip;
1911 		} info;
1912 
1913 		/* Used for MOTIONSENSE_CMD_DATA */
1914 		struct ec_response_motion_sensor_data data;
1915 
1916 		/*
1917 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1918 		 * MOTIONSENSE_CMD_SENSOR_RANGE, and
1919 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1920 		 */
1921 		struct {
1922 			/* Current value of the parameter queried. */
1923 			int32_t ret;
1924 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1925 
1926 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
1927 		struct {
1928 			int16_t temp;
1929 			int16_t offset[3];
1930 		} sensor_offset, perform_calib;
1931 
1932 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
1933 
1934 		struct ec_response_motion_sense_fifo_data fifo_read;
1935 	};
1936 } __packed;
1937 
1938 /*****************************************************************************/
1939 /* Force lid open command */
1940 
1941 /* Make lid event always open */
1942 #define EC_CMD_FORCE_LID_OPEN 0x2c
1943 
1944 struct ec_params_force_lid_open {
1945 	uint8_t enabled;
1946 } __packed;
1947 
1948 /*****************************************************************************/
1949 /* USB charging control commands */
1950 
1951 /* Set USB port charging mode */
1952 #define EC_CMD_USB_CHARGE_SET_MODE 0x30
1953 
1954 struct ec_params_usb_charge_set_mode {
1955 	uint8_t usb_port_id;
1956 	uint8_t mode;
1957 } __packed;
1958 
1959 /*****************************************************************************/
1960 /* Persistent storage for host */
1961 
1962 /* Maximum bytes that can be read/written in a single command */
1963 #define EC_PSTORE_SIZE_MAX 64
1964 
1965 /* Get persistent storage info */
1966 #define EC_CMD_PSTORE_INFO 0x40
1967 
1968 struct ec_response_pstore_info {
1969 	/* Persistent storage size, in bytes */
1970 	uint32_t pstore_size;
1971 	/* Access size; read/write offset and size must be a multiple of this */
1972 	uint32_t access_size;
1973 } __packed;
1974 
1975 /*
1976  * Read persistent storage
1977  *
1978  * Response is params.size bytes of data.
1979  */
1980 #define EC_CMD_PSTORE_READ 0x41
1981 
1982 struct ec_params_pstore_read {
1983 	uint32_t offset;   /* Byte offset to read */
1984 	uint32_t size;     /* Size to read in bytes */
1985 } __packed;
1986 
1987 /* Write persistent storage */
1988 #define EC_CMD_PSTORE_WRITE 0x42
1989 
1990 struct ec_params_pstore_write {
1991 	uint32_t offset;   /* Byte offset to write */
1992 	uint32_t size;     /* Size to write in bytes */
1993 	uint8_t data[EC_PSTORE_SIZE_MAX];
1994 } __packed;
1995 
1996 /*****************************************************************************/
1997 /* Real-time clock */
1998 
1999 /* RTC params and response structures */
2000 struct ec_params_rtc {
2001 	uint32_t time;
2002 } __packed;
2003 
2004 struct ec_response_rtc {
2005 	uint32_t time;
2006 } __packed;
2007 
2008 /* These use ec_response_rtc */
2009 #define EC_CMD_RTC_GET_VALUE 0x44
2010 #define EC_CMD_RTC_GET_ALARM 0x45
2011 
2012 /* These all use ec_params_rtc */
2013 #define EC_CMD_RTC_SET_VALUE 0x46
2014 #define EC_CMD_RTC_SET_ALARM 0x47
2015 
2016 /*****************************************************************************/
2017 /* Port80 log access */
2018 
2019 /* Maximum entries that can be read/written in a single command */
2020 #define EC_PORT80_SIZE_MAX 32
2021 
2022 /* Get last port80 code from previous boot */
2023 #define EC_CMD_PORT80_LAST_BOOT 0x48
2024 #define EC_CMD_PORT80_READ 0x48
2025 
2026 enum ec_port80_subcmd {
2027 	EC_PORT80_GET_INFO = 0,
2028 	EC_PORT80_READ_BUFFER,
2029 };
2030 
2031 struct ec_params_port80_read {
2032 	uint16_t subcmd;
2033 	union {
2034 		struct {
2035 			uint32_t offset;
2036 			uint32_t num_entries;
2037 		} read_buffer;
2038 	};
2039 } __packed;
2040 
2041 struct ec_response_port80_read {
2042 	union {
2043 		struct {
2044 			uint32_t writes;
2045 			uint32_t history_size;
2046 			uint32_t last_boot;
2047 		} get_info;
2048 		struct {
2049 			uint16_t codes[EC_PORT80_SIZE_MAX];
2050 		} data;
2051 	};
2052 } __packed;
2053 
2054 struct ec_response_port80_last_boot {
2055 	uint16_t code;
2056 } __packed;
2057 
2058 /*****************************************************************************/
2059 /* Thermal engine commands. Note that there are two implementations. We'll
2060  * reuse the command number, but the data and behavior is incompatible.
2061  * Version 0 is what originally shipped on Link.
2062  * Version 1 separates the CPU thermal limits from the fan control.
2063  */
2064 
2065 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50
2066 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51
2067 
2068 /* The version 0 structs are opaque. You have to know what they are for
2069  * the get/set commands to make any sense.
2070  */
2071 
2072 /* Version 0 - set */
2073 struct ec_params_thermal_set_threshold {
2074 	uint8_t sensor_type;
2075 	uint8_t threshold_id;
2076 	uint16_t value;
2077 } __packed;
2078 
2079 /* Version 0 - get */
2080 struct ec_params_thermal_get_threshold {
2081 	uint8_t sensor_type;
2082 	uint8_t threshold_id;
2083 } __packed;
2084 
2085 struct ec_response_thermal_get_threshold {
2086 	uint16_t value;
2087 } __packed;
2088 
2089 
2090 /* The version 1 structs are visible. */
2091 enum ec_temp_thresholds {
2092 	EC_TEMP_THRESH_WARN = 0,
2093 	EC_TEMP_THRESH_HIGH,
2094 	EC_TEMP_THRESH_HALT,
2095 
2096 	EC_TEMP_THRESH_COUNT
2097 };
2098 
2099 /* Thermal configuration for one temperature sensor. Temps are in degrees K.
2100  * Zero values will be silently ignored by the thermal task.
2101  */
2102 struct ec_thermal_config {
2103 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
2104 	uint32_t temp_fan_off;		/* no active cooling needed */
2105 	uint32_t temp_fan_max;		/* max active cooling needed */
2106 } __packed;
2107 
2108 /* Version 1 - get config for one sensor. */
2109 struct ec_params_thermal_get_threshold_v1 {
2110 	uint32_t sensor_num;
2111 } __packed;
2112 /* This returns a struct ec_thermal_config */
2113 
2114 /* Version 1 - set config for one sensor.
2115  * Use read-modify-write for best results! */
2116 struct ec_params_thermal_set_threshold_v1 {
2117 	uint32_t sensor_num;
2118 	struct ec_thermal_config cfg;
2119 } __packed;
2120 /* This returns no data */
2121 
2122 /****************************************************************************/
2123 
2124 /* Toggle automatic fan control */
2125 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
2126 
2127 /* Version 1 of input params */
2128 struct ec_params_auto_fan_ctrl_v1 {
2129 	uint8_t fan_idx;
2130 } __packed;
2131 
2132 /* Get/Set TMP006 calibration data */
2133 #define EC_CMD_TMP006_GET_CALIBRATION 0x53
2134 #define EC_CMD_TMP006_SET_CALIBRATION 0x54
2135 
2136 /*
2137  * The original TMP006 calibration only needed four params, but now we need
2138  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
2139  * the params opaque. The v1 "get" response will include the algorithm number
2140  * and how many params it requires. That way we can change the EC code without
2141  * needing to update this file. We can also use a different algorithm on each
2142  * sensor.
2143  */
2144 
2145 /* This is the same struct for both v0 and v1. */
2146 struct ec_params_tmp006_get_calibration {
2147 	uint8_t index;
2148 } __packed;
2149 
2150 /* Version 0 */
2151 struct ec_response_tmp006_get_calibration_v0 {
2152 	float s0;
2153 	float b0;
2154 	float b1;
2155 	float b2;
2156 } __packed;
2157 
2158 struct ec_params_tmp006_set_calibration_v0 {
2159 	uint8_t index;
2160 	uint8_t reserved[3];
2161 	float s0;
2162 	float b0;
2163 	float b1;
2164 	float b2;
2165 } __packed;
2166 
2167 /* Version 1 */
2168 struct ec_response_tmp006_get_calibration_v1 {
2169 	uint8_t algorithm;
2170 	uint8_t num_params;
2171 	uint8_t reserved[2];
2172 	float val[0];
2173 } __packed;
2174 
2175 struct ec_params_tmp006_set_calibration_v1 {
2176 	uint8_t index;
2177 	uint8_t algorithm;
2178 	uint8_t num_params;
2179 	uint8_t reserved;
2180 	float val[0];
2181 } __packed;
2182 
2183 
2184 /* Read raw TMP006 data */
2185 #define EC_CMD_TMP006_GET_RAW 0x55
2186 
2187 struct ec_params_tmp006_get_raw {
2188 	uint8_t index;
2189 } __packed;
2190 
2191 struct ec_response_tmp006_get_raw {
2192 	int32_t t;  /* In 1/100 K */
2193 	int32_t v;  /* In nV */
2194 };
2195 
2196 /*****************************************************************************/
2197 /* MKBP - Matrix KeyBoard Protocol */
2198 
2199 /*
2200  * Read key state
2201  *
2202  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
2203  * expected response size.
2204  */
2205 #define EC_CMD_MKBP_STATE 0x60
2206 
2207 /* Provide information about the matrix : number of rows and columns */
2208 #define EC_CMD_MKBP_INFO 0x61
2209 
2210 struct ec_response_mkbp_info {
2211 	uint32_t rows;
2212 	uint32_t cols;
2213 	uint8_t switches;
2214 } __packed;
2215 
2216 /* Simulate key press */
2217 #define EC_CMD_MKBP_SIMULATE_KEY 0x62
2218 
2219 struct ec_params_mkbp_simulate_key {
2220 	uint8_t col;
2221 	uint8_t row;
2222 	uint8_t pressed;
2223 } __packed;
2224 
2225 /* Configure keyboard scanning */
2226 #define EC_CMD_MKBP_SET_CONFIG 0x64
2227 #define EC_CMD_MKBP_GET_CONFIG 0x65
2228 
2229 /* flags */
2230 enum mkbp_config_flags {
2231 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
2232 };
2233 
2234 enum mkbp_config_valid {
2235 	EC_MKBP_VALID_SCAN_PERIOD		= 1 << 0,
2236 	EC_MKBP_VALID_POLL_TIMEOUT		= 1 << 1,
2237 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= 1 << 3,
2238 	EC_MKBP_VALID_OUTPUT_SETTLE		= 1 << 4,
2239 	EC_MKBP_VALID_DEBOUNCE_DOWN		= 1 << 5,
2240 	EC_MKBP_VALID_DEBOUNCE_UP		= 1 << 6,
2241 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= 1 << 7,
2242 };
2243 
2244 /* Configuration for our key scanning algorithm */
2245 struct ec_mkbp_config {
2246 	uint32_t valid_mask;		/* valid fields */
2247 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
2248 	uint8_t valid_flags;		/* which flags are valid */
2249 	uint16_t scan_period_us;	/* period between start of scans */
2250 	/* revert to interrupt mode after no activity for this long */
2251 	uint32_t poll_timeout_us;
2252 	/*
2253 	 * minimum post-scan relax time. Once we finish a scan we check
2254 	 * the time until we are due to start the next one. If this time is
2255 	 * shorter this field, we use this instead.
2256 	 */
2257 	uint16_t min_post_scan_delay_us;
2258 	/* delay between setting up output and waiting for it to settle */
2259 	uint16_t output_settle_us;
2260 	uint16_t debounce_down_us;	/* time for debounce on key down */
2261 	uint16_t debounce_up_us;	/* time for debounce on key up */
2262 	/* maximum depth to allow for fifo (0 = no keyscan output) */
2263 	uint8_t fifo_max_depth;
2264 } __packed;
2265 
2266 struct ec_params_mkbp_set_config {
2267 	struct ec_mkbp_config config;
2268 } __packed;
2269 
2270 struct ec_response_mkbp_get_config {
2271 	struct ec_mkbp_config config;
2272 } __packed;
2273 
2274 /* Run the key scan emulation */
2275 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
2276 
2277 enum ec_keyscan_seq_cmd {
2278 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
2279 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
2280 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
2281 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
2282 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
2283 };
2284 
2285 enum ec_collect_flags {
2286 	/*
2287 	 * Indicates this scan was processed by the EC. Due to timing, some
2288 	 * scans may be skipped.
2289 	 */
2290 	EC_KEYSCAN_SEQ_FLAG_DONE	= 1 << 0,
2291 };
2292 
2293 struct ec_collect_item {
2294 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
2295 };
2296 
2297 struct ec_params_keyscan_seq_ctrl {
2298 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
2299 	union {
2300 		struct {
2301 			uint8_t active;		/* still active */
2302 			uint8_t num_items;	/* number of items */
2303 			/* Current item being presented */
2304 			uint8_t cur_item;
2305 		} status;
2306 		struct {
2307 			/*
2308 			 * Absolute time for this scan, measured from the
2309 			 * start of the sequence.
2310 			 */
2311 			uint32_t time_us;
2312 			uint8_t scan[0];	/* keyscan data */
2313 		} add;
2314 		struct {
2315 			uint8_t start_item;	/* First item to return */
2316 			uint8_t num_items;	/* Number of items to return */
2317 		} collect;
2318 	};
2319 } __packed;
2320 
2321 struct ec_result_keyscan_seq_ctrl {
2322 	union {
2323 		struct {
2324 			uint8_t num_items;	/* Number of items */
2325 			/* Data for each item */
2326 			struct ec_collect_item item[0];
2327 		} collect;
2328 	};
2329 } __packed;
2330 
2331 /*
2332  * Get the next pending MKBP event.
2333  *
2334  * Returns EC_RES_UNAVAILABLE if there is no event pending.
2335  */
2336 #define EC_CMD_GET_NEXT_EVENT 0x67
2337 
2338 enum ec_mkbp_event {
2339 	/* Keyboard matrix changed. The event data is the new matrix state. */
2340 	EC_MKBP_EVENT_KEY_MATRIX = 0,
2341 
2342 	/* New host event. The event data is 4 bytes of host event flags. */
2343 	EC_MKBP_EVENT_HOST_EVENT = 1,
2344 
2345 	/* New Sensor FIFO data. The event data is fifo_info structure. */
2346 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
2347 
2348 	/* Number of MKBP events */
2349 	EC_MKBP_EVENT_COUNT,
2350 };
2351 
2352 union ec_response_get_next_data {
2353 	uint8_t   key_matrix[13];
2354 
2355 	/* Unaligned */
2356 	uint32_t  host_event;
2357 
2358 	struct {
2359 		/* For aligning the fifo_info */
2360 		uint8_t rsvd[3];
2361 		struct ec_response_motion_sense_fifo_info info;
2362 	}        sensor_fifo;
2363 } __packed;
2364 
2365 struct ec_response_get_next_event {
2366 	uint8_t event_type;
2367 	/* Followed by event data if any */
2368 	union ec_response_get_next_data data;
2369 } __packed;
2370 
2371 /*****************************************************************************/
2372 /* Temperature sensor commands */
2373 
2374 /* Read temperature sensor info */
2375 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
2376 
2377 struct ec_params_temp_sensor_get_info {
2378 	uint8_t id;
2379 } __packed;
2380 
2381 struct ec_response_temp_sensor_get_info {
2382 	char sensor_name[32];
2383 	uint8_t sensor_type;
2384 } __packed;
2385 
2386 /*****************************************************************************/
2387 
2388 /*
2389  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
2390  * commands accidentally sent to the wrong interface.  See the ACPI section
2391  * below.
2392  */
2393 
2394 /*****************************************************************************/
2395 /* Host event commands */
2396 
2397 /*
2398  * Host event mask params and response structures, shared by all of the host
2399  * event commands below.
2400  */
2401 struct ec_params_host_event_mask {
2402 	uint32_t mask;
2403 } __packed;
2404 
2405 struct ec_response_host_event_mask {
2406 	uint32_t mask;
2407 } __packed;
2408 
2409 /* These all use ec_response_host_event_mask */
2410 #define EC_CMD_HOST_EVENT_GET_B         0x87
2411 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x88
2412 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x89
2413 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
2414 
2415 /* These all use ec_params_host_event_mask */
2416 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x8a
2417 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x8b
2418 #define EC_CMD_HOST_EVENT_CLEAR         0x8c
2419 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
2420 #define EC_CMD_HOST_EVENT_CLEAR_B       0x8f
2421 
2422 /*****************************************************************************/
2423 /* Switch commands */
2424 
2425 /* Enable/disable LCD backlight */
2426 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
2427 
2428 struct ec_params_switch_enable_backlight {
2429 	uint8_t enabled;
2430 } __packed;
2431 
2432 /* Enable/disable WLAN/Bluetooth */
2433 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
2434 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
2435 
2436 /* Version 0 params; no response */
2437 struct ec_params_switch_enable_wireless_v0 {
2438 	uint8_t enabled;
2439 } __packed;
2440 
2441 /* Version 1 params */
2442 struct ec_params_switch_enable_wireless_v1 {
2443 	/* Flags to enable now */
2444 	uint8_t now_flags;
2445 
2446 	/* Which flags to copy from now_flags */
2447 	uint8_t now_mask;
2448 
2449 	/*
2450 	 * Flags to leave enabled in S3, if they're on at the S0->S3
2451 	 * transition.  (Other flags will be disabled by the S0->S3
2452 	 * transition.)
2453 	 */
2454 	uint8_t suspend_flags;
2455 
2456 	/* Which flags to copy from suspend_flags */
2457 	uint8_t suspend_mask;
2458 } __packed;
2459 
2460 /* Version 1 response */
2461 struct ec_response_switch_enable_wireless_v1 {
2462 	/* Flags to enable now */
2463 	uint8_t now_flags;
2464 
2465 	/* Flags to leave enabled in S3 */
2466 	uint8_t suspend_flags;
2467 } __packed;
2468 
2469 /*****************************************************************************/
2470 /* GPIO commands. Only available on EC if write protect has been disabled. */
2471 
2472 /* Set GPIO output value */
2473 #define EC_CMD_GPIO_SET 0x92
2474 
2475 struct ec_params_gpio_set {
2476 	char name[32];
2477 	uint8_t val;
2478 } __packed;
2479 
2480 /* Get GPIO value */
2481 #define EC_CMD_GPIO_GET 0x93
2482 
2483 /* Version 0 of input params and response */
2484 struct ec_params_gpio_get {
2485 	char name[32];
2486 } __packed;
2487 struct ec_response_gpio_get {
2488 	uint8_t val;
2489 } __packed;
2490 
2491 /* Version 1 of input params and response */
2492 struct ec_params_gpio_get_v1 {
2493 	uint8_t subcmd;
2494 	union {
2495 		struct {
2496 			char name[32];
2497 		} get_value_by_name;
2498 		struct {
2499 			uint8_t index;
2500 		} get_info;
2501 	};
2502 } __packed;
2503 
2504 struct ec_response_gpio_get_v1 {
2505 	union {
2506 		struct {
2507 			uint8_t val;
2508 		} get_value_by_name, get_count;
2509 		struct {
2510 			uint8_t val;
2511 			char name[32];
2512 			uint32_t flags;
2513 		} get_info;
2514 	};
2515 } __packed;
2516 
2517 enum gpio_get_subcmd {
2518 	EC_GPIO_GET_BY_NAME = 0,
2519 	EC_GPIO_GET_COUNT = 1,
2520 	EC_GPIO_GET_INFO = 2,
2521 };
2522 
2523 /*****************************************************************************/
2524 /* I2C commands. Only available when flash write protect is unlocked. */
2525 
2526 /*
2527  * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
2528  * removed soon.  Use EC_CMD_I2C_PASSTHRU instead.
2529  */
2530 
2531 /* Read I2C bus */
2532 #define EC_CMD_I2C_READ 0x94
2533 
2534 struct ec_params_i2c_read {
2535 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
2536 	uint8_t read_size; /* Either 8 or 16. */
2537 	uint8_t port;
2538 	uint8_t offset;
2539 } __packed;
2540 struct ec_response_i2c_read {
2541 	uint16_t data;
2542 } __packed;
2543 
2544 /* Write I2C bus */
2545 #define EC_CMD_I2C_WRITE 0x95
2546 
2547 struct ec_params_i2c_write {
2548 	uint16_t data;
2549 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
2550 	uint8_t write_size; /* Either 8 or 16. */
2551 	uint8_t port;
2552 	uint8_t offset;
2553 } __packed;
2554 
2555 /*****************************************************************************/
2556 /* Charge state commands. Only available when flash write protect unlocked. */
2557 
2558 /* Force charge state machine to stop charging the battery or force it to
2559  * discharge the battery.
2560  */
2561 #define EC_CMD_CHARGE_CONTROL 0x96
2562 #define EC_VER_CHARGE_CONTROL 1
2563 
2564 enum ec_charge_control_mode {
2565 	CHARGE_CONTROL_NORMAL = 0,
2566 	CHARGE_CONTROL_IDLE,
2567 	CHARGE_CONTROL_DISCHARGE,
2568 };
2569 
2570 struct ec_params_charge_control {
2571 	uint32_t mode;  /* enum charge_control_mode */
2572 } __packed;
2573 
2574 /*****************************************************************************/
2575 /* Console commands. Only available when flash write protect is unlocked. */
2576 
2577 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
2578 #define EC_CMD_CONSOLE_SNAPSHOT 0x97
2579 
2580 /*
2581  * Read data from the saved snapshot. If the subcmd parameter is
2582  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
2583  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
2584  * end of the previous snapshot.
2585  *
2586  * The params are only looked at in version >= 1 of this command. Prior
2587  * versions will just default to CONSOLE_READ_NEXT behavior.
2588  *
2589  * Response is null-terminated string.  Empty string, if there is no more
2590  * remaining output.
2591  */
2592 #define EC_CMD_CONSOLE_READ 0x98
2593 
2594 enum ec_console_read_subcmd {
2595 	CONSOLE_READ_NEXT = 0,
2596 	CONSOLE_READ_RECENT
2597 };
2598 
2599 struct ec_params_console_read_v1 {
2600 	uint8_t subcmd; /* enum ec_console_read_subcmd */
2601 } __packed;
2602 
2603 /*****************************************************************************/
2604 
2605 /*
2606  * Cut off battery power immediately or after the host has shut down.
2607  *
2608  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
2609  *	  EC_RES_SUCCESS if the command was successful.
2610  *	  EC_RES_ERROR if the cut off command failed.
2611  */
2612 #define EC_CMD_BATTERY_CUT_OFF 0x99
2613 
2614 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	(1 << 0)
2615 
2616 struct ec_params_battery_cutoff {
2617 	uint8_t flags;
2618 } __packed;
2619 
2620 /*****************************************************************************/
2621 /* USB port mux control. */
2622 
2623 /*
2624  * Switch USB mux or return to automatic switching.
2625  */
2626 #define EC_CMD_USB_MUX 0x9a
2627 
2628 struct ec_params_usb_mux {
2629 	uint8_t mux;
2630 } __packed;
2631 
2632 /*****************************************************************************/
2633 /* LDOs / FETs control. */
2634 
2635 enum ec_ldo_state {
2636 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
2637 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
2638 };
2639 
2640 /*
2641  * Switch on/off a LDO.
2642  */
2643 #define EC_CMD_LDO_SET 0x9b
2644 
2645 struct ec_params_ldo_set {
2646 	uint8_t index;
2647 	uint8_t state;
2648 } __packed;
2649 
2650 /*
2651  * Get LDO state.
2652  */
2653 #define EC_CMD_LDO_GET 0x9c
2654 
2655 struct ec_params_ldo_get {
2656 	uint8_t index;
2657 } __packed;
2658 
2659 struct ec_response_ldo_get {
2660 	uint8_t state;
2661 } __packed;
2662 
2663 /*****************************************************************************/
2664 /* Power info. */
2665 
2666 /*
2667  * Get power info.
2668  */
2669 #define EC_CMD_POWER_INFO 0x9d
2670 
2671 struct ec_response_power_info {
2672 	uint32_t usb_dev_type;
2673 	uint16_t voltage_ac;
2674 	uint16_t voltage_system;
2675 	uint16_t current_system;
2676 	uint16_t usb_current_limit;
2677 } __packed;
2678 
2679 /*****************************************************************************/
2680 /* I2C passthru command */
2681 
2682 #define EC_CMD_I2C_PASSTHRU 0x9e
2683 
2684 /* Read data; if not present, message is a write */
2685 #define EC_I2C_FLAG_READ	(1 << 15)
2686 
2687 /* Mask for address */
2688 #define EC_I2C_ADDR_MASK	0x3ff
2689 
2690 #define EC_I2C_STATUS_NAK	(1 << 0) /* Transfer was not acknowledged */
2691 #define EC_I2C_STATUS_TIMEOUT	(1 << 1) /* Timeout during transfer */
2692 
2693 /* Any error */
2694 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2695 
2696 struct ec_params_i2c_passthru_msg {
2697 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
2698 	uint16_t len;		/* Number of bytes to read or write */
2699 } __packed;
2700 
2701 struct ec_params_i2c_passthru {
2702 	uint8_t port;		/* I2C port number */
2703 	uint8_t num_msgs;	/* Number of messages */
2704 	struct ec_params_i2c_passthru_msg msg[];
2705 	/* Data to write for all messages is concatenated here */
2706 } __packed;
2707 
2708 struct ec_response_i2c_passthru {
2709 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
2710 	uint8_t num_msgs;	/* Number of messages processed */
2711 	uint8_t data[];		/* Data read by messages concatenated here */
2712 } __packed;
2713 
2714 /*****************************************************************************/
2715 /* Power button hang detect */
2716 
2717 #define EC_CMD_HANG_DETECT 0x9f
2718 
2719 /* Reasons to start hang detection timer */
2720 /* Power button pressed */
2721 #define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
2722 
2723 /* Lid closed */
2724 #define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
2725 
2726  /* Lid opened */
2727 #define EC_HANG_START_ON_LID_OPEN     (1 << 2)
2728 
2729 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
2730 #define EC_HANG_START_ON_RESUME       (1 << 3)
2731 
2732 /* Reasons to cancel hang detection */
2733 
2734 /* Power button released */
2735 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2736 
2737 /* Any host command from AP received */
2738 #define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
2739 
2740 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2741 #define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
2742 
2743 /*
2744  * If this flag is set, all the other fields are ignored, and the hang detect
2745  * timer is started.  This provides the AP a way to start the hang timer
2746  * without reconfiguring any of the other hang detect settings.  Note that
2747  * you must previously have configured the timeouts.
2748  */
2749 #define EC_HANG_START_NOW             (1 << 30)
2750 
2751 /*
2752  * If this flag is set, all the other fields are ignored (including
2753  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
2754  * without reconfiguring any of the other hang detect settings.
2755  */
2756 #define EC_HANG_STOP_NOW              (1 << 31)
2757 
2758 struct ec_params_hang_detect {
2759 	/* Flags; see EC_HANG_* */
2760 	uint32_t flags;
2761 
2762 	/* Timeout in msec before generating host event, if enabled */
2763 	uint16_t host_event_timeout_msec;
2764 
2765 	/* Timeout in msec before generating warm reboot, if enabled */
2766 	uint16_t warm_reboot_timeout_msec;
2767 } __packed;
2768 
2769 /*****************************************************************************/
2770 /* Commands for battery charging */
2771 
2772 /*
2773  * This is the single catch-all host command to exchange data regarding the
2774  * charge state machine (v2 and up).
2775  */
2776 #define EC_CMD_CHARGE_STATE 0xa0
2777 
2778 /* Subcommands for this host command */
2779 enum charge_state_command {
2780 	CHARGE_STATE_CMD_GET_STATE,
2781 	CHARGE_STATE_CMD_GET_PARAM,
2782 	CHARGE_STATE_CMD_SET_PARAM,
2783 	CHARGE_STATE_NUM_CMDS
2784 };
2785 
2786 /*
2787  * Known param numbers are defined here. Ranges are reserved for board-specific
2788  * params, which are handled by the particular implementations.
2789  */
2790 enum charge_state_params {
2791 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
2792 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
2793 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
2794 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
2795 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
2796 	/* How many so far? */
2797 	CS_NUM_BASE_PARAMS,
2798 
2799 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2800 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2801 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2802 
2803 	/* Other custom param ranges go here... */
2804 };
2805 
2806 struct ec_params_charge_state {
2807 	uint8_t cmd;				/* enum charge_state_command */
2808 	union {
2809 		struct {
2810 			/* no args */
2811 		} get_state;
2812 
2813 		struct {
2814 			uint32_t param;		/* enum charge_state_param */
2815 		} get_param;
2816 
2817 		struct {
2818 			uint32_t param;		/* param to set */
2819 			uint32_t value;		/* value to set */
2820 		} set_param;
2821 	};
2822 } __packed;
2823 
2824 struct ec_response_charge_state {
2825 	union {
2826 		struct {
2827 			int ac;
2828 			int chg_voltage;
2829 			int chg_current;
2830 			int chg_input_current;
2831 			int batt_state_of_charge;
2832 		} get_state;
2833 
2834 		struct {
2835 			uint32_t value;
2836 		} get_param;
2837 		struct {
2838 			/* no return values */
2839 		} set_param;
2840 	};
2841 } __packed;
2842 
2843 
2844 /*
2845  * Set maximum battery charging current.
2846  */
2847 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2848 
2849 struct ec_params_current_limit {
2850 	uint32_t limit; /* in mA */
2851 } __packed;
2852 
2853 /*
2854  * Set maximum external voltage / current.
2855  */
2856 #define EC_CMD_EXTERNAL_POWER_LIMIT 0xa2
2857 
2858 /* Command v0 is used only on Spring and is obsolete + unsupported */
2859 struct ec_params_external_power_limit_v1 {
2860 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
2861 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
2862 } __packed;
2863 
2864 #define EC_POWER_LIMIT_NONE 0xffff
2865 
2866 /*****************************************************************************/
2867 
2868 /*
2869  * Get/Set the option to boot the AP when the AC power is plugged
2870  *
2871  * Use ec_params_get_set_value/ec_response_get_set_value structs and EC_GSV_SET
2872  * please see "Get/Set miscellaneous values" section above.
2873  */
2874 #define EC_CMD_GSV_BOOT_ON_AC	0xa3
2875 
2876 /*****************************************************************************/
2877 /* Smart battery pass-through */
2878 
2879 /* Get / Set 16-bit smart battery registers */
2880 #define EC_CMD_SB_READ_WORD   0xb0
2881 #define EC_CMD_SB_WRITE_WORD  0xb1
2882 
2883 /* Get / Set string smart battery parameters
2884  * formatted as SMBUS "block".
2885  */
2886 #define EC_CMD_SB_READ_BLOCK  0xb2
2887 #define EC_CMD_SB_WRITE_BLOCK 0xb3
2888 
2889 struct ec_params_sb_rd {
2890 	uint8_t reg;
2891 } __packed;
2892 
2893 struct ec_response_sb_rd_word {
2894 	uint16_t value;
2895 } __packed;
2896 
2897 struct ec_params_sb_wr_word {
2898 	uint8_t reg;
2899 	uint16_t value;
2900 } __packed;
2901 
2902 struct ec_response_sb_rd_block {
2903 	uint8_t data[32];
2904 } __packed;
2905 
2906 struct ec_params_sb_wr_block {
2907 	uint8_t reg;
2908 	uint16_t data[32];
2909 } __packed;
2910 
2911 
2912 /*****************************************************************************/
2913 /* Battery vendor parameters
2914  *
2915  * Get or set vendor-specific parameters in the battery. Implementations may
2916  * differ between boards or batteries. On a set operation, the response
2917  * contains the actual value set, which may be rounded or clipped from the
2918  * requested value.
2919  */
2920 
2921 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2922 
2923 enum ec_battery_vendor_param_mode {
2924 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
2925 	BATTERY_VENDOR_PARAM_MODE_SET,
2926 };
2927 
2928 struct ec_params_battery_vendor_param {
2929 	uint32_t param;
2930 	uint32_t value;
2931 	uint8_t mode;
2932 } __packed;
2933 
2934 struct ec_response_battery_vendor_param {
2935 	uint32_t value;
2936 } __packed;
2937 
2938 /*****************************************************************************/
2939 /*
2940  * Smart Battery Firmware Update Commands
2941  */
2942 #define EC_CMD_SB_FW_UPDATE 0xb5
2943 
2944 enum ec_sb_fw_update_subcmd {
2945 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
2946 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
2947 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
2948 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
2949 	EC_SB_FW_UPDATE_END      = 0x4,
2950 	EC_SB_FW_UPDATE_STATUS   = 0x5,
2951 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
2952 	EC_SB_FW_UPDATE_MAX      = 0x7,
2953 };
2954 
2955 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
2956 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
2957 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
2958 
2959 struct ec_sb_fw_update_header {
2960 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
2961 	uint16_t fw_id;   /* firmware id */
2962 } __packed;
2963 
2964 struct ec_params_sb_fw_update {
2965 	struct ec_sb_fw_update_header hdr;
2966 	union {
2967 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
2968 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
2969 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
2970 		/* EC_SB_FW_UPDATE_END      = 0x4 */
2971 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
2972 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
2973 		struct {
2974 			/* no args */
2975 		} dummy;
2976 
2977 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
2978 		struct {
2979 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
2980 		} write;
2981 	};
2982 } __packed;
2983 
2984 struct ec_response_sb_fw_update {
2985 	union {
2986 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
2987 		struct {
2988 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
2989 		} info;
2990 
2991 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
2992 		struct {
2993 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
2994 		} status;
2995 	};
2996 } __packed;
2997 
2998 /*
2999  * Entering Verified Boot Mode Command
3000  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
3001  * Valid Modes are: normal, developer, and recovery.
3002  */
3003 #define EC_CMD_ENTERING_MODE 0xb6
3004 
3005 struct ec_params_entering_mode {
3006 	int vboot_mode;
3007 } __packed;
3008 
3009 #define VBOOT_MODE_NORMAL    0
3010 #define VBOOT_MODE_DEVELOPER 1
3011 #define VBOOT_MODE_RECOVERY  2
3012 
3013 /*****************************************************************************/
3014 /* System commands */
3015 
3016 /*
3017  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
3018  * necessarily reboot the EC.  Rename to "image" or something similar?
3019  */
3020 #define EC_CMD_REBOOT_EC 0xd2
3021 
3022 /* Command */
3023 enum ec_reboot_cmd {
3024 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
3025 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
3026 	EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
3027 	/* (command 3 was jump to RW-B) */
3028 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
3029 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
3030 	EC_REBOOT_HIBERNATE = 6      /* Hibernate EC */
3031 };
3032 
3033 /* Flags for ec_params_reboot_ec.reboot_flags */
3034 #define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
3035 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
3036 
3037 struct ec_params_reboot_ec {
3038 	uint8_t cmd;           /* enum ec_reboot_cmd */
3039 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
3040 } __packed;
3041 
3042 /*
3043  * Get information on last EC panic.
3044  *
3045  * Returns variable-length platform-dependent panic information.  See panic.h
3046  * for details.
3047  */
3048 #define EC_CMD_GET_PANIC_INFO 0xd3
3049 
3050 /*****************************************************************************/
3051 /*
3052  * Special commands
3053  *
3054  * These do not follow the normal rules for commands.  See each command for
3055  * details.
3056  */
3057 
3058 /*
3059  * Reboot NOW
3060  *
3061  * This command will work even when the EC LPC interface is busy, because the
3062  * reboot command is processed at interrupt level.  Note that when the EC
3063  * reboots, the host will reboot too, so there is no response to this command.
3064  *
3065  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
3066  */
3067 #define EC_CMD_REBOOT 0xd1  /* Think "die" */
3068 
3069 /*
3070  * Resend last response (not supported on LPC).
3071  *
3072  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
3073  * there was no previous command, or the previous command's response was too
3074  * big to save.
3075  */
3076 #define EC_CMD_RESEND_RESPONSE 0xdb
3077 
3078 /*
3079  * This header byte on a command indicate version 0. Any header byte less
3080  * than this means that we are talking to an old EC which doesn't support
3081  * versioning. In that case, we assume version 0.
3082  *
3083  * Header bytes greater than this indicate a later version. For example,
3084  * EC_CMD_VERSION0 + 1 means we are using version 1.
3085  *
3086  * The old EC interface must not use commands 0xdc or higher.
3087  */
3088 #define EC_CMD_VERSION0 0xdc
3089 
3090 /*****************************************************************************/
3091 /*
3092  * PD commands
3093  *
3094  * These commands are for PD MCU communication.
3095  */
3096 
3097 /* EC to PD MCU exchange status command */
3098 #define EC_CMD_PD_EXCHANGE_STATUS 0x100
3099 
3100 enum pd_charge_state {
3101 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
3102 	PD_CHARGE_NONE,          /* No charging allowed */
3103 	PD_CHARGE_5V,            /* 5V charging only */
3104 	PD_CHARGE_MAX            /* Charge at max voltage */
3105 };
3106 
3107 /* Status of EC being sent to PD */
3108 struct ec_params_pd_status {
3109 	int8_t batt_soc;      /* battery state of charge */
3110 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
3111 } __packed;
3112 
3113 /* Status of PD being sent back to EC */
3114 #define PD_STATUS_HOST_EVENT      (1 << 0) /* Forward host event to AP */
3115 #define PD_STATUS_IN_RW           (1 << 1) /* Running RW image */
3116 #define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */
3117 #define PD_STATUS_TCPC_ALERT_0    (1 << 3) /* Alert active in port 0 TCPC */
3118 #define PD_STATUS_TCPC_ALERT_1    (1 << 4) /* Alert active in port 1 TCPC */
3119 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
3120 				      PD_STATUS_TCPC_ALERT_1 | \
3121 				      PD_STATUS_HOST_EVENT)
3122 struct ec_response_pd_status {
3123 	uint32_t status;      /* PD MCU status */
3124 	uint32_t curr_lim_ma; /* input current limit */
3125 	int32_t active_charge_port; /* active charging port */
3126 } __packed;
3127 
3128 /* AP to PD MCU host event status command, cleared on read */
3129 #define EC_CMD_PD_HOST_EVENT_STATUS 0x104
3130 
3131 /* PD MCU host event status bits */
3132 #define PD_EVENT_UPDATE_DEVICE     (1 << 0)
3133 #define PD_EVENT_POWER_CHANGE      (1 << 1)
3134 #define PD_EVENT_IDENTITY_RECEIVED (1 << 2)
3135 #define PD_EVENT_DATA_SWAP         (1 << 3)
3136 struct ec_response_host_event_status {
3137 	uint32_t status;      /* PD MCU host event status */
3138 } __packed;
3139 
3140 /* Set USB type-C port role and muxes */
3141 #define EC_CMD_USB_PD_CONTROL 0x101
3142 
3143 enum usb_pd_control_role {
3144 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
3145 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
3146 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
3147 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
3148 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
3149 	USB_PD_CTRL_ROLE_COUNT
3150 };
3151 
3152 enum usb_pd_control_mux {
3153 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
3154 	USB_PD_CTRL_MUX_NONE = 1,
3155 	USB_PD_CTRL_MUX_USB = 2,
3156 	USB_PD_CTRL_MUX_DP = 3,
3157 	USB_PD_CTRL_MUX_DOCK = 4,
3158 	USB_PD_CTRL_MUX_AUTO = 5,
3159 	USB_PD_CTRL_MUX_COUNT
3160 };
3161 
3162 enum usb_pd_control_swap {
3163 	USB_PD_CTRL_SWAP_NONE = 0,
3164 	USB_PD_CTRL_SWAP_DATA = 1,
3165 	USB_PD_CTRL_SWAP_POWER = 2,
3166 	USB_PD_CTRL_SWAP_VCONN = 3,
3167 	USB_PD_CTRL_SWAP_COUNT
3168 };
3169 
3170 struct ec_params_usb_pd_control {
3171 	uint8_t port;
3172 	uint8_t role;
3173 	uint8_t mux;
3174 	uint8_t swap;
3175 } __packed;
3176 
3177 struct ec_response_usb_pd_control {
3178 	uint8_t enabled;
3179 	uint8_t role;
3180 	uint8_t polarity;
3181 	uint8_t state;
3182 } __packed;
3183 
3184 struct ec_response_usb_pd_control_v1 {
3185 	uint8_t enabled; /* [0] comm enabled [1] connected */
3186 	uint8_t role; /* [0] power: 0=SNK/1=SRC [1] data: 0=UFP/1=DFP
3187 			 [2] vconn 0=off/1=on */
3188 	uint8_t polarity;
3189 	char state[32];
3190 } __packed;
3191 
3192 #define EC_CMD_USB_PD_PORTS 0x102
3193 
3194 struct ec_response_usb_pd_ports {
3195 	uint8_t num_ports;
3196 } __packed;
3197 
3198 #define EC_CMD_USB_PD_POWER_INFO 0x103
3199 
3200 #define PD_POWER_CHARGING_PORT 0xff
3201 struct ec_params_usb_pd_power_info {
3202 	uint8_t port;
3203 } __packed;
3204 
3205 enum usb_chg_type {
3206 	USB_CHG_TYPE_NONE,
3207 	USB_CHG_TYPE_PD,
3208 	USB_CHG_TYPE_C,
3209 	USB_CHG_TYPE_PROPRIETARY,
3210 	USB_CHG_TYPE_BC12_DCP,
3211 	USB_CHG_TYPE_BC12_CDP,
3212 	USB_CHG_TYPE_BC12_SDP,
3213 	USB_CHG_TYPE_OTHER,
3214 	USB_CHG_TYPE_VBUS,
3215 	USB_CHG_TYPE_UNKNOWN,
3216 };
3217 enum usb_power_roles {
3218 	USB_PD_PORT_POWER_DISCONNECTED,
3219 	USB_PD_PORT_POWER_SOURCE,
3220 	USB_PD_PORT_POWER_SINK,
3221 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
3222 };
3223 
3224 struct usb_chg_measures {
3225 	uint16_t voltage_max;
3226 	uint16_t voltage_now;
3227 	uint16_t current_max;
3228 	uint16_t current_lim;
3229 } __packed;
3230 
3231 struct ec_response_usb_pd_power_info {
3232 	uint8_t role;
3233 	uint8_t type;
3234 	uint8_t dualrole;
3235 	uint8_t reserved1;
3236 	struct usb_chg_measures meas;
3237 	uint32_t max_power;
3238 } __packed;
3239 
3240 /* Write USB-PD device FW */
3241 #define EC_CMD_USB_PD_FW_UPDATE 0x110
3242 
3243 enum usb_pd_fw_update_cmds {
3244 	USB_PD_FW_REBOOT,
3245 	USB_PD_FW_FLASH_ERASE,
3246 	USB_PD_FW_FLASH_WRITE,
3247 	USB_PD_FW_ERASE_SIG,
3248 };
3249 
3250 struct ec_params_usb_pd_fw_update {
3251 	uint16_t dev_id;
3252 	uint8_t cmd;
3253 	uint8_t port;
3254 	uint32_t size;     /* Size to write in bytes */
3255 	/* Followed by data to write */
3256 } __packed;
3257 
3258 /* Write USB-PD Accessory RW_HASH table entry */
3259 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x111
3260 /* RW hash is first 20 bytes of SHA-256 of RW section */
3261 #define PD_RW_HASH_SIZE 20
3262 struct ec_params_usb_pd_rw_hash_entry {
3263 	uint16_t dev_id;
3264 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
3265 	uint8_t reserved;        /* For alignment of current_image */
3266 	uint32_t current_image;  /* One of ec_current_image */
3267 } __packed;
3268 
3269 /* Read USB-PD Accessory info */
3270 #define EC_CMD_USB_PD_DEV_INFO 0x112
3271 
3272 struct ec_params_usb_pd_info_request {
3273 	uint8_t port;
3274 } __packed;
3275 
3276 /* Read USB-PD Device discovery info */
3277 #define EC_CMD_USB_PD_DISCOVERY 0x113
3278 struct ec_params_usb_pd_discovery_entry {
3279 	uint16_t vid;  /* USB-IF VID */
3280 	uint16_t pid;  /* USB-IF PID */
3281 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
3282 } __packed;
3283 
3284 /* Override default charge behavior */
3285 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x114
3286 
3287 /* Negative port parameters have special meaning */
3288 enum usb_pd_override_ports {
3289 	OVERRIDE_DONT_CHARGE = -2,
3290 	OVERRIDE_OFF = -1,
3291 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
3292 };
3293 
3294 struct ec_params_charge_port_override {
3295 	int16_t override_port; /* Override port# */
3296 } __packed;
3297 
3298 /* Read (and delete) one entry of PD event log */
3299 #define EC_CMD_PD_GET_LOG_ENTRY 0x115
3300 
3301 struct ec_response_pd_log {
3302 	uint32_t timestamp; /* relative timestamp in milliseconds */
3303 	uint8_t type;       /* event type : see PD_EVENT_xx below */
3304 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
3305 	uint16_t data;      /* type-defined data payload */
3306 	uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
3307 } __packed;
3308 
3309 
3310 /* The timestamp is the microsecond counter shifted to get about a ms. */
3311 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
3312 
3313 #define PD_LOG_SIZE_MASK  0x1f
3314 #define PD_LOG_PORT_MASK  0xe0
3315 #define PD_LOG_PORT_SHIFT    5
3316 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
3317 				      ((size) & PD_LOG_SIZE_MASK))
3318 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
3319 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
3320 
3321 /* PD event log : entry types */
3322 /* PD MCU events */
3323 #define PD_EVENT_MCU_BASE       0x00
3324 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
3325 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
3326 /* Reserved for custom board event */
3327 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
3328 /* PD generic accessory events */
3329 #define PD_EVENT_ACC_BASE       0x20
3330 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
3331 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
3332 /* PD power supply events */
3333 #define PD_EVENT_PS_BASE        0x40
3334 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
3335 /* PD video dongles events */
3336 #define PD_EVENT_VIDEO_BASE     0x60
3337 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
3338 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
3339 /* Returned in the "type" field, when there is no entry available */
3340 #define PD_EVENT_NO_ENTRY       0xff
3341 
3342 /*
3343  * PD_EVENT_MCU_CHARGE event definition :
3344  * the payload is "struct usb_chg_measures"
3345  * the data field contains the port state flags as defined below :
3346  */
3347 /* Port partner is a dual role device */
3348 #define CHARGE_FLAGS_DUAL_ROLE         (1 << 15)
3349 /* Port is the pending override port */
3350 #define CHARGE_FLAGS_DELAYED_OVERRIDE  (1 << 14)
3351 /* Port is the override port */
3352 #define CHARGE_FLAGS_OVERRIDE          (1 << 13)
3353 /* Charger type */
3354 #define CHARGE_FLAGS_TYPE_SHIFT               3
3355 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
3356 /* Power delivery role */
3357 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
3358 
3359 /*
3360  * PD_EVENT_PS_FAULT data field flags definition :
3361  */
3362 #define PS_FAULT_OCP                          1
3363 #define PS_FAULT_FAST_OCP                     2
3364 #define PS_FAULT_OVP                          3
3365 #define PS_FAULT_DISCH                        4
3366 
3367 /*
3368  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
3369  */
3370 struct mcdp_version {
3371 	uint8_t major;
3372 	uint8_t minor;
3373 	uint16_t build;
3374 } __packed;
3375 
3376 struct mcdp_info {
3377 	uint8_t family[2];
3378 	uint8_t chipid[2];
3379 	struct mcdp_version irom;
3380 	struct mcdp_version fw;
3381 } __packed;
3382 
3383 /* struct mcdp_info field decoding */
3384 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
3385 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
3386 
3387 /* Get/Set USB-PD Alternate mode info */
3388 #define EC_CMD_USB_PD_GET_AMODE 0x116
3389 struct ec_params_usb_pd_get_mode_request {
3390 	uint16_t svid_idx; /* SVID index to get */
3391 	uint8_t port;      /* port */
3392 } __packed;
3393 
3394 struct ec_params_usb_pd_get_mode_response {
3395 	uint16_t svid;   /* SVID */
3396 	uint16_t opos;    /* Object Position */
3397 	uint32_t vdo[6]; /* Mode VDOs */
3398 } __packed;
3399 
3400 #define EC_CMD_USB_PD_SET_AMODE 0x117
3401 
3402 enum pd_mode_cmd {
3403 	PD_EXIT_MODE = 0,
3404 	PD_ENTER_MODE = 1,
3405 	/* Not a command.  Do NOT remove. */
3406 	PD_MODE_CMD_COUNT,
3407 };
3408 
3409 struct ec_params_usb_pd_set_mode_request {
3410 	uint32_t cmd;  /* enum pd_mode_cmd */
3411 	uint16_t svid; /* SVID to set */
3412 	uint8_t opos;  /* Object Position */
3413 	uint8_t port;  /* port */
3414 } __packed;
3415 
3416 /* Ask the PD MCU to record a log of a requested type */
3417 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x118
3418 
3419 struct ec_params_pd_write_log_entry {
3420 	uint8_t type; /* event type : see PD_EVENT_xx above */
3421 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
3422 } __packed;
3423 
3424 #endif  /* !__ACPI__ */
3425 
3426 /*****************************************************************************/
3427 /*
3428  * Passthru commands
3429  *
3430  * Some platforms have sub-processors chained to each other.  For example.
3431  *
3432  *     AP <--> EC <--> PD MCU
3433  *
3434  * The top 2 bits of the command number are used to indicate which device the
3435  * command is intended for.  Device 0 is always the device receiving the
3436  * command; other device mapping is board-specific.
3437  *
3438  * When a device receives a command to be passed to a sub-processor, it passes
3439  * it on with the device number set back to 0.  This allows the sub-processor
3440  * to remain blissfully unaware of whether the command originated on the next
3441  * device up the chain, or was passed through from the AP.
3442  *
3443  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
3444  *     AP sends command 0x4002 to the EC
3445  *     EC sends command 0x0002 to the PD MCU
3446  *     EC forwards PD MCU response back to the AP
3447  */
3448 
3449 /* Offset and max command number for sub-device n */
3450 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
3451 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
3452 
3453 /*****************************************************************************/
3454 /*
3455  * Deprecated constants. These constants have been renamed for clarity. The
3456  * meaning and size has not changed. Programs that use the old names should
3457  * switch to the new names soon, as the old names may not be carried forward
3458  * forever.
3459  */
3460 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
3461 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
3462 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
3463 
3464 #endif  /* __CROS_EC_COMMANDS_H */
3465