Searched refs:a_1 (Results 1 – 6 of 6) sorted by relevance
37 const __m128i a_1 = _mm_unpacklo_epi16(a_lo, a_hi); in store_tran_low() local39 _mm_store_si128((__m128i *)(b), a_1); in store_tran_low()
158 cmsMAT3 m, a_1; in _cmsMAT3solve() local162 if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix in _cmsMAT3solve()164 _cmsMAT3eval(x, &a_1, b); in _cmsMAT3solve()
101 The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of106 1 & 0 & 0 & a_1 \\
274 %type <val> a_1 a_2 a_5278 exp: a_1 a_2 { $<val>$ = 3; } { $<val>$ = $<val>3 + 1; } a_5285 a_1: { $$ = 1; };
300 _��yF�g������q��1E.<?2A0U[E^uiBB4J(BI#/:,..*MmZq]k`n@@@>>P`a_1@2$0/>PDXKNJP\M_`Z5…
522 "(?<a_1>...)" E " " # backref names are ascii letters & numbers only"