1 //===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares generic functions to read and write endian specific data.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_ENDIAN_H
15 #define LLVM_SUPPORT_ENDIAN_H
16 
17 #include "llvm/Support/AlignOf.h"
18 #include "llvm/Support/Host.h"
19 #include "llvm/Support/SwapByteOrder.h"
20 
21 namespace llvm {
22 namespace support {
23 enum endianness {big, little, native};
24 
25 // These are named values for common alignments.
26 enum {aligned = 0, unaligned = 1};
27 
28 namespace detail {
29   /// \brief ::value is either alignment, or alignof(T) if alignment is 0.
30   template<class T, int alignment>
31   struct PickAlignment {
32     enum {value = alignment == 0 ? AlignOf<T>::Alignment : alignment};
33   };
34 } // end namespace detail
35 
36 namespace endian {
37 /// Swap the bytes of value to match the given endianness.
38 template<typename value_type, endianness endian>
byte_swap(value_type value)39 inline value_type byte_swap(value_type value) {
40   if (endian != native && sys::IsBigEndianHost != (endian == big))
41     sys::swapByteOrder(value);
42   return value;
43 }
44 
45 /// Read a value of a particular endianness from memory.
46 template<typename value_type,
47          endianness endian,
48          std::size_t alignment>
read(const void * memory)49 inline value_type read(const void *memory) {
50   value_type ret;
51 
52   memcpy(&ret,
53          LLVM_ASSUME_ALIGNED(memory,
54            (detail::PickAlignment<value_type, alignment>::value)),
55          sizeof(value_type));
56   return byte_swap<value_type, endian>(ret);
57 }
58 
59 /// Read a value of a particular endianness from a buffer, and increment the
60 /// buffer past that value.
61 template<typename value_type, endianness endian, std::size_t alignment,
62          typename CharT>
readNext(const CharT * & memory)63 inline value_type readNext(const CharT *&memory) {
64   value_type ret = read<value_type, endian, alignment>(memory);
65   memory += sizeof(value_type);
66   return ret;
67 }
68 
69 /// Write a value to memory with a particular endianness.
70 template<typename value_type,
71          endianness endian,
72          std::size_t alignment>
write(void * memory,value_type value)73 inline void write(void *memory, value_type value) {
74   value = byte_swap<value_type, endian>(value);
75   memcpy(LLVM_ASSUME_ALIGNED(memory,
76            (detail::PickAlignment<value_type, alignment>::value)),
77          &value,
78          sizeof(value_type));
79 }
80 
81 template <typename value_type>
82 using make_unsigned_t = typename std::make_unsigned<value_type>::type;
83 
84 /// Read a value of a particular endianness from memory, for a location
85 /// that starts at the given bit offset within the first byte.
86 template <typename value_type, endianness endian, std::size_t alignment>
readAtBitAlignment(const void * memory,uint64_t startBit)87 inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
88   assert(startBit < 8);
89   if (startBit == 0)
90     return read<value_type, endian, alignment>(memory);
91   else {
92     // Read two values and compose the result from them.
93     value_type val[2];
94     memcpy(&val[0],
95            LLVM_ASSUME_ALIGNED(
96                memory, (detail::PickAlignment<value_type, alignment>::value)),
97            sizeof(value_type) * 2);
98     val[0] = byte_swap<value_type, endian>(val[0]);
99     val[1] = byte_swap<value_type, endian>(val[1]);
100 
101     // Shift bits from the lower value into place.
102     make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
103     // Mask off upper bits after right shift in case of signed type.
104     make_unsigned_t<value_type> numBitsFirstVal =
105         (sizeof(value_type) * 8) - startBit;
106     lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;
107 
108     // Get the bits from the upper value.
109     make_unsigned_t<value_type> upperVal =
110         val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
111     // Shift them in to place.
112     upperVal <<= numBitsFirstVal;
113 
114     return lowerVal | upperVal;
115   }
116 }
117 
118 /// Write a value to memory with a particular endianness, for a location
119 /// that starts at the given bit offset within the first byte.
120 template <typename value_type, endianness endian, std::size_t alignment>
writeAtBitAlignment(void * memory,value_type value,uint64_t startBit)121 inline void writeAtBitAlignment(void *memory, value_type value,
122                                 uint64_t startBit) {
123   assert(startBit < 8);
124   if (startBit == 0)
125     write<value_type, endian, alignment>(memory, value);
126   else {
127     // Read two values and shift the result into them.
128     value_type val[2];
129     memcpy(&val[0],
130            LLVM_ASSUME_ALIGNED(
131                memory, (detail::PickAlignment<value_type, alignment>::value)),
132            sizeof(value_type) * 2);
133     val[0] = byte_swap<value_type, endian>(val[0]);
134     val[1] = byte_swap<value_type, endian>(val[1]);
135 
136     // Mask off any existing bits in the upper part of the lower value that
137     // we want to replace.
138     val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
139     make_unsigned_t<value_type> numBitsFirstVal =
140         (sizeof(value_type) * 8) - startBit;
141     make_unsigned_t<value_type> lowerVal = value;
142     if (startBit > 0) {
143       // Mask off the upper bits in the new value that are not going to go into
144       // the lower value. This avoids a left shift of a negative value, which
145       // is undefined behavior.
146       lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
147       // Now shift the new bits into place
148       lowerVal <<= startBit;
149     }
150     val[0] |= lowerVal;
151 
152     // Mask off any existing bits in the lower part of the upper value that
153     // we want to replace.
154     val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
155     // Next shift the bits that go into the upper value into position.
156     make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
157     // Mask off upper bits after right shift in case of signed type.
158     upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
159     val[1] |= upperVal;
160 
161     // Finally, rewrite values.
162     val[0] = byte_swap<value_type, endian>(val[0]);
163     val[1] = byte_swap<value_type, endian>(val[1]);
164     memcpy(LLVM_ASSUME_ALIGNED(
165                memory, (detail::PickAlignment<value_type, alignment>::value)),
166            &val[0], sizeof(value_type) * 2);
167   }
168 }
169 } // end namespace endian
170 
171 namespace detail {
172 template<typename value_type,
173          endianness endian,
174          std::size_t alignment>
175 struct packed_endian_specific_integral {
176   packed_endian_specific_integral() = default;
177 
packed_endian_specific_integralpacked_endian_specific_integral178   explicit packed_endian_specific_integral(value_type val) { *this = val; }
179 
value_typepacked_endian_specific_integral180   operator value_type() const {
181     return endian::read<value_type, endian, alignment>(
182       (const void*)Value.buffer);
183   }
184 
185   void operator=(value_type newValue) {
186     endian::write<value_type, endian, alignment>(
187       (void*)Value.buffer, newValue);
188   }
189 
190   packed_endian_specific_integral &operator+=(value_type newValue) {
191     *this = *this + newValue;
192     return *this;
193   }
194 
195   packed_endian_specific_integral &operator-=(value_type newValue) {
196     *this = *this - newValue;
197     return *this;
198   }
199 
200   packed_endian_specific_integral &operator|=(value_type newValue) {
201     *this = *this | newValue;
202     return *this;
203   }
204 
205   packed_endian_specific_integral &operator&=(value_type newValue) {
206     *this = *this & newValue;
207     return *this;
208   }
209 
210 private:
211   AlignedCharArray<PickAlignment<value_type, alignment>::value,
212                    sizeof(value_type)> Value;
213 
214 public:
215   struct ref {
refpacked_endian_specific_integral::ref216     explicit ref(void *Ptr) : Ptr(Ptr) {}
217 
value_typepacked_endian_specific_integral::ref218     operator value_type() const {
219       return endian::read<value_type, endian, alignment>(Ptr);
220     }
221 
222     void operator=(value_type NewValue) {
223       endian::write<value_type, endian, alignment>(Ptr, NewValue);
224     }
225 
226   private:
227     void *Ptr;
228   };
229 };
230 
231 } // end namespace detail
232 
233 typedef detail::packed_endian_specific_integral
234                   <uint16_t, little, unaligned> ulittle16_t;
235 typedef detail::packed_endian_specific_integral
236                   <uint32_t, little, unaligned> ulittle32_t;
237 typedef detail::packed_endian_specific_integral
238                   <uint64_t, little, unaligned> ulittle64_t;
239 
240 typedef detail::packed_endian_specific_integral
241                    <int16_t, little, unaligned> little16_t;
242 typedef detail::packed_endian_specific_integral
243                    <int32_t, little, unaligned> little32_t;
244 typedef detail::packed_endian_specific_integral
245                    <int64_t, little, unaligned> little64_t;
246 
247 typedef detail::packed_endian_specific_integral
248                     <uint16_t, little, aligned> aligned_ulittle16_t;
249 typedef detail::packed_endian_specific_integral
250                     <uint32_t, little, aligned> aligned_ulittle32_t;
251 typedef detail::packed_endian_specific_integral
252                     <uint64_t, little, aligned> aligned_ulittle64_t;
253 
254 typedef detail::packed_endian_specific_integral
255                      <int16_t, little, aligned> aligned_little16_t;
256 typedef detail::packed_endian_specific_integral
257                      <int32_t, little, aligned> aligned_little32_t;
258 typedef detail::packed_endian_specific_integral
259                      <int64_t, little, aligned> aligned_little64_t;
260 
261 typedef detail::packed_endian_specific_integral
262                   <uint16_t, big, unaligned>    ubig16_t;
263 typedef detail::packed_endian_specific_integral
264                   <uint32_t, big, unaligned>    ubig32_t;
265 typedef detail::packed_endian_specific_integral
266                   <uint64_t, big, unaligned>    ubig64_t;
267 
268 typedef detail::packed_endian_specific_integral
269                    <int16_t, big, unaligned>    big16_t;
270 typedef detail::packed_endian_specific_integral
271                    <int32_t, big, unaligned>    big32_t;
272 typedef detail::packed_endian_specific_integral
273                    <int64_t, big, unaligned>    big64_t;
274 
275 typedef detail::packed_endian_specific_integral
276                     <uint16_t, big, aligned>    aligned_ubig16_t;
277 typedef detail::packed_endian_specific_integral
278                     <uint32_t, big, aligned>    aligned_ubig32_t;
279 typedef detail::packed_endian_specific_integral
280                     <uint64_t, big, aligned>    aligned_ubig64_t;
281 
282 typedef detail::packed_endian_specific_integral
283                      <int16_t, big, aligned>    aligned_big16_t;
284 typedef detail::packed_endian_specific_integral
285                      <int32_t, big, aligned>    aligned_big32_t;
286 typedef detail::packed_endian_specific_integral
287                      <int64_t, big, aligned>    aligned_big64_t;
288 
289 typedef detail::packed_endian_specific_integral
290                   <uint16_t, native, unaligned> unaligned_uint16_t;
291 typedef detail::packed_endian_specific_integral
292                   <uint32_t, native, unaligned> unaligned_uint32_t;
293 typedef detail::packed_endian_specific_integral
294                   <uint64_t, native, unaligned> unaligned_uint64_t;
295 
296 typedef detail::packed_endian_specific_integral
297                    <int16_t, native, unaligned> unaligned_int16_t;
298 typedef detail::packed_endian_specific_integral
299                    <int32_t, native, unaligned> unaligned_int32_t;
300 typedef detail::packed_endian_specific_integral
301                    <int64_t, native, unaligned> unaligned_int64_t;
302 
303 namespace endian {
read(const void * P)304 template <typename T, endianness E> inline T read(const void *P) {
305   return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
306 }
307 
read16(const void * P)308 template <endianness E> inline uint16_t read16(const void *P) {
309   return read<uint16_t, E>(P);
310 }
read32(const void * P)311 template <endianness E> inline uint32_t read32(const void *P) {
312   return read<uint32_t, E>(P);
313 }
read64(const void * P)314 template <endianness E> inline uint64_t read64(const void *P) {
315   return read<uint64_t, E>(P);
316 }
317 
read16le(const void * P)318 inline uint16_t read16le(const void *P) { return read16<little>(P); }
read32le(const void * P)319 inline uint32_t read32le(const void *P) { return read32<little>(P); }
read64le(const void * P)320 inline uint64_t read64le(const void *P) { return read64<little>(P); }
read16be(const void * P)321 inline uint16_t read16be(const void *P) { return read16<big>(P); }
read32be(const void * P)322 inline uint32_t read32be(const void *P) { return read32<big>(P); }
read64be(const void * P)323 inline uint64_t read64be(const void *P) { return read64<big>(P); }
324 
write(void * P,T V)325 template <typename T, endianness E> inline void write(void *P, T V) {
326   *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
327 }
328 
write16(void * P,uint16_t V)329 template <endianness E> inline void write16(void *P, uint16_t V) {
330   write<uint16_t, E>(P, V);
331 }
write32(void * P,uint32_t V)332 template <endianness E> inline void write32(void *P, uint32_t V) {
333   write<uint32_t, E>(P, V);
334 }
write64(void * P,uint64_t V)335 template <endianness E> inline void write64(void *P, uint64_t V) {
336   write<uint64_t, E>(P, V);
337 }
338 
write16le(void * P,uint16_t V)339 inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
write32le(void * P,uint32_t V)340 inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
write64le(void * P,uint64_t V)341 inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
write16be(void * P,uint16_t V)342 inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
write32be(void * P,uint32_t V)343 inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
write64be(void * P,uint64_t V)344 inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }
345 } // end namespace endian
346 } // end namespace support
347 } // end namespace llvm
348 
349 #endif
350