1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_CONSTANTS_ARM_H_
6 #define V8_ARM_CONSTANTS_ARM_H_
7 
8 #include <stdint.h>
9 
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/globals.h"
13 
14 // ARM EABI is required.
15 #if defined(__arm__) && !defined(__ARM_EABI__)
16 #error ARM EABI support is required.
17 #endif
18 
19 namespace v8 {
20 namespace internal {
21 
22 // Constant pool marker.
23 // Use UDF, the permanently undefined instruction.
24 const int kConstantPoolMarkerMask = 0xfff000f0;
25 const int kConstantPoolMarker = 0xe7f000f0;
26 const int kConstantPoolLengthMaxMask = 0xffff;
EncodeConstantPoolLength(int length)27 inline int EncodeConstantPoolLength(int length) {
28   DCHECK((length & kConstantPoolLengthMaxMask) == length);
29   return ((length & 0xfff0) << 4) | (length & 0xf);
30 }
DecodeConstantPoolLength(int instr)31 inline int DecodeConstantPoolLength(int instr) {
32   DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
33   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
34 }
35 
36 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
37 const int kCodeAgeJumpInstruction = 0xe51ff004;
38 
39 // Number of registers in normal ARM mode.
40 const int kNumRegisters = 16;
41 
42 // VFP support.
43 const int kNumVFPSingleRegisters = 32;
44 const int kNumVFPDoubleRegisters = 32;
45 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
46 
47 // PC is register 15.
48 const int kPCRegister = 15;
49 const int kNoRegister = -1;
50 
51 // Used in embedded constant pool builder - max reach in bits for
52 // various load instructions (unsigned)
53 const int kLdrMaxReachBits = 12;
54 const int kVldrMaxReachBits = 10;
55 
56 // -----------------------------------------------------------------------------
57 // Conditions.
58 
59 // Defines constants and accessor classes to assemble, disassemble and
60 // simulate ARM instructions.
61 //
62 // Section references in the code refer to the "ARM Architecture Reference
63 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
64 //
65 // Constants for specific fields are defined in their respective named enums.
66 // General constants are in an anonymous enum in class Instr.
67 
68 // Values for the condition field as defined in section A3.2
69 enum Condition {
70   kNoCondition = -1,
71 
72   eq =  0 << 28,                 // Z set            Equal.
73   ne =  1 << 28,                 // Z clear          Not equal.
74   cs =  2 << 28,                 // C set            Unsigned higher or same.
75   cc =  3 << 28,                 // C clear          Unsigned lower.
76   mi =  4 << 28,                 // N set            Negative.
77   pl =  5 << 28,                 // N clear          Positive or zero.
78   vs =  6 << 28,                 // V set            Overflow.
79   vc =  7 << 28,                 // V clear          No overflow.
80   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
81   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
82   ge = 10 << 28,                 // N == V           Greater or equal.
83   lt = 11 << 28,                 // N != V           Less than.
84   gt = 12 << 28,                 // Z clear, N == V  Greater than.
85   le = 13 << 28,                 // Z set or N != V  Less then or equal
86   al = 14 << 28,                 //                  Always.
87 
88   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
89   kNumberOfConditions = 16,
90 
91   // Aliases.
92   hs = cs,                       // C set            Unsigned higher or same.
93   lo = cc                        // C clear          Unsigned lower.
94 };
95 
96 
NegateCondition(Condition cond)97 inline Condition NegateCondition(Condition cond) {
98   DCHECK(cond != al);
99   return static_cast<Condition>(cond ^ ne);
100 }
101 
102 
103 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cond)104 inline Condition CommuteCondition(Condition cond) {
105   switch (cond) {
106     case lo:
107       return hi;
108     case hi:
109       return lo;
110     case hs:
111       return ls;
112     case ls:
113       return hs;
114     case lt:
115       return gt;
116     case gt:
117       return lt;
118     case ge:
119       return le;
120     case le:
121       return ge;
122     default:
123       return cond;
124   }
125 }
126 
127 
128 // -----------------------------------------------------------------------------
129 // Instructions encoding.
130 
131 // Instr is merely used by the Assembler to distinguish 32bit integers
132 // representing instructions from usual 32 bit values.
133 // Instruction objects are pointers to 32bit values, and provide methods to
134 // access the various ISA fields.
135 typedef int32_t Instr;
136 
137 
138 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
139 // as defined in section A3.4
140 enum Opcode {
141   AND =  0 << 21,  // Logical AND.
142   EOR =  1 << 21,  // Logical Exclusive OR.
143   SUB =  2 << 21,  // Subtract.
144   RSB =  3 << 21,  // Reverse Subtract.
145   ADD =  4 << 21,  // Add.
146   ADC =  5 << 21,  // Add with Carry.
147   SBC =  6 << 21,  // Subtract with Carry.
148   RSC =  7 << 21,  // Reverse Subtract with Carry.
149   TST =  8 << 21,  // Test.
150   TEQ =  9 << 21,  // Test Equivalence.
151   CMP = 10 << 21,  // Compare.
152   CMN = 11 << 21,  // Compare Negated.
153   ORR = 12 << 21,  // Logical (inclusive) OR.
154   MOV = 13 << 21,  // Move.
155   BIC = 14 << 21,  // Bit Clear.
156   MVN = 15 << 21   // Move Not.
157 };
158 
159 
160 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
161 enum MiscInstructionsBits74 {
162   // With bits 22-21 01.
163   BX   =  1 << 4,
164   BXJ  =  2 << 4,
165   BLX  =  3 << 4,
166   BKPT =  7 << 4,
167 
168   // With bits 22-21 11.
169   CLZ  =  1 << 4
170 };
171 
172 
173 // Instruction encoding bits and masks.
174 enum {
175   H = 1 << 5,   // Halfword (or byte).
176   S6 = 1 << 6,  // Signed (or unsigned).
177   L = 1 << 20,  // Load (or store).
178   S = 1 << 20,  // Set condition code (or leave unchanged).
179   W = 1 << 21,  // Writeback base register (or leave unchanged).
180   A = 1 << 21,  // Accumulate in multiply instruction (or not).
181   B = 1 << 22,  // Unsigned byte (or word).
182   N = 1 << 22,  // Long (or short).
183   U = 1 << 23,  // Positive (or negative) offset/index.
184   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
185   I = 1 << 25,  // Immediate shifter operand (or not).
186   B0 = 1 << 0,
187   B4 = 1 << 4,
188   B5 = 1 << 5,
189   B6 = 1 << 6,
190   B7 = 1 << 7,
191   B8 = 1 << 8,
192   B9 = 1 << 9,
193   B12 = 1 << 12,
194   B16 = 1 << 16,
195   B17 = 1 << 17,
196   B18 = 1 << 18,
197   B19 = 1 << 19,
198   B20 = 1 << 20,
199   B21 = 1 << 21,
200   B22 = 1 << 22,
201   B23 = 1 << 23,
202   B24 = 1 << 24,
203   B25 = 1 << 25,
204   B26 = 1 << 26,
205   B27 = 1 << 27,
206   B28 = 1 << 28,
207 
208   // Instruction bit masks.
209   kCondMask = 15 << 28,
210   kALUMask = 0x6f << 21,
211   kRdMask = 15 << 12,  // In str instruction.
212   kCoprocessorMask = 15 << 8,
213   kOpCodeMask = 15 << 21,  // In data-processing instructions.
214   kImm24Mask = (1 << 24) - 1,
215   kImm16Mask = (1 << 16) - 1,
216   kImm8Mask = (1 << 8) - 1,
217   kOff12Mask = (1 << 12) - 1,
218   kOff8Mask = (1 << 8) - 1
219 };
220 
221 
222 enum BarrierOption {
223   OSHLD = 0x1,
224   OSHST = 0x2,
225   OSH = 0x3,
226   NSHLD = 0x5,
227   NSHST = 0x6,
228   NSH = 0x7,
229   ISHLD = 0x9,
230   ISHST = 0xa,
231   ISH = 0xb,
232   LD = 0xd,
233   ST = 0xe,
234   SY = 0xf,
235 };
236 
237 
238 // -----------------------------------------------------------------------------
239 // Addressing modes and instruction variants.
240 
241 // Condition code updating mode.
242 enum SBit {
243   SetCC   = 1 << 20,  // Set condition code.
244   LeaveCC = 0 << 20   // Leave condition code unchanged.
245 };
246 
247 
248 // Status register selection.
249 enum SRegister {
250   CPSR = 0 << 22,
251   SPSR = 1 << 22
252 };
253 
254 
255 // Shifter types for Data-processing operands as defined in section A5.1.2.
256 enum ShiftOp {
257   LSL = 0 << 5,   // Logical shift left.
258   LSR = 1 << 5,   // Logical shift right.
259   ASR = 2 << 5,   // Arithmetic shift right.
260   ROR = 3 << 5,   // Rotate right.
261 
262   // RRX is encoded as ROR with shift_imm == 0.
263   // Use a special code to make the distinction. The RRX ShiftOp is only used
264   // as an argument, and will never actually be encoded. The Assembler will
265   // detect it and emit the correct ROR shift operand with shift_imm == 0.
266   RRX = -1,
267   kNumberOfShifts = 4
268 };
269 
270 
271 // Status register fields.
272 enum SRegisterField {
273   CPSR_c = CPSR | 1 << 16,
274   CPSR_x = CPSR | 1 << 17,
275   CPSR_s = CPSR | 1 << 18,
276   CPSR_f = CPSR | 1 << 19,
277   SPSR_c = SPSR | 1 << 16,
278   SPSR_x = SPSR | 1 << 17,
279   SPSR_s = SPSR | 1 << 18,
280   SPSR_f = SPSR | 1 << 19
281 };
282 
283 // Status register field mask (or'ed SRegisterField enum values).
284 typedef uint32_t SRegisterFieldMask;
285 
286 
287 // Memory operand addressing mode.
288 enum AddrMode {
289   // Bit encoding P U W.
290   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
291   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
292   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
293   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
294   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
295   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
296 };
297 
298 
299 // Load/store multiple addressing mode.
300 enum BlockAddrMode {
301   // Bit encoding P U W .
302   da           = (0|0|0) << 21,  // Decrement after.
303   ia           = (0|4|0) << 21,  // Increment after.
304   db           = (8|0|0) << 21,  // Decrement before.
305   ib           = (8|4|0) << 21,  // Increment before.
306   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
307   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
308   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
309   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
310 
311   // Alias modes for comparison when writeback does not matter.
312   da_x         = (0|0|0) << 21,  // Decrement after.
313   ia_x         = (0|4|0) << 21,  // Increment after.
314   db_x         = (8|0|0) << 21,  // Decrement before.
315   ib_x         = (8|4|0) << 21,  // Increment before.
316 
317   kBlockAddrModeMask = (8|4|1) << 21
318 };
319 
320 
321 // Coprocessor load/store operand size.
322 enum LFlag {
323   Long  = 1 << 22,  // Long load/store coprocessor.
324   Short = 0 << 22   // Short load/store coprocessor.
325 };
326 
327 
328 // NEON data type
329 enum NeonDataType {
330   NeonS8 = 0x1,   // U = 0, imm3 = 0b001
331   NeonS16 = 0x2,  // U = 0, imm3 = 0b010
332   NeonS32 = 0x4,  // U = 0, imm3 = 0b100
333   NeonU8 = 1 << 24 | 0x1,   // U = 1, imm3 = 0b001
334   NeonU16 = 1 << 24 | 0x2,  // U = 1, imm3 = 0b010
335   NeonU32 = 1 << 24 | 0x4,   // U = 1, imm3 = 0b100
336   NeonDataTypeSizeMask = 0x7,
337   NeonDataTypeUMask = 1 << 24
338 };
339 
340 enum NeonListType {
341   nlt_1 = 0x7,
342   nlt_2 = 0xA,
343   nlt_3 = 0x6,
344   nlt_4 = 0x2
345 };
346 
347 enum NeonSize {
348   Neon8 = 0x0,
349   Neon16 = 0x1,
350   Neon32 = 0x2,
351   Neon64 = 0x3
352 };
353 
354 // -----------------------------------------------------------------------------
355 // Supervisor Call (svc) specific support.
356 
357 // Special Software Interrupt codes when used in the presence of the ARM
358 // simulator.
359 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
360 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
361 enum SoftwareInterruptCodes {
362   // transition to C code
363   kCallRtRedirected = 0x10,
364   // break point
365   kBreakpoint = 0x20,
366   // stop
367   kStopCode = 1 << 23
368 };
369 const uint32_t kStopCodeMask = kStopCode - 1;
370 const uint32_t kMaxStopCode = kStopCode - 1;
371 const int32_t  kDefaultStopCode = -1;
372 
373 
374 // Type of VFP register. Determines register encoding.
375 enum VFPRegPrecision {
376   kSinglePrecision = 0,
377   kDoublePrecision = 1
378 };
379 
380 
381 // VFP FPSCR constants.
382 enum VFPConversionMode {
383   kFPSCRRounding = 0,
384   kDefaultRoundToZero = 1
385 };
386 
387 // This mask does not include the "inexact" or "input denormal" cumulative
388 // exceptions flags, because we usually don't want to check for it.
389 const uint32_t kVFPExceptionMask = 0xf;
390 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
391 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
392 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
393 const uint32_t kVFPInexactExceptionBit = 1 << 4;
394 const uint32_t kVFPFlushToZeroMask = 1 << 24;
395 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
396 
397 const uint32_t kVFPNConditionFlagBit = 1 << 31;
398 const uint32_t kVFPZConditionFlagBit = 1 << 30;
399 const uint32_t kVFPCConditionFlagBit = 1 << 29;
400 const uint32_t kVFPVConditionFlagBit = 1 << 28;
401 
402 
403 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
404 enum VFPRoundingMode {
405   RN = 0 << 22,   // Round to Nearest.
406   RP = 1 << 22,   // Round towards Plus Infinity.
407   RM = 2 << 22,   // Round towards Minus Infinity.
408   RZ = 3 << 22,   // Round towards zero.
409 
410   // Aliases.
411   kRoundToNearest = RN,
412   kRoundToPlusInf = RP,
413   kRoundToMinusInf = RM,
414   kRoundToZero = RZ
415 };
416 
417 const uint32_t kVFPRoundingModeMask = 3 << 22;
418 
419 enum CheckForInexactConversion {
420   kCheckForInexactConversion,
421   kDontCheckForInexactConversion
422 };
423 
424 // -----------------------------------------------------------------------------
425 // Hints.
426 
427 // Branch hints are not used on the ARM.  They are defined so that they can
428 // appear in shared function signatures, but will be ignored in ARM
429 // implementations.
430 enum Hint { no_hint };
431 
432 // Hints are not used on the arm.  Negating is trivial.
NegateHint(Hint ignored)433 inline Hint NegateHint(Hint ignored) { return no_hint; }
434 
435 
436 // -----------------------------------------------------------------------------
437 // Instruction abstraction.
438 
439 // The class Instruction enables access to individual fields defined in the ARM
440 // architecture instruction set encoding as described in figure A3-1.
441 // Note that the Assembler uses typedef int32_t Instr.
442 //
443 // Example: Test whether the instruction at ptr does set the condition code
444 // bits.
445 //
446 // bool InstructionSetsConditionCodes(byte* ptr) {
447 //   Instruction* instr = Instruction::At(ptr);
448 //   int type = instr->TypeValue();
449 //   return ((type == 0) || (type == 1)) && instr->HasS();
450 // }
451 //
452 class Instruction {
453  public:
454   enum {
455     kInstrSize = 4,
456     kInstrSizeLog2 = 2,
457     kPCReadOffset = 8
458   };
459 
460   // Helper macro to define static accessors.
461   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
462   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \
463     static inline return_type Name(Instr instr) {                              \
464       char* temp = reinterpret_cast<char*>(&instr);                            \
465       return reinterpret_cast<Instruction*>(temp)->Name();                     \
466     }
467 
468   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
469 
470   // Get the raw instruction bits.
InstructionBits()471   inline Instr InstructionBits() const {
472     return *reinterpret_cast<const Instr*>(this);
473   }
474 
475   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)476   inline void SetInstructionBits(Instr value) {
477     *reinterpret_cast<Instr*>(this) = value;
478   }
479 
480   // Extract a single bit from the instruction bits and return it as bit 0 in
481   // the result.
Bit(int nr)482   inline int Bit(int nr) const {
483     return (InstructionBits() >> nr) & 1;
484   }
485 
486   // Extract a bit field <hi:lo> from the instruction bits and return it in the
487   // least-significant bits of the result.
Bits(int hi,int lo)488   inline int Bits(int hi, int lo) const {
489     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
490   }
491 
492   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(int hi,int lo)493   inline int BitField(int hi, int lo) const {
494     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
495   }
496 
497   // Static support.
498 
499   // Extract a single bit from the instruction bits and return it as bit 0 in
500   // the result.
Bit(Instr instr,int nr)501   static inline int Bit(Instr instr, int nr) {
502     return (instr >> nr) & 1;
503   }
504 
505   // Extract a bit field <hi:lo> from the instruction bits and return it in the
506   // least-significant bits of the result.
Bits(Instr instr,int hi,int lo)507   static inline int Bits(Instr instr, int hi, int lo) {
508     return (instr >> lo) & ((2 << (hi - lo)) - 1);
509   }
510 
511   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(Instr instr,int hi,int lo)512   static inline int BitField(Instr instr, int hi, int lo) {
513     return instr & (((2 << (hi - lo)) - 1) << lo);
514   }
515 
516   // Accessors for the different named fields used in the ARM encoding.
517   // The naming of these accessor corresponds to figure A3-1.
518   //
519   // Two kind of accessors are declared:
520   // - <Name>Field() will return the raw field, i.e. the field's bits at their
521   //   original place in the instruction encoding.
522   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
523   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
524   // - <Name>Value() will return the field value, shifted back to bit 0.
525   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
526   //   0xC0810002 ConditionField(instr) will return 0xC.
527 
528 
529   // Generally applicable fields
ConditionValue()530   inline int ConditionValue() const { return Bits(31, 28); }
ConditionField()531   inline Condition ConditionField() const {
532     return static_cast<Condition>(BitField(31, 28));
533   }
534   DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
535   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
536 
TypeValue()537   inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()538   inline int SpecialValue() const { return Bits(27, 23); }
539 
RnValue()540   inline int RnValue() const { return Bits(19, 16); }
541   DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()542   inline int RdValue() const { return Bits(15, 12); }
543   DECLARE_STATIC_ACCESSOR(RdValue);
544 
CoprocessorValue()545   inline int CoprocessorValue() const { return Bits(11, 8); }
546   // Support for VFP.
547   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
VnValue()548   inline int VnValue() const { return Bits(19, 16); }
VmValue()549   inline int VmValue() const { return Bits(3, 0); }
VdValue()550   inline int VdValue() const { return Bits(15, 12); }
NValue()551   inline int NValue() const { return Bit(7); }
MValue()552   inline int MValue() const { return Bit(5); }
DValue()553   inline int DValue() const { return Bit(22); }
RtValue()554   inline int RtValue() const { return Bits(15, 12); }
PValue()555   inline int PValue() const { return Bit(24); }
UValue()556   inline int UValue() const { return Bit(23); }
Opc1Value()557   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()558   inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()559   inline int Opc3Value() const { return Bits(7, 6); }
SzValue()560   inline int SzValue() const { return Bit(8); }
VLValue()561   inline int VLValue() const { return Bit(20); }
VCValue()562   inline int VCValue() const { return Bit(8); }
VAValue()563   inline int VAValue() const { return Bits(23, 21); }
VBValue()564   inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)565   inline int VFPNRegValue(VFPRegPrecision pre) {
566     return VFPGlueRegValue(pre, 16, 7);
567   }
VFPMRegValue(VFPRegPrecision pre)568   inline int VFPMRegValue(VFPRegPrecision pre) {
569     return VFPGlueRegValue(pre, 0, 5);
570   }
VFPDRegValue(VFPRegPrecision pre)571   inline int VFPDRegValue(VFPRegPrecision pre) {
572     return VFPGlueRegValue(pre, 12, 22);
573   }
574 
575   // Fields used in Data processing instructions
OpcodeValue()576   inline int OpcodeValue() const {
577     return static_cast<Opcode>(Bits(24, 21));
578   }
OpcodeField()579   inline Opcode OpcodeField() const {
580     return static_cast<Opcode>(BitField(24, 21));
581   }
SValue()582   inline int SValue() const { return Bit(20); }
583     // with register
RmValue()584   inline int RmValue() const { return Bits(3, 0); }
585   DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()586   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()587   inline ShiftOp ShiftField() const {
588     return static_cast<ShiftOp>(BitField(6, 5));
589   }
RegShiftValue()590   inline int RegShiftValue() const { return Bit(4); }
RsValue()591   inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()592   inline int ShiftAmountValue() const { return Bits(11, 7); }
593     // with immediate
RotateValue()594   inline int RotateValue() const { return Bits(11, 8); }
595   DECLARE_STATIC_ACCESSOR(RotateValue);
Immed8Value()596   inline int Immed8Value() const { return Bits(7, 0); }
597   DECLARE_STATIC_ACCESSOR(Immed8Value);
Immed4Value()598   inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()599   inline int ImmedMovwMovtValue() const {
600       return Immed4Value() << 12 | Offset12Value(); }
601   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
602 
603   // Fields used in Load/Store instructions
PUValue()604   inline int PUValue() const { return Bits(24, 23); }
PUField()605   inline int PUField() const { return BitField(24, 23); }
BValue()606   inline int  BValue() const { return Bit(22); }
WValue()607   inline int  WValue() const { return Bit(21); }
LValue()608   inline int  LValue() const { return Bit(20); }
609     // with register uses same fields as Data processing instructions above
610     // with immediate
Offset12Value()611   inline int Offset12Value() const { return Bits(11, 0); }
612     // multiple
RlistValue()613   inline int RlistValue() const { return Bits(15, 0); }
614     // extra loads and stores
SignValue()615   inline int SignValue() const { return Bit(6); }
HValue()616   inline int HValue() const { return Bit(5); }
ImmedHValue()617   inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()618   inline int ImmedLValue() const { return Bits(3, 0); }
619 
620   // Fields used in Branch instructions
LinkValue()621   inline int LinkValue() const { return Bit(24); }
SImmed24Value()622   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
623 
624   // Fields used in Software interrupt instructions
SvcValue()625   inline SoftwareInterruptCodes SvcValue() const {
626     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
627   }
628 
629   // Test for special encodings of type 0 instructions (extra loads and stores,
630   // as well as multiplications).
IsSpecialType0()631   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
632 
633   // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()634   inline bool IsMiscType0() const { return (Bit(24) == 1)
635                                            && (Bit(23) == 0)
636                                            && (Bit(20) == 0)
637                                            && ((Bit(7) == 0)); }
638 
639   // Test for a nop instruction, which falls under type 1.
IsNopType1()640   inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
641 
642   // Test for a stop instruction.
IsStop()643   inline bool IsStop() const {
644     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
645   }
646 
647   // Special accessors that test for existence of a value.
HasS()648   inline bool HasS()    const { return SValue() == 1; }
HasB()649   inline bool HasB()    const { return BValue() == 1; }
HasW()650   inline bool HasW()    const { return WValue() == 1; }
HasL()651   inline bool HasL()    const { return LValue() == 1; }
HasU()652   inline bool HasU()    const { return UValue() == 1; }
HasSign()653   inline bool HasSign() const { return SignValue() == 1; }
HasH()654   inline bool HasH()    const { return HValue() == 1; }
HasLink()655   inline bool HasLink() const { return LinkValue() == 1; }
656 
657   // Decode the double immediate from a vmov instruction.
658   double DoubleImmedVmov() const;
659 
660   // Instructions are read of out a code stream. The only way to get a
661   // reference to an instruction is to convert a pointer. There is no way
662   // to allocate or create instances of class Instruction.
663   // Use the At(pc) function to create references to Instruction.
At(byte * pc)664   static Instruction* At(byte* pc) {
665     return reinterpret_cast<Instruction*>(pc);
666   }
667 
668 
669  private:
670   // Join split register codes, depending on single or double precision.
671   // four_bit is the position of the least-significant bit of the four
672   // bit specifier. one_bit is the position of the additional single bit
673   // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)674   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
675     if (pre == kSinglePrecision) {
676       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
677     }
678     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
679   }
680 
681   // We need to prevent the creation of instances of class Instruction.
682   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
683 };
684 
685 
686 // Helper functions for converting between register numbers and names.
687 class Registers {
688  public:
689   // Return the name of the register.
690   static const char* Name(int reg);
691 
692   // Lookup the register number for the name provided.
693   static int Number(const char* name);
694 
695   struct RegisterAlias {
696     int reg;
697     const char* name;
698   };
699 
700  private:
701   static const char* names_[kNumRegisters];
702   static const RegisterAlias aliases_[];
703 };
704 
705 // Helper functions for converting between VFP register numbers and names.
706 class VFPRegisters {
707  public:
708   // Return the name of the register.
709   static const char* Name(int reg, bool is_double);
710 
711   // Lookup the register number for the name provided.
712   // Set flag pointed by is_double to true if register
713   // is double-precision.
714   static int Number(const char* name, bool* is_double);
715 
716  private:
717   static const char* names_[kNumVFPRegisters];
718 };
719 
720 
721 }  // namespace internal
722 }  // namespace v8
723 
724 #endif  // V8_ARM_CONSTANTS_ARM_H_
725