1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkTemplates_DEFINED
11 #define SkTemplates_DEFINED
12 
13 #include "SkMath.h"
14 #include "SkMalloc.h"
15 #include "SkTLogic.h"
16 #include "SkTypes.h"
17 #include <limits.h>
18 #include <memory>
19 #include <new>
20 
21 /** \file SkTemplates.h
22 
23     This file contains light-weight template classes for type-safe and exception-safe
24     resource management.
25 */
26 
27 /**
28  *  Marks a local variable as known to be unused (to avoid warnings).
29  *  Note that this does *not* prevent the local variable from being optimized away.
30  */
sk_ignore_unused_variable(const T &)31 template<typename T> inline void sk_ignore_unused_variable(const T&) { }
32 
33 /**
34  *  Returns a pointer to a D which comes immediately after S[count].
35  */
36 template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
37     return reinterpret_cast<D*>(ptr + count);
38 }
39 
40 /**
41  *  Returns a pointer to a D which comes byteOffset bytes after S.
42  */
SkTAddOffset(S * ptr,size_t byteOffset)43 template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) {
44     // The intermediate char* has the same cv-ness as D as this produces better error messages.
45     // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
46     return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
47 }
48 
49 template <typename R, typename T, R (*P)(T*)> struct SkFunctionWrapper {
operatorSkFunctionWrapper50     R operator()(T* t) { return P(t); }
51 };
52 
53 /** \class SkAutoTCallVProc
54 
55     Call a function when this goes out of scope. The template uses two
56     parameters, the object, and a function that is to be called in the destructor.
57     If release() is called, the object reference is set to null. If the object
58     reference is null when the destructor is called, we do not call the
59     function.
60 */
61 template <typename T, void (*P)(T*)> class SkAutoTCallVProc
62     : public std::unique_ptr<T, SkFunctionWrapper<void, T, P>> {
63 public:
SkAutoTCallVProc(T * obj)64     SkAutoTCallVProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<void, T, P>>(obj) {}
65 
66     operator T*() const { return this->get(); }
67 };
68 
69 /** \class SkAutoTCallIProc
70 
71 Call a function when this goes out of scope. The template uses two
72 parameters, the object, and a function that is to be called in the destructor.
73 If release() is called, the object reference is set to null. If the object
74 reference is null when the destructor is called, we do not call the
75 function.
76 */
77 template <typename T, int (*P)(T*)> class SkAutoTCallIProc
78     : public std::unique_ptr<T, SkFunctionWrapper<int, T, P>> {
79 public:
SkAutoTCallIProc(T * obj)80     SkAutoTCallIProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<int, T, P>>(obj) {}
81 
82     operator T*() const { return this->get(); }
83 };
84 
85 /** Allocate an array of T elements, and free the array in the destructor
86  */
87 template <typename T> class SkAutoTArray : SkNoncopyable {
88 public:
SkAutoTArray()89     SkAutoTArray() {
90         fArray = NULL;
91         SkDEBUGCODE(fCount = 0;)
92     }
93     /** Allocate count number of T elements
94      */
SkAutoTArray(int count)95     explicit SkAutoTArray(int count) {
96         SkASSERT(count >= 0);
97         fArray = NULL;
98         if (count) {
99             fArray = new T[count];
100         }
101         SkDEBUGCODE(fCount = count;)
102     }
103 
104     /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
105      */
reset(int count)106     void reset(int count) {
107         delete[] fArray;
108         SkASSERT(count >= 0);
109         fArray = NULL;
110         if (count) {
111             fArray = new T[count];
112         }
113         SkDEBUGCODE(fCount = count;)
114     }
115 
~SkAutoTArray()116     ~SkAutoTArray() { delete[] fArray; }
117 
118     /** Return the array of T elements. Will be NULL if count == 0
119      */
get()120     T* get() const { return fArray; }
121 
122     /** Return the nth element in the array
123      */
124     T&  operator[](int index) const {
125         SkASSERT((unsigned)index < (unsigned)fCount);
126         return fArray[index];
127     }
128 
swap(SkAutoTArray & other)129     void swap(SkAutoTArray& other) {
130         SkTSwap(fArray, other.fArray);
131         SkDEBUGCODE(SkTSwap(fCount, other.fCount));
132     }
133 
134 private:
135     T*  fArray;
136     SkDEBUGCODE(int fCount;)
137 };
138 
139 /** Wraps SkAutoTArray, with room for kCountRequested elements preallocated.
140  */
141 template <int kCountRequested, typename T> class SkAutoSTArray : SkNoncopyable {
142 public:
143     /** Initialize with no objects */
SkAutoSTArray()144     SkAutoSTArray() {
145         fArray = NULL;
146         fCount = 0;
147     }
148 
149     /** Allocate count number of T elements
150      */
SkAutoSTArray(int count)151     SkAutoSTArray(int count) {
152         fArray = NULL;
153         fCount = 0;
154         this->reset(count);
155     }
156 
~SkAutoSTArray()157     ~SkAutoSTArray() {
158         this->reset(0);
159     }
160 
161     /** Destroys previous objects in the array and default constructs count number of objects */
reset(int count)162     void reset(int count) {
163         T* start = fArray;
164         T* iter = start + fCount;
165         while (iter > start) {
166             (--iter)->~T();
167         }
168 
169         SkASSERT(count >= 0);
170         if (fCount != count) {
171             if (fCount > kCount) {
172                 // 'fArray' was allocated last time so free it now
173                 SkASSERT((T*) fStorage != fArray);
174                 sk_free(fArray);
175             }
176 
177             if (count > kCount) {
178                 const uint64_t size64 = sk_64_mul(count, sizeof(T));
179                 const size_t size = static_cast<size_t>(size64);
180                 if (size != size64) {
181                     sk_out_of_memory();
182                 }
183                 fArray = (T*) sk_malloc_throw(size);
184             } else if (count > 0) {
185                 fArray = (T*) fStorage;
186             } else {
187                 fArray = NULL;
188             }
189 
190             fCount = count;
191         }
192 
193         iter = fArray;
194         T* stop = fArray + count;
195         while (iter < stop) {
196             new (iter++) T;
197         }
198     }
199 
200     /** Return the number of T elements in the array
201      */
count()202     int count() const { return fCount; }
203 
204     /** Return the array of T elements. Will be NULL if count == 0
205      */
get()206     T* get() const { return fArray; }
207 
begin()208     T* begin() { return fArray; }
209 
begin()210     const T* begin() const { return fArray; }
211 
end()212     T* end() { return fArray + fCount; }
213 
end()214     const T* end() const { return fArray + fCount; }
215 
216     /** Return the nth element in the array
217      */
218     T&  operator[](int index) const {
219         SkASSERT(index < fCount);
220         return fArray[index];
221     }
222 
223 private:
224 #if defined(GOOGLE3)
225     // Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions
226     // have multiple large stack allocations.
227     static const int kMaxBytes = 4 * 1024;
228     static const int kCount = kCountRequested * sizeof(T) > kMaxBytes
229         ? kMaxBytes / sizeof(T)
230         : kCountRequested;
231 #else
232     static const int kCount = kCountRequested;
233 #endif
234 
235     int     fCount;
236     T*      fArray;
237     // since we come right after fArray, fStorage should be properly aligned
238     char    fStorage[kCount * sizeof(T)];
239 };
240 
241 /** Manages an array of T elements, freeing the array in the destructor.
242  *  Does NOT call any constructors/destructors on T (T must be POD).
243  */
244 template <typename T> class SkAutoTMalloc : SkNoncopyable {
245 public:
246     /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
247     explicit SkAutoTMalloc(T* ptr = NULL) {
248         fPtr = ptr;
249     }
250 
251     /** Allocates space for 'count' Ts. */
SkAutoTMalloc(size_t count)252     explicit SkAutoTMalloc(size_t count) {
253         fPtr = count ? (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW) : nullptr;
254     }
255 
SkAutoTMalloc(SkAutoTMalloc<T> && that)256     SkAutoTMalloc(SkAutoTMalloc<T>&& that) : fPtr(that.release()) {}
257 
~SkAutoTMalloc()258     ~SkAutoTMalloc() {
259         sk_free(fPtr);
260     }
261 
262     /** Resize the memory area pointed to by the current ptr preserving contents. */
realloc(size_t count)263     void realloc(size_t count) {
264         if (count) {
265             fPtr = reinterpret_cast<T*>(sk_realloc_throw(fPtr, count * sizeof(T)));
266         } else {
267             this->reset(0);
268         }
269     }
270 
271     /** Resize the memory area pointed to by the current ptr without preserving contents. */
272     T* reset(size_t count = 0) {
273         sk_free(fPtr);
274         fPtr = count ? (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW) : nullptr;
275         return fPtr;
276     }
277 
get()278     T* get() const { return fPtr; }
279 
280     operator T*() {
281         return fPtr;
282     }
283 
284     operator const T*() const {
285         return fPtr;
286     }
287 
288     T& operator[](int index) {
289         return fPtr[index];
290     }
291 
292     const T& operator[](int index) const {
293         return fPtr[index];
294     }
295 
296     SkAutoTMalloc& operator=(SkAutoTMalloc<T>&& that) {
297         sk_free(fPtr);
298         fPtr = that.release();
299         return *this;
300     }
301 
302     /**
303      *  Transfer ownership of the ptr to the caller, setting the internal
304      *  pointer to NULL. Note that this differs from get(), which also returns
305      *  the pointer, but it does not transfer ownership.
306      */
release()307     T* release() {
308         T* ptr = fPtr;
309         fPtr = NULL;
310         return ptr;
311     }
312 
313 private:
314     T* fPtr;
315 };
316 
317 template <size_t kCountRequested, typename T> class SkAutoSTMalloc : SkNoncopyable {
318 public:
SkAutoSTMalloc()319     SkAutoSTMalloc() : fPtr(fTStorage) {}
320 
SkAutoSTMalloc(size_t count)321     SkAutoSTMalloc(size_t count) {
322         if (count > kCount) {
323             fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
324         } else if (count) {
325             fPtr = fTStorage;
326         } else {
327             fPtr = nullptr;
328         }
329     }
330 
~SkAutoSTMalloc()331     ~SkAutoSTMalloc() {
332         if (fPtr != fTStorage) {
333             sk_free(fPtr);
334         }
335     }
336 
337     // doesn't preserve contents
reset(size_t count)338     T* reset(size_t count) {
339         if (fPtr != fTStorage) {
340             sk_free(fPtr);
341         }
342         if (count > kCount) {
343             fPtr = (T*)sk_malloc_throw(count * sizeof(T));
344         } else if (count) {
345             fPtr = fTStorage;
346         } else {
347             fPtr = nullptr;
348         }
349         return fPtr;
350     }
351 
get()352     T* get() const { return fPtr; }
353 
354     operator T*() {
355         return fPtr;
356     }
357 
358     operator const T*() const {
359         return fPtr;
360     }
361 
362     T& operator[](int index) {
363         return fPtr[index];
364     }
365 
366     const T& operator[](int index) const {
367         return fPtr[index];
368     }
369 
370     // Reallocs the array, can be used to shrink the allocation.  Makes no attempt to be intelligent
realloc(size_t count)371     void realloc(size_t count) {
372         if (count > kCount) {
373             if (fPtr == fTStorage) {
374                 fPtr = (T*)sk_malloc_throw(count * sizeof(T));
375                 memcpy(fPtr, fTStorage, kCount * sizeof(T));
376             } else {
377                 fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T));
378             }
379         } else if (count) {
380             if (fPtr != fTStorage) {
381                 fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T));
382             }
383         } else {
384             this->reset(0);
385         }
386     }
387 
388 private:
389     // Since we use uint32_t storage, we might be able to get more elements for free.
390     static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
391 #if defined(GOOGLE3)
392     // Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions
393     // have multiple large stack allocations.
394     static const size_t kMaxBytes = 4 * 1024;
395     static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes
396         ? kMaxBytes / sizeof(T)
397         : kCountWithPadding;
398 #else
399     static const size_t kCount = kCountWithPadding;
400 #endif
401 
402     T*          fPtr;
403     union {
404         uint32_t    fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
405         T           fTStorage[1];   // do NOT want to invoke T::T()
406     };
407 };
408 
409 //////////////////////////////////////////////////////////////////////////////////////////////////
410 
411 /**
412  *  Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will
413  *  safely destroy (and free if it was dynamically allocated) the object.
414  */
SkInPlaceDeleteCheck(T * obj,void * storage)415 template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) {
416     if (storage == obj) {
417         obj->~T();
418     } else {
419         delete obj;
420     }
421 }
422 
423 /**
424  *  Allocates T, using storage if it is large enough, and allocating on the heap (via new) if
425  *  storage is not large enough.
426  *
427  *      obj = SkInPlaceNewCheck<Type>(storage, size);
428  *      ...
429  *      SkInPlaceDeleteCheck(obj, storage);
430  */
SkInPlaceNewCheck(void * storage,size_t size)431 template <typename T> T* SkInPlaceNewCheck(void* storage, size_t size) {
432     return (sizeof(T) <= size) ? new (storage) T : new T;
433 }
434 
435 template <typename T, typename A1, typename A2, typename A3>
SkInPlaceNewCheck(void * storage,size_t size,const A1 & a1,const A2 & a2,const A3 & a3)436 T* SkInPlaceNewCheck(void* storage, size_t size, const A1& a1, const A2& a2, const A3& a3) {
437     return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3) : new T(a1, a2, a3);
438 }
439 
440 template <typename T, typename A1, typename A2, typename A3, typename A4>
SkInPlaceNewCheck(void * storage,size_t size,const A1 & a1,const A2 & a2,const A3 & a3,const A4 & a4)441 T* SkInPlaceNewCheck(void* storage, size_t size,
442                      const A1& a1, const A2& a2, const A3& a3, const A4& a4) {
443     return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3, a4) : new T(a1, a2, a3, a4);
444 }
445 
446 /**
447  * Reserves memory that is aligned on double and pointer boundaries.
448  * Hopefully this is sufficient for all practical purposes.
449  */
450 template <size_t N> class SkAlignedSStorage : SkNoncopyable {
451 public:
size()452     size_t size() const { return N; }
get()453     void* get() { return fData; }
get()454     const void* get() const { return fData; }
455 
456 private:
457     union {
458         void*   fPtr;
459         double  fDouble;
460         char    fData[N];
461     };
462 };
463 
464 /**
465  * Reserves memory that is aligned on double and pointer boundaries.
466  * Hopefully this is sufficient for all practical purposes. Otherwise,
467  * we have to do some arcane trickery to determine alignment of non-POD
468  * types. Lifetime of the memory is the lifetime of the object.
469  */
470 template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
471 public:
472     /**
473      * Returns void* because this object does not initialize the
474      * memory. Use placement new for types that require a cons.
475      */
get()476     void* get() { return fStorage.get(); }
get()477     const void* get() const { return fStorage.get(); }
478 private:
479     SkAlignedSStorage<sizeof(T)*N> fStorage;
480 };
481 
482 using SkAutoFree = std::unique_ptr<void, SkFunctionWrapper<void, void, sk_free>>;
483 
484 #endif
485