1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Place garbage collection safepoints at appropriate locations in the IR. This
11 // does not make relocation semantics or variable liveness explicit.  That's
12 // done by RewriteStatepointsForGC.
13 //
14 // Terminology:
15 // - A call is said to be "parseable" if there is a stack map generated for the
16 // return PC of the call.  A runtime can determine where values listed in the
17 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
18 // on the stack when the code is suspended inside such a call.  Every parse
19 // point is represented by a call wrapped in an gc.statepoint intrinsic.
20 // - A "poll" is an explicit check in the generated code to determine if the
21 // runtime needs the generated code to cooperate by calling a helper routine
22 // and thus suspending its execution at a known state. The call to the helper
23 // routine will be parseable.  The (gc & runtime specific) logic of a poll is
24 // assumed to be provided in a function of the name "gc.safepoint_poll".
25 //
26 // We aim to insert polls such that running code can quickly be brought to a
27 // well defined state for inspection by the collector.  In the current
28 // implementation, this is done via the insertion of poll sites at method entry
29 // and the backedge of most loops.  We try to avoid inserting more polls than
30 // are necessary to ensure a finite period between poll sites.  This is not
31 // because the poll itself is expensive in the generated code; it's not.  Polls
32 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
33 // perturbing the optimization of the method as much as we can.
34 //
35 // We also need to make most call sites parseable.  The callee might execute a
36 // poll (or otherwise be inspected by the GC).  If so, the entire stack
37 // (including the suspended frame of the current method) must be parseable.
38 //
39 // This pass will insert:
40 // - Call parse points ("call safepoints") for any call which may need to
41 // reach a safepoint during the execution of the callee function.
42 // - Backedge safepoint polls and entry safepoint polls to ensure that
43 // executing code reaches a safepoint poll in a finite amount of time.
44 //
45 // We do not currently support return statepoints, but adding them would not
46 // be hard.  They are not required for correctness - entry safepoints are an
47 // alternative - but some GCs may prefer them.  Patches welcome.
48 //
49 //===----------------------------------------------------------------------===//
50 
51 #include "llvm/Pass.h"
52 
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/Analysis/ScalarEvolution.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LegacyPassManager.h"
61 #include "llvm/IR/Statepoint.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 
69 #define DEBUG_TYPE "safepoint-placement"
70 
71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
73 
74 STATISTIC(CallInLoop,
75           "Number of loops without safepoints due to calls in loop");
76 STATISTIC(FiniteExecution,
77           "Number of loops without safepoints finite execution");
78 
79 using namespace llvm;
80 
81 // Ignore opportunities to avoid placing safepoints on backedges, useful for
82 // validation
83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
84                                   cl::init(false));
85 
86 /// How narrow does the trip count of a loop have to be to have to be considered
87 /// "counted"?  Counted loops do not get safepoints at backedges.
88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
89                                          cl::Hidden, cl::init(32));
90 
91 // If true, split the backedge of a loop when placing the safepoint, otherwise
92 // split the latch block itself.  Both are useful to support for
93 // experimentation, but in practice, it looks like splitting the backedge
94 // optimizes better.
95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
96                                    cl::init(false));
97 
98 namespace {
99 
100 /// An analysis pass whose purpose is to identify each of the backedges in
101 /// the function which require a safepoint poll to be inserted.
102 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
103   static char ID;
104 
105   /// The output of the pass - gives a list of each backedge (described by
106   /// pointing at the branch) which need a poll inserted.
107   std::vector<TerminatorInst *> PollLocations;
108 
109   /// True unless we're running spp-no-calls in which case we need to disable
110   /// the call-dependent placement opts.
111   bool CallSafepointsEnabled;
112 
113   ScalarEvolution *SE = nullptr;
114   DominatorTree *DT = nullptr;
115   LoopInfo *LI = nullptr;
116 
PlaceBackedgeSafepointsImpl__anon5fe5e7560111::PlaceBackedgeSafepointsImpl117   PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
118       : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
119     initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
120   }
121 
122   bool runOnLoop(Loop *);
runOnLoopAndSubLoops__anon5fe5e7560111::PlaceBackedgeSafepointsImpl123   void runOnLoopAndSubLoops(Loop *L) {
124     // Visit all the subloops
125     for (Loop *I : *L)
126       runOnLoopAndSubLoops(I);
127     runOnLoop(L);
128   }
129 
runOnFunction__anon5fe5e7560111::PlaceBackedgeSafepointsImpl130   bool runOnFunction(Function &F) override {
131     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
132     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
133     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
134     for (Loop *I : *LI) {
135       runOnLoopAndSubLoops(I);
136     }
137     return false;
138   }
139 
getAnalysisUsage__anon5fe5e7560111::PlaceBackedgeSafepointsImpl140   void getAnalysisUsage(AnalysisUsage &AU) const override {
141     AU.addRequired<DominatorTreeWrapperPass>();
142     AU.addRequired<ScalarEvolutionWrapperPass>();
143     AU.addRequired<LoopInfoWrapperPass>();
144     // We no longer modify the IR at all in this pass.  Thus all
145     // analysis are preserved.
146     AU.setPreservesAll();
147   }
148 };
149 }
150 
151 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
152 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
153 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
154 
155 namespace {
156 struct PlaceSafepoints : public FunctionPass {
157   static char ID; // Pass identification, replacement for typeid
158 
PlaceSafepoints__anon5fe5e7560211::PlaceSafepoints159   PlaceSafepoints() : FunctionPass(ID) {
160     initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
161   }
162   bool runOnFunction(Function &F) override;
163 
getAnalysisUsage__anon5fe5e7560211::PlaceSafepoints164   void getAnalysisUsage(AnalysisUsage &AU) const override {
165     // We modify the graph wholesale (inlining, block insertion, etc).  We
166     // preserve nothing at the moment.  We could potentially preserve dom tree
167     // if that was worth doing
168   }
169 };
170 }
171 
172 // Insert a safepoint poll immediately before the given instruction.  Does
173 // not handle the parsability of state at the runtime call, that's the
174 // callers job.
175 static void
176 InsertSafepointPoll(Instruction *InsertBefore,
177                     std::vector<CallSite> &ParsePointsNeeded /*rval*/);
178 
needsStatepoint(const CallSite & CS)179 static bool needsStatepoint(const CallSite &CS) {
180   if (callsGCLeafFunction(CS))
181     return false;
182   if (CS.isCall()) {
183     CallInst *call = cast<CallInst>(CS.getInstruction());
184     if (call->isInlineAsm())
185       return false;
186   }
187 
188   return !(isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS));
189 }
190 
191 /// Returns true if this loop is known to contain a call safepoint which
192 /// must unconditionally execute on any iteration of the loop which returns
193 /// to the loop header via an edge from Pred.  Returns a conservative correct
194 /// answer; i.e. false is always valid.
containsUnconditionalCallSafepoint(Loop * L,BasicBlock * Header,BasicBlock * Pred,DominatorTree & DT)195 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
196                                                BasicBlock *Pred,
197                                                DominatorTree &DT) {
198   // In general, we're looking for any cut of the graph which ensures
199   // there's a call safepoint along every edge between Header and Pred.
200   // For the moment, we look only for the 'cuts' that consist of a single call
201   // instruction in a block which is dominated by the Header and dominates the
202   // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
203   // of such dominating blocks gets substantially more occurrences than just
204   // checking the Pred and Header blocks themselves.  This may be due to the
205   // density of loop exit conditions caused by range and null checks.
206   // TODO: structure this as an analysis pass, cache the result for subloops,
207   // avoid dom tree recalculations
208   assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
209 
210   BasicBlock *Current = Pred;
211   while (true) {
212     for (Instruction &I : *Current) {
213       if (auto CS = CallSite(&I))
214         // Note: Technically, needing a safepoint isn't quite the right
215         // condition here.  We should instead be checking if the target method
216         // has an
217         // unconditional poll. In practice, this is only a theoretical concern
218         // since we don't have any methods with conditional-only safepoint
219         // polls.
220         if (needsStatepoint(CS))
221           return true;
222     }
223 
224     if (Current == Header)
225       break;
226     Current = DT.getNode(Current)->getIDom()->getBlock();
227   }
228 
229   return false;
230 }
231 
232 /// Returns true if this loop is known to terminate in a finite number of
233 /// iterations.  Note that this function may return false for a loop which
234 /// does actual terminate in a finite constant number of iterations due to
235 /// conservatism in the analysis.
mustBeFiniteCountedLoop(Loop * L,ScalarEvolution * SE,BasicBlock * Pred)236 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
237                                     BasicBlock *Pred) {
238   // A conservative bound on the loop as a whole.
239   const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
240   if (MaxTrips != SE->getCouldNotCompute() &&
241       SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
242           CountedLoopTripWidth))
243     return true;
244 
245   // If this is a conditional branch to the header with the alternate path
246   // being outside the loop, we can ask questions about the execution frequency
247   // of the exit block.
248   if (L->isLoopExiting(Pred)) {
249     // This returns an exact expression only.  TODO: We really only need an
250     // upper bound here, but SE doesn't expose that.
251     const SCEV *MaxExec = SE->getExitCount(L, Pred);
252     if (MaxExec != SE->getCouldNotCompute() &&
253         SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
254             CountedLoopTripWidth))
255         return true;
256   }
257 
258   return /* not finite */ false;
259 }
260 
scanOneBB(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen,std::vector<BasicBlock * > & Worklist)261 static void scanOneBB(Instruction *Start, Instruction *End,
262                       std::vector<CallInst *> &Calls,
263                       DenseSet<BasicBlock *> &Seen,
264                       std::vector<BasicBlock *> &Worklist) {
265   for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
266                                         BBE1 = BasicBlock::iterator(End);
267        BBI != BBE0 && BBI != BBE1; BBI++) {
268     if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
269       Calls.push_back(CI);
270 
271     // FIXME: This code does not handle invokes
272     assert(!isa<InvokeInst>(&*BBI) &&
273            "support for invokes in poll code needed");
274 
275     // Only add the successor blocks if we reach the terminator instruction
276     // without encountering end first
277     if (BBI->isTerminator()) {
278       BasicBlock *BB = BBI->getParent();
279       for (BasicBlock *Succ : successors(BB)) {
280         if (Seen.insert(Succ).second) {
281           Worklist.push_back(Succ);
282         }
283       }
284     }
285   }
286 }
287 
scanInlinedCode(Instruction * Start,Instruction * End,std::vector<CallInst * > & Calls,DenseSet<BasicBlock * > & Seen)288 static void scanInlinedCode(Instruction *Start, Instruction *End,
289                             std::vector<CallInst *> &Calls,
290                             DenseSet<BasicBlock *> &Seen) {
291   Calls.clear();
292   std::vector<BasicBlock *> Worklist;
293   Seen.insert(Start->getParent());
294   scanOneBB(Start, End, Calls, Seen, Worklist);
295   while (!Worklist.empty()) {
296     BasicBlock *BB = Worklist.back();
297     Worklist.pop_back();
298     scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
299   }
300 }
301 
runOnLoop(Loop * L)302 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
303   // Loop through all loop latches (branches controlling backedges).  We need
304   // to place a safepoint on every backedge (potentially).
305   // Note: In common usage, there will be only one edge due to LoopSimplify
306   // having run sometime earlier in the pipeline, but this code must be correct
307   // w.r.t. loops with multiple backedges.
308   BasicBlock *Header = L->getHeader();
309   SmallVector<BasicBlock*, 16> LoopLatches;
310   L->getLoopLatches(LoopLatches);
311   for (BasicBlock *Pred : LoopLatches) {
312     assert(L->contains(Pred));
313 
314     // Make a policy decision about whether this loop needs a safepoint or
315     // not.  Note that this is about unburdening the optimizer in loops, not
316     // avoiding the runtime cost of the actual safepoint.
317     if (!AllBackedges) {
318       if (mustBeFiniteCountedLoop(L, SE, Pred)) {
319         DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
320         FiniteExecution++;
321         continue;
322       }
323       if (CallSafepointsEnabled &&
324           containsUnconditionalCallSafepoint(L, Header, Pred, *DT)) {
325         // Note: This is only semantically legal since we won't do any further
326         // IPO or inlining before the actual call insertion..  If we hadn't, we
327         // might latter loose this call safepoint.
328         DEBUG(dbgs() << "skipping safepoint placement due to unconditional call\n");
329         CallInLoop++;
330         continue;
331       }
332     }
333 
334     // TODO: We can create an inner loop which runs a finite number of
335     // iterations with an outer loop which contains a safepoint.  This would
336     // not help runtime performance that much, but it might help our ability to
337     // optimize the inner loop.
338 
339     // Safepoint insertion would involve creating a new basic block (as the
340     // target of the current backedge) which does the safepoint (of all live
341     // variables) and branches to the true header
342     TerminatorInst *Term = Pred->getTerminator();
343 
344     DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
345 
346     PollLocations.push_back(Term);
347   }
348 
349   return false;
350 }
351 
352 /// Returns true if an entry safepoint is not required before this callsite in
353 /// the caller function.
doesNotRequireEntrySafepointBefore(const CallSite & CS)354 static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
355   Instruction *Inst = CS.getInstruction();
356   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
357     switch (II->getIntrinsicID()) {
358     case Intrinsic::experimental_gc_statepoint:
359     case Intrinsic::experimental_patchpoint_void:
360     case Intrinsic::experimental_patchpoint_i64:
361       // The can wrap an actual call which may grow the stack by an unbounded
362       // amount or run forever.
363       return false;
364     default:
365       // Most LLVM intrinsics are things which do not expand to actual calls, or
366       // at least if they do, are leaf functions that cause only finite stack
367       // growth.  In particular, the optimizer likes to form things like memsets
368       // out of stores in the original IR.  Another important example is
369       // llvm.localescape which must occur in the entry block.  Inserting a
370       // safepoint before it is not legal since it could push the localescape
371       // out of the entry block.
372       return true;
373     }
374   }
375   return false;
376 }
377 
findLocationForEntrySafepoint(Function & F,DominatorTree & DT)378 static Instruction *findLocationForEntrySafepoint(Function &F,
379                                                   DominatorTree &DT) {
380 
381   // Conceptually, this poll needs to be on method entry, but in
382   // practice, we place it as late in the entry block as possible.  We
383   // can place it as late as we want as long as it dominates all calls
384   // that can grow the stack.  This, combined with backedge polls,
385   // give us all the progress guarantees we need.
386 
387   // hasNextInstruction and nextInstruction are used to iterate
388   // through a "straight line" execution sequence.
389 
390   auto HasNextInstruction = [](Instruction *I) {
391     if (!I->isTerminator())
392       return true;
393 
394     BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
395     return nextBB && (nextBB->getUniquePredecessor() != nullptr);
396   };
397 
398   auto NextInstruction = [&](Instruction *I) {
399     assert(HasNextInstruction(I) &&
400            "first check if there is a next instruction!");
401 
402     if (I->isTerminator())
403       return &I->getParent()->getUniqueSuccessor()->front();
404     return &*++I->getIterator();
405   };
406 
407   Instruction *Cursor = nullptr;
408   for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
409        Cursor = NextInstruction(Cursor)) {
410 
411     // We need to ensure a safepoint poll occurs before any 'real' call.  The
412     // easiest way to ensure finite execution between safepoints in the face of
413     // recursive and mutually recursive functions is to enforce that each take
414     // a safepoint.  Additionally, we need to ensure a poll before any call
415     // which can grow the stack by an unbounded amount.  This isn't required
416     // for GC semantics per se, but is a common requirement for languages
417     // which detect stack overflow via guard pages and then throw exceptions.
418     if (auto CS = CallSite(Cursor)) {
419       if (doesNotRequireEntrySafepointBefore(CS))
420         continue;
421       break;
422     }
423   }
424 
425   assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
426          "either we stopped because of a call, or because of terminator");
427 
428   return Cursor;
429 }
430 
431 static const char *const GCSafepointPollName = "gc.safepoint_poll";
432 
isGCSafepointPoll(Function & F)433 static bool isGCSafepointPoll(Function &F) {
434   return F.getName().equals(GCSafepointPollName);
435 }
436 
437 /// Returns true if this function should be rewritten to include safepoint
438 /// polls and parseable call sites.  The main point of this function is to be
439 /// an extension point for custom logic.
shouldRewriteFunction(Function & F)440 static bool shouldRewriteFunction(Function &F) {
441   // TODO: This should check the GCStrategy
442   if (F.hasGC()) {
443     const auto &FunctionGCName = F.getGC();
444     const StringRef StatepointExampleName("statepoint-example");
445     const StringRef CoreCLRName("coreclr");
446     return (StatepointExampleName == FunctionGCName) ||
447            (CoreCLRName == FunctionGCName);
448   } else
449     return false;
450 }
451 
452 // TODO: These should become properties of the GCStrategy, possibly with
453 // command line overrides.
enableEntrySafepoints(Function & F)454 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
enableBackedgeSafepoints(Function & F)455 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
enableCallSafepoints(Function & F)456 static bool enableCallSafepoints(Function &F) { return !NoCall; }
457 
runOnFunction(Function & F)458 bool PlaceSafepoints::runOnFunction(Function &F) {
459   if (F.isDeclaration() || F.empty()) {
460     // This is a declaration, nothing to do.  Must exit early to avoid crash in
461     // dom tree calculation
462     return false;
463   }
464 
465   if (isGCSafepointPoll(F)) {
466     // Given we're inlining this inside of safepoint poll insertion, this
467     // doesn't make any sense.  Note that we do make any contained calls
468     // parseable after we inline a poll.
469     return false;
470   }
471 
472   if (!shouldRewriteFunction(F))
473     return false;
474 
475   bool Modified = false;
476 
477   // In various bits below, we rely on the fact that uses are reachable from
478   // defs.  When there are basic blocks unreachable from the entry, dominance
479   // and reachablity queries return non-sensical results.  Thus, we preprocess
480   // the function to ensure these properties hold.
481   Modified |= removeUnreachableBlocks(F);
482 
483   // STEP 1 - Insert the safepoint polling locations.  We do not need to
484   // actually insert parse points yet.  That will be done for all polls and
485   // calls in a single pass.
486 
487   DominatorTree DT;
488   DT.recalculate(F);
489 
490   SmallVector<Instruction *, 16> PollsNeeded;
491   std::vector<CallSite> ParsePointNeeded;
492 
493   if (enableBackedgeSafepoints(F)) {
494     // Construct a pass manager to run the LoopPass backedge logic.  We
495     // need the pass manager to handle scheduling all the loop passes
496     // appropriately.  Doing this by hand is painful and just not worth messing
497     // with for the moment.
498     legacy::FunctionPassManager FPM(F.getParent());
499     bool CanAssumeCallSafepoints = enableCallSafepoints(F);
500     auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
501     FPM.add(PBS);
502     FPM.run(F);
503 
504     // We preserve dominance information when inserting the poll, otherwise
505     // we'd have to recalculate this on every insert
506     DT.recalculate(F);
507 
508     auto &PollLocations = PBS->PollLocations;
509 
510     auto OrderByBBName = [](Instruction *a, Instruction *b) {
511       return a->getParent()->getName() < b->getParent()->getName();
512     };
513     // We need the order of list to be stable so that naming ends up stable
514     // when we split edges.  This makes test cases much easier to write.
515     std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);
516 
517     // We can sometimes end up with duplicate poll locations.  This happens if
518     // a single loop is visited more than once.   The fact this happens seems
519     // wrong, but it does happen for the split-backedge.ll test case.
520     PollLocations.erase(std::unique(PollLocations.begin(),
521                                     PollLocations.end()),
522                         PollLocations.end());
523 
524     // Insert a poll at each point the analysis pass identified
525     // The poll location must be the terminator of a loop latch block.
526     for (TerminatorInst *Term : PollLocations) {
527       // We are inserting a poll, the function is modified
528       Modified = true;
529 
530       if (SplitBackedge) {
531         // Split the backedge of the loop and insert the poll within that new
532         // basic block.  This creates a loop with two latches per original
533         // latch (which is non-ideal), but this appears to be easier to
534         // optimize in practice than inserting the poll immediately before the
535         // latch test.
536 
537         // Since this is a latch, at least one of the successors must dominate
538         // it. Its possible that we have a) duplicate edges to the same header
539         // and b) edges to distinct loop headers.  We need to insert pools on
540         // each.
541         SetVector<BasicBlock *> Headers;
542         for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
543           BasicBlock *Succ = Term->getSuccessor(i);
544           if (DT.dominates(Succ, Term->getParent())) {
545             Headers.insert(Succ);
546           }
547         }
548         assert(!Headers.empty() && "poll location is not a loop latch?");
549 
550         // The split loop structure here is so that we only need to recalculate
551         // the dominator tree once.  Alternatively, we could just keep it up to
552         // date and use a more natural merged loop.
553         SetVector<BasicBlock *> SplitBackedges;
554         for (BasicBlock *Header : Headers) {
555           BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
556           PollsNeeded.push_back(NewBB->getTerminator());
557           NumBackedgeSafepoints++;
558         }
559       } else {
560         // Split the latch block itself, right before the terminator.
561         PollsNeeded.push_back(Term);
562         NumBackedgeSafepoints++;
563       }
564     }
565   }
566 
567   if (enableEntrySafepoints(F)) {
568     if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
569       PollsNeeded.push_back(Location);
570       Modified = true;
571       NumEntrySafepoints++;
572     }
573     // TODO: else we should assert that there was, in fact, a policy choice to
574     // not insert a entry safepoint poll.
575   }
576 
577   // Now that we've identified all the needed safepoint poll locations, insert
578   // safepoint polls themselves.
579   for (Instruction *PollLocation : PollsNeeded) {
580     std::vector<CallSite> RuntimeCalls;
581     InsertSafepointPoll(PollLocation, RuntimeCalls);
582     ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
583                             RuntimeCalls.end());
584   }
585 
586   return Modified;
587 }
588 
589 char PlaceBackedgeSafepointsImpl::ID = 0;
590 char PlaceSafepoints::ID = 0;
591 
createPlaceSafepointsPass()592 FunctionPass *llvm::createPlaceSafepointsPass() {
593   return new PlaceSafepoints();
594 }
595 
596 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
597                       "place-backedge-safepoints-impl",
598                       "Place Backedge Safepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)599 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
600 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
601 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
602 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
603                     "place-backedge-safepoints-impl",
604                     "Place Backedge Safepoints", false, false)
605 
606 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
607                       false, false)
608 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
609                     false, false)
610 
611 static void
612 InsertSafepointPoll(Instruction *InsertBefore,
613                     std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
614   BasicBlock *OrigBB = InsertBefore->getParent();
615   Module *M = InsertBefore->getModule();
616   assert(M && "must be part of a module");
617 
618   // Inline the safepoint poll implementation - this will get all the branch,
619   // control flow, etc..  Most importantly, it will introduce the actual slow
620   // path call - where we need to insert a safepoint (parsepoint).
621 
622   auto *F = M->getFunction(GCSafepointPollName);
623   assert(F && "gc.safepoint_poll function is missing");
624   assert(F->getValueType() ==
625          FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
626          "gc.safepoint_poll declared with wrong type");
627   assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
628   CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
629 
630   // Record some information about the call site we're replacing
631   BasicBlock::iterator Before(PollCall), After(PollCall);
632   bool IsBegin = false;
633   if (Before == OrigBB->begin())
634     IsBegin = true;
635   else
636     Before--;
637 
638   After++;
639   assert(After != OrigBB->end() && "must have successor");
640 
641   // Do the actual inlining
642   InlineFunctionInfo IFI;
643   bool InlineStatus = InlineFunction(PollCall, IFI);
644   assert(InlineStatus && "inline must succeed");
645   (void)InlineStatus; // suppress warning in release-asserts
646 
647   // Check post-conditions
648   assert(IFI.StaticAllocas.empty() && "can't have allocs");
649 
650   std::vector<CallInst *> Calls; // new calls
651   DenseSet<BasicBlock *> BBs;    // new BBs + insertee
652 
653   // Include only the newly inserted instructions, Note: begin may not be valid
654   // if we inserted to the beginning of the basic block
655   BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
656 
657   // If your poll function includes an unreachable at the end, that's not
658   // valid.  Bugpoint likes to create this, so check for it.
659   assert(isPotentiallyReachable(&*Start, &*After) &&
660          "malformed poll function");
661 
662   scanInlinedCode(&*Start, &*After, Calls, BBs);
663   assert(!Calls.empty() && "slow path not found for safepoint poll");
664 
665   // Record the fact we need a parsable state at the runtime call contained in
666   // the poll function.  This is required so that the runtime knows how to
667   // parse the last frame when we actually take  the safepoint (i.e. execute
668   // the slow path)
669   assert(ParsePointsNeeded.empty());
670   for (auto *CI : Calls) {
671     // No safepoint needed or wanted
672     if (!needsStatepoint(CI))
673       continue;
674 
675     // These are likely runtime calls.  Should we assert that via calling
676     // convention or something?
677     ParsePointsNeeded.push_back(CallSite(CI));
678   }
679   assert(ParsePointsNeeded.size() <= Calls.size());
680 }
681