1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
6 #define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
7 
8 #include "src/assembler.h"
9 #include "src/compiler/common-operator.h"
10 #include "src/compiler/graph.h"
11 #include "src/compiler/linkage.h"
12 #include "src/compiler/machine-operator.h"
13 #include "src/compiler/node.h"
14 #include "src/compiler/operator.h"
15 #include "src/factory.h"
16 #include "src/globals.h"
17 
18 namespace v8 {
19 namespace internal {
20 namespace compiler {
21 
22 class BasicBlock;
23 class RawMachineLabel;
24 class Schedule;
25 
26 
27 // The RawMachineAssembler produces a low-level IR graph. All nodes are wired
28 // into a graph and also placed into a schedule immediately, hence subsequent
29 // code generation can happen without the need for scheduling.
30 //
31 // In order to create a schedule on-the-fly, the assembler keeps track of basic
32 // blocks by having one current basic block being populated and by referencing
33 // other basic blocks through the use of labels.
34 //
35 // Also note that the generated graph is only valid together with the generated
36 // schedule, using one without the other is invalid as the graph is inherently
37 // non-schedulable due to missing control and effect dependencies.
38 class V8_EXPORT_PRIVATE RawMachineAssembler {
39  public:
40   RawMachineAssembler(
41       Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
42       MachineRepresentation word = MachineType::PointerRepresentation(),
43       MachineOperatorBuilder::Flags flags =
44           MachineOperatorBuilder::Flag::kNoFlags,
45       MachineOperatorBuilder::AlignmentRequirements alignment_requirements =
46           MachineOperatorBuilder::AlignmentRequirements::
47               FullUnalignedAccessSupport());
~RawMachineAssembler()48   ~RawMachineAssembler() {}
49 
isolate()50   Isolate* isolate() const { return isolate_; }
graph()51   Graph* graph() const { return graph_; }
zone()52   Zone* zone() const { return graph()->zone(); }
machine()53   MachineOperatorBuilder* machine() { return &machine_; }
common()54   CommonOperatorBuilder* common() { return &common_; }
call_descriptor()55   CallDescriptor* call_descriptor() const { return call_descriptor_; }
56 
57   // Finalizes the schedule and exports it to be used for code generation. Note
58   // that this RawMachineAssembler becomes invalid after export.
59   Schedule* Export();
60 
61   // ===========================================================================
62   // The following utility methods create new nodes with specific operators and
63   // place them into the current basic block. They don't perform control flow,
64   // hence will not switch the current basic block.
65 
NullConstant()66   Node* NullConstant() {
67     return HeapConstant(isolate()->factory()->null_value());
68   }
69 
UndefinedConstant()70   Node* UndefinedConstant() {
71     return HeapConstant(isolate()->factory()->undefined_value());
72   }
73 
74   // Constants.
PointerConstant(void * value)75   Node* PointerConstant(void* value) {
76     return IntPtrConstant(reinterpret_cast<intptr_t>(value));
77   }
IntPtrConstant(intptr_t value)78   Node* IntPtrConstant(intptr_t value) {
79     // TODO(dcarney): mark generated code as unserializable if value != 0.
80     return kPointerSize == 8 ? Int64Constant(value)
81                              : Int32Constant(static_cast<int>(value));
82   }
83   Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode);
Int32Constant(int32_t value)84   Node* Int32Constant(int32_t value) {
85     return AddNode(common()->Int32Constant(value));
86   }
StackSlot(MachineRepresentation rep)87   Node* StackSlot(MachineRepresentation rep) {
88     return AddNode(machine()->StackSlot(rep));
89   }
Int64Constant(int64_t value)90   Node* Int64Constant(int64_t value) {
91     return AddNode(common()->Int64Constant(value));
92   }
NumberConstant(double value)93   Node* NumberConstant(double value) {
94     return AddNode(common()->NumberConstant(value));
95   }
Float32Constant(float value)96   Node* Float32Constant(float value) {
97     return AddNode(common()->Float32Constant(value));
98   }
Float64Constant(double value)99   Node* Float64Constant(double value) {
100     return AddNode(common()->Float64Constant(value));
101   }
HeapConstant(Handle<HeapObject> object)102   Node* HeapConstant(Handle<HeapObject> object) {
103     return AddNode(common()->HeapConstant(object));
104   }
BooleanConstant(bool value)105   Node* BooleanConstant(bool value) {
106     Handle<Object> object = isolate()->factory()->ToBoolean(value);
107     return HeapConstant(Handle<HeapObject>::cast(object));
108   }
ExternalConstant(ExternalReference address)109   Node* ExternalConstant(ExternalReference address) {
110     return AddNode(common()->ExternalConstant(address));
111   }
RelocatableInt32Constant(int32_t value,RelocInfo::Mode rmode)112   Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) {
113     return AddNode(common()->RelocatableInt32Constant(value, rmode));
114   }
RelocatableInt64Constant(int64_t value,RelocInfo::Mode rmode)115   Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) {
116     return AddNode(common()->RelocatableInt64Constant(value, rmode));
117   }
118 
Projection(int index,Node * a)119   Node* Projection(int index, Node* a) {
120     return AddNode(common()->Projection(index), a);
121   }
122 
123   // Memory Operations.
Load(MachineType rep,Node * base)124   Node* Load(MachineType rep, Node* base) {
125     return Load(rep, base, IntPtrConstant(0));
126   }
Load(MachineType rep,Node * base,Node * index)127   Node* Load(MachineType rep, Node* base, Node* index) {
128     return AddNode(machine()->Load(rep), base, index);
129   }
Store(MachineRepresentation rep,Node * base,Node * value,WriteBarrierKind write_barrier)130   Node* Store(MachineRepresentation rep, Node* base, Node* value,
131               WriteBarrierKind write_barrier) {
132     return Store(rep, base, IntPtrConstant(0), value, write_barrier);
133   }
Store(MachineRepresentation rep,Node * base,Node * index,Node * value,WriteBarrierKind write_barrier)134   Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
135               WriteBarrierKind write_barrier) {
136     return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
137                    base, index, value);
138   }
Retain(Node * value)139   Node* Retain(Node* value) { return AddNode(common()->Retain(), value); }
140 
141   // Unaligned memory operations
UnalignedLoad(MachineType rep,Node * base)142   Node* UnalignedLoad(MachineType rep, Node* base) {
143     return UnalignedLoad(rep, base, IntPtrConstant(0));
144   }
UnalignedLoad(MachineType rep,Node * base,Node * index)145   Node* UnalignedLoad(MachineType rep, Node* base, Node* index) {
146     if (machine()->UnalignedLoadSupported(rep, 1)) {
147       return AddNode(machine()->Load(rep), base, index);
148     } else {
149       return AddNode(machine()->UnalignedLoad(rep), base, index);
150     }
151   }
UnalignedStore(MachineRepresentation rep,Node * base,Node * value)152   Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* value) {
153     return UnalignedStore(rep, base, IntPtrConstant(0), value);
154   }
UnalignedStore(MachineRepresentation rep,Node * base,Node * index,Node * value)155   Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* index,
156                        Node* value) {
157     MachineType t = MachineType::TypeForRepresentation(rep);
158     if (machine()->UnalignedStoreSupported(t, 1)) {
159       return AddNode(machine()->Store(StoreRepresentation(
160                          rep, WriteBarrierKind::kNoWriteBarrier)),
161                      base, index, value);
162     } else {
163       return AddNode(
164           machine()->UnalignedStore(UnalignedStoreRepresentation(rep)), base,
165           index, value);
166     }
167   }
168 
169   // Atomic memory operations.
AtomicLoad(MachineType rep,Node * base,Node * index)170   Node* AtomicLoad(MachineType rep, Node* base, Node* index) {
171     return AddNode(machine()->AtomicLoad(rep), base, index);
172   }
AtomicStore(MachineRepresentation rep,Node * base,Node * index,Node * value)173   Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index,
174                     Node* value) {
175     return AddNode(machine()->AtomicStore(rep), base, index, value);
176   }
177 
178   // Arithmetic Operations.
WordAnd(Node * a,Node * b)179   Node* WordAnd(Node* a, Node* b) {
180     return AddNode(machine()->WordAnd(), a, b);
181   }
WordOr(Node * a,Node * b)182   Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
WordXor(Node * a,Node * b)183   Node* WordXor(Node* a, Node* b) {
184     return AddNode(machine()->WordXor(), a, b);
185   }
WordShl(Node * a,Node * b)186   Node* WordShl(Node* a, Node* b) {
187     return AddNode(machine()->WordShl(), a, b);
188   }
WordShr(Node * a,Node * b)189   Node* WordShr(Node* a, Node* b) {
190     return AddNode(machine()->WordShr(), a, b);
191   }
WordSar(Node * a,Node * b)192   Node* WordSar(Node* a, Node* b) {
193     return AddNode(machine()->WordSar(), a, b);
194   }
WordRor(Node * a,Node * b)195   Node* WordRor(Node* a, Node* b) {
196     return AddNode(machine()->WordRor(), a, b);
197   }
WordEqual(Node * a,Node * b)198   Node* WordEqual(Node* a, Node* b) {
199     return AddNode(machine()->WordEqual(), a, b);
200   }
WordNotEqual(Node * a,Node * b)201   Node* WordNotEqual(Node* a, Node* b) {
202     return Word32BinaryNot(WordEqual(a, b));
203   }
WordNot(Node * a)204   Node* WordNot(Node* a) {
205     if (machine()->Is32()) {
206       return Word32Not(a);
207     } else {
208       return Word64Not(a);
209     }
210   }
211 
Word32And(Node * a,Node * b)212   Node* Word32And(Node* a, Node* b) {
213     return AddNode(machine()->Word32And(), a, b);
214   }
Word32Or(Node * a,Node * b)215   Node* Word32Or(Node* a, Node* b) {
216     return AddNode(machine()->Word32Or(), a, b);
217   }
Word32Xor(Node * a,Node * b)218   Node* Word32Xor(Node* a, Node* b) {
219     return AddNode(machine()->Word32Xor(), a, b);
220   }
Word32Shl(Node * a,Node * b)221   Node* Word32Shl(Node* a, Node* b) {
222     return AddNode(machine()->Word32Shl(), a, b);
223   }
Word32Shr(Node * a,Node * b)224   Node* Word32Shr(Node* a, Node* b) {
225     return AddNode(machine()->Word32Shr(), a, b);
226   }
Word32Sar(Node * a,Node * b)227   Node* Word32Sar(Node* a, Node* b) {
228     return AddNode(machine()->Word32Sar(), a, b);
229   }
Word32Ror(Node * a,Node * b)230   Node* Word32Ror(Node* a, Node* b) {
231     return AddNode(machine()->Word32Ror(), a, b);
232   }
Word32Clz(Node * a)233   Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
Word32Equal(Node * a,Node * b)234   Node* Word32Equal(Node* a, Node* b) {
235     return AddNode(machine()->Word32Equal(), a, b);
236   }
Word32NotEqual(Node * a,Node * b)237   Node* Word32NotEqual(Node* a, Node* b) {
238     return Word32BinaryNot(Word32Equal(a, b));
239   }
Word32Not(Node * a)240   Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
Word32BinaryNot(Node * a)241   Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
242 
Word64And(Node * a,Node * b)243   Node* Word64And(Node* a, Node* b) {
244     return AddNode(machine()->Word64And(), a, b);
245   }
Word64Or(Node * a,Node * b)246   Node* Word64Or(Node* a, Node* b) {
247     return AddNode(machine()->Word64Or(), a, b);
248   }
Word64Xor(Node * a,Node * b)249   Node* Word64Xor(Node* a, Node* b) {
250     return AddNode(machine()->Word64Xor(), a, b);
251   }
Word64Shl(Node * a,Node * b)252   Node* Word64Shl(Node* a, Node* b) {
253     return AddNode(machine()->Word64Shl(), a, b);
254   }
Word64Shr(Node * a,Node * b)255   Node* Word64Shr(Node* a, Node* b) {
256     return AddNode(machine()->Word64Shr(), a, b);
257   }
Word64Sar(Node * a,Node * b)258   Node* Word64Sar(Node* a, Node* b) {
259     return AddNode(machine()->Word64Sar(), a, b);
260   }
Word64Ror(Node * a,Node * b)261   Node* Word64Ror(Node* a, Node* b) {
262     return AddNode(machine()->Word64Ror(), a, b);
263   }
Word64Clz(Node * a)264   Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
Word64Equal(Node * a,Node * b)265   Node* Word64Equal(Node* a, Node* b) {
266     return AddNode(machine()->Word64Equal(), a, b);
267   }
Word64NotEqual(Node * a,Node * b)268   Node* Word64NotEqual(Node* a, Node* b) {
269     return Word32BinaryNot(Word64Equal(a, b));
270   }
Word64Not(Node * a)271   Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
272 
Int32Add(Node * a,Node * b)273   Node* Int32Add(Node* a, Node* b) {
274     return AddNode(machine()->Int32Add(), a, b);
275   }
Int32AddWithOverflow(Node * a,Node * b)276   Node* Int32AddWithOverflow(Node* a, Node* b) {
277     return AddNode(machine()->Int32AddWithOverflow(), a, b);
278   }
Int32Sub(Node * a,Node * b)279   Node* Int32Sub(Node* a, Node* b) {
280     return AddNode(machine()->Int32Sub(), a, b);
281   }
Int32SubWithOverflow(Node * a,Node * b)282   Node* Int32SubWithOverflow(Node* a, Node* b) {
283     return AddNode(machine()->Int32SubWithOverflow(), a, b);
284   }
Int32Mul(Node * a,Node * b)285   Node* Int32Mul(Node* a, Node* b) {
286     return AddNode(machine()->Int32Mul(), a, b);
287   }
Int32MulHigh(Node * a,Node * b)288   Node* Int32MulHigh(Node* a, Node* b) {
289     return AddNode(machine()->Int32MulHigh(), a, b);
290   }
Int32MulWithOverflow(Node * a,Node * b)291   Node* Int32MulWithOverflow(Node* a, Node* b) {
292     return AddNode(machine()->Int32MulWithOverflow(), a, b);
293   }
Int32Div(Node * a,Node * b)294   Node* Int32Div(Node* a, Node* b) {
295     return AddNode(machine()->Int32Div(), a, b);
296   }
Int32Mod(Node * a,Node * b)297   Node* Int32Mod(Node* a, Node* b) {
298     return AddNode(machine()->Int32Mod(), a, b);
299   }
Int32LessThan(Node * a,Node * b)300   Node* Int32LessThan(Node* a, Node* b) {
301     return AddNode(machine()->Int32LessThan(), a, b);
302   }
Int32LessThanOrEqual(Node * a,Node * b)303   Node* Int32LessThanOrEqual(Node* a, Node* b) {
304     return AddNode(machine()->Int32LessThanOrEqual(), a, b);
305   }
Uint32Div(Node * a,Node * b)306   Node* Uint32Div(Node* a, Node* b) {
307     return AddNode(machine()->Uint32Div(), a, b);
308   }
Uint32LessThan(Node * a,Node * b)309   Node* Uint32LessThan(Node* a, Node* b) {
310     return AddNode(machine()->Uint32LessThan(), a, b);
311   }
Uint32LessThanOrEqual(Node * a,Node * b)312   Node* Uint32LessThanOrEqual(Node* a, Node* b) {
313     return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
314   }
Uint32Mod(Node * a,Node * b)315   Node* Uint32Mod(Node* a, Node* b) {
316     return AddNode(machine()->Uint32Mod(), a, b);
317   }
Uint32MulHigh(Node * a,Node * b)318   Node* Uint32MulHigh(Node* a, Node* b) {
319     return AddNode(machine()->Uint32MulHigh(), a, b);
320   }
Int32GreaterThan(Node * a,Node * b)321   Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
Int32GreaterThanOrEqual(Node * a,Node * b)322   Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
323     return Int32LessThanOrEqual(b, a);
324   }
Uint32GreaterThan(Node * a,Node * b)325   Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); }
Uint32GreaterThanOrEqual(Node * a,Node * b)326   Node* Uint32GreaterThanOrEqual(Node* a, Node* b) {
327     return Uint32LessThanOrEqual(b, a);
328   }
Int32Neg(Node * a)329   Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
330 
Int64Add(Node * a,Node * b)331   Node* Int64Add(Node* a, Node* b) {
332     return AddNode(machine()->Int64Add(), a, b);
333   }
Int64AddWithOverflow(Node * a,Node * b)334   Node* Int64AddWithOverflow(Node* a, Node* b) {
335     return AddNode(machine()->Int64AddWithOverflow(), a, b);
336   }
Int64Sub(Node * a,Node * b)337   Node* Int64Sub(Node* a, Node* b) {
338     return AddNode(machine()->Int64Sub(), a, b);
339   }
Int64SubWithOverflow(Node * a,Node * b)340   Node* Int64SubWithOverflow(Node* a, Node* b) {
341     return AddNode(machine()->Int64SubWithOverflow(), a, b);
342   }
Int64Mul(Node * a,Node * b)343   Node* Int64Mul(Node* a, Node* b) {
344     return AddNode(machine()->Int64Mul(), a, b);
345   }
Int64Div(Node * a,Node * b)346   Node* Int64Div(Node* a, Node* b) {
347     return AddNode(machine()->Int64Div(), a, b);
348   }
Int64Mod(Node * a,Node * b)349   Node* Int64Mod(Node* a, Node* b) {
350     return AddNode(machine()->Int64Mod(), a, b);
351   }
Int64Neg(Node * a)352   Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
Int64LessThan(Node * a,Node * b)353   Node* Int64LessThan(Node* a, Node* b) {
354     return AddNode(machine()->Int64LessThan(), a, b);
355   }
Int64LessThanOrEqual(Node * a,Node * b)356   Node* Int64LessThanOrEqual(Node* a, Node* b) {
357     return AddNode(machine()->Int64LessThanOrEqual(), a, b);
358   }
Uint64LessThan(Node * a,Node * b)359   Node* Uint64LessThan(Node* a, Node* b) {
360     return AddNode(machine()->Uint64LessThan(), a, b);
361   }
Uint64LessThanOrEqual(Node * a,Node * b)362   Node* Uint64LessThanOrEqual(Node* a, Node* b) {
363     return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
364   }
Int64GreaterThan(Node * a,Node * b)365   Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
Int64GreaterThanOrEqual(Node * a,Node * b)366   Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
367     return Int64LessThanOrEqual(b, a);
368   }
Uint64GreaterThan(Node * a,Node * b)369   Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); }
Uint64GreaterThanOrEqual(Node * a,Node * b)370   Node* Uint64GreaterThanOrEqual(Node* a, Node* b) {
371     return Uint64LessThanOrEqual(b, a);
372   }
Uint64Div(Node * a,Node * b)373   Node* Uint64Div(Node* a, Node* b) {
374     return AddNode(machine()->Uint64Div(), a, b);
375   }
Uint64Mod(Node * a,Node * b)376   Node* Uint64Mod(Node* a, Node* b) {
377     return AddNode(machine()->Uint64Mod(), a, b);
378   }
Int32PairAdd(Node * a_low,Node * a_high,Node * b_low,Node * b_high)379   Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
380     return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high);
381   }
Int32PairSub(Node * a_low,Node * a_high,Node * b_low,Node * b_high)382   Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
383     return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high);
384   }
Int32PairMul(Node * a_low,Node * a_high,Node * b_low,Node * b_high)385   Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
386     return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high);
387   }
Word32PairShl(Node * low_word,Node * high_word,Node * shift)388   Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) {
389     return AddNode(machine()->Word32PairShl(), low_word, high_word, shift);
390   }
Word32PairShr(Node * low_word,Node * high_word,Node * shift)391   Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) {
392     return AddNode(machine()->Word32PairShr(), low_word, high_word, shift);
393   }
Word32PairSar(Node * low_word,Node * high_word,Node * shift)394   Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) {
395     return AddNode(machine()->Word32PairSar(), low_word, high_word, shift);
396   }
397 
398 #define INTPTR_BINOP(prefix, name)                     \
399   Node* IntPtr##name(Node* a, Node* b) {               \
400     return kPointerSize == 8 ? prefix##64##name(a, b)  \
401                              : prefix##32##name(a, b); \
402   }
403 
404   INTPTR_BINOP(Int, Add);
405   INTPTR_BINOP(Int, AddWithOverflow);
406   INTPTR_BINOP(Int, Sub);
407   INTPTR_BINOP(Int, SubWithOverflow);
408   INTPTR_BINOP(Int, Mul);
409   INTPTR_BINOP(Int, Div);
410   INTPTR_BINOP(Int, LessThan);
411   INTPTR_BINOP(Int, LessThanOrEqual);
412   INTPTR_BINOP(Word, Equal);
413   INTPTR_BINOP(Word, NotEqual);
414   INTPTR_BINOP(Int, GreaterThanOrEqual);
415   INTPTR_BINOP(Int, GreaterThan);
416 
417 #undef INTPTR_BINOP
418 
419 #define UINTPTR_BINOP(prefix, name)                    \
420   Node* UintPtr##name(Node* a, Node* b) {              \
421     return kPointerSize == 8 ? prefix##64##name(a, b)  \
422                              : prefix##32##name(a, b); \
423   }
424 
425   UINTPTR_BINOP(Uint, LessThan);
426   UINTPTR_BINOP(Uint, LessThanOrEqual);
427   UINTPTR_BINOP(Uint, GreaterThanOrEqual);
428   UINTPTR_BINOP(Uint, GreaterThan);
429 
430 #undef UINTPTR_BINOP
431 
Float32Add(Node * a,Node * b)432   Node* Float32Add(Node* a, Node* b) {
433     return AddNode(machine()->Float32Add(), a, b);
434   }
Float32Sub(Node * a,Node * b)435   Node* Float32Sub(Node* a, Node* b) {
436     return AddNode(machine()->Float32Sub(), a, b);
437   }
Float32Mul(Node * a,Node * b)438   Node* Float32Mul(Node* a, Node* b) {
439     return AddNode(machine()->Float32Mul(), a, b);
440   }
Float32Div(Node * a,Node * b)441   Node* Float32Div(Node* a, Node* b) {
442     return AddNode(machine()->Float32Div(), a, b);
443   }
Float32Abs(Node * a)444   Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
Float32Neg(Node * a)445   Node* Float32Neg(Node* a) { return AddNode(machine()->Float32Neg(), a); }
Float32Sqrt(Node * a)446   Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
Float32Equal(Node * a,Node * b)447   Node* Float32Equal(Node* a, Node* b) {
448     return AddNode(machine()->Float32Equal(), a, b);
449   }
Float32NotEqual(Node * a,Node * b)450   Node* Float32NotEqual(Node* a, Node* b) {
451     return Word32BinaryNot(Float32Equal(a, b));
452   }
Float32LessThan(Node * a,Node * b)453   Node* Float32LessThan(Node* a, Node* b) {
454     return AddNode(machine()->Float32LessThan(), a, b);
455   }
Float32LessThanOrEqual(Node * a,Node * b)456   Node* Float32LessThanOrEqual(Node* a, Node* b) {
457     return AddNode(machine()->Float32LessThanOrEqual(), a, b);
458   }
Float32GreaterThan(Node * a,Node * b)459   Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
Float32GreaterThanOrEqual(Node * a,Node * b)460   Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
461     return Float32LessThanOrEqual(b, a);
462   }
Float32Max(Node * a,Node * b)463   Node* Float32Max(Node* a, Node* b) {
464     return AddNode(machine()->Float32Max(), a, b);
465   }
Float32Min(Node * a,Node * b)466   Node* Float32Min(Node* a, Node* b) {
467     return AddNode(machine()->Float32Min(), a, b);
468   }
Float64Add(Node * a,Node * b)469   Node* Float64Add(Node* a, Node* b) {
470     return AddNode(machine()->Float64Add(), a, b);
471   }
Float64Sub(Node * a,Node * b)472   Node* Float64Sub(Node* a, Node* b) {
473     return AddNode(machine()->Float64Sub(), a, b);
474   }
Float64Mul(Node * a,Node * b)475   Node* Float64Mul(Node* a, Node* b) {
476     return AddNode(machine()->Float64Mul(), a, b);
477   }
Float64Div(Node * a,Node * b)478   Node* Float64Div(Node* a, Node* b) {
479     return AddNode(machine()->Float64Div(), a, b);
480   }
Float64Mod(Node * a,Node * b)481   Node* Float64Mod(Node* a, Node* b) {
482     return AddNode(machine()->Float64Mod(), a, b);
483   }
Float64Max(Node * a,Node * b)484   Node* Float64Max(Node* a, Node* b) {
485     return AddNode(machine()->Float64Max(), a, b);
486   }
Float64Min(Node * a,Node * b)487   Node* Float64Min(Node* a, Node* b) {
488     return AddNode(machine()->Float64Min(), a, b);
489   }
Float64Abs(Node * a)490   Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
Float64Neg(Node * a)491   Node* Float64Neg(Node* a) { return AddNode(machine()->Float64Neg(), a); }
Float64Acos(Node * a)492   Node* Float64Acos(Node* a) { return AddNode(machine()->Float64Acos(), a); }
Float64Acosh(Node * a)493   Node* Float64Acosh(Node* a) { return AddNode(machine()->Float64Acosh(), a); }
Float64Asin(Node * a)494   Node* Float64Asin(Node* a) { return AddNode(machine()->Float64Asin(), a); }
Float64Asinh(Node * a)495   Node* Float64Asinh(Node* a) { return AddNode(machine()->Float64Asinh(), a); }
Float64Atan(Node * a)496   Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); }
Float64Atanh(Node * a)497   Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); }
Float64Atan2(Node * a,Node * b)498   Node* Float64Atan2(Node* a, Node* b) {
499     return AddNode(machine()->Float64Atan2(), a, b);
500   }
Float64Cbrt(Node * a)501   Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); }
Float64Cos(Node * a)502   Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); }
Float64Cosh(Node * a)503   Node* Float64Cosh(Node* a) { return AddNode(machine()->Float64Cosh(), a); }
Float64Exp(Node * a)504   Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); }
Float64Expm1(Node * a)505   Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); }
Float64Log(Node * a)506   Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); }
Float64Log1p(Node * a)507   Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); }
Float64Log10(Node * a)508   Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); }
Float64Log2(Node * a)509   Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); }
Float64Pow(Node * a,Node * b)510   Node* Float64Pow(Node* a, Node* b) {
511     return AddNode(machine()->Float64Pow(), a, b);
512   }
Float64Sin(Node * a)513   Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); }
Float64Sinh(Node * a)514   Node* Float64Sinh(Node* a) { return AddNode(machine()->Float64Sinh(), a); }
Float64Sqrt(Node * a)515   Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
Float64Tan(Node * a)516   Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); }
Float64Tanh(Node * a)517   Node* Float64Tanh(Node* a) { return AddNode(machine()->Float64Tanh(), a); }
Float64Equal(Node * a,Node * b)518   Node* Float64Equal(Node* a, Node* b) {
519     return AddNode(machine()->Float64Equal(), a, b);
520   }
Float64NotEqual(Node * a,Node * b)521   Node* Float64NotEqual(Node* a, Node* b) {
522     return Word32BinaryNot(Float64Equal(a, b));
523   }
Float64LessThan(Node * a,Node * b)524   Node* Float64LessThan(Node* a, Node* b) {
525     return AddNode(machine()->Float64LessThan(), a, b);
526   }
Float64LessThanOrEqual(Node * a,Node * b)527   Node* Float64LessThanOrEqual(Node* a, Node* b) {
528     return AddNode(machine()->Float64LessThanOrEqual(), a, b);
529   }
Float64GreaterThan(Node * a,Node * b)530   Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
Float64GreaterThanOrEqual(Node * a,Node * b)531   Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
532     return Float64LessThanOrEqual(b, a);
533   }
534 
535   // Conversions.
BitcastTaggedToWord(Node * a)536   Node* BitcastTaggedToWord(Node* a) {
537     return AddNode(machine()->BitcastTaggedToWord(), a);
538   }
BitcastWordToTagged(Node * a)539   Node* BitcastWordToTagged(Node* a) {
540     return AddNode(machine()->BitcastWordToTagged(), a);
541   }
BitcastWordToTaggedSigned(Node * a)542   Node* BitcastWordToTaggedSigned(Node* a) {
543     return AddNode(machine()->BitcastWordToTaggedSigned(), a);
544   }
TruncateFloat64ToWord32(Node * a)545   Node* TruncateFloat64ToWord32(Node* a) {
546     return AddNode(machine()->TruncateFloat64ToWord32(), a);
547   }
ChangeFloat32ToFloat64(Node * a)548   Node* ChangeFloat32ToFloat64(Node* a) {
549     return AddNode(machine()->ChangeFloat32ToFloat64(), a);
550   }
ChangeInt32ToFloat64(Node * a)551   Node* ChangeInt32ToFloat64(Node* a) {
552     return AddNode(machine()->ChangeInt32ToFloat64(), a);
553   }
ChangeUint32ToFloat64(Node * a)554   Node* ChangeUint32ToFloat64(Node* a) {
555     return AddNode(machine()->ChangeUint32ToFloat64(), a);
556   }
ChangeFloat64ToInt32(Node * a)557   Node* ChangeFloat64ToInt32(Node* a) {
558     return AddNode(machine()->ChangeFloat64ToInt32(), a);
559   }
ChangeFloat64ToUint32(Node * a)560   Node* ChangeFloat64ToUint32(Node* a) {
561     return AddNode(machine()->ChangeFloat64ToUint32(), a);
562   }
TruncateFloat64ToUint32(Node * a)563   Node* TruncateFloat64ToUint32(Node* a) {
564     return AddNode(machine()->TruncateFloat64ToUint32(), a);
565   }
TruncateFloat32ToInt32(Node * a)566   Node* TruncateFloat32ToInt32(Node* a) {
567     return AddNode(machine()->TruncateFloat32ToInt32(), a);
568   }
TruncateFloat32ToUint32(Node * a)569   Node* TruncateFloat32ToUint32(Node* a) {
570     return AddNode(machine()->TruncateFloat32ToUint32(), a);
571   }
TryTruncateFloat32ToInt64(Node * a)572   Node* TryTruncateFloat32ToInt64(Node* a) {
573     return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
574   }
TryTruncateFloat64ToInt64(Node * a)575   Node* TryTruncateFloat64ToInt64(Node* a) {
576     return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
577   }
TryTruncateFloat32ToUint64(Node * a)578   Node* TryTruncateFloat32ToUint64(Node* a) {
579     return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
580   }
TryTruncateFloat64ToUint64(Node * a)581   Node* TryTruncateFloat64ToUint64(Node* a) {
582     return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
583   }
ChangeInt32ToInt64(Node * a)584   Node* ChangeInt32ToInt64(Node* a) {
585     return AddNode(machine()->ChangeInt32ToInt64(), a);
586   }
ChangeUint32ToUint64(Node * a)587   Node* ChangeUint32ToUint64(Node* a) {
588     return AddNode(machine()->ChangeUint32ToUint64(), a);
589   }
TruncateFloat64ToFloat32(Node * a)590   Node* TruncateFloat64ToFloat32(Node* a) {
591     return AddNode(machine()->TruncateFloat64ToFloat32(), a);
592   }
TruncateInt64ToInt32(Node * a)593   Node* TruncateInt64ToInt32(Node* a) {
594     return AddNode(machine()->TruncateInt64ToInt32(), a);
595   }
RoundFloat64ToInt32(Node * a)596   Node* RoundFloat64ToInt32(Node* a) {
597     return AddNode(machine()->RoundFloat64ToInt32(), a);
598   }
RoundInt32ToFloat32(Node * a)599   Node* RoundInt32ToFloat32(Node* a) {
600     return AddNode(machine()->RoundInt32ToFloat32(), a);
601   }
RoundInt64ToFloat32(Node * a)602   Node* RoundInt64ToFloat32(Node* a) {
603     return AddNode(machine()->RoundInt64ToFloat32(), a);
604   }
RoundInt64ToFloat64(Node * a)605   Node* RoundInt64ToFloat64(Node* a) {
606     return AddNode(machine()->RoundInt64ToFloat64(), a);
607   }
RoundUint32ToFloat32(Node * a)608   Node* RoundUint32ToFloat32(Node* a) {
609     return AddNode(machine()->RoundUint32ToFloat32(), a);
610   }
RoundUint64ToFloat32(Node * a)611   Node* RoundUint64ToFloat32(Node* a) {
612     return AddNode(machine()->RoundUint64ToFloat32(), a);
613   }
RoundUint64ToFloat64(Node * a)614   Node* RoundUint64ToFloat64(Node* a) {
615     return AddNode(machine()->RoundUint64ToFloat64(), a);
616   }
BitcastFloat32ToInt32(Node * a)617   Node* BitcastFloat32ToInt32(Node* a) {
618     return AddNode(machine()->BitcastFloat32ToInt32(), a);
619   }
BitcastFloat64ToInt64(Node * a)620   Node* BitcastFloat64ToInt64(Node* a) {
621     return AddNode(machine()->BitcastFloat64ToInt64(), a);
622   }
BitcastInt32ToFloat32(Node * a)623   Node* BitcastInt32ToFloat32(Node* a) {
624     return AddNode(machine()->BitcastInt32ToFloat32(), a);
625   }
BitcastInt64ToFloat64(Node * a)626   Node* BitcastInt64ToFloat64(Node* a) {
627     return AddNode(machine()->BitcastInt64ToFloat64(), a);
628   }
Float32RoundDown(Node * a)629   Node* Float32RoundDown(Node* a) {
630     return AddNode(machine()->Float32RoundDown().op(), a);
631   }
Float64RoundDown(Node * a)632   Node* Float64RoundDown(Node* a) {
633     return AddNode(machine()->Float64RoundDown().op(), a);
634   }
Float32RoundUp(Node * a)635   Node* Float32RoundUp(Node* a) {
636     return AddNode(machine()->Float32RoundUp().op(), a);
637   }
Float64RoundUp(Node * a)638   Node* Float64RoundUp(Node* a) {
639     return AddNode(machine()->Float64RoundUp().op(), a);
640   }
Float32RoundTruncate(Node * a)641   Node* Float32RoundTruncate(Node* a) {
642     return AddNode(machine()->Float32RoundTruncate().op(), a);
643   }
Float64RoundTruncate(Node * a)644   Node* Float64RoundTruncate(Node* a) {
645     return AddNode(machine()->Float64RoundTruncate().op(), a);
646   }
Float64RoundTiesAway(Node * a)647   Node* Float64RoundTiesAway(Node* a) {
648     return AddNode(machine()->Float64RoundTiesAway().op(), a);
649   }
Float32RoundTiesEven(Node * a)650   Node* Float32RoundTiesEven(Node* a) {
651     return AddNode(machine()->Float32RoundTiesEven().op(), a);
652   }
Float64RoundTiesEven(Node * a)653   Node* Float64RoundTiesEven(Node* a) {
654     return AddNode(machine()->Float64RoundTiesEven().op(), a);
655   }
656 
657   // Float64 bit operations.
Float64ExtractLowWord32(Node * a)658   Node* Float64ExtractLowWord32(Node* a) {
659     return AddNode(machine()->Float64ExtractLowWord32(), a);
660   }
Float64ExtractHighWord32(Node * a)661   Node* Float64ExtractHighWord32(Node* a) {
662     return AddNode(machine()->Float64ExtractHighWord32(), a);
663   }
Float64InsertLowWord32(Node * a,Node * b)664   Node* Float64InsertLowWord32(Node* a, Node* b) {
665     return AddNode(machine()->Float64InsertLowWord32(), a, b);
666   }
Float64InsertHighWord32(Node * a,Node * b)667   Node* Float64InsertHighWord32(Node* a, Node* b) {
668     return AddNode(machine()->Float64InsertHighWord32(), a, b);
669   }
Float64SilenceNaN(Node * a)670   Node* Float64SilenceNaN(Node* a) {
671     return AddNode(machine()->Float64SilenceNaN(), a);
672   }
673 
674   // Stack operations.
LoadStackPointer()675   Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); }
LoadFramePointer()676   Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
LoadParentFramePointer()677   Node* LoadParentFramePointer() {
678     return AddNode(machine()->LoadParentFramePointer());
679   }
680 
681   // Parameters.
682   Node* Parameter(size_t index);
683 
684   // Pointer utilities.
685   Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) {
686     return Load(rep, PointerConstant(address), Int32Constant(offset));
687   }
StoreToPointer(void * address,MachineRepresentation rep,Node * node)688   Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
689     return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
690   }
691   Node* UnalignedLoadFromPointer(void* address, MachineType rep,
692                                  int32_t offset = 0) {
693     return UnalignedLoad(rep, PointerConstant(address), Int32Constant(offset));
694   }
UnalignedStoreToPointer(void * address,MachineRepresentation rep,Node * node)695   Node* UnalignedStoreToPointer(void* address, MachineRepresentation rep,
696                                 Node* node) {
697     return UnalignedStore(rep, PointerConstant(address), node);
698   }
StringConstant(const char * string)699   Node* StringConstant(const char* string) {
700     return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
701   }
702 
703   // Call a given call descriptor and the given arguments.
704   Node* CallN(CallDescriptor* desc, Node* function, Node** args);
705   // Call a given call descriptor and the given arguments and frame-state.
706   Node* CallNWithFrameState(CallDescriptor* desc, Node* function, Node** args,
707                             Node* frame_state);
708   // Call to a runtime function with zero arguments.
709   Node* CallRuntime0(Runtime::FunctionId function, Node* context);
710   // Call to a runtime function with one arguments.
711   Node* CallRuntime1(Runtime::FunctionId function, Node* arg0, Node* context);
712   // Call to a runtime function with two arguments.
713   Node* CallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
714                      Node* context);
715   // Call to a runtime function with three arguments.
716   Node* CallRuntime3(Runtime::FunctionId function, Node* arg1, Node* arg2,
717                      Node* arg3, Node* context);
718   // Call to a runtime function with four arguments.
719   Node* CallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
720                      Node* arg3, Node* arg4, Node* context);
721   // Call to a runtime function with five arguments.
722   Node* CallRuntime5(Runtime::FunctionId function, Node* arg1, Node* arg2,
723                      Node* arg3, Node* arg4, Node* arg5, Node* context);
724   // Call to a C function with zero arguments.
725   Node* CallCFunction0(MachineType return_type, Node* function);
726   // Call to a C function with one parameter.
727   Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
728                        Node* function, Node* arg0);
729   // Call to a C function with two arguments.
730   Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
731                        MachineType arg1_type, Node* function, Node* arg0,
732                        Node* arg1);
733   // Call to a C function with eight arguments.
734   Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
735                        MachineType arg1_type, MachineType arg2_type,
736                        MachineType arg3_type, MachineType arg4_type,
737                        MachineType arg5_type, MachineType arg6_type,
738                        MachineType arg7_type, Node* function, Node* arg0,
739                        Node* arg1, Node* arg2, Node* arg3, Node* arg4,
740                        Node* arg5, Node* arg6, Node* arg7);
741 
742   // Tail call the given call descriptor and the given arguments.
743   Node* TailCallN(CallDescriptor* call_descriptor, Node* function, Node** args);
744   // Tail call to a runtime function with zero arguments.
745   Node* TailCallRuntime0(Runtime::FunctionId function, Node* context);
746   // Tail call to a runtime function with one argument.
747   Node* TailCallRuntime1(Runtime::FunctionId function, Node* arg0,
748                          Node* context);
749   // Tail call to a runtime function with two arguments.
750   Node* TailCallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
751                          Node* context);
752   // Tail call to a runtime function with three arguments.
753   Node* TailCallRuntime3(Runtime::FunctionId function, Node* arg1, Node* arg2,
754                          Node* arg3, Node* context);
755   // Tail call to a runtime function with four arguments.
756   Node* TailCallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
757                          Node* arg3, Node* arg4, Node* context);
758   // Tail call to a runtime function with five arguments.
759   Node* TailCallRuntime5(Runtime::FunctionId function, Node* arg1, Node* arg2,
760                          Node* arg3, Node* arg4, Node* arg5, Node* context);
761   // Tail call to a runtime function with six arguments.
762   Node* TailCallRuntime6(Runtime::FunctionId function, Node* arg1, Node* arg2,
763                          Node* arg3, Node* arg4, Node* arg5, Node* arg6,
764                          Node* context);
765 
766   // ===========================================================================
767   // The following utility methods deal with control flow, hence might switch
768   // the current basic block or create new basic blocks for labels.
769 
770   // Control flow.
771   void Goto(RawMachineLabel* label);
772   void Branch(Node* condition, RawMachineLabel* true_val,
773               RawMachineLabel* false_val);
774   void Switch(Node* index, RawMachineLabel* default_label,
775               const int32_t* case_values, RawMachineLabel** case_labels,
776               size_t case_count);
777   void Return(Node* value);
778   void Return(Node* v1, Node* v2);
779   void Return(Node* v1, Node* v2, Node* v3);
780   void PopAndReturn(Node* pop, Node* value);
781   void PopAndReturn(Node* pop, Node* v1, Node* v2);
782   void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3);
783   void Bind(RawMachineLabel* label);
784   void Deoptimize(Node* state);
785   void DebugBreak();
786   void Comment(const char* msg);
787 
788   // Add success / exception successor blocks and ends the current block ending
789   // in a potentially throwing call node.
790   void Continuations(Node* call, RawMachineLabel* if_success,
791                      RawMachineLabel* if_exception);
792 
793   // Variables.
Phi(MachineRepresentation rep,Node * n1,Node * n2)794   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
795     return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start());
796   }
Phi(MachineRepresentation rep,Node * n1,Node * n2,Node * n3)797   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
798     return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start());
799   }
Phi(MachineRepresentation rep,Node * n1,Node * n2,Node * n3,Node * n4)800   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
801     return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start());
802   }
803   Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs);
804   void AppendPhiInput(Node* phi, Node* new_input);
805 
806   // ===========================================================================
807   // The following generic node creation methods can be used for operators that
808   // are not covered by the above utility methods. There should rarely be a need
809   // to do that outside of testing though.
810 
811   Node* AddNode(const Operator* op, int input_count, Node* const* inputs);
812 
AddNode(const Operator * op)813   Node* AddNode(const Operator* op) {
814     return AddNode(op, 0, static_cast<Node* const*>(nullptr));
815   }
816 
817   template <class... TArgs>
AddNode(const Operator * op,Node * n1,TArgs...args)818   Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
819     Node* buffer[] = {n1, args...};
820     return AddNode(op, sizeof...(args) + 1, buffer);
821   }
822 
823  private:
824   Node* MakeNode(const Operator* op, int input_count, Node* const* inputs);
825   BasicBlock* Use(RawMachineLabel* label);
826   BasicBlock* EnsureBlock(RawMachineLabel* label);
827   BasicBlock* CurrentBlock();
828 
schedule()829   Schedule* schedule() { return schedule_; }
parameter_count()830   size_t parameter_count() const { return call_descriptor_->ParameterCount(); }
831 
832   Isolate* isolate_;
833   Graph* graph_;
834   Schedule* schedule_;
835   MachineOperatorBuilder machine_;
836   CommonOperatorBuilder common_;
837   CallDescriptor* call_descriptor_;
838   NodeVector parameters_;
839   BasicBlock* current_block_;
840 
841   DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
842 };
843 
844 class V8_EXPORT_PRIVATE RawMachineLabel final {
845  public:
846   enum Type { kDeferred, kNonDeferred };
847 
848   explicit RawMachineLabel(Type type = kNonDeferred)
849       : deferred_(type == kDeferred) {}
850   ~RawMachineLabel();
851 
852  private:
853   BasicBlock* block_ = nullptr;
854   bool used_ = false;
855   bool bound_ = false;
856   bool deferred_;
857   friend class RawMachineAssembler;
858   DISALLOW_COPY_AND_ASSIGN(RawMachineLabel);
859 };
860 
861 }  // namespace compiler
862 }  // namespace internal
863 }  // namespace v8
864 
865 #endif  // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
866