/external/webrtc/webrtc/modules/audio_processing/vad/ |
D | vad_circular_buffer.cc | 23 sum_(0) { in VadCircularBuffer() 32 sum_ = 0; in Reset() 51 m = sum_ / buffer_size_; in Mean() 54 m = sum_ / index_; in Mean() 63 sum_ -= buffer_[index_]; in Insert() 65 sum_ += value; in Insert() 92 sum_ -= buffer_[index]; in Set() 94 sum_ += value; in Set()
|
D | vad_circular_buffer.h | 65 double sum_; variable
|
/external/google-benchmark/src/ |
D | stat.h | 37 sum_ = dat; in Stat1() 51 sum_ = w * dat; in Stat1() 57 sum_ = stat.sum_; in Stat1() 64 sum_squares_ = sum_ = VType(); in Clear() 68 sum_ = stat.sum_; 75 sum_ += stat.sum_; 82 sum_ -= stat.sum_; 89 sum_ *= k; 108 VType Sum() const { return sum_; } in Sum() 113 return sum_ * (1.0 / numsamples_); in Mean() [all …]
|
/external/libcxx/utils/google-benchmark/src/ |
D | stat.h | 37 sum_ = dat; in Stat1() 51 sum_ = w * dat; in Stat1() 57 sum_ = stat.sum_; in Stat1() 64 sum_squares_ = sum_ = VType(); in Clear() 68 sum_ = stat.sum_; 75 sum_ += stat.sum_; 82 sum_ -= stat.sum_; 89 sum_ *= k; 108 VType Sum() const { return sum_; } in Sum() 113 return sum_ * (1.0 / numsamples_); in Mean() [all …]
|
/external/webrtc/webrtc/modules/video_coding/utility/ |
D | moving_average.h | 29 T sum_; 35 : sum_(static_cast<T>(0)) {} in MovingAverage() 40 sum_ += sample; in AddSample() 50 sum_ -= samples_.front(); in GetAverage() 54 *avg = sum_ / static_cast<T>(num_samples); in GetAverage() 60 sum_ = static_cast<T>(0); in Reset()
|
/external/webrtc/webrtc/base/ |
D | rollingaccumulator.h | 46 sum_ = 0.0; in Reset() 58 sum_ -= sample_to_remove; in AddSample() 72 sum_ += sample; in AddSample() 87 return static_cast<T>(sum_); in ComputeSum() 94 return sum_ / count_; in ComputeMean() 153 double mean = sum_ * count_inv; in ComputeVariance() 160 double sum_; // Sum(x) - double to avoid overflow variable
|
/external/webrtc/webrtc/test/ |
D | statistics.cc | 17 Statistics::Statistics() : sum_(0.0), sum_squared_(0.0), count_(0) {} in Statistics() 20 sum_ += sample; in AddSample() 28 return sum_ / count_; in Mean()
|
D | statistics.h | 29 double sum_;
|
/external/webrtc/webrtc/modules/audio_processing/transient/ |
D | moving_moments.cc | 23 sum_(0.0), in MovingMoments() 42 sum_ += in[i] - old_value; in CalculateMoments() 44 first[i] = sum_ / length_; in CalculateMoments()
|
D | moving_moments.h | 44 float sum_; variable
|
/external/llvm/test/CodeGen/Lanai/ |
D | mem_alu_combiner.ll | 23 %sum_.0.lcssa = phi i32 [ 0, %entry ], [ %add.lcssa, %for.cond.cleanup.loopexit ] 24 ret i32 %sum_.0.lcssa 28 %sum_.07 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ] 31 %add = add nsw i32 %0, %sum_.07
|
/external/autotest/site_utils/bootperf-bin/ |
D | resultset.py | 52 sum_ = 0.0 55 sum_ += v 58 avg = sum_ / n 59 var = (sumsq - sum_ * avg) / (n - 1)
|
/external/webrtc/webrtc/modules/audio_coding/neteq/ |
D | statistics_calculator.cc | 93 sum_ += value; in RegisterSample() 98 return static_cast<int>(sum_ / counter_); in Metric() 102 sum_ = 0.0; in Reset()
|
D | statistics_calculator.h | 143 double sum_ = 0.0;
|
/external/eigen/unsupported/Eigen/ |
D | Polynomials | 82 \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, 83 \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$ 92 \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$, 93 \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
|
D | MatrixFunctions | 122 \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
|
/external/v8/testing/gtest/test/ |
D | gtest-param-test_test.cc | 945 StatefulNamingTest() : sum_(0) {} in StatefulNamingTest() 946 int sum_; member in StatefulNamingTest 952 sum_ += GetParam(); in TEST_P() 954 test_name_stream << "TestsReportCorrectNames/" << sum_; in TEST_P()
|
/external/googletest/googletest/test/ |
D | gtest-param-test_test.cc | 945 StatefulNamingTest() : sum_(0) {} in StatefulNamingTest() 946 int sum_; member in StatefulNamingTest 952 sum_ += GetParam(); in TEST_P() 954 test_name_stream << "TestsReportCorrectNames/" << sum_; in TEST_P()
|
/external/eigen/doc/ |
D | CoeffwiseMathFunctionsTable.dox | 512 \n \f$ \zeta(a_i,b_i)=\sum_{k=0}^{\infty}(b_i+k)^{\text{-}a_i} \f$</td>
|