1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/rand_util.h"
6 
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <algorithm>
11 #include <limits>
12 #include <memory>
13 
14 #include "base/logging.h"
15 #include "base/time/time.h"
16 #include "testing/gtest/include/gtest/gtest.h"
17 
18 namespace {
19 
20 const int kIntMin = std::numeric_limits<int>::min();
21 const int kIntMax = std::numeric_limits<int>::max();
22 
23 }  // namespace
24 
TEST(RandUtilTest,RandInt)25 TEST(RandUtilTest, RandInt) {
26   EXPECT_EQ(base::RandInt(0, 0), 0);
27   EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
28   EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
29 
30   // Check that the DCHECKS in RandInt() don't fire due to internal overflow.
31   // There was a 50% chance of that happening, so calling it 40 times means
32   // the chances of this passing by accident are tiny (9e-13).
33   for (int i = 0; i < 40; ++i)
34     base::RandInt(kIntMin, kIntMax);
35 }
36 
TEST(RandUtilTest,RandDouble)37 TEST(RandUtilTest, RandDouble) {
38   // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
39   volatile double number = base::RandDouble();
40   EXPECT_GT(1.0, number);
41   EXPECT_LE(0.0, number);
42 }
43 
TEST(RandUtilTest,RandBytes)44 TEST(RandUtilTest, RandBytes) {
45   const size_t buffer_size = 50;
46   char buffer[buffer_size];
47   memset(buffer, 0, buffer_size);
48   base::RandBytes(buffer, buffer_size);
49   std::sort(buffer, buffer + buffer_size);
50   // Probability of occurrence of less than 25 unique bytes in 50 random bytes
51   // is below 10^-25.
52   EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
53 }
54 
TEST(RandUtilTest,RandBytesAsString)55 TEST(RandUtilTest, RandBytesAsString) {
56   std::string random_string = base::RandBytesAsString(1);
57   EXPECT_EQ(1U, random_string.size());
58   random_string = base::RandBytesAsString(145);
59   EXPECT_EQ(145U, random_string.size());
60   char accumulator = 0;
61   for (size_t i = 0; i < random_string.size(); ++i)
62     accumulator |= random_string[i];
63   // In theory this test can fail, but it won't before the universe dies of
64   // heat death.
65   EXPECT_NE(0, accumulator);
66 }
67 
68 // Make sure that it is still appropriate to use RandGenerator in conjunction
69 // with std::random_shuffle().
TEST(RandUtilTest,RandGeneratorForRandomShuffle)70 TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
71   EXPECT_EQ(base::RandGenerator(1), 0U);
72   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
73             std::numeric_limits<int64_t>::max());
74 }
75 
TEST(RandUtilTest,RandGeneratorIsUniform)76 TEST(RandUtilTest, RandGeneratorIsUniform) {
77   // Verify that RandGenerator has a uniform distribution. This is a
78   // regression test that consistently failed when RandGenerator was
79   // implemented this way:
80   //
81   //   return base::RandUint64() % max;
82   //
83   // A degenerate case for such an implementation is e.g. a top of
84   // range that is 2/3rds of the way to MAX_UINT64, in which case the
85   // bottom half of the range would be twice as likely to occur as the
86   // top half. A bit of calculus care of jar@ shows that the largest
87   // measurable delta is when the top of the range is 3/4ths of the
88   // way, so that's what we use in the test.
89   const uint64_t kTopOfRange =
90       (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
91   const uint64_t kExpectedAverage = kTopOfRange / 2ULL;
92   const uint64_t kAllowedVariance = kExpectedAverage / 50ULL;  // +/- 2%
93   const int kMinAttempts = 1000;
94   const int kMaxAttempts = 1000000;
95 
96   double cumulative_average = 0.0;
97   int count = 0;
98   while (count < kMaxAttempts) {
99     uint64_t value = base::RandGenerator(kTopOfRange);
100     cumulative_average = (count * cumulative_average + value) / (count + 1);
101 
102     // Don't quit too quickly for things to start converging, or we may have
103     // a false positive.
104     if (count > kMinAttempts &&
105         kExpectedAverage - kAllowedVariance < cumulative_average &&
106         cumulative_average < kExpectedAverage + kAllowedVariance) {
107       break;
108     }
109 
110     ++count;
111   }
112 
113   ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
114       kExpectedAverage << ", average ended at " << cumulative_average;
115 }
116 
TEST(RandUtilTest,RandUint64ProducesBothValuesOfAllBits)117 TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
118   // This tests to see that our underlying random generator is good
119   // enough, for some value of good enough.
120   uint64_t kAllZeros = 0ULL;
121   uint64_t kAllOnes = ~kAllZeros;
122   uint64_t found_ones = kAllZeros;
123   uint64_t found_zeros = kAllOnes;
124 
125   for (size_t i = 0; i < 1000; ++i) {
126     uint64_t value = base::RandUint64();
127     found_ones |= value;
128     found_zeros &= value;
129 
130     if (found_zeros == kAllZeros && found_ones == kAllOnes)
131       return;
132   }
133 
134   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
135 }
136 
137 // Benchmark test for RandBytes().  Disabled since it's intentionally slow and
138 // does not test anything that isn't already tested by the existing RandBytes()
139 // tests.
TEST(RandUtilTest,DISABLED_RandBytesPerf)140 TEST(RandUtilTest, DISABLED_RandBytesPerf) {
141   // Benchmark the performance of |kTestIterations| of RandBytes() using a
142   // buffer size of |kTestBufferSize|.
143   const int kTestIterations = 10;
144   const size_t kTestBufferSize = 1 * 1024 * 1024;
145 
146   std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
147   const base::TimeTicks now = base::TimeTicks::Now();
148   for (int i = 0; i < kTestIterations; ++i)
149     base::RandBytes(buffer.get(), kTestBufferSize);
150   const base::TimeTicks end = base::TimeTicks::Now();
151 
152   LOG(INFO) << "RandBytes(" << kTestBufferSize << ") took: "
153             << (end - now).InMicroseconds() << "µs";
154 }
155