1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_HEAP_HEAP_H_ 6 #define V8_HEAP_HEAP_H_ 7 8 #include <cmath> 9 #include <map> 10 11 // Clients of this interface shouldn't depend on lots of heap internals. 12 // Do not include anything from src/heap here! 13 #include "include/v8.h" 14 #include "src/allocation.h" 15 #include "src/assert-scope.h" 16 #include "src/base/atomic-utils.h" 17 #include "src/globals.h" 18 #include "src/heap-symbols.h" 19 #include "src/list.h" 20 #include "src/objects.h" 21 22 namespace v8 { 23 namespace internal { 24 25 using v8::MemoryPressureLevel; 26 27 // Defines all the roots in Heap. 28 #define STRONG_ROOT_LIST(V) \ 29 /* Cluster the most popular ones in a few cache lines here at the top. */ \ 30 /* The first 32 entries are most often used in the startup snapshot and */ \ 31 /* can use a shorter representation in the serialization format. */ \ 32 V(Map, free_space_map, FreeSpaceMap) \ 33 V(Map, one_pointer_filler_map, OnePointerFillerMap) \ 34 V(Map, two_pointer_filler_map, TwoPointerFillerMap) \ 35 V(Oddball, uninitialized_value, UninitializedValue) \ 36 V(Oddball, undefined_value, UndefinedValue) \ 37 V(Oddball, the_hole_value, TheHoleValue) \ 38 V(Oddball, null_value, NullValue) \ 39 V(Oddball, true_value, TrueValue) \ 40 V(Oddball, false_value, FalseValue) \ 41 V(String, empty_string, empty_string) \ 42 V(Map, meta_map, MetaMap) \ 43 V(Map, byte_array_map, ByteArrayMap) \ 44 V(Map, fixed_array_map, FixedArrayMap) \ 45 V(Map, fixed_cow_array_map, FixedCOWArrayMap) \ 46 V(Map, hash_table_map, HashTableMap) \ 47 V(Map, symbol_map, SymbolMap) \ 48 V(Map, one_byte_string_map, OneByteStringMap) \ 49 V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap) \ 50 V(Map, scope_info_map, ScopeInfoMap) \ 51 V(Map, shared_function_info_map, SharedFunctionInfoMap) \ 52 V(Map, code_map, CodeMap) \ 53 V(Map, function_context_map, FunctionContextMap) \ 54 V(Map, cell_map, CellMap) \ 55 V(Map, weak_cell_map, WeakCellMap) \ 56 V(Map, global_property_cell_map, GlobalPropertyCellMap) \ 57 V(Map, foreign_map, ForeignMap) \ 58 V(Map, heap_number_map, HeapNumberMap) \ 59 V(Map, transition_array_map, TransitionArrayMap) \ 60 V(FixedArray, empty_literals_array, EmptyLiteralsArray) \ 61 V(FixedArray, empty_type_feedback_vector, EmptyTypeFeedbackVector) \ 62 V(FixedArray, empty_fixed_array, EmptyFixedArray) \ 63 V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \ 64 /* Entries beyond the first 32 */ \ 65 /* The roots above this line should be boring from a GC point of view. */ \ 66 /* This means they are never in new space and never on a page that is */ \ 67 /* being compacted. */ \ 68 /* Empty scope info */ \ 69 V(ScopeInfo, empty_scope_info, EmptyScopeInfo) \ 70 /* Oddballs */ \ 71 V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \ 72 V(Oddball, arguments_marker, ArgumentsMarker) \ 73 V(Oddball, exception, Exception) \ 74 V(Oddball, termination_exception, TerminationException) \ 75 V(Oddball, optimized_out, OptimizedOut) \ 76 V(Oddball, stale_register, StaleRegister) \ 77 /* Context maps */ \ 78 V(Map, native_context_map, NativeContextMap) \ 79 V(Map, module_context_map, ModuleContextMap) \ 80 V(Map, script_context_map, ScriptContextMap) \ 81 V(Map, block_context_map, BlockContextMap) \ 82 V(Map, catch_context_map, CatchContextMap) \ 83 V(Map, with_context_map, WithContextMap) \ 84 V(Map, debug_evaluate_context_map, DebugEvaluateContextMap) \ 85 V(Map, script_context_table_map, ScriptContextTableMap) \ 86 /* Maps */ \ 87 V(Map, fixed_double_array_map, FixedDoubleArrayMap) \ 88 V(Map, mutable_heap_number_map, MutableHeapNumberMap) \ 89 V(Map, ordered_hash_table_map, OrderedHashTableMap) \ 90 V(Map, unseeded_number_dictionary_map, UnseededNumberDictionaryMap) \ 91 V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap) \ 92 V(Map, message_object_map, JSMessageObjectMap) \ 93 V(Map, external_map, ExternalMap) \ 94 V(Map, bytecode_array_map, BytecodeArrayMap) \ 95 V(Map, module_info_map, ModuleInfoMap) \ 96 /* String maps */ \ 97 V(Map, native_source_string_map, NativeSourceStringMap) \ 98 V(Map, string_map, StringMap) \ 99 V(Map, cons_one_byte_string_map, ConsOneByteStringMap) \ 100 V(Map, cons_string_map, ConsStringMap) \ 101 V(Map, sliced_string_map, SlicedStringMap) \ 102 V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap) \ 103 V(Map, external_string_map, ExternalStringMap) \ 104 V(Map, external_string_with_one_byte_data_map, \ 105 ExternalStringWithOneByteDataMap) \ 106 V(Map, external_one_byte_string_map, ExternalOneByteStringMap) \ 107 V(Map, short_external_string_map, ShortExternalStringMap) \ 108 V(Map, short_external_string_with_one_byte_data_map, \ 109 ShortExternalStringWithOneByteDataMap) \ 110 V(Map, internalized_string_map, InternalizedStringMap) \ 111 V(Map, external_internalized_string_map, ExternalInternalizedStringMap) \ 112 V(Map, external_internalized_string_with_one_byte_data_map, \ 113 ExternalInternalizedStringWithOneByteDataMap) \ 114 V(Map, external_one_byte_internalized_string_map, \ 115 ExternalOneByteInternalizedStringMap) \ 116 V(Map, short_external_internalized_string_map, \ 117 ShortExternalInternalizedStringMap) \ 118 V(Map, short_external_internalized_string_with_one_byte_data_map, \ 119 ShortExternalInternalizedStringWithOneByteDataMap) \ 120 V(Map, short_external_one_byte_internalized_string_map, \ 121 ShortExternalOneByteInternalizedStringMap) \ 122 V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap) \ 123 /* Array element maps */ \ 124 V(Map, fixed_uint8_array_map, FixedUint8ArrayMap) \ 125 V(Map, fixed_int8_array_map, FixedInt8ArrayMap) \ 126 V(Map, fixed_uint16_array_map, FixedUint16ArrayMap) \ 127 V(Map, fixed_int16_array_map, FixedInt16ArrayMap) \ 128 V(Map, fixed_uint32_array_map, FixedUint32ArrayMap) \ 129 V(Map, fixed_int32_array_map, FixedInt32ArrayMap) \ 130 V(Map, fixed_float32_array_map, FixedFloat32ArrayMap) \ 131 V(Map, fixed_float64_array_map, FixedFloat64ArrayMap) \ 132 V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap) \ 133 V(Map, float32x4_map, Float32x4Map) \ 134 V(Map, int32x4_map, Int32x4Map) \ 135 V(Map, uint32x4_map, Uint32x4Map) \ 136 V(Map, bool32x4_map, Bool32x4Map) \ 137 V(Map, int16x8_map, Int16x8Map) \ 138 V(Map, uint16x8_map, Uint16x8Map) \ 139 V(Map, bool16x8_map, Bool16x8Map) \ 140 V(Map, int8x16_map, Int8x16Map) \ 141 V(Map, uint8x16_map, Uint8x16Map) \ 142 V(Map, bool8x16_map, Bool8x16Map) \ 143 /* Canonical empty values */ \ 144 V(ByteArray, empty_byte_array, EmptyByteArray) \ 145 V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array) \ 146 V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array) \ 147 V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array) \ 148 V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array) \ 149 V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array) \ 150 V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array) \ 151 V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array) \ 152 V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array) \ 153 V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array, \ 154 EmptyFixedUint8ClampedArray) \ 155 V(Script, empty_script, EmptyScript) \ 156 V(Cell, undefined_cell, UndefinedCell) \ 157 V(FixedArray, empty_sloppy_arguments_elements, EmptySloppyArgumentsElements) \ 158 V(SeededNumberDictionary, empty_slow_element_dictionary, \ 159 EmptySlowElementDictionary) \ 160 V(TypeFeedbackVector, dummy_vector, DummyVector) \ 161 V(PropertyCell, empty_property_cell, EmptyPropertyCell) \ 162 V(WeakCell, empty_weak_cell, EmptyWeakCell) \ 163 /* Protectors */ \ 164 V(PropertyCell, array_protector, ArrayProtector) \ 165 V(Cell, is_concat_spreadable_protector, IsConcatSpreadableProtector) \ 166 V(PropertyCell, has_instance_protector, HasInstanceProtector) \ 167 V(Cell, species_protector, SpeciesProtector) \ 168 V(PropertyCell, string_length_protector, StringLengthProtector) \ 169 V(Cell, fast_array_iteration_protector, FastArrayIterationProtector) \ 170 V(Cell, array_iterator_protector, ArrayIteratorProtector) \ 171 /* Special numbers */ \ 172 V(HeapNumber, nan_value, NanValue) \ 173 V(HeapNumber, hole_nan_value, HoleNanValue) \ 174 V(HeapNumber, infinity_value, InfinityValue) \ 175 V(HeapNumber, minus_zero_value, MinusZeroValue) \ 176 V(HeapNumber, minus_infinity_value, MinusInfinityValue) \ 177 /* Caches */ \ 178 V(FixedArray, number_string_cache, NumberStringCache) \ 179 V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \ 180 V(FixedArray, string_split_cache, StringSplitCache) \ 181 V(FixedArray, regexp_multiple_cache, RegExpMultipleCache) \ 182 V(Object, instanceof_cache_function, InstanceofCacheFunction) \ 183 V(Object, instanceof_cache_map, InstanceofCacheMap) \ 184 V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \ 185 V(FixedArray, natives_source_cache, NativesSourceCache) \ 186 V(FixedArray, experimental_natives_source_cache, \ 187 ExperimentalNativesSourceCache) \ 188 V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache) \ 189 V(FixedArray, experimental_extra_natives_source_cache, \ 190 ExperimentalExtraNativesSourceCache) \ 191 /* Lists and dictionaries */ \ 192 V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary) \ 193 V(Object, symbol_registry, SymbolRegistry) \ 194 V(Object, script_list, ScriptList) \ 195 V(UnseededNumberDictionary, code_stubs, CodeStubs) \ 196 V(FixedArray, materialized_objects, MaterializedObjects) \ 197 V(FixedArray, microtask_queue, MicrotaskQueue) \ 198 V(FixedArray, detached_contexts, DetachedContexts) \ 199 V(ArrayList, retained_maps, RetainedMaps) \ 200 V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable) \ 201 /* weak_new_space_object_to_code_list is an array of weak cells, where */ \ 202 /* slots with even indices refer to the weak object, and the subsequent */ \ 203 /* slots refer to the code with the reference to the weak object. */ \ 204 V(ArrayList, weak_new_space_object_to_code_list, \ 205 WeakNewSpaceObjectToCodeList) \ 206 V(Object, weak_stack_trace_list, WeakStackTraceList) \ 207 V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos) \ 208 V(FixedArray, serialized_templates, SerializedTemplates) \ 209 /* Configured values */ \ 210 V(TemplateList, message_listeners, MessageListeners) \ 211 V(Code, js_entry_code, JsEntryCode) \ 212 V(Code, js_construct_entry_code, JsConstructEntryCode) \ 213 /* Oddball maps */ \ 214 V(Map, undefined_map, UndefinedMap) \ 215 V(Map, the_hole_map, TheHoleMap) \ 216 V(Map, null_map, NullMap) \ 217 V(Map, boolean_map, BooleanMap) \ 218 V(Map, uninitialized_map, UninitializedMap) \ 219 V(Map, arguments_marker_map, ArgumentsMarkerMap) \ 220 V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap) \ 221 V(Map, exception_map, ExceptionMap) \ 222 V(Map, termination_exception_map, TerminationExceptionMap) \ 223 V(Map, optimized_out_map, OptimizedOutMap) \ 224 V(Map, stale_register_map, StaleRegisterMap) 225 226 // Entries in this list are limited to Smis and are not visited during GC. 227 #define SMI_ROOT_LIST(V) \ 228 V(Smi, stack_limit, StackLimit) \ 229 V(Smi, real_stack_limit, RealStackLimit) \ 230 V(Smi, last_script_id, LastScriptId) \ 231 V(Smi, hash_seed, HashSeed) \ 232 /* To distinguish the function templates, so that we can find them in the */ \ 233 /* function cache of the native context. */ \ 234 V(Smi, next_template_serial_number, NextTemplateSerialNumber) \ 235 V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \ 236 V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset) \ 237 V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset) \ 238 V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset) \ 239 V(Smi, interpreter_entry_return_pc_offset, InterpreterEntryReturnPCOffset) 240 241 #define ROOT_LIST(V) \ 242 STRONG_ROOT_LIST(V) \ 243 SMI_ROOT_LIST(V) \ 244 V(StringTable, string_table, StringTable) 245 246 247 // Heap roots that are known to be immortal immovable, for which we can safely 248 // skip write barriers. This list is not complete and has omissions. 249 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \ 250 V(ByteArrayMap) \ 251 V(BytecodeArrayMap) \ 252 V(FreeSpaceMap) \ 253 V(OnePointerFillerMap) \ 254 V(TwoPointerFillerMap) \ 255 V(UndefinedValue) \ 256 V(TheHoleValue) \ 257 V(NullValue) \ 258 V(TrueValue) \ 259 V(FalseValue) \ 260 V(UninitializedValue) \ 261 V(CellMap) \ 262 V(GlobalPropertyCellMap) \ 263 V(SharedFunctionInfoMap) \ 264 V(MetaMap) \ 265 V(HeapNumberMap) \ 266 V(MutableHeapNumberMap) \ 267 V(Float32x4Map) \ 268 V(Int32x4Map) \ 269 V(Uint32x4Map) \ 270 V(Bool32x4Map) \ 271 V(Int16x8Map) \ 272 V(Uint16x8Map) \ 273 V(Bool16x8Map) \ 274 V(Int8x16Map) \ 275 V(Uint8x16Map) \ 276 V(Bool8x16Map) \ 277 V(NativeContextMap) \ 278 V(FixedArrayMap) \ 279 V(CodeMap) \ 280 V(ScopeInfoMap) \ 281 V(ModuleInfoMap) \ 282 V(FixedCOWArrayMap) \ 283 V(FixedDoubleArrayMap) \ 284 V(WeakCellMap) \ 285 V(TransitionArrayMap) \ 286 V(NoInterceptorResultSentinel) \ 287 V(HashTableMap) \ 288 V(OrderedHashTableMap) \ 289 V(EmptyFixedArray) \ 290 V(EmptyByteArray) \ 291 V(EmptyDescriptorArray) \ 292 V(ArgumentsMarker) \ 293 V(SymbolMap) \ 294 V(SloppyArgumentsElementsMap) \ 295 V(FunctionContextMap) \ 296 V(CatchContextMap) \ 297 V(WithContextMap) \ 298 V(BlockContextMap) \ 299 V(ModuleContextMap) \ 300 V(ScriptContextMap) \ 301 V(UndefinedMap) \ 302 V(TheHoleMap) \ 303 V(NullMap) \ 304 V(BooleanMap) \ 305 V(UninitializedMap) \ 306 V(ArgumentsMarkerMap) \ 307 V(JSMessageObjectMap) \ 308 V(ForeignMap) \ 309 V(NanValue) \ 310 V(InfinityValue) \ 311 V(MinusZeroValue) \ 312 V(MinusInfinityValue) \ 313 V(EmptyWeakCell) \ 314 V(empty_string) \ 315 PRIVATE_SYMBOL_LIST(V) 316 317 // Forward declarations. 318 class AllocationObserver; 319 class ArrayBufferTracker; 320 class GCIdleTimeAction; 321 class GCIdleTimeHandler; 322 class GCIdleTimeHeapState; 323 class GCTracer; 324 class HeapObjectsFilter; 325 class HeapStats; 326 class HistogramTimer; 327 class Isolate; 328 class MemoryAllocator; 329 class MemoryReducer; 330 class ObjectIterator; 331 class ObjectStats; 332 class Page; 333 class PagedSpace; 334 class Scavenger; 335 class ScavengeJob; 336 class Space; 337 class StoreBuffer; 338 class TracePossibleWrapperReporter; 339 class WeakObjectRetainer; 340 341 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); 342 343 enum ArrayStorageAllocationMode { 344 DONT_INITIALIZE_ARRAY_ELEMENTS, 345 INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE 346 }; 347 348 enum class ClearRecordedSlots { kYes, kNo }; 349 350 enum class ClearBlackArea { kYes, kNo }; 351 352 enum class GarbageCollectionReason { 353 kUnknown = 0, 354 kAllocationFailure = 1, 355 kAllocationLimit = 2, 356 kContextDisposal = 3, 357 kCountersExtension = 4, 358 kDebugger = 5, 359 kDeserializer = 6, 360 kExternalMemoryPressure = 7, 361 kFinalizeMarkingViaStackGuard = 8, 362 kFinalizeMarkingViaTask = 9, 363 kFullHashtable = 10, 364 kHeapProfiler = 11, 365 kIdleTask = 12, 366 kLastResort = 13, 367 kLowMemoryNotification = 14, 368 kMakeHeapIterable = 15, 369 kMemoryPressure = 16, 370 kMemoryReducer = 17, 371 kRuntime = 18, 372 kSamplingProfiler = 19, 373 kSnapshotCreator = 20, 374 kTesting = 21 375 // If you add new items here, then update the incremental_marking_reason, 376 // mark_compact_reason, and scavenge_reason counters in counters.h. 377 // Also update src/tools/metrics/histograms/histograms.xml in chromium. 378 }; 379 380 // A queue of objects promoted during scavenge. Each object is accompanied by 381 // its size to avoid dereferencing a map pointer for scanning. The last page in 382 // to-space is used for the promotion queue. On conflict during scavenge, the 383 // promotion queue is allocated externally and all entries are copied to the 384 // external queue. 385 class PromotionQueue { 386 public: PromotionQueue(Heap * heap)387 explicit PromotionQueue(Heap* heap) 388 : front_(nullptr), 389 rear_(nullptr), 390 limit_(nullptr), 391 emergency_stack_(nullptr), 392 heap_(heap) {} 393 394 void Initialize(); 395 void Destroy(); 396 397 inline void SetNewLimit(Address limit); 398 inline bool IsBelowPromotionQueue(Address to_space_top); 399 400 inline void insert(HeapObject* target, int32_t size, bool was_marked_black); 401 inline void remove(HeapObject** target, int32_t* size, 402 bool* was_marked_black); 403 is_empty()404 bool is_empty() { 405 return (front_ == rear_) && 406 (emergency_stack_ == nullptr || emergency_stack_->length() == 0); 407 } 408 409 private: 410 struct Entry { EntryEntry411 Entry(HeapObject* obj, int32_t size, bool was_marked_black) 412 : obj_(obj), size_(size), was_marked_black_(was_marked_black) {} 413 414 HeapObject* obj_; 415 int32_t size_ : 31; 416 bool was_marked_black_ : 1; 417 }; 418 419 inline Page* GetHeadPage(); 420 421 void RelocateQueueHead(); 422 423 // The front of the queue is higher in the memory page chain than the rear. 424 struct Entry* front_; 425 struct Entry* rear_; 426 struct Entry* limit_; 427 428 List<Entry>* emergency_stack_; 429 Heap* heap_; 430 431 DISALLOW_COPY_AND_ASSIGN(PromotionQueue); 432 }; 433 434 class AllocationResult { 435 public: 436 static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) { 437 return AllocationResult(space); 438 } 439 440 // Implicit constructor from Object*. AllocationResult(Object * object)441 AllocationResult(Object* object) // NOLINT 442 : object_(object) { 443 // AllocationResults can't return Smis, which are used to represent 444 // failure and the space to retry in. 445 CHECK(!object->IsSmi()); 446 } 447 AllocationResult()448 AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {} 449 IsRetry()450 inline bool IsRetry() { return object_->IsSmi(); } 451 inline HeapObject* ToObjectChecked(); 452 inline AllocationSpace RetrySpace(); 453 454 template <typename T> To(T ** obj)455 bool To(T** obj) { 456 if (IsRetry()) return false; 457 *obj = T::cast(object_); 458 return true; 459 } 460 461 private: AllocationResult(AllocationSpace space)462 explicit AllocationResult(AllocationSpace space) 463 : object_(Smi::FromInt(static_cast<int>(space))) {} 464 465 Object* object_; 466 }; 467 468 STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize); 469 470 #ifdef DEBUG 471 struct CommentStatistic { 472 const char* comment; 473 int size; 474 int count; ClearCommentStatistic475 void Clear() { 476 comment = NULL; 477 size = 0; 478 count = 0; 479 } 480 // Must be small, since an iteration is used for lookup. 481 static const int kMaxComments = 64; 482 }; 483 #endif 484 485 class NumberAndSizeInfo BASE_EMBEDDED { 486 public: NumberAndSizeInfo()487 NumberAndSizeInfo() : number_(0), bytes_(0) {} 488 number()489 int number() const { return number_; } increment_number(int num)490 void increment_number(int num) { number_ += num; } 491 bytes()492 int bytes() const { return bytes_; } increment_bytes(int size)493 void increment_bytes(int size) { bytes_ += size; } 494 clear()495 void clear() { 496 number_ = 0; 497 bytes_ = 0; 498 } 499 500 private: 501 int number_; 502 int bytes_; 503 }; 504 505 // HistogramInfo class for recording a single "bar" of a histogram. This 506 // class is used for collecting statistics to print to the log file. 507 class HistogramInfo : public NumberAndSizeInfo { 508 public: HistogramInfo()509 HistogramInfo() : NumberAndSizeInfo(), name_(nullptr) {} 510 name()511 const char* name() { return name_; } set_name(const char * name)512 void set_name(const char* name) { name_ = name; } 513 514 private: 515 const char* name_; 516 }; 517 518 class Heap { 519 public: 520 // Declare all the root indices. This defines the root list order. 521 enum RootListIndex { 522 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, 523 STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION) 524 #undef ROOT_INDEX_DECLARATION 525 526 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex, 527 INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION) 528 #undef STRING_DECLARATION 529 530 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex, 531 PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 532 #undef SYMBOL_INDEX_DECLARATION 533 534 #define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex, 535 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 536 WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION) 537 #undef SYMBOL_INDEX_DECLARATION 538 539 // Utility type maps 540 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex, 541 STRUCT_LIST(DECLARE_STRUCT_MAP) 542 #undef DECLARE_STRUCT_MAP 543 kStringTableRootIndex, 544 545 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, 546 SMI_ROOT_LIST(ROOT_INDEX_DECLARATION) 547 #undef ROOT_INDEX_DECLARATION 548 kRootListLength, 549 kStrongRootListLength = kStringTableRootIndex, 550 kSmiRootsStart = kStringTableRootIndex + 1 551 }; 552 553 enum FindMementoMode { kForRuntime, kForGC }; 554 555 enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT }; 556 557 // Indicates whether live bytes adjustment is triggered 558 // - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER), 559 // - or from within GC (CONCURRENT_TO_SWEEPER), 560 // - or mutator code (CONCURRENT_TO_SWEEPER). 561 enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER }; 562 563 enum UpdateAllocationSiteMode { kGlobal, kCached }; 564 565 // Taking this lock prevents the GC from entering a phase that relocates 566 // object references. 567 class RelocationLock { 568 public: RelocationLock(Heap * heap)569 explicit RelocationLock(Heap* heap) : heap_(heap) { 570 heap_->relocation_mutex_.Lock(); 571 } 572 ~RelocationLock()573 ~RelocationLock() { heap_->relocation_mutex_.Unlock(); } 574 575 private: 576 Heap* heap_; 577 }; 578 579 // Support for partial snapshots. After calling this we have a linear 580 // space to write objects in each space. 581 struct Chunk { 582 uint32_t size; 583 Address start; 584 Address end; 585 }; 586 typedef List<Chunk> Reservation; 587 588 static const int kInitalOldGenerationLimitFactor = 2; 589 590 #if V8_OS_ANDROID 591 // Don't apply pointer multiplier on Android since it has no swap space and 592 // should instead adapt it's heap size based on available physical memory. 593 static const int kPointerMultiplier = 1; 594 #else 595 static const int kPointerMultiplier = i::kPointerSize / 4; 596 #endif 597 598 // The new space size has to be a power of 2. Sizes are in MB. 599 static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier; 600 static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier; 601 static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier; 602 static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier; 603 604 // The old space size has to be a multiple of Page::kPageSize. 605 // Sizes are in MB. 606 static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier; 607 static const int kMaxOldSpaceSizeMediumMemoryDevice = 608 256 * kPointerMultiplier; 609 static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier; 610 static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier; 611 612 // The executable size has to be a multiple of Page::kPageSize. 613 // Sizes are in MB. 614 static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier; 615 static const int kMaxExecutableSizeMediumMemoryDevice = 616 192 * kPointerMultiplier; 617 static const int kMaxExecutableSizeHighMemoryDevice = 618 256 * kPointerMultiplier; 619 static const int kMaxExecutableSizeHugeMemoryDevice = 620 256 * kPointerMultiplier; 621 622 static const int kTraceRingBufferSize = 512; 623 static const int kStacktraceBufferSize = 512; 624 625 V8_EXPORT_PRIVATE static const double kMinHeapGrowingFactor; 626 V8_EXPORT_PRIVATE static const double kMaxHeapGrowingFactor; 627 static const double kMaxHeapGrowingFactorMemoryConstrained; 628 static const double kMaxHeapGrowingFactorIdle; 629 static const double kConservativeHeapGrowingFactor; 630 static const double kTargetMutatorUtilization; 631 632 static const int kNoGCFlags = 0; 633 static const int kReduceMemoryFootprintMask = 1; 634 static const int kAbortIncrementalMarkingMask = 2; 635 static const int kFinalizeIncrementalMarkingMask = 4; 636 637 // Making the heap iterable requires us to abort incremental marking. 638 static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask; 639 640 // The roots that have an index less than this are always in old space. 641 static const int kOldSpaceRoots = 0x20; 642 643 // The minimum size of a HeapObject on the heap. 644 static const int kMinObjectSizeInWords = 2; 645 646 STATIC_ASSERT(kUndefinedValueRootIndex == 647 Internals::kUndefinedValueRootIndex); 648 STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex); 649 STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex); 650 STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex); 651 STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex); 652 STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex); 653 654 // Calculates the maximum amount of filler that could be required by the 655 // given alignment. 656 static int GetMaximumFillToAlign(AllocationAlignment alignment); 657 // Calculates the actual amount of filler required for a given address at the 658 // given alignment. 659 static int GetFillToAlign(Address address, AllocationAlignment alignment); 660 661 template <typename T> 662 static inline bool IsOneByte(T t, int chars); 663 664 static void FatalProcessOutOfMemory(const char* location, 665 bool is_heap_oom = false); 666 667 static bool RootIsImmortalImmovable(int root_index); 668 669 // Checks whether the space is valid. 670 static bool IsValidAllocationSpace(AllocationSpace space); 671 672 // Generated code can embed direct references to non-writable roots if 673 // they are in new space. 674 static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index); 675 676 // Zapping is needed for verify heap, and always done in debug builds. ShouldZapGarbage()677 static inline bool ShouldZapGarbage() { 678 #ifdef DEBUG 679 return true; 680 #else 681 #ifdef VERIFY_HEAP 682 return FLAG_verify_heap; 683 #else 684 return false; 685 #endif 686 #endif 687 } 688 IsYoungGenerationCollector(GarbageCollector collector)689 static inline bool IsYoungGenerationCollector(GarbageCollector collector) { 690 return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR; 691 } 692 YoungGenerationCollector()693 static inline GarbageCollector YoungGenerationCollector() { 694 return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER; 695 } 696 CollectorName(GarbageCollector collector)697 static inline const char* CollectorName(GarbageCollector collector) { 698 switch (collector) { 699 case SCAVENGER: 700 return "Scavenger"; 701 case MARK_COMPACTOR: 702 return "Mark-Compact"; 703 case MINOR_MARK_COMPACTOR: 704 return "Minor Mark-Compact"; 705 } 706 return "Unknown collector"; 707 } 708 709 V8_EXPORT_PRIVATE static double HeapGrowingFactor(double gc_speed, 710 double mutator_speed); 711 712 // Copy block of memory from src to dst. Size of block should be aligned 713 // by pointer size. 714 static inline void CopyBlock(Address dst, Address src, int byte_size); 715 716 // Determines a static visitor id based on the given {map} that can then be 717 // stored on the map to facilitate fast dispatch for {StaticVisitorBase}. 718 static int GetStaticVisitorIdForMap(Map* map); 719 720 // Notifies the heap that is ok to start marking or other activities that 721 // should not happen during deserialization. 722 void NotifyDeserializationComplete(); 723 724 inline Address* NewSpaceAllocationTopAddress(); 725 inline Address* NewSpaceAllocationLimitAddress(); 726 inline Address* OldSpaceAllocationTopAddress(); 727 inline Address* OldSpaceAllocationLimitAddress(); 728 729 // Clear the Instanceof cache (used when a prototype changes). 730 inline void ClearInstanceofCache(); 731 732 // FreeSpace objects have a null map after deserialization. Update the map. 733 void RepairFreeListsAfterDeserialization(); 734 735 // Move len elements within a given array from src_index index to dst_index 736 // index. 737 void MoveElements(FixedArray* array, int dst_index, int src_index, int len); 738 739 // Initialize a filler object to keep the ability to iterate over the heap 740 // when introducing gaps within pages. If slots could have been recorded in 741 // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise, 742 // pass ClearRecordedSlots::kNo. If the filler was created in a black area 743 // we may want to clear the corresponding mark bits with ClearBlackArea::kYes, 744 // which is the default. ClearBlackArea::kNo does not clear the mark bits. 745 void CreateFillerObjectAt( 746 Address addr, int size, ClearRecordedSlots mode, 747 ClearBlackArea black_area_mode = ClearBlackArea::kYes); 748 749 bool CanMoveObjectStart(HeapObject* object); 750 751 // Maintain consistency of live bytes during incremental marking. 752 void AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode); 753 754 // Trim the given array from the left. Note that this relocates the object 755 // start and hence is only valid if there is only a single reference to it. 756 FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); 757 758 // Trim the given array from the right. 759 template<Heap::InvocationMode mode> 760 void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); 761 762 // Converts the given boolean condition to JavaScript boolean value. 763 inline Oddball* ToBoolean(bool condition); 764 765 // Check whether the heap is currently iterable. 766 bool IsHeapIterable(); 767 768 // Notify the heap that a context has been disposed. 769 int NotifyContextDisposed(bool dependant_context); 770 set_native_contexts_list(Object * object)771 void set_native_contexts_list(Object* object) { 772 native_contexts_list_ = object; 773 } native_contexts_list()774 Object* native_contexts_list() const { return native_contexts_list_; } 775 set_allocation_sites_list(Object * object)776 void set_allocation_sites_list(Object* object) { 777 allocation_sites_list_ = object; 778 } allocation_sites_list()779 Object* allocation_sites_list() { return allocation_sites_list_; } 780 781 // Used in CreateAllocationSiteStub and the (de)serializer. allocation_sites_list_address()782 Object** allocation_sites_list_address() { return &allocation_sites_list_; } 783 set_encountered_weak_collections(Object * weak_collection)784 void set_encountered_weak_collections(Object* weak_collection) { 785 encountered_weak_collections_ = weak_collection; 786 } encountered_weak_collections()787 Object* encountered_weak_collections() const { 788 return encountered_weak_collections_; 789 } 790 set_encountered_weak_cells(Object * weak_cell)791 void set_encountered_weak_cells(Object* weak_cell) { 792 encountered_weak_cells_ = weak_cell; 793 } encountered_weak_cells()794 Object* encountered_weak_cells() const { return encountered_weak_cells_; } 795 set_encountered_transition_arrays(Object * transition_array)796 void set_encountered_transition_arrays(Object* transition_array) { 797 encountered_transition_arrays_ = transition_array; 798 } encountered_transition_arrays()799 Object* encountered_transition_arrays() const { 800 return encountered_transition_arrays_; 801 } 802 803 // Number of mark-sweeps. ms_count()804 int ms_count() const { return ms_count_; } 805 806 // Checks whether the given object is allowed to be migrated from it's 807 // current space into the given destination space. Used for debugging. 808 inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest); 809 810 void CheckHandleCount(); 811 812 // Number of "runtime allocations" done so far. allocations_count()813 uint32_t allocations_count() { return allocations_count_; } 814 815 // Print short heap statistics. 816 void PrintShortHeapStatistics(); 817 gc_state()818 inline HeapState gc_state() { return gc_state_; } 819 IsInGCPostProcessing()820 inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; } 821 822 // If an object has an AllocationMemento trailing it, return it, otherwise 823 // return NULL; 824 template <FindMementoMode mode> 825 inline AllocationMemento* FindAllocationMemento(HeapObject* object); 826 827 // Returns false if not able to reserve. 828 bool ReserveSpace(Reservation* reservations, List<Address>* maps); 829 830 // 831 // Support for the API. 832 // 833 834 void CreateApiObjects(); 835 836 // Implements the corresponding V8 API function. 837 bool IdleNotification(double deadline_in_seconds); 838 bool IdleNotification(int idle_time_in_ms); 839 840 void MemoryPressureNotification(MemoryPressureLevel level, 841 bool is_isolate_locked); 842 void CheckMemoryPressure(); 843 844 double MonotonicallyIncreasingTimeInMs(); 845 846 void RecordStats(HeapStats* stats, bool take_snapshot = false); 847 848 // Check new space expansion criteria and expand semispaces if it was hit. 849 void CheckNewSpaceExpansionCriteria(); 850 851 void VisitExternalResources(v8::ExternalResourceVisitor* visitor); 852 853 // An object should be promoted if the object has survived a 854 // scavenge operation. 855 inline bool ShouldBePromoted(Address old_address, int object_size); 856 857 void ClearNormalizedMapCaches(); 858 859 void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature); 860 861 // Completely clear the Instanceof cache (to stop it keeping objects alive 862 // around a GC). 863 inline void CompletelyClearInstanceofCache(); 864 865 inline uint32_t HashSeed(); 866 867 inline int NextScriptId(); 868 869 inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset); 870 inline void SetConstructStubDeoptPCOffset(int pc_offset); 871 inline void SetGetterStubDeoptPCOffset(int pc_offset); 872 inline void SetSetterStubDeoptPCOffset(int pc_offset); 873 inline void SetInterpreterEntryReturnPCOffset(int pc_offset); 874 inline int GetNextTemplateSerialNumber(); 875 876 inline void SetSerializedTemplates(FixedArray* templates); 877 878 // For post mortem debugging. 879 void RememberUnmappedPage(Address page, bool compacted); 880 881 // Global inline caching age: it is incremented on some GCs after context 882 // disposal. We use it to flush inline caches. global_ic_age()883 int global_ic_age() { return global_ic_age_; } 884 AgeInlineCaches()885 void AgeInlineCaches() { 886 global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax; 887 } 888 external_memory_hard_limit()889 int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; } 890 external_memory()891 int64_t external_memory() { return external_memory_; } update_external_memory(int64_t delta)892 void update_external_memory(int64_t delta) { external_memory_ += delta; } 893 update_external_memory_concurrently_freed(intptr_t freed)894 void update_external_memory_concurrently_freed(intptr_t freed) { 895 external_memory_concurrently_freed_.Increment(freed); 896 } 897 account_external_memory_concurrently_freed()898 void account_external_memory_concurrently_freed() { 899 external_memory_ -= external_memory_concurrently_freed_.Value(); 900 external_memory_concurrently_freed_.SetValue(0); 901 } 902 903 void DeoptMarkedAllocationSites(); 904 905 inline bool DeoptMaybeTenuredAllocationSites(); 906 907 void AddWeakNewSpaceObjectToCodeDependency(Handle<HeapObject> obj, 908 Handle<WeakCell> code); 909 910 void AddWeakObjectToCodeDependency(Handle<HeapObject> obj, 911 Handle<DependentCode> dep); 912 913 DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj); 914 915 void CompactWeakFixedArrays(); 916 917 void AddRetainedMap(Handle<Map> map); 918 919 // This event is triggered after successful allocation of a new object made 920 // by runtime. Allocations of target space for object evacuation do not 921 // trigger the event. In order to track ALL allocations one must turn off 922 // FLAG_inline_new and FLAG_use_allocation_folding. 923 inline void OnAllocationEvent(HeapObject* object, int size_in_bytes); 924 925 // This event is triggered after object is moved to a new place. 926 inline void OnMoveEvent(HeapObject* target, HeapObject* source, 927 int size_in_bytes); 928 deserialization_complete()929 bool deserialization_complete() const { return deserialization_complete_; } 930 931 bool HasLowAllocationRate(); 932 bool HasHighFragmentation(); 933 bool HasHighFragmentation(size_t used, size_t committed); 934 935 void ActivateMemoryReducerIfNeeded(); 936 937 bool ShouldOptimizeForMemoryUsage(); 938 IsLowMemoryDevice()939 bool IsLowMemoryDevice() { 940 return max_old_generation_size_ <= kMaxOldSpaceSizeLowMemoryDevice; 941 } 942 IsMemoryConstrainedDevice()943 bool IsMemoryConstrainedDevice() { 944 return max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice; 945 } 946 HighMemoryPressure()947 bool HighMemoryPressure() { 948 return memory_pressure_level_.Value() != MemoryPressureLevel::kNone; 949 } 950 951 // =========================================================================== 952 // Initialization. =========================================================== 953 // =========================================================================== 954 955 // Configure heap size in MB before setup. Return false if the heap has been 956 // set up already. 957 bool ConfigureHeap(size_t max_semi_space_size, size_t max_old_space_size, 958 size_t max_executable_size, size_t code_range_size); 959 bool ConfigureHeapDefault(); 960 961 // Prepares the heap, setting up memory areas that are needed in the isolate 962 // without actually creating any objects. 963 bool SetUp(); 964 965 // Bootstraps the object heap with the core set of objects required to run. 966 // Returns whether it succeeded. 967 bool CreateHeapObjects(); 968 969 // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr. 970 V8_INLINE void CreateObjectStats(); 971 972 // Destroys all memory allocated by the heap. 973 void TearDown(); 974 975 // Returns whether SetUp has been called. 976 bool HasBeenSetUp(); 977 978 // =========================================================================== 979 // Getters for spaces. ======================================================= 980 // =========================================================================== 981 982 inline Address NewSpaceTop(); 983 new_space()984 NewSpace* new_space() { return new_space_; } old_space()985 OldSpace* old_space() { return old_space_; } code_space()986 OldSpace* code_space() { return code_space_; } map_space()987 MapSpace* map_space() { return map_space_; } lo_space()988 LargeObjectSpace* lo_space() { return lo_space_; } 989 990 inline PagedSpace* paged_space(int idx); 991 inline Space* space(int idx); 992 993 // Returns name of the space. 994 const char* GetSpaceName(int idx); 995 996 // =========================================================================== 997 // Getters to other components. ============================================== 998 // =========================================================================== 999 tracer()1000 GCTracer* tracer() { return tracer_; } 1001 memory_allocator()1002 MemoryAllocator* memory_allocator() { return memory_allocator_; } 1003 promotion_queue()1004 PromotionQueue* promotion_queue() { return &promotion_queue_; } 1005 1006 inline Isolate* isolate(); 1007 mark_compact_collector()1008 MarkCompactCollector* mark_compact_collector() { 1009 return mark_compact_collector_; 1010 } 1011 1012 // =========================================================================== 1013 // Root set access. ========================================================== 1014 // =========================================================================== 1015 1016 // Heap root getters. 1017 #define ROOT_ACCESSOR(type, name, camel_name) inline type* name(); 1018 ROOT_LIST(ROOT_ACCESSOR) 1019 #undef ROOT_ACCESSOR 1020 1021 // Utility type maps. 1022 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map(); STRUCT_LIST(STRUCT_MAP_ACCESSOR)1023 STRUCT_LIST(STRUCT_MAP_ACCESSOR) 1024 #undef STRUCT_MAP_ACCESSOR 1025 1026 #define STRING_ACCESSOR(name, str) inline String* name(); 1027 INTERNALIZED_STRING_LIST(STRING_ACCESSOR) 1028 #undef STRING_ACCESSOR 1029 1030 #define SYMBOL_ACCESSOR(name) inline Symbol* name(); 1031 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR) 1032 #undef SYMBOL_ACCESSOR 1033 1034 #define SYMBOL_ACCESSOR(name, description) inline Symbol* name(); 1035 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR) 1036 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR) 1037 #undef SYMBOL_ACCESSOR 1038 1039 Object* root(RootListIndex index) { return roots_[index]; } root_handle(RootListIndex index)1040 Handle<Object> root_handle(RootListIndex index) { 1041 return Handle<Object>(&roots_[index]); 1042 } 1043 template <typename T> IsRootHandle(Handle<T> handle,RootListIndex * index)1044 bool IsRootHandle(Handle<T> handle, RootListIndex* index) const { 1045 Object** const handle_location = bit_cast<Object**>(handle.address()); 1046 if (handle_location >= &roots_[kRootListLength]) return false; 1047 if (handle_location < &roots_[0]) return false; 1048 *index = static_cast<RootListIndex>(handle_location - &roots_[0]); 1049 return true; 1050 } 1051 1052 // Generated code can embed this address to get access to the roots. roots_array_start()1053 Object** roots_array_start() { return roots_; } 1054 1055 // Sets the stub_cache_ (only used when expanding the dictionary). SetRootCodeStubs(UnseededNumberDictionary * value)1056 void SetRootCodeStubs(UnseededNumberDictionary* value) { 1057 roots_[kCodeStubsRootIndex] = value; 1058 } 1059 SetRootMaterializedObjects(FixedArray * objects)1060 void SetRootMaterializedObjects(FixedArray* objects) { 1061 roots_[kMaterializedObjectsRootIndex] = objects; 1062 } 1063 SetRootScriptList(Object * value)1064 void SetRootScriptList(Object* value) { 1065 roots_[kScriptListRootIndex] = value; 1066 } 1067 SetRootStringTable(StringTable * value)1068 void SetRootStringTable(StringTable* value) { 1069 roots_[kStringTableRootIndex] = value; 1070 } 1071 SetRootNoScriptSharedFunctionInfos(Object * value)1072 void SetRootNoScriptSharedFunctionInfos(Object* value) { 1073 roots_[kNoScriptSharedFunctionInfosRootIndex] = value; 1074 } 1075 SetMessageListeners(TemplateList * value)1076 void SetMessageListeners(TemplateList* value) { 1077 roots_[kMessageListenersRootIndex] = value; 1078 } 1079 1080 // Set the stack limit in the roots_ array. Some architectures generate 1081 // code that looks here, because it is faster than loading from the static 1082 // jslimit_/real_jslimit_ variable in the StackGuard. 1083 void SetStackLimits(); 1084 1085 // The stack limit is thread-dependent. To be able to reproduce the same 1086 // snapshot blob, we need to reset it before serializing. 1087 void ClearStackLimits(); 1088 1089 // Generated code can treat direct references to this root as constant. 1090 bool RootCanBeTreatedAsConstant(RootListIndex root_index); 1091 1092 Map* MapForFixedTypedArray(ExternalArrayType array_type); 1093 RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type); 1094 1095 RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind); 1096 FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map); 1097 1098 void RegisterStrongRoots(Object** start, Object** end); 1099 void UnregisterStrongRoots(Object** start); 1100 1101 // =========================================================================== 1102 // Inline allocation. ======================================================== 1103 // =========================================================================== 1104 1105 // Indicates whether inline bump-pointer allocation has been disabled. inline_allocation_disabled()1106 bool inline_allocation_disabled() { return inline_allocation_disabled_; } 1107 1108 // Switch whether inline bump-pointer allocation should be used. 1109 void EnableInlineAllocation(); 1110 void DisableInlineAllocation(); 1111 1112 // =========================================================================== 1113 // Methods triggering GCs. =================================================== 1114 // =========================================================================== 1115 1116 // Performs garbage collection operation. 1117 // Returns whether there is a chance that another major GC could 1118 // collect more garbage. 1119 inline bool CollectGarbage( 1120 AllocationSpace space, GarbageCollectionReason gc_reason, 1121 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1122 1123 // Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is 1124 // non-zero, then the slower precise sweeper is used, which leaves the heap 1125 // in a state where we can iterate over the heap visiting all objects. 1126 void CollectAllGarbage( 1127 int flags, GarbageCollectionReason gc_reason, 1128 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1129 1130 // Last hope GC, should try to squeeze as much as possible. 1131 void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason); 1132 1133 // Reports and external memory pressure event, either performs a major GC or 1134 // completes incremental marking in order to free external resources. 1135 void ReportExternalMemoryPressure(); 1136 1137 // Invoked when GC was requested via the stack guard. 1138 void HandleGCRequest(); 1139 1140 // =========================================================================== 1141 // Iterators. ================================================================ 1142 // =========================================================================== 1143 1144 // Iterates over all roots in the heap. 1145 void IterateRoots(ObjectVisitor* v, VisitMode mode); 1146 // Iterates over all strong roots in the heap. 1147 void IterateStrongRoots(ObjectVisitor* v, VisitMode mode); 1148 // Iterates over entries in the smi roots list. Only interesting to the 1149 // serializer/deserializer, since GC does not care about smis. 1150 void IterateSmiRoots(ObjectVisitor* v); 1151 // Iterates over all the other roots in the heap. 1152 void IterateWeakRoots(ObjectVisitor* v, VisitMode mode); 1153 1154 // Iterate pointers of promoted objects. 1155 void IterateAndScavengePromotedObject(HeapObject* target, int size, 1156 bool was_marked_black); 1157 1158 // =========================================================================== 1159 // Store buffer API. ========================================================= 1160 // =========================================================================== 1161 1162 // Write barrier support for object[offset] = o; 1163 inline void RecordWrite(Object* object, int offset, Object* o); 1164 inline void RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* target); 1165 void RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo, Object* target); 1166 void RecordWritesIntoCode(Code* code); 1167 inline void RecordFixedArrayElements(FixedArray* array, int offset, 1168 int length); 1169 1170 inline Address* store_buffer_top_address(); 1171 1172 void ClearRecordedSlot(HeapObject* object, Object** slot); 1173 void ClearRecordedSlotRange(Address start, Address end); 1174 1175 // =========================================================================== 1176 // Incremental marking API. ================================================== 1177 // =========================================================================== 1178 1179 // Start incremental marking and ensure that idle time handler can perform 1180 // incremental steps. 1181 void StartIdleIncrementalMarking(GarbageCollectionReason gc_reason); 1182 1183 // Starts incremental marking assuming incremental marking is currently 1184 // stopped. 1185 void StartIncrementalMarking( 1186 int gc_flags, GarbageCollectionReason gc_reason, 1187 GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); 1188 1189 void StartIncrementalMarkingIfAllocationLimitIsReached( 1190 int gc_flags, 1191 GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); 1192 1193 void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason); 1194 1195 bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms, 1196 GarbageCollectionReason gc_reason); 1197 1198 void RegisterReservationsForBlackAllocation(Reservation* reservations); 1199 incremental_marking()1200 IncrementalMarking* incremental_marking() { return incremental_marking_; } 1201 1202 // =========================================================================== 1203 // Embedder heap tracer support. ============================================= 1204 // =========================================================================== 1205 1206 void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer); 1207 UsingEmbedderHeapTracer()1208 bool UsingEmbedderHeapTracer() { return embedder_heap_tracer() != nullptr; } 1209 1210 void TracePossibleWrapper(JSObject* js_object); 1211 1212 void RegisterExternallyReferencedObject(Object** object); 1213 1214 void RegisterWrappersWithEmbedderHeapTracer(); 1215 1216 // In order to avoid running out of memory we force tracing wrappers if there 1217 // are too many of them. 1218 bool RequiresImmediateWrapperProcessing(); 1219 embedder_heap_tracer()1220 EmbedderHeapTracer* embedder_heap_tracer() { return embedder_heap_tracer_; } 1221 wrappers_to_trace()1222 size_t wrappers_to_trace() { return wrappers_to_trace_.size(); } 1223 1224 // =========================================================================== 1225 // External string table API. ================================================ 1226 // =========================================================================== 1227 1228 // Registers an external string. 1229 inline void RegisterExternalString(String* string); 1230 1231 // Finalizes an external string by deleting the associated external 1232 // data and clearing the resource pointer. 1233 inline void FinalizeExternalString(String* string); 1234 1235 // =========================================================================== 1236 // Methods checking/returning the space of a given object/address. =========== 1237 // =========================================================================== 1238 1239 // Returns whether the object resides in new space. 1240 inline bool InNewSpace(Object* object); 1241 inline bool InFromSpace(Object* object); 1242 inline bool InToSpace(Object* object); 1243 1244 // Returns whether the object resides in old space. 1245 inline bool InOldSpace(Object* object); 1246 1247 // Checks whether an address/object in the heap (including auxiliary 1248 // area and unused area). 1249 bool Contains(HeapObject* value); 1250 1251 // Checks whether an address/object in a space. 1252 // Currently used by tests, serialization and heap verification only. 1253 bool InSpace(HeapObject* value, AllocationSpace space); 1254 1255 // Slow methods that can be used for verification as they can also be used 1256 // with off-heap Addresses. 1257 bool ContainsSlow(Address addr); 1258 bool InSpaceSlow(Address addr, AllocationSpace space); 1259 inline bool InNewSpaceSlow(Address address); 1260 inline bool InOldSpaceSlow(Address address); 1261 1262 // =========================================================================== 1263 // Object statistics tracking. =============================================== 1264 // =========================================================================== 1265 1266 // Returns the number of buckets used by object statistics tracking during a 1267 // major GC. Note that the following methods fail gracefully when the bounds 1268 // are exceeded though. 1269 size_t NumberOfTrackedHeapObjectTypes(); 1270 1271 // Returns object statistics about count and size at the last major GC. 1272 // Objects are being grouped into buckets that roughly resemble existing 1273 // instance types. 1274 size_t ObjectCountAtLastGC(size_t index); 1275 size_t ObjectSizeAtLastGC(size_t index); 1276 1277 // Retrieves names of buckets used by object statistics tracking. 1278 bool GetObjectTypeName(size_t index, const char** object_type, 1279 const char** object_sub_type); 1280 1281 // =========================================================================== 1282 // Code statistics. ========================================================== 1283 // =========================================================================== 1284 1285 // Collect code (Code and BytecodeArray objects) statistics. 1286 void CollectCodeStatistics(); 1287 1288 // =========================================================================== 1289 // GC statistics. ============================================================ 1290 // =========================================================================== 1291 1292 // Returns the maximum amount of memory reserved for the heap. MaxReserved()1293 size_t MaxReserved() { 1294 return 2 * max_semi_space_size_ + max_old_generation_size_; 1295 } MaxSemiSpaceSize()1296 size_t MaxSemiSpaceSize() { return max_semi_space_size_; } InitialSemiSpaceSize()1297 size_t InitialSemiSpaceSize() { return initial_semispace_size_; } MaxOldGenerationSize()1298 size_t MaxOldGenerationSize() { return max_old_generation_size_; } MaxExecutableSize()1299 size_t MaxExecutableSize() { return max_executable_size_; } 1300 1301 // Returns the capacity of the heap in bytes w/o growing. Heap grows when 1302 // more spaces are needed until it reaches the limit. 1303 size_t Capacity(); 1304 1305 // Returns the capacity of the old generation. 1306 size_t OldGenerationCapacity(); 1307 1308 // Returns the amount of memory currently committed for the heap. 1309 size_t CommittedMemory(); 1310 1311 // Returns the amount of memory currently committed for the old space. 1312 size_t CommittedOldGenerationMemory(); 1313 1314 // Returns the amount of executable memory currently committed for the heap. 1315 size_t CommittedMemoryExecutable(); 1316 1317 // Returns the amount of phyical memory currently committed for the heap. 1318 size_t CommittedPhysicalMemory(); 1319 1320 // Returns the maximum amount of memory ever committed for the heap. MaximumCommittedMemory()1321 size_t MaximumCommittedMemory() { return maximum_committed_; } 1322 1323 // Updates the maximum committed memory for the heap. Should be called 1324 // whenever a space grows. 1325 void UpdateMaximumCommitted(); 1326 1327 // Returns the available bytes in space w/o growing. 1328 // Heap doesn't guarantee that it can allocate an object that requires 1329 // all available bytes. Check MaxHeapObjectSize() instead. 1330 size_t Available(); 1331 1332 // Returns of size of all objects residing in the heap. 1333 size_t SizeOfObjects(); 1334 1335 void UpdateSurvivalStatistics(int start_new_space_size); 1336 IncrementPromotedObjectsSize(size_t object_size)1337 inline void IncrementPromotedObjectsSize(size_t object_size) { 1338 promoted_objects_size_ += object_size; 1339 } promoted_objects_size()1340 inline size_t promoted_objects_size() { return promoted_objects_size_; } 1341 IncrementSemiSpaceCopiedObjectSize(size_t object_size)1342 inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) { 1343 semi_space_copied_object_size_ += object_size; 1344 } semi_space_copied_object_size()1345 inline size_t semi_space_copied_object_size() { 1346 return semi_space_copied_object_size_; 1347 } 1348 SurvivedNewSpaceObjectSize()1349 inline size_t SurvivedNewSpaceObjectSize() { 1350 return promoted_objects_size_ + semi_space_copied_object_size_; 1351 } 1352 IncrementNodesDiedInNewSpace()1353 inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; } 1354 IncrementNodesCopiedInNewSpace()1355 inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; } 1356 IncrementNodesPromoted()1357 inline void IncrementNodesPromoted() { nodes_promoted_++; } 1358 IncrementYoungSurvivorsCounter(size_t survived)1359 inline void IncrementYoungSurvivorsCounter(size_t survived) { 1360 survived_last_scavenge_ = survived; 1361 survived_since_last_expansion_ += survived; 1362 } 1363 PromotedTotalSize()1364 inline uint64_t PromotedTotalSize() { 1365 return PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize(); 1366 } 1367 1368 inline void UpdateNewSpaceAllocationCounter(); 1369 1370 inline size_t NewSpaceAllocationCounter(); 1371 1372 // This should be used only for testing. set_new_space_allocation_counter(size_t new_value)1373 void set_new_space_allocation_counter(size_t new_value) { 1374 new_space_allocation_counter_ = new_value; 1375 } 1376 UpdateOldGenerationAllocationCounter()1377 void UpdateOldGenerationAllocationCounter() { 1378 old_generation_allocation_counter_at_last_gc_ = 1379 OldGenerationAllocationCounter(); 1380 } 1381 OldGenerationAllocationCounter()1382 size_t OldGenerationAllocationCounter() { 1383 return old_generation_allocation_counter_at_last_gc_ + 1384 PromotedSinceLastGC(); 1385 } 1386 1387 // This should be used only for testing. set_old_generation_allocation_counter_at_last_gc(size_t new_value)1388 void set_old_generation_allocation_counter_at_last_gc(size_t new_value) { 1389 old_generation_allocation_counter_at_last_gc_ = new_value; 1390 } 1391 PromotedSinceLastGC()1392 size_t PromotedSinceLastGC() { 1393 return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_; 1394 } 1395 gc_count()1396 int gc_count() const { return gc_count_; } 1397 1398 // Returns the size of objects residing in non new spaces. 1399 size_t PromotedSpaceSizeOfObjects(); 1400 total_regexp_code_generated()1401 double total_regexp_code_generated() { return total_regexp_code_generated_; } IncreaseTotalRegexpCodeGenerated(int size)1402 void IncreaseTotalRegexpCodeGenerated(int size) { 1403 total_regexp_code_generated_ += size; 1404 } 1405 IncrementCodeGeneratedBytes(bool is_crankshafted,int size)1406 void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) { 1407 if (is_crankshafted) { 1408 crankshaft_codegen_bytes_generated_ += size; 1409 } else { 1410 full_codegen_bytes_generated_ += size; 1411 } 1412 } 1413 1414 // =========================================================================== 1415 // Prologue/epilogue callback methods.======================================== 1416 // =========================================================================== 1417 1418 void AddGCPrologueCallback(v8::Isolate::GCCallback callback, 1419 GCType gc_type_filter, bool pass_isolate = true); 1420 void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback); 1421 1422 void AddGCEpilogueCallback(v8::Isolate::GCCallback callback, 1423 GCType gc_type_filter, bool pass_isolate = true); 1424 void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback); 1425 1426 void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags); 1427 void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags); 1428 1429 // =========================================================================== 1430 // Allocation methods. ======================================================= 1431 // =========================================================================== 1432 1433 // Creates a filler object and returns a heap object immediately after it. 1434 MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object, 1435 int filler_size); 1436 1437 // Creates a filler object if needed for alignment and returns a heap object 1438 // immediately after it. If any space is left after the returned object, 1439 // another filler object is created so the over allocated memory is iterable. 1440 MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object, 1441 int object_size, 1442 int allocation_size, 1443 AllocationAlignment alignment); 1444 1445 // =========================================================================== 1446 // ArrayBuffer tracking. ===================================================== 1447 // =========================================================================== 1448 1449 // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external 1450 // in the registration/unregistration APIs. Consider dropping the "New" from 1451 // "RegisterNewArrayBuffer" because one can re-register a previously 1452 // unregistered buffer, too, and the name is confusing. 1453 void RegisterNewArrayBuffer(JSArrayBuffer* buffer); 1454 void UnregisterArrayBuffer(JSArrayBuffer* buffer); 1455 1456 // =========================================================================== 1457 // Allocation site tracking. ================================================= 1458 // =========================================================================== 1459 1460 // Updates the AllocationSite of a given {object}. If the global prenuring 1461 // storage is passed as {pretenuring_feedback} the memento found count on 1462 // the corresponding allocation site is immediately updated and an entry 1463 // in the hash map is created. Otherwise the entry (including a the count 1464 // value) is cached on the local pretenuring feedback. 1465 template <UpdateAllocationSiteMode mode> 1466 inline void UpdateAllocationSite(HeapObject* object, 1467 base::HashMap* pretenuring_feedback); 1468 1469 // Removes an entry from the global pretenuring storage. 1470 inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site); 1471 1472 // Merges local pretenuring feedback into the global one. Note that this 1473 // method needs to be called after evacuation, as allocation sites may be 1474 // evacuated and this method resolves forward pointers accordingly. 1475 void MergeAllocationSitePretenuringFeedback( 1476 const base::HashMap& local_pretenuring_feedback); 1477 1478 // ============================================================================= 1479 1480 #ifdef VERIFY_HEAP 1481 // Verify the heap is in its normal state before or after a GC. 1482 void Verify(); 1483 #endif 1484 1485 #ifdef DEBUG set_allocation_timeout(int timeout)1486 void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; } 1487 1488 void TracePathToObjectFrom(Object* target, Object* root); 1489 void TracePathToObject(Object* target); 1490 void TracePathToGlobal(); 1491 1492 void Print(); 1493 void PrintHandles(); 1494 1495 // Report heap statistics. 1496 void ReportHeapStatistics(const char* title); 1497 void ReportCodeStatistics(const char* title); 1498 #endif 1499 1500 static const char* GarbageCollectionReasonToString( 1501 GarbageCollectionReason gc_reason); 1502 1503 private: 1504 class PretenuringScope; 1505 1506 // External strings table is a place where all external strings are 1507 // registered. We need to keep track of such strings to properly 1508 // finalize them. 1509 class ExternalStringTable { 1510 public: 1511 // Registers an external string. 1512 inline void AddString(String* string); 1513 1514 inline void Iterate(ObjectVisitor* v); 1515 1516 // Restores internal invariant and gets rid of collected strings. 1517 // Must be called after each Iterate() that modified the strings. 1518 void CleanUp(); 1519 1520 // Destroys all allocated memory. 1521 void TearDown(); 1522 1523 private: ExternalStringTable(Heap * heap)1524 explicit ExternalStringTable(Heap* heap) : heap_(heap) {} 1525 1526 inline void Verify(); 1527 1528 inline void AddOldString(String* string); 1529 1530 // Notifies the table that only a prefix of the new list is valid. 1531 inline void ShrinkNewStrings(int position); 1532 1533 // To speed up scavenge collections new space string are kept 1534 // separate from old space strings. 1535 List<Object*> new_space_strings_; 1536 List<Object*> old_space_strings_; 1537 1538 Heap* heap_; 1539 1540 friend class Heap; 1541 1542 DISALLOW_COPY_AND_ASSIGN(ExternalStringTable); 1543 }; 1544 1545 struct StrongRootsList; 1546 1547 struct StringTypeTable { 1548 InstanceType type; 1549 int size; 1550 RootListIndex index; 1551 }; 1552 1553 struct ConstantStringTable { 1554 const char* contents; 1555 RootListIndex index; 1556 }; 1557 1558 struct StructTable { 1559 InstanceType type; 1560 int size; 1561 RootListIndex index; 1562 }; 1563 1564 struct GCCallbackPair { GCCallbackPairGCCallbackPair1565 GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type, 1566 bool pass_isolate) 1567 : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {} 1568 1569 bool operator==(const GCCallbackPair& other) const { 1570 return other.callback == callback; 1571 } 1572 1573 v8::Isolate::GCCallback callback; 1574 GCType gc_type; 1575 bool pass_isolate; 1576 }; 1577 1578 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap, 1579 Object** pointer); 1580 1581 static const int kInitialStringTableSize = 2048; 1582 static const int kInitialEvalCacheSize = 64; 1583 static const int kInitialNumberStringCacheSize = 256; 1584 1585 static const int kRememberedUnmappedPages = 128; 1586 1587 static const StringTypeTable string_type_table[]; 1588 static const ConstantStringTable constant_string_table[]; 1589 static const StructTable struct_table[]; 1590 1591 static const int kYoungSurvivalRateHighThreshold = 90; 1592 static const int kYoungSurvivalRateAllowedDeviation = 15; 1593 static const int kOldSurvivalRateLowThreshold = 10; 1594 1595 static const int kMaxMarkCompactsInIdleRound = 7; 1596 static const int kIdleScavengeThreshold = 5; 1597 1598 static const int kInitialFeedbackCapacity = 256; 1599 1600 Heap(); 1601 1602 static String* UpdateNewSpaceReferenceInExternalStringTableEntry( 1603 Heap* heap, Object** pointer); 1604 1605 // Selects the proper allocation space based on the pretenuring decision. SelectSpace(PretenureFlag pretenure)1606 static AllocationSpace SelectSpace(PretenureFlag pretenure) { 1607 return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE; 1608 } 1609 1610 #define ROOT_ACCESSOR(type, name, camel_name) \ 1611 inline void set_##name(type* value); ROOT_LIST(ROOT_ACCESSOR)1612 ROOT_LIST(ROOT_ACCESSOR) 1613 #undef ROOT_ACCESSOR 1614 1615 StoreBuffer* store_buffer() { return store_buffer_; } 1616 set_current_gc_flags(int flags)1617 void set_current_gc_flags(int flags) { 1618 current_gc_flags_ = flags; 1619 DCHECK(!ShouldFinalizeIncrementalMarking() || 1620 !ShouldAbortIncrementalMarking()); 1621 } 1622 ShouldReduceMemory()1623 inline bool ShouldReduceMemory() const { 1624 return current_gc_flags_ & kReduceMemoryFootprintMask; 1625 } 1626 ShouldAbortIncrementalMarking()1627 inline bool ShouldAbortIncrementalMarking() const { 1628 return current_gc_flags_ & kAbortIncrementalMarkingMask; 1629 } 1630 ShouldFinalizeIncrementalMarking()1631 inline bool ShouldFinalizeIncrementalMarking() const { 1632 return current_gc_flags_ & kFinalizeIncrementalMarkingMask; 1633 } 1634 1635 // Checks whether both, the internal marking deque, and the embedder provided 1636 // one are empty. Avoid in fast path as it potentially calls through the API. 1637 bool MarkingDequesAreEmpty(); 1638 1639 void PreprocessStackTraces(); 1640 1641 // Checks whether a global GC is necessary 1642 GarbageCollector SelectGarbageCollector(AllocationSpace space, 1643 const char** reason); 1644 1645 // Make sure there is a filler value behind the top of the new space 1646 // so that the GC does not confuse some unintialized/stale memory 1647 // with the allocation memento of the object at the top 1648 void EnsureFillerObjectAtTop(); 1649 1650 // Ensure that we have swept all spaces in such a way that we can iterate 1651 // over all objects. May cause a GC. 1652 void MakeHeapIterable(); 1653 1654 // Performs garbage collection operation. 1655 // Returns whether there is a chance that another major GC could 1656 // collect more garbage. 1657 bool CollectGarbage( 1658 GarbageCollector collector, GarbageCollectionReason gc_reason, 1659 const char* collector_reason, 1660 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1661 1662 // Performs garbage collection 1663 // Returns whether there is a chance another major GC could 1664 // collect more garbage. 1665 bool PerformGarbageCollection( 1666 GarbageCollector collector, 1667 const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); 1668 1669 inline void UpdateOldSpaceLimits(); 1670 1671 // Initializes a JSObject based on its map. 1672 void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, 1673 Map* map); 1674 1675 // Initializes JSObject body starting at given offset. 1676 void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset); 1677 1678 void InitializeAllocationMemento(AllocationMemento* memento, 1679 AllocationSite* allocation_site); 1680 1681 bool CreateInitialMaps(); 1682 void CreateInitialObjects(); 1683 1684 // These five Create*EntryStub functions are here and forced to not be inlined 1685 // because of a gcc-4.4 bug that assigns wrong vtable entries. 1686 NO_INLINE(void CreateJSEntryStub()); 1687 NO_INLINE(void CreateJSConstructEntryStub()); 1688 1689 void CreateFixedStubs(); 1690 1691 HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size); 1692 1693 // Commits from space if it is uncommitted. 1694 void EnsureFromSpaceIsCommitted(); 1695 1696 // Uncommit unused semi space. 1697 bool UncommitFromSpace(); 1698 1699 // Fill in bogus values in from space 1700 void ZapFromSpace(); 1701 1702 // Deopts all code that contains allocation instruction which are tenured or 1703 // not tenured. Moreover it clears the pretenuring allocation site statistics. 1704 void ResetAllAllocationSitesDependentCode(PretenureFlag flag); 1705 1706 // Evaluates local pretenuring for the old space and calls 1707 // ResetAllTenuredAllocationSitesDependentCode if too many objects died in 1708 // the old space. 1709 void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc); 1710 1711 // Record statistics before and after garbage collection. 1712 void ReportStatisticsBeforeGC(); 1713 void ReportStatisticsAfterGC(); 1714 1715 // Creates and installs the full-sized number string cache. 1716 int FullSizeNumberStringCacheLength(); 1717 // Flush the number to string cache. 1718 void FlushNumberStringCache(); 1719 1720 void ConfigureInitialOldGenerationSize(); 1721 1722 bool HasLowYoungGenerationAllocationRate(); 1723 bool HasLowOldGenerationAllocationRate(); 1724 double YoungGenerationMutatorUtilization(); 1725 double OldGenerationMutatorUtilization(); 1726 1727 void ReduceNewSpaceSize(); 1728 1729 GCIdleTimeHeapState ComputeHeapState(); 1730 1731 bool PerformIdleTimeAction(GCIdleTimeAction action, 1732 GCIdleTimeHeapState heap_state, 1733 double deadline_in_ms); 1734 1735 void IdleNotificationEpilogue(GCIdleTimeAction action, 1736 GCIdleTimeHeapState heap_state, double start_ms, 1737 double deadline_in_ms); 1738 1739 inline void UpdateAllocationsHash(HeapObject* object); 1740 inline void UpdateAllocationsHash(uint32_t value); 1741 void PrintAlloctionsHash(); 1742 1743 void AddToRingBuffer(const char* string); 1744 void GetFromRingBuffer(char* buffer); 1745 1746 void CompactRetainedMaps(ArrayList* retained_maps); 1747 1748 void CollectGarbageOnMemoryPressure(); 1749 1750 // Attempt to over-approximate the weak closure by marking object groups and 1751 // implicit references from global handles, but don't atomically complete 1752 // marking. If we continue to mark incrementally, we might have marked 1753 // objects that die later. 1754 void FinalizeIncrementalMarking(GarbageCollectionReason gc_reason); 1755 1756 // Returns the timer used for a given GC type. 1757 // - GCScavenger: young generation GC 1758 // - GCCompactor: full GC 1759 // - GCFinalzeMC: finalization of incremental full GC 1760 // - GCFinalizeMCReduceMemory: finalization of incremental full GC with 1761 // memory reduction 1762 HistogramTimer* GCTypeTimer(GarbageCollector collector); 1763 1764 // =========================================================================== 1765 // Pretenuring. ============================================================== 1766 // =========================================================================== 1767 1768 // Pretenuring decisions are made based on feedback collected during new space 1769 // evacuation. Note that between feedback collection and calling this method 1770 // object in old space must not move. 1771 void ProcessPretenuringFeedback(); 1772 1773 // =========================================================================== 1774 // Actual GC. ================================================================ 1775 // =========================================================================== 1776 1777 // Code that should be run before and after each GC. Includes some 1778 // reporting/verification activities when compiled with DEBUG set. 1779 void GarbageCollectionPrologue(); 1780 void GarbageCollectionEpilogue(); 1781 1782 // Performs a major collection in the whole heap. 1783 void MarkCompact(); 1784 // Performs a minor collection of just the young generation. 1785 void MinorMarkCompact(); 1786 1787 // Code to be run before and after mark-compact. 1788 void MarkCompactPrologue(); 1789 void MarkCompactEpilogue(); 1790 1791 // Performs a minor collection in new generation. 1792 void Scavenge(); 1793 1794 Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front); 1795 1796 void UpdateNewSpaceReferencesInExternalStringTable( 1797 ExternalStringTableUpdaterCallback updater_func); 1798 1799 void UpdateReferencesInExternalStringTable( 1800 ExternalStringTableUpdaterCallback updater_func); 1801 1802 void ProcessAllWeakReferences(WeakObjectRetainer* retainer); 1803 void ProcessYoungWeakReferences(WeakObjectRetainer* retainer); 1804 void ProcessNativeContexts(WeakObjectRetainer* retainer); 1805 void ProcessAllocationSites(WeakObjectRetainer* retainer); 1806 void ProcessWeakListRoots(WeakObjectRetainer* retainer); 1807 1808 // =========================================================================== 1809 // GC statistics. ============================================================ 1810 // =========================================================================== 1811 OldGenerationSpaceAvailable()1812 inline size_t OldGenerationSpaceAvailable() { 1813 if (old_generation_allocation_limit_ <= PromotedTotalSize()) return 0; 1814 return old_generation_allocation_limit_ - 1815 static_cast<size_t>(PromotedTotalSize()); 1816 } 1817 1818 // We allow incremental marking to overshoot the allocation limit for 1819 // performace reasons. If the overshoot is too large then we are more 1820 // eager to finalize incremental marking. AllocationLimitOvershotByLargeMargin()1821 inline bool AllocationLimitOvershotByLargeMargin() { 1822 // This guards against too eager finalization in small heaps. 1823 // The number is chosen based on v8.browsing_mobile on Nexus 7v2. 1824 size_t kMarginForSmallHeaps = 32u * MB; 1825 if (old_generation_allocation_limit_ >= PromotedTotalSize()) return false; 1826 uint64_t overshoot = PromotedTotalSize() - old_generation_allocation_limit_; 1827 // Overshoot margin is 50% of allocation limit or half-way to the max heap 1828 // with special handling of small heaps. 1829 uint64_t margin = 1830 Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps), 1831 (max_old_generation_size_ - old_generation_allocation_limit_) / 2); 1832 return overshoot >= margin; 1833 } 1834 1835 void UpdateTotalGCTime(double duration); 1836 MaximumSizeScavenge()1837 bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; } 1838 1839 // =========================================================================== 1840 // Growing strategy. ========================================================= 1841 // =========================================================================== 1842 1843 // Decrease the allocation limit if the new limit based on the given 1844 // parameters is lower than the current limit. 1845 void DampenOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed, 1846 double mutator_speed); 1847 1848 // Calculates the allocation limit based on a given growing factor and a 1849 // given old generation size. 1850 size_t CalculateOldGenerationAllocationLimit(double factor, 1851 size_t old_gen_size); 1852 1853 // Sets the allocation limit to trigger the next full garbage collection. 1854 void SetOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed, 1855 double mutator_speed); 1856 1857 size_t MinimumAllocationLimitGrowingStep(); 1858 old_generation_allocation_limit()1859 size_t old_generation_allocation_limit() const { 1860 return old_generation_allocation_limit_; 1861 } 1862 always_allocate()1863 bool always_allocate() { return always_allocate_scope_count_.Value() != 0; } 1864 CanExpandOldGeneration(int size)1865 bool CanExpandOldGeneration(int size) { 1866 if (force_oom_) return false; 1867 return (OldGenerationCapacity() + size) < MaxOldGenerationSize(); 1868 } 1869 IsCloseToOutOfMemory(size_t slack)1870 bool IsCloseToOutOfMemory(size_t slack) { 1871 return OldGenerationCapacity() + slack >= MaxOldGenerationSize(); 1872 } 1873 1874 bool ShouldExpandOldGenerationOnSlowAllocation(); 1875 1876 enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit }; 1877 IncrementalMarkingLimit IncrementalMarkingLimitReached(); 1878 1879 // =========================================================================== 1880 // Idle notification. ======================================================== 1881 // =========================================================================== 1882 1883 bool RecentIdleNotificationHappened(); 1884 void ScheduleIdleScavengeIfNeeded(int bytes_allocated); 1885 1886 // =========================================================================== 1887 // HeapIterator helpers. ===================================================== 1888 // =========================================================================== 1889 heap_iterator_start()1890 void heap_iterator_start() { heap_iterator_depth_++; } 1891 heap_iterator_end()1892 void heap_iterator_end() { heap_iterator_depth_--; } 1893 in_heap_iterator()1894 bool in_heap_iterator() { return heap_iterator_depth_ > 0; } 1895 1896 // =========================================================================== 1897 // Allocation methods. ======================================================= 1898 // =========================================================================== 1899 1900 // Returns a deep copy of the JavaScript object. 1901 // Properties and elements are copied too. 1902 // Optionally takes an AllocationSite to be appended in an AllocationMemento. 1903 MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source, 1904 AllocationSite* site = NULL); 1905 1906 // Allocates a JS Map in the heap. 1907 MUST_USE_RESULT AllocationResult 1908 AllocateMap(InstanceType instance_type, int instance_size, 1909 ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND); 1910 1911 // Allocates and initializes a new JavaScript object based on a 1912 // constructor. 1913 // If allocation_site is non-null, then a memento is emitted after the object 1914 // that points to the site. 1915 MUST_USE_RESULT AllocationResult AllocateJSObject( 1916 JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED, 1917 AllocationSite* allocation_site = NULL); 1918 1919 // Allocates and initializes a new JavaScript object based on a map. 1920 // Passing an allocation site means that a memento will be created that 1921 // points to the site. 1922 MUST_USE_RESULT AllocationResult 1923 AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED, 1924 AllocationSite* allocation_site = NULL); 1925 1926 // Allocates a HeapNumber from value. 1927 MUST_USE_RESULT AllocationResult 1928 AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE, 1929 PretenureFlag pretenure = NOT_TENURED); 1930 1931 // Allocates SIMD values from the given lane values. 1932 #define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \ 1933 AllocationResult Allocate##Type(lane_type lanes[lane_count], \ 1934 PretenureFlag pretenure = NOT_TENURED); 1935 SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION) 1936 #undef SIMD_ALLOCATE_DECLARATION 1937 1938 // Allocates a byte array of the specified length 1939 MUST_USE_RESULT AllocationResult 1940 AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED); 1941 1942 // Allocates a bytecode array with given contents. 1943 MUST_USE_RESULT AllocationResult 1944 AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size, 1945 int parameter_count, FixedArray* constant_pool); 1946 1947 MUST_USE_RESULT AllocationResult CopyCode(Code* code); 1948 1949 MUST_USE_RESULT AllocationResult 1950 CopyBytecodeArray(BytecodeArray* bytecode_array); 1951 1952 // Allocates a fixed array initialized with undefined values 1953 MUST_USE_RESULT AllocationResult 1954 AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED); 1955 1956 // Allocate an uninitialized object. The memory is non-executable if the 1957 // hardware and OS allow. This is the single choke-point for allocations 1958 // performed by the runtime and should not be bypassed (to extend this to 1959 // inlined allocations, use the Heap::DisableInlineAllocation() support). 1960 MUST_USE_RESULT inline AllocationResult AllocateRaw( 1961 int size_in_bytes, AllocationSpace space, 1962 AllocationAlignment aligment = kWordAligned); 1963 1964 // Allocates a heap object based on the map. 1965 MUST_USE_RESULT AllocationResult 1966 Allocate(Map* map, AllocationSpace space, 1967 AllocationSite* allocation_site = NULL); 1968 1969 // Allocates a partial map for bootstrapping. 1970 MUST_USE_RESULT AllocationResult 1971 AllocatePartialMap(InstanceType instance_type, int instance_size); 1972 1973 // Allocate a block of memory in the given space (filled with a filler). 1974 // Used as a fall-back for generated code when the space is full. 1975 MUST_USE_RESULT AllocationResult 1976 AllocateFillerObject(int size, bool double_align, AllocationSpace space); 1977 1978 // Allocate an uninitialized fixed array. 1979 MUST_USE_RESULT AllocationResult 1980 AllocateRawFixedArray(int length, PretenureFlag pretenure); 1981 1982 // Allocate an uninitialized fixed double array. 1983 MUST_USE_RESULT AllocationResult 1984 AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure); 1985 1986 // Allocate an initialized fixed array with the given filler value. 1987 MUST_USE_RESULT AllocationResult 1988 AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, 1989 Object* filler); 1990 1991 // Allocate and partially initializes a String. There are two String 1992 // encodings: one-byte and two-byte. These functions allocate a string of 1993 // the given length and set its map and length fields. The characters of 1994 // the string are uninitialized. 1995 MUST_USE_RESULT AllocationResult 1996 AllocateRawOneByteString(int length, PretenureFlag pretenure); 1997 MUST_USE_RESULT AllocationResult 1998 AllocateRawTwoByteString(int length, PretenureFlag pretenure); 1999 2000 // Allocates an internalized string in old space based on the character 2001 // stream. 2002 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8( 2003 Vector<const char> str, int chars, uint32_t hash_field); 2004 2005 MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString( 2006 Vector<const uint8_t> str, uint32_t hash_field); 2007 2008 MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString( 2009 Vector<const uc16> str, uint32_t hash_field); 2010 2011 template <bool is_one_byte, typename T> 2012 MUST_USE_RESULT AllocationResult 2013 AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field); 2014 2015 template <typename T> 2016 MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl( 2017 T t, int chars, uint32_t hash_field); 2018 2019 // Allocates an uninitialized fixed array. It must be filled by the caller. 2020 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length); 2021 2022 // Make a copy of src and return it. 2023 MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src); 2024 2025 // Make a copy of src, also grow the copy, and return the copy. 2026 MUST_USE_RESULT AllocationResult 2027 CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure); 2028 2029 // Make a copy of src, also grow the copy, and return the copy. 2030 MUST_USE_RESULT AllocationResult CopyFixedArrayUpTo(FixedArray* src, 2031 int new_len, 2032 PretenureFlag pretenure); 2033 2034 // Make a copy of src, set the map, and return the copy. 2035 MUST_USE_RESULT AllocationResult 2036 CopyFixedArrayWithMap(FixedArray* src, Map* map); 2037 2038 // Make a copy of src and return it. 2039 MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray( 2040 FixedDoubleArray* src); 2041 2042 // Computes a single character string where the character has code. 2043 // A cache is used for one-byte (Latin1) codes. 2044 MUST_USE_RESULT AllocationResult 2045 LookupSingleCharacterStringFromCode(uint16_t code); 2046 2047 // Allocate a symbol in old space. 2048 MUST_USE_RESULT AllocationResult AllocateSymbol(); 2049 2050 // Allocates an external array of the specified length and type. 2051 MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer( 2052 int length, ExternalArrayType array_type, void* external_pointer, 2053 PretenureFlag pretenure); 2054 2055 // Allocates a fixed typed array of the specified length and type. 2056 MUST_USE_RESULT AllocationResult 2057 AllocateFixedTypedArray(int length, ExternalArrayType array_type, 2058 bool initialize, PretenureFlag pretenure); 2059 2060 // Make a copy of src and return it. 2061 MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src); 2062 2063 // Make a copy of src, set the map, and return the copy. 2064 MUST_USE_RESULT AllocationResult 2065 CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map); 2066 2067 // Allocates a fixed double array with uninitialized values. Returns 2068 MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray( 2069 int length, PretenureFlag pretenure = NOT_TENURED); 2070 2071 // Allocate empty fixed array. 2072 MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray(); 2073 2074 // Allocate empty scope info. 2075 MUST_USE_RESULT AllocationResult AllocateEmptyScopeInfo(); 2076 2077 // Allocate empty fixed typed array of given type. 2078 MUST_USE_RESULT AllocationResult 2079 AllocateEmptyFixedTypedArray(ExternalArrayType array_type); 2080 2081 // Allocate a tenured simple cell. 2082 MUST_USE_RESULT AllocationResult AllocateCell(Object* value); 2083 2084 // Allocate a tenured JS global property cell initialized with the hole. 2085 MUST_USE_RESULT AllocationResult AllocatePropertyCell(); 2086 2087 MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value); 2088 2089 MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity); 2090 2091 // Allocates a new utility object in the old generation. 2092 MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type); 2093 2094 // Allocates a new foreign object. 2095 MUST_USE_RESULT AllocationResult 2096 AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED); 2097 2098 MUST_USE_RESULT AllocationResult 2099 AllocateCode(int object_size, bool immovable); 2100 2101 MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key); 2102 2103 MUST_USE_RESULT AllocationResult InternalizeString(String* str); 2104 2105 // =========================================================================== 2106 set_force_oom(bool value)2107 void set_force_oom(bool value) { force_oom_ = value; } 2108 2109 // The amount of external memory registered through the API. 2110 int64_t external_memory_; 2111 2112 // The limit when to trigger memory pressure from the API. 2113 int64_t external_memory_limit_; 2114 2115 // Caches the amount of external memory registered at the last MC. 2116 int64_t external_memory_at_last_mark_compact_; 2117 2118 // The amount of memory that has been freed concurrently. 2119 base::AtomicNumber<intptr_t> external_memory_concurrently_freed_; 2120 2121 // This can be calculated directly from a pointer to the heap; however, it is 2122 // more expedient to get at the isolate directly from within Heap methods. 2123 Isolate* isolate_; 2124 2125 Object* roots_[kRootListLength]; 2126 2127 size_t code_range_size_; 2128 size_t max_semi_space_size_; 2129 size_t initial_semispace_size_; 2130 size_t max_old_generation_size_; 2131 size_t initial_old_generation_size_; 2132 bool old_generation_size_configured_; 2133 size_t max_executable_size_; 2134 size_t maximum_committed_; 2135 2136 // For keeping track of how much data has survived 2137 // scavenge since last new space expansion. 2138 size_t survived_since_last_expansion_; 2139 2140 // ... and since the last scavenge. 2141 size_t survived_last_scavenge_; 2142 2143 // This is not the depth of nested AlwaysAllocateScope's but rather a single 2144 // count, as scopes can be acquired from multiple tasks (read: threads). 2145 base::AtomicNumber<size_t> always_allocate_scope_count_; 2146 2147 // Stores the memory pressure level that set by MemoryPressureNotification 2148 // and reset by a mark-compact garbage collection. 2149 base::AtomicValue<MemoryPressureLevel> memory_pressure_level_; 2150 2151 // For keeping track of context disposals. 2152 int contexts_disposed_; 2153 2154 // The length of the retained_maps array at the time of context disposal. 2155 // This separates maps in the retained_maps array that were created before 2156 // and after context disposal. 2157 int number_of_disposed_maps_; 2158 2159 int global_ic_age_; 2160 2161 NewSpace* new_space_; 2162 OldSpace* old_space_; 2163 OldSpace* code_space_; 2164 MapSpace* map_space_; 2165 LargeObjectSpace* lo_space_; 2166 // Map from the space id to the space. 2167 Space* space_[LAST_SPACE + 1]; 2168 HeapState gc_state_; 2169 int gc_post_processing_depth_; 2170 Address new_space_top_after_last_gc_; 2171 2172 // Returns the amount of external memory registered since last global gc. 2173 uint64_t PromotedExternalMemorySize(); 2174 2175 // How many "runtime allocations" happened. 2176 uint32_t allocations_count_; 2177 2178 // Running hash over allocations performed. 2179 uint32_t raw_allocations_hash_; 2180 2181 // How many mark-sweep collections happened. 2182 unsigned int ms_count_; 2183 2184 // How many gc happened. 2185 unsigned int gc_count_; 2186 2187 // For post mortem debugging. 2188 int remembered_unmapped_pages_index_; 2189 Address remembered_unmapped_pages_[kRememberedUnmappedPages]; 2190 2191 #ifdef DEBUG 2192 // If the --gc-interval flag is set to a positive value, this 2193 // variable holds the value indicating the number of allocations 2194 // remain until the next failure and garbage collection. 2195 int allocation_timeout_; 2196 #endif // DEBUG 2197 2198 // Limit that triggers a global GC on the next (normally caused) GC. This 2199 // is checked when we have already decided to do a GC to help determine 2200 // which collector to invoke, before expanding a paged space in the old 2201 // generation and on every allocation in large object space. 2202 size_t old_generation_allocation_limit_; 2203 2204 // Indicates that inline bump-pointer allocation has been globally disabled 2205 // for all spaces. This is used to disable allocations in generated code. 2206 bool inline_allocation_disabled_; 2207 2208 // Weak list heads, threaded through the objects. 2209 // List heads are initialized lazily and contain the undefined_value at start. 2210 Object* native_contexts_list_; 2211 Object* allocation_sites_list_; 2212 2213 // List of encountered weak collections (JSWeakMap and JSWeakSet) during 2214 // marking. It is initialized during marking, destroyed after marking and 2215 // contains Smi(0) while marking is not active. 2216 Object* encountered_weak_collections_; 2217 2218 Object* encountered_weak_cells_; 2219 2220 Object* encountered_transition_arrays_; 2221 2222 List<GCCallbackPair> gc_epilogue_callbacks_; 2223 List<GCCallbackPair> gc_prologue_callbacks_; 2224 2225 // Total RegExp code ever generated 2226 double total_regexp_code_generated_; 2227 2228 int deferred_counters_[v8::Isolate::kUseCounterFeatureCount]; 2229 2230 GCTracer* tracer_; 2231 2232 size_t promoted_objects_size_; 2233 double promotion_ratio_; 2234 double promotion_rate_; 2235 size_t semi_space_copied_object_size_; 2236 size_t previous_semi_space_copied_object_size_; 2237 double semi_space_copied_rate_; 2238 int nodes_died_in_new_space_; 2239 int nodes_copied_in_new_space_; 2240 int nodes_promoted_; 2241 2242 // This is the pretenuring trigger for allocation sites that are in maybe 2243 // tenure state. When we switched to the maximum new space size we deoptimize 2244 // the code that belongs to the allocation site and derive the lifetime 2245 // of the allocation site. 2246 unsigned int maximum_size_scavenges_; 2247 2248 // Total time spent in GC. 2249 double total_gc_time_ms_; 2250 2251 // Last time an idle notification happened. 2252 double last_idle_notification_time_; 2253 2254 // Last time a garbage collection happened. 2255 double last_gc_time_; 2256 2257 Scavenger* scavenge_collector_; 2258 2259 MarkCompactCollector* mark_compact_collector_; 2260 2261 MemoryAllocator* memory_allocator_; 2262 2263 StoreBuffer* store_buffer_; 2264 2265 IncrementalMarking* incremental_marking_; 2266 2267 GCIdleTimeHandler* gc_idle_time_handler_; 2268 2269 MemoryReducer* memory_reducer_; 2270 2271 ObjectStats* live_object_stats_; 2272 ObjectStats* dead_object_stats_; 2273 2274 ScavengeJob* scavenge_job_; 2275 2276 AllocationObserver* idle_scavenge_observer_; 2277 2278 // These two counters are monotomically increasing and never reset. 2279 size_t full_codegen_bytes_generated_; 2280 size_t crankshaft_codegen_bytes_generated_; 2281 2282 // This counter is increased before each GC and never reset. 2283 // To account for the bytes allocated since the last GC, use the 2284 // NewSpaceAllocationCounter() function. 2285 size_t new_space_allocation_counter_; 2286 2287 // This counter is increased before each GC and never reset. To 2288 // account for the bytes allocated since the last GC, use the 2289 // OldGenerationAllocationCounter() function. 2290 size_t old_generation_allocation_counter_at_last_gc_; 2291 2292 // The size of objects in old generation after the last MarkCompact GC. 2293 size_t old_generation_size_at_last_gc_; 2294 2295 // If the --deopt_every_n_garbage_collections flag is set to a positive value, 2296 // this variable holds the number of garbage collections since the last 2297 // deoptimization triggered by garbage collection. 2298 int gcs_since_last_deopt_; 2299 2300 // The feedback storage is used to store allocation sites (keys) and how often 2301 // they have been visited (values) by finding a memento behind an object. The 2302 // storage is only alive temporary during a GC. The invariant is that all 2303 // pointers in this map are already fixed, i.e., they do not point to 2304 // forwarding pointers. 2305 base::HashMap* global_pretenuring_feedback_; 2306 2307 char trace_ring_buffer_[kTraceRingBufferSize]; 2308 // If it's not full then the data is from 0 to ring_buffer_end_. If it's 2309 // full then the data is from ring_buffer_end_ to the end of the buffer and 2310 // from 0 to ring_buffer_end_. 2311 bool ring_buffer_full_; 2312 size_t ring_buffer_end_; 2313 2314 // Shared state read by the scavenge collector and set by ScavengeObject. 2315 PromotionQueue promotion_queue_; 2316 2317 // Flag is set when the heap has been configured. The heap can be repeatedly 2318 // configured through the API until it is set up. 2319 bool configured_; 2320 2321 // Currently set GC flags that are respected by all GC components. 2322 int current_gc_flags_; 2323 2324 // Currently set GC callback flags that are used to pass information between 2325 // the embedder and V8's GC. 2326 GCCallbackFlags current_gc_callback_flags_; 2327 2328 ExternalStringTable external_string_table_; 2329 2330 base::Mutex relocation_mutex_; 2331 2332 int gc_callbacks_depth_; 2333 2334 bool deserialization_complete_; 2335 2336 StrongRootsList* strong_roots_list_; 2337 2338 // The depth of HeapIterator nestings. 2339 int heap_iterator_depth_; 2340 2341 EmbedderHeapTracer* embedder_heap_tracer_; 2342 std::vector<std::pair<void*, void*>> wrappers_to_trace_; 2343 2344 // Used for testing purposes. 2345 bool force_oom_; 2346 bool delay_sweeper_tasks_for_testing_; 2347 2348 // Classes in "heap" can be friends. 2349 friend class AlwaysAllocateScope; 2350 friend class GCCallbacksScope; 2351 friend class GCTracer; 2352 friend class HeapIterator; 2353 friend class IdleScavengeObserver; 2354 friend class IncrementalMarking; 2355 friend class IncrementalMarkingJob; 2356 friend class LargeObjectSpace; 2357 friend class MarkCompactCollector; 2358 friend class MarkCompactMarkingVisitor; 2359 friend class NewSpace; 2360 friend class ObjectStatsCollector; 2361 friend class Page; 2362 friend class PagedSpace; 2363 friend class Scavenger; 2364 friend class StoreBuffer; 2365 friend class TestMemoryAllocatorScope; 2366 2367 // The allocator interface. 2368 friend class Factory; 2369 2370 // The Isolate constructs us. 2371 friend class Isolate; 2372 2373 // Used in cctest. 2374 friend class HeapTester; 2375 2376 DISALLOW_COPY_AND_ASSIGN(Heap); 2377 }; 2378 2379 2380 class HeapStats { 2381 public: 2382 static const int kStartMarker = 0xDECADE00; 2383 static const int kEndMarker = 0xDECADE01; 2384 2385 intptr_t* start_marker; // 0 2386 size_t* new_space_size; // 1 2387 size_t* new_space_capacity; // 2 2388 size_t* old_space_size; // 3 2389 size_t* old_space_capacity; // 4 2390 size_t* code_space_size; // 5 2391 size_t* code_space_capacity; // 6 2392 size_t* map_space_size; // 7 2393 size_t* map_space_capacity; // 8 2394 size_t* lo_space_size; // 9 2395 size_t* global_handle_count; // 10 2396 size_t* weak_global_handle_count; // 11 2397 size_t* pending_global_handle_count; // 12 2398 size_t* near_death_global_handle_count; // 13 2399 size_t* free_global_handle_count; // 14 2400 size_t* memory_allocator_size; // 15 2401 size_t* memory_allocator_capacity; // 16 2402 size_t* malloced_memory; // 17 2403 size_t* malloced_peak_memory; // 18 2404 size_t* objects_per_type; // 19 2405 size_t* size_per_type; // 20 2406 int* os_error; // 21 2407 char* last_few_messages; // 22 2408 char* js_stacktrace; // 23 2409 intptr_t* end_marker; // 24 2410 }; 2411 2412 2413 class AlwaysAllocateScope { 2414 public: 2415 explicit inline AlwaysAllocateScope(Isolate* isolate); 2416 inline ~AlwaysAllocateScope(); 2417 2418 private: 2419 Heap* heap_; 2420 }; 2421 2422 2423 // Visitor class to verify interior pointers in spaces that do not contain 2424 // or care about intergenerational references. All heap object pointers have to 2425 // point into the heap to a location that has a map pointer at its first word. 2426 // Caveat: Heap::Contains is an approximation because it can return true for 2427 // objects in a heap space but above the allocation pointer. 2428 class VerifyPointersVisitor : public ObjectVisitor { 2429 public: 2430 inline void VisitPointers(Object** start, Object** end) override; 2431 }; 2432 2433 2434 // Verify that all objects are Smis. 2435 class VerifySmisVisitor : public ObjectVisitor { 2436 public: 2437 inline void VisitPointers(Object** start, Object** end) override; 2438 }; 2439 2440 2441 // Space iterator for iterating over all spaces of the heap. Returns each space 2442 // in turn, and null when it is done. 2443 class AllSpaces BASE_EMBEDDED { 2444 public: AllSpaces(Heap * heap)2445 explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {} 2446 Space* next(); 2447 2448 private: 2449 Heap* heap_; 2450 int counter_; 2451 }; 2452 2453 2454 // Space iterator for iterating over all old spaces of the heap: Old space 2455 // and code space. Returns each space in turn, and null when it is done. 2456 class V8_EXPORT_PRIVATE OldSpaces BASE_EMBEDDED { 2457 public: OldSpaces(Heap * heap)2458 explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {} 2459 OldSpace* next(); 2460 2461 private: 2462 Heap* heap_; 2463 int counter_; 2464 }; 2465 2466 2467 // Space iterator for iterating over all the paged spaces of the heap: Map 2468 // space, old space, code space and cell space. Returns 2469 // each space in turn, and null when it is done. 2470 class PagedSpaces BASE_EMBEDDED { 2471 public: PagedSpaces(Heap * heap)2472 explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {} 2473 PagedSpace* next(); 2474 2475 private: 2476 Heap* heap_; 2477 int counter_; 2478 }; 2479 2480 2481 class SpaceIterator : public Malloced { 2482 public: 2483 explicit SpaceIterator(Heap* heap); 2484 virtual ~SpaceIterator(); 2485 2486 bool has_next(); 2487 Space* next(); 2488 2489 private: 2490 Heap* heap_; 2491 int current_space_; // from enum AllocationSpace. 2492 }; 2493 2494 2495 // A HeapIterator provides iteration over the whole heap. It 2496 // aggregates the specific iterators for the different spaces as 2497 // these can only iterate over one space only. 2498 // 2499 // HeapIterator ensures there is no allocation during its lifetime 2500 // (using an embedded DisallowHeapAllocation instance). 2501 // 2502 // HeapIterator can skip free list nodes (that is, de-allocated heap 2503 // objects that still remain in the heap). As implementation of free 2504 // nodes filtering uses GC marks, it can't be used during MS/MC GC 2505 // phases. Also, it is forbidden to interrupt iteration in this mode, 2506 // as this will leave heap objects marked (and thus, unusable). 2507 class HeapIterator BASE_EMBEDDED { 2508 public: 2509 enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable }; 2510 2511 explicit HeapIterator(Heap* heap, 2512 HeapObjectsFiltering filtering = kNoFiltering); 2513 ~HeapIterator(); 2514 2515 HeapObject* next(); 2516 2517 private: 2518 struct MakeHeapIterableHelper { MakeHeapIterableHelperMakeHeapIterableHelper2519 explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); } 2520 }; 2521 2522 HeapObject* NextObject(); 2523 2524 // The following two fields need to be declared in this order. Initialization 2525 // order guarantees that we first make the heap iterable (which may involve 2526 // allocations) and only then lock it down by not allowing further 2527 // allocations. 2528 MakeHeapIterableHelper make_heap_iterable_helper_; 2529 DisallowHeapAllocation no_heap_allocation_; 2530 2531 Heap* heap_; 2532 HeapObjectsFiltering filtering_; 2533 HeapObjectsFilter* filter_; 2534 // Space iterator for iterating all the spaces. 2535 SpaceIterator* space_iterator_; 2536 // Object iterator for the space currently being iterated. 2537 std::unique_ptr<ObjectIterator> object_iterator_; 2538 }; 2539 2540 // Abstract base class for checking whether a weak object should be retained. 2541 class WeakObjectRetainer { 2542 public: ~WeakObjectRetainer()2543 virtual ~WeakObjectRetainer() {} 2544 2545 // Return whether this object should be retained. If NULL is returned the 2546 // object has no references. Otherwise the address of the retained object 2547 // should be returned as in some GC situations the object has been moved. 2548 virtual Object* RetainAs(Object* object) = 0; 2549 }; 2550 2551 2552 #ifdef DEBUG 2553 // Helper class for tracing paths to a search target Object from all roots. 2554 // The TracePathFrom() method can be used to trace paths from a specific 2555 // object to the search target object. 2556 class PathTracer : public ObjectVisitor { 2557 public: 2558 enum WhatToFind { 2559 FIND_ALL, // Will find all matches. 2560 FIND_FIRST // Will stop the search after first match. 2561 }; 2562 2563 // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject. 2564 static const int kMarkTag = 2; 2565 2566 // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop 2567 // after the first match. If FIND_ALL is specified, then tracing will be 2568 // done for all matches. PathTracer(Object * search_target,WhatToFind what_to_find,VisitMode visit_mode)2569 PathTracer(Object* search_target, WhatToFind what_to_find, 2570 VisitMode visit_mode) 2571 : search_target_(search_target), 2572 found_target_(false), 2573 found_target_in_trace_(false), 2574 what_to_find_(what_to_find), 2575 visit_mode_(visit_mode), 2576 object_stack_(20), 2577 no_allocation() {} 2578 2579 void VisitPointers(Object** start, Object** end) override; 2580 2581 void Reset(); 2582 void TracePathFrom(Object** root); 2583 found()2584 bool found() const { return found_target_; } 2585 2586 static Object* const kAnyGlobalObject; 2587 2588 protected: 2589 class MarkVisitor; 2590 class UnmarkVisitor; 2591 2592 void MarkRecursively(Object** p, MarkVisitor* mark_visitor); 2593 void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor); 2594 virtual void ProcessResults(); 2595 2596 Object* search_target_; 2597 bool found_target_; 2598 bool found_target_in_trace_; 2599 WhatToFind what_to_find_; 2600 VisitMode visit_mode_; 2601 List<Object*> object_stack_; 2602 2603 DisallowHeapAllocation no_allocation; // i.e. no gc allowed. 2604 2605 private: 2606 DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer); 2607 }; 2608 #endif // DEBUG 2609 2610 // ----------------------------------------------------------------------------- 2611 // Allows observation of allocations. 2612 class AllocationObserver { 2613 public: AllocationObserver(intptr_t step_size)2614 explicit AllocationObserver(intptr_t step_size) 2615 : step_size_(step_size), bytes_to_next_step_(step_size) { 2616 DCHECK(step_size >= kPointerSize); 2617 } ~AllocationObserver()2618 virtual ~AllocationObserver() {} 2619 2620 // Called each time the observed space does an allocation step. This may be 2621 // more frequently than the step_size we are monitoring (e.g. when there are 2622 // multiple observers, or when page or space boundary is encountered.) AllocationStep(int bytes_allocated,Address soon_object,size_t size)2623 void AllocationStep(int bytes_allocated, Address soon_object, size_t size) { 2624 bytes_to_next_step_ -= bytes_allocated; 2625 if (bytes_to_next_step_ <= 0) { 2626 Step(static_cast<int>(step_size_ - bytes_to_next_step_), soon_object, 2627 size); 2628 step_size_ = GetNextStepSize(); 2629 bytes_to_next_step_ = step_size_; 2630 } 2631 } 2632 2633 protected: step_size()2634 intptr_t step_size() const { return step_size_; } bytes_to_next_step()2635 intptr_t bytes_to_next_step() const { return bytes_to_next_step_; } 2636 2637 // Pure virtual method provided by the subclasses that gets called when at 2638 // least step_size bytes have been allocated. soon_object is the address just 2639 // allocated (but not yet initialized.) size is the size of the object as 2640 // requested (i.e. w/o the alignment fillers). Some complexities to be aware 2641 // of: 2642 // 1) soon_object will be nullptr in cases where we end up observing an 2643 // allocation that happens to be a filler space (e.g. page boundaries.) 2644 // 2) size is the requested size at the time of allocation. Right-trimming 2645 // may change the object size dynamically. 2646 // 3) soon_object may actually be the first object in an allocation-folding 2647 // group. In such a case size is the size of the group rather than the 2648 // first object. 2649 virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0; 2650 2651 // Subclasses can override this method to make step size dynamic. GetNextStepSize()2652 virtual intptr_t GetNextStepSize() { return step_size_; } 2653 2654 intptr_t step_size_; 2655 intptr_t bytes_to_next_step_; 2656 2657 private: 2658 friend class LargeObjectSpace; 2659 friend class NewSpace; 2660 friend class PagedSpace; 2661 DISALLOW_COPY_AND_ASSIGN(AllocationObserver); 2662 }; 2663 2664 } // namespace internal 2665 } // namespace v8 2666 2667 #endif // V8_HEAP_HEAP_H_ 2668