1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/interpreter/interpreter.h"
6
7 #include <fstream>
8 #include <memory>
9
10 #include "src/ast/prettyprinter.h"
11 #include "src/code-factory.h"
12 #include "src/compilation-info.h"
13 #include "src/compiler.h"
14 #include "src/factory.h"
15 #include "src/interpreter/bytecode-flags.h"
16 #include "src/interpreter/bytecode-generator.h"
17 #include "src/interpreter/bytecodes.h"
18 #include "src/interpreter/interpreter-assembler.h"
19 #include "src/interpreter/interpreter-intrinsics.h"
20 #include "src/log.h"
21 #include "src/zone/zone.h"
22
23 namespace v8 {
24 namespace internal {
25 namespace interpreter {
26
27 using compiler::Node;
28 typedef CodeStubAssembler::Label Label;
29 typedef CodeStubAssembler::Variable Variable;
30 typedef InterpreterAssembler::Arg Arg;
31
32 #define __ assembler->
33
34 class InterpreterCompilationJob final : public CompilationJob {
35 public:
36 explicit InterpreterCompilationJob(CompilationInfo* info);
37
38 protected:
39 Status PrepareJobImpl() final;
40 Status ExecuteJobImpl() final;
41 Status FinalizeJobImpl() final;
42
43 private:
generator()44 BytecodeGenerator* generator() { return &generator_; }
45
46 BytecodeGenerator generator_;
47
48 DISALLOW_COPY_AND_ASSIGN(InterpreterCompilationJob);
49 };
50
Interpreter(Isolate * isolate)51 Interpreter::Interpreter(Isolate* isolate) : isolate_(isolate) {
52 memset(dispatch_table_, 0, sizeof(dispatch_table_));
53 }
54
Initialize()55 void Interpreter::Initialize() {
56 if (!ShouldInitializeDispatchTable()) return;
57 Zone zone(isolate_->allocator(), ZONE_NAME);
58 HandleScope scope(isolate_);
59
60 if (FLAG_trace_ignition_dispatches) {
61 static const int kBytecodeCount = static_cast<int>(Bytecode::kLast) + 1;
62 bytecode_dispatch_counters_table_.reset(
63 new uintptr_t[kBytecodeCount * kBytecodeCount]);
64 memset(bytecode_dispatch_counters_table_.get(), 0,
65 sizeof(uintptr_t) * kBytecodeCount * kBytecodeCount);
66 }
67
68 // Generate bytecode handlers for all bytecodes and scales.
69 const OperandScale kOperandScales[] = {
70 #define VALUE(Name, _) OperandScale::k##Name,
71 OPERAND_SCALE_LIST(VALUE)
72 #undef VALUE
73 };
74
75 for (OperandScale operand_scale : kOperandScales) {
76 #define GENERATE_CODE(Name, ...) \
77 { \
78 if (Bytecodes::BytecodeHasHandler(Bytecode::k##Name, operand_scale)) { \
79 InterpreterAssembler assembler(isolate_, &zone, Bytecode::k##Name, \
80 operand_scale); \
81 Do##Name(&assembler); \
82 Handle<Code> code = assembler.GenerateCode(); \
83 size_t index = GetDispatchTableIndex(Bytecode::k##Name, operand_scale); \
84 dispatch_table_[index] = code->entry(); \
85 TraceCodegen(code); \
86 PROFILE( \
87 isolate_, \
88 CodeCreateEvent( \
89 CodeEventListener::BYTECODE_HANDLER_TAG, \
90 AbstractCode::cast(*code), \
91 Bytecodes::ToString(Bytecode::k##Name, operand_scale).c_str())); \
92 } \
93 }
94 BYTECODE_LIST(GENERATE_CODE)
95 #undef GENERATE_CODE
96 }
97
98 // Fill unused entries will the illegal bytecode handler.
99 size_t illegal_index =
100 GetDispatchTableIndex(Bytecode::kIllegal, OperandScale::kSingle);
101 for (size_t index = 0; index < arraysize(dispatch_table_); ++index) {
102 if (dispatch_table_[index] == nullptr) {
103 dispatch_table_[index] = dispatch_table_[illegal_index];
104 }
105 }
106
107 // Initialization should have been successful.
108 DCHECK(IsDispatchTableInitialized());
109 }
110
GetBytecodeHandler(Bytecode bytecode,OperandScale operand_scale)111 Code* Interpreter::GetBytecodeHandler(Bytecode bytecode,
112 OperandScale operand_scale) {
113 DCHECK(IsDispatchTableInitialized());
114 DCHECK(Bytecodes::BytecodeHasHandler(bytecode, operand_scale));
115 size_t index = GetDispatchTableIndex(bytecode, operand_scale);
116 Address code_entry = dispatch_table_[index];
117 return Code::GetCodeFromTargetAddress(code_entry);
118 }
119
120 // static
GetDispatchTableIndex(Bytecode bytecode,OperandScale operand_scale)121 size_t Interpreter::GetDispatchTableIndex(Bytecode bytecode,
122 OperandScale operand_scale) {
123 static const size_t kEntriesPerOperandScale = 1u << kBitsPerByte;
124 size_t index = static_cast<size_t>(bytecode);
125 switch (operand_scale) {
126 case OperandScale::kSingle:
127 return index;
128 case OperandScale::kDouble:
129 return index + kEntriesPerOperandScale;
130 case OperandScale::kQuadruple:
131 return index + 2 * kEntriesPerOperandScale;
132 }
133 UNREACHABLE();
134 return 0;
135 }
136
IterateDispatchTable(ObjectVisitor * v)137 void Interpreter::IterateDispatchTable(ObjectVisitor* v) {
138 for (int i = 0; i < kDispatchTableSize; i++) {
139 Address code_entry = dispatch_table_[i];
140 Object* code = code_entry == nullptr
141 ? nullptr
142 : Code::GetCodeFromTargetAddress(code_entry);
143 Object* old_code = code;
144 v->VisitPointer(&code);
145 if (code != old_code) {
146 dispatch_table_[i] = reinterpret_cast<Code*>(code)->entry();
147 }
148 }
149 }
150
151 // static
InterruptBudget()152 int Interpreter::InterruptBudget() {
153 return FLAG_interrupt_budget * kCodeSizeMultiplier;
154 }
155
InterpreterCompilationJob(CompilationInfo * info)156 InterpreterCompilationJob::InterpreterCompilationJob(CompilationInfo* info)
157 : CompilationJob(info->isolate(), info, "Ignition"), generator_(info) {}
158
PrepareJobImpl()159 InterpreterCompilationJob::Status InterpreterCompilationJob::PrepareJobImpl() {
160 if (FLAG_print_bytecode || FLAG_print_ast) {
161 OFStream os(stdout);
162 std::unique_ptr<char[]> name = info()->GetDebugName();
163 os << "[generating bytecode for function: " << info()->GetDebugName().get()
164 << "]" << std::endl
165 << std::flush;
166 }
167
168 #ifdef DEBUG
169 if (info()->parse_info() && FLAG_print_ast) {
170 OFStream os(stdout);
171 os << "--- AST ---" << std::endl
172 << AstPrinter(info()->isolate()).PrintProgram(info()->literal())
173 << std::endl
174 << std::flush;
175 }
176 #endif // DEBUG
177
178 return SUCCEEDED;
179 }
180
ExecuteJobImpl()181 InterpreterCompilationJob::Status InterpreterCompilationJob::ExecuteJobImpl() {
182 // TODO(5203): These timers aren't thread safe, move to using the CompilerJob
183 // timers.
184 RuntimeCallTimerScope runtimeTimer(info()->isolate(),
185 &RuntimeCallStats::CompileIgnition);
186 TimerEventScope<TimerEventCompileIgnition> timer(info()->isolate());
187 TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileIgnition");
188
189 generator()->GenerateBytecode(stack_limit());
190
191 if (generator()->HasStackOverflow()) {
192 return FAILED;
193 }
194 return SUCCEEDED;
195 }
196
FinalizeJobImpl()197 InterpreterCompilationJob::Status InterpreterCompilationJob::FinalizeJobImpl() {
198 Handle<BytecodeArray> bytecodes = generator()->FinalizeBytecode(isolate());
199 if (generator()->HasStackOverflow()) {
200 return FAILED;
201 }
202
203 CodeGenerator::MakeCodePrologue(info(), "interpreter");
204
205 if (FLAG_print_bytecode) {
206 OFStream os(stdout);
207 bytecodes->Print(os);
208 os << std::flush;
209 }
210
211 info()->SetBytecodeArray(bytecodes);
212 info()->SetCode(info()->isolate()->builtins()->InterpreterEntryTrampoline());
213 return SUCCEEDED;
214 }
215
NewCompilationJob(CompilationInfo * info)216 CompilationJob* Interpreter::NewCompilationJob(CompilationInfo* info) {
217 return new InterpreterCompilationJob(info);
218 }
219
IsDispatchTableInitialized()220 bool Interpreter::IsDispatchTableInitialized() {
221 return dispatch_table_[0] != nullptr;
222 }
223
ShouldInitializeDispatchTable()224 bool Interpreter::ShouldInitializeDispatchTable() {
225 if (FLAG_trace_ignition || FLAG_trace_ignition_codegen ||
226 FLAG_trace_ignition_dispatches) {
227 // Regenerate table to add bytecode tracing operations, print the assembly
228 // code generated by TurboFan or instrument handlers with dispatch counters.
229 return true;
230 }
231 return !IsDispatchTableInitialized();
232 }
233
TraceCodegen(Handle<Code> code)234 void Interpreter::TraceCodegen(Handle<Code> code) {
235 #ifdef ENABLE_DISASSEMBLER
236 if (FLAG_trace_ignition_codegen) {
237 OFStream os(stdout);
238 code->Disassemble(nullptr, os);
239 os << std::flush;
240 }
241 #endif // ENABLE_DISASSEMBLER
242 }
243
LookupNameOfBytecodeHandler(Code * code)244 const char* Interpreter::LookupNameOfBytecodeHandler(Code* code) {
245 #ifdef ENABLE_DISASSEMBLER
246 #define RETURN_NAME(Name, ...) \
247 if (dispatch_table_[Bytecodes::ToByte(Bytecode::k##Name)] == \
248 code->entry()) { \
249 return #Name; \
250 }
251 BYTECODE_LIST(RETURN_NAME)
252 #undef RETURN_NAME
253 #endif // ENABLE_DISASSEMBLER
254 return nullptr;
255 }
256
GetDispatchCounter(Bytecode from,Bytecode to) const257 uintptr_t Interpreter::GetDispatchCounter(Bytecode from, Bytecode to) const {
258 int from_index = Bytecodes::ToByte(from);
259 int to_index = Bytecodes::ToByte(to);
260 return bytecode_dispatch_counters_table_[from_index * kNumberOfBytecodes +
261 to_index];
262 }
263
GetDispatchCountersObject()264 Local<v8::Object> Interpreter::GetDispatchCountersObject() {
265 v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(isolate_);
266 Local<v8::Context> context = isolate->GetCurrentContext();
267
268 Local<v8::Object> counters_map = v8::Object::New(isolate);
269
270 // Output is a JSON-encoded object of objects.
271 //
272 // The keys on the top level object are source bytecodes,
273 // and corresponding value are objects. Keys on these last are the
274 // destinations of the dispatch and the value associated is a counter for
275 // the correspondent source-destination dispatch chain.
276 //
277 // Only non-zero counters are written to file, but an entry in the top-level
278 // object is always present, even if the value is empty because all counters
279 // for that source are zero.
280
281 for (int from_index = 0; from_index < kNumberOfBytecodes; ++from_index) {
282 Bytecode from_bytecode = Bytecodes::FromByte(from_index);
283 Local<v8::Object> counters_row = v8::Object::New(isolate);
284
285 for (int to_index = 0; to_index < kNumberOfBytecodes; ++to_index) {
286 Bytecode to_bytecode = Bytecodes::FromByte(to_index);
287 uintptr_t counter = GetDispatchCounter(from_bytecode, to_bytecode);
288
289 if (counter > 0) {
290 std::string to_name = Bytecodes::ToString(to_bytecode);
291 Local<v8::String> to_name_object =
292 v8::String::NewFromUtf8(isolate, to_name.c_str(),
293 NewStringType::kNormal)
294 .ToLocalChecked();
295 Local<v8::Number> counter_object = v8::Number::New(isolate, counter);
296 CHECK(counters_row
297 ->DefineOwnProperty(context, to_name_object, counter_object)
298 .IsJust());
299 }
300 }
301
302 std::string from_name = Bytecodes::ToString(from_bytecode);
303 Local<v8::String> from_name_object =
304 v8::String::NewFromUtf8(isolate, from_name.c_str(),
305 NewStringType::kNormal)
306 .ToLocalChecked();
307
308 CHECK(
309 counters_map->DefineOwnProperty(context, from_name_object, counters_row)
310 .IsJust());
311 }
312
313 return counters_map;
314 }
315
316 // LdaZero
317 //
318 // Load literal '0' into the accumulator.
DoLdaZero(InterpreterAssembler * assembler)319 void Interpreter::DoLdaZero(InterpreterAssembler* assembler) {
320 Node* zero_value = __ NumberConstant(0.0);
321 __ SetAccumulator(zero_value);
322 __ Dispatch();
323 }
324
325 // LdaSmi <imm>
326 //
327 // Load an integer literal into the accumulator as a Smi.
DoLdaSmi(InterpreterAssembler * assembler)328 void Interpreter::DoLdaSmi(InterpreterAssembler* assembler) {
329 Node* raw_int = __ BytecodeOperandImm(0);
330 Node* smi_int = __ SmiTag(raw_int);
331 __ SetAccumulator(smi_int);
332 __ Dispatch();
333 }
334
335 // LdaConstant <idx>
336 //
337 // Load constant literal at |idx| in the constant pool into the accumulator.
DoLdaConstant(InterpreterAssembler * assembler)338 void Interpreter::DoLdaConstant(InterpreterAssembler* assembler) {
339 Node* index = __ BytecodeOperandIdx(0);
340 Node* constant = __ LoadConstantPoolEntry(index);
341 __ SetAccumulator(constant);
342 __ Dispatch();
343 }
344
345 // LdaUndefined
346 //
347 // Load Undefined into the accumulator.
DoLdaUndefined(InterpreterAssembler * assembler)348 void Interpreter::DoLdaUndefined(InterpreterAssembler* assembler) {
349 Node* undefined_value =
350 __ HeapConstant(isolate_->factory()->undefined_value());
351 __ SetAccumulator(undefined_value);
352 __ Dispatch();
353 }
354
355 // LdaNull
356 //
357 // Load Null into the accumulator.
DoLdaNull(InterpreterAssembler * assembler)358 void Interpreter::DoLdaNull(InterpreterAssembler* assembler) {
359 Node* null_value = __ HeapConstant(isolate_->factory()->null_value());
360 __ SetAccumulator(null_value);
361 __ Dispatch();
362 }
363
364 // LdaTheHole
365 //
366 // Load TheHole into the accumulator.
DoLdaTheHole(InterpreterAssembler * assembler)367 void Interpreter::DoLdaTheHole(InterpreterAssembler* assembler) {
368 Node* the_hole_value = __ HeapConstant(isolate_->factory()->the_hole_value());
369 __ SetAccumulator(the_hole_value);
370 __ Dispatch();
371 }
372
373 // LdaTrue
374 //
375 // Load True into the accumulator.
DoLdaTrue(InterpreterAssembler * assembler)376 void Interpreter::DoLdaTrue(InterpreterAssembler* assembler) {
377 Node* true_value = __ HeapConstant(isolate_->factory()->true_value());
378 __ SetAccumulator(true_value);
379 __ Dispatch();
380 }
381
382 // LdaFalse
383 //
384 // Load False into the accumulator.
DoLdaFalse(InterpreterAssembler * assembler)385 void Interpreter::DoLdaFalse(InterpreterAssembler* assembler) {
386 Node* false_value = __ HeapConstant(isolate_->factory()->false_value());
387 __ SetAccumulator(false_value);
388 __ Dispatch();
389 }
390
391 // Ldar <src>
392 //
393 // Load accumulator with value from register <src>.
DoLdar(InterpreterAssembler * assembler)394 void Interpreter::DoLdar(InterpreterAssembler* assembler) {
395 Node* reg_index = __ BytecodeOperandReg(0);
396 Node* value = __ LoadRegister(reg_index);
397 __ SetAccumulator(value);
398 __ Dispatch();
399 }
400
401 // Star <dst>
402 //
403 // Store accumulator to register <dst>.
DoStar(InterpreterAssembler * assembler)404 void Interpreter::DoStar(InterpreterAssembler* assembler) {
405 Node* reg_index = __ BytecodeOperandReg(0);
406 Node* accumulator = __ GetAccumulator();
407 __ StoreRegister(accumulator, reg_index);
408 __ Dispatch();
409 }
410
411 // Mov <src> <dst>
412 //
413 // Stores the value of register <src> to register <dst>.
DoMov(InterpreterAssembler * assembler)414 void Interpreter::DoMov(InterpreterAssembler* assembler) {
415 Node* src_index = __ BytecodeOperandReg(0);
416 Node* src_value = __ LoadRegister(src_index);
417 Node* dst_index = __ BytecodeOperandReg(1);
418 __ StoreRegister(src_value, dst_index);
419 __ Dispatch();
420 }
421
BuildLoadGlobal(Callable ic,Node * context,Node * feedback_slot,InterpreterAssembler * assembler)422 Node* Interpreter::BuildLoadGlobal(Callable ic, Node* context,
423 Node* feedback_slot,
424 InterpreterAssembler* assembler) {
425 typedef LoadGlobalWithVectorDescriptor Descriptor;
426
427 // Load the global via the LoadGlobalIC.
428 Node* code_target = __ HeapConstant(ic.code());
429 Node* smi_slot = __ SmiTag(feedback_slot);
430 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
431 return __ CallStub(ic.descriptor(), code_target, context,
432 Arg(Descriptor::kSlot, smi_slot),
433 Arg(Descriptor::kVector, type_feedback_vector));
434 }
435
436 // LdaGlobal <slot>
437 //
438 // Load the global with name in constant pool entry <name_index> into the
439 // accumulator using FeedBackVector slot <slot> outside of a typeof.
DoLdaGlobal(InterpreterAssembler * assembler)440 void Interpreter::DoLdaGlobal(InterpreterAssembler* assembler) {
441 Callable ic =
442 CodeFactory::LoadGlobalICInOptimizedCode(isolate_, NOT_INSIDE_TYPEOF);
443
444 Node* context = __ GetContext();
445
446 Node* raw_slot = __ BytecodeOperandIdx(0);
447 Node* result = BuildLoadGlobal(ic, context, raw_slot, assembler);
448 __ SetAccumulator(result);
449 __ Dispatch();
450 }
451
452 // LdaGlobalInsideTypeof <slot>
453 //
454 // Load the global with name in constant pool entry <name_index> into the
455 // accumulator using FeedBackVector slot <slot> inside of a typeof.
DoLdaGlobalInsideTypeof(InterpreterAssembler * assembler)456 void Interpreter::DoLdaGlobalInsideTypeof(InterpreterAssembler* assembler) {
457 Callable ic =
458 CodeFactory::LoadGlobalICInOptimizedCode(isolate_, INSIDE_TYPEOF);
459
460 Node* context = __ GetContext();
461
462 Node* raw_slot = __ BytecodeOperandIdx(0);
463 Node* result = BuildLoadGlobal(ic, context, raw_slot, assembler);
464 __ SetAccumulator(result);
465 __ Dispatch();
466 }
467
DoStaGlobal(Callable ic,InterpreterAssembler * assembler)468 void Interpreter::DoStaGlobal(Callable ic, InterpreterAssembler* assembler) {
469 typedef StoreWithVectorDescriptor Descriptor;
470 // Get the global object.
471 Node* context = __ GetContext();
472 Node* native_context = __ LoadNativeContext(context);
473 Node* global =
474 __ LoadContextElement(native_context, Context::EXTENSION_INDEX);
475
476 // Store the global via the StoreIC.
477 Node* code_target = __ HeapConstant(ic.code());
478 Node* constant_index = __ BytecodeOperandIdx(0);
479 Node* name = __ LoadConstantPoolEntry(constant_index);
480 Node* value = __ GetAccumulator();
481 Node* raw_slot = __ BytecodeOperandIdx(1);
482 Node* smi_slot = __ SmiTag(raw_slot);
483 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
484 __ CallStub(ic.descriptor(), code_target, context,
485 Arg(Descriptor::kReceiver, global), Arg(Descriptor::kName, name),
486 Arg(Descriptor::kValue, value), Arg(Descriptor::kSlot, smi_slot),
487 Arg(Descriptor::kVector, type_feedback_vector));
488 __ Dispatch();
489 }
490
491 // StaGlobalSloppy <name_index> <slot>
492 //
493 // Store the value in the accumulator into the global with name in constant pool
494 // entry <name_index> using FeedBackVector slot <slot> in sloppy mode.
DoStaGlobalSloppy(InterpreterAssembler * assembler)495 void Interpreter::DoStaGlobalSloppy(InterpreterAssembler* assembler) {
496 Callable ic = CodeFactory::StoreICInOptimizedCode(isolate_, SLOPPY);
497 DoStaGlobal(ic, assembler);
498 }
499
500 // StaGlobalStrict <name_index> <slot>
501 //
502 // Store the value in the accumulator into the global with name in constant pool
503 // entry <name_index> using FeedBackVector slot <slot> in strict mode.
DoStaGlobalStrict(InterpreterAssembler * assembler)504 void Interpreter::DoStaGlobalStrict(InterpreterAssembler* assembler) {
505 Callable ic = CodeFactory::StoreICInOptimizedCode(isolate_, STRICT);
506 DoStaGlobal(ic, assembler);
507 }
508
509 // LdaContextSlot <context> <slot_index> <depth>
510 //
511 // Load the object in |slot_index| of the context at |depth| in the context
512 // chain starting at |context| into the accumulator.
DoLdaContextSlot(InterpreterAssembler * assembler)513 void Interpreter::DoLdaContextSlot(InterpreterAssembler* assembler) {
514 Node* reg_index = __ BytecodeOperandReg(0);
515 Node* context = __ LoadRegister(reg_index);
516 Node* slot_index = __ BytecodeOperandIdx(1);
517 Node* depth = __ BytecodeOperandUImm(2);
518 Node* slot_context = __ GetContextAtDepth(context, depth);
519 Node* result = __ LoadContextElement(slot_context, slot_index);
520 __ SetAccumulator(result);
521 __ Dispatch();
522 }
523
524 // LdaCurrentContextSlot <slot_index>
525 //
526 // Load the object in |slot_index| of the current context into the accumulator.
DoLdaCurrentContextSlot(InterpreterAssembler * assembler)527 void Interpreter::DoLdaCurrentContextSlot(InterpreterAssembler* assembler) {
528 Node* slot_index = __ BytecodeOperandIdx(0);
529 Node* slot_context = __ GetContext();
530 Node* result = __ LoadContextElement(slot_context, slot_index);
531 __ SetAccumulator(result);
532 __ Dispatch();
533 }
534
535 // StaContextSlot <context> <slot_index> <depth>
536 //
537 // Stores the object in the accumulator into |slot_index| of the context at
538 // |depth| in the context chain starting at |context|.
DoStaContextSlot(InterpreterAssembler * assembler)539 void Interpreter::DoStaContextSlot(InterpreterAssembler* assembler) {
540 Node* value = __ GetAccumulator();
541 Node* reg_index = __ BytecodeOperandReg(0);
542 Node* context = __ LoadRegister(reg_index);
543 Node* slot_index = __ BytecodeOperandIdx(1);
544 Node* depth = __ BytecodeOperandUImm(2);
545 Node* slot_context = __ GetContextAtDepth(context, depth);
546 __ StoreContextElement(slot_context, slot_index, value);
547 __ Dispatch();
548 }
549
550 // StaCurrentContextSlot <slot_index>
551 //
552 // Stores the object in the accumulator into |slot_index| of the current
553 // context.
DoStaCurrentContextSlot(InterpreterAssembler * assembler)554 void Interpreter::DoStaCurrentContextSlot(InterpreterAssembler* assembler) {
555 Node* value = __ GetAccumulator();
556 Node* slot_index = __ BytecodeOperandIdx(0);
557 Node* slot_context = __ GetContext();
558 __ StoreContextElement(slot_context, slot_index, value);
559 __ Dispatch();
560 }
561
DoLdaLookupSlot(Runtime::FunctionId function_id,InterpreterAssembler * assembler)562 void Interpreter::DoLdaLookupSlot(Runtime::FunctionId function_id,
563 InterpreterAssembler* assembler) {
564 Node* name_index = __ BytecodeOperandIdx(0);
565 Node* name = __ LoadConstantPoolEntry(name_index);
566 Node* context = __ GetContext();
567 Node* result = __ CallRuntime(function_id, context, name);
568 __ SetAccumulator(result);
569 __ Dispatch();
570 }
571
572 // LdaLookupSlot <name_index>
573 //
574 // Lookup the object with the name in constant pool entry |name_index|
575 // dynamically.
DoLdaLookupSlot(InterpreterAssembler * assembler)576 void Interpreter::DoLdaLookupSlot(InterpreterAssembler* assembler) {
577 DoLdaLookupSlot(Runtime::kLoadLookupSlot, assembler);
578 }
579
580 // LdaLookupSlotInsideTypeof <name_index>
581 //
582 // Lookup the object with the name in constant pool entry |name_index|
583 // dynamically without causing a NoReferenceError.
DoLdaLookupSlotInsideTypeof(InterpreterAssembler * assembler)584 void Interpreter::DoLdaLookupSlotInsideTypeof(InterpreterAssembler* assembler) {
585 DoLdaLookupSlot(Runtime::kLoadLookupSlotInsideTypeof, assembler);
586 }
587
DoLdaLookupContextSlot(Runtime::FunctionId function_id,InterpreterAssembler * assembler)588 void Interpreter::DoLdaLookupContextSlot(Runtime::FunctionId function_id,
589 InterpreterAssembler* assembler) {
590 Node* context = __ GetContext();
591 Node* name_index = __ BytecodeOperandIdx(0);
592 Node* slot_index = __ BytecodeOperandIdx(1);
593 Node* depth = __ BytecodeOperandUImm(2);
594
595 Label slowpath(assembler, Label::kDeferred);
596
597 // Check for context extensions to allow the fast path.
598 __ GotoIfHasContextExtensionUpToDepth(context, depth, &slowpath);
599
600 // Fast path does a normal load context.
601 {
602 Node* slot_context = __ GetContextAtDepth(context, depth);
603 Node* result = __ LoadContextElement(slot_context, slot_index);
604 __ SetAccumulator(result);
605 __ Dispatch();
606 }
607
608 // Slow path when we have to call out to the runtime.
609 __ Bind(&slowpath);
610 {
611 Node* name = __ LoadConstantPoolEntry(name_index);
612 Node* result = __ CallRuntime(function_id, context, name);
613 __ SetAccumulator(result);
614 __ Dispatch();
615 }
616 }
617
618 // LdaLookupSlot <name_index>
619 //
620 // Lookup the object with the name in constant pool entry |name_index|
621 // dynamically.
DoLdaLookupContextSlot(InterpreterAssembler * assembler)622 void Interpreter::DoLdaLookupContextSlot(InterpreterAssembler* assembler) {
623 DoLdaLookupContextSlot(Runtime::kLoadLookupSlot, assembler);
624 }
625
626 // LdaLookupSlotInsideTypeof <name_index>
627 //
628 // Lookup the object with the name in constant pool entry |name_index|
629 // dynamically without causing a NoReferenceError.
DoLdaLookupContextSlotInsideTypeof(InterpreterAssembler * assembler)630 void Interpreter::DoLdaLookupContextSlotInsideTypeof(
631 InterpreterAssembler* assembler) {
632 DoLdaLookupContextSlot(Runtime::kLoadLookupSlotInsideTypeof, assembler);
633 }
634
DoLdaLookupGlobalSlot(Runtime::FunctionId function_id,InterpreterAssembler * assembler)635 void Interpreter::DoLdaLookupGlobalSlot(Runtime::FunctionId function_id,
636 InterpreterAssembler* assembler) {
637 Node* context = __ GetContext();
638 Node* name_index = __ BytecodeOperandIdx(0);
639 Node* feedback_slot = __ BytecodeOperandIdx(1);
640 Node* depth = __ BytecodeOperandUImm(2);
641
642 Label slowpath(assembler, Label::kDeferred);
643
644 // Check for context extensions to allow the fast path
645 __ GotoIfHasContextExtensionUpToDepth(context, depth, &slowpath);
646
647 // Fast path does a normal load global
648 {
649 Callable ic = CodeFactory::LoadGlobalICInOptimizedCode(
650 isolate_, function_id == Runtime::kLoadLookupSlotInsideTypeof
651 ? INSIDE_TYPEOF
652 : NOT_INSIDE_TYPEOF);
653 Node* result = BuildLoadGlobal(ic, context, feedback_slot, assembler);
654 __ SetAccumulator(result);
655 __ Dispatch();
656 }
657
658 // Slow path when we have to call out to the runtime
659 __ Bind(&slowpath);
660 {
661 Node* name = __ LoadConstantPoolEntry(name_index);
662 Node* result = __ CallRuntime(function_id, context, name);
663 __ SetAccumulator(result);
664 __ Dispatch();
665 }
666 }
667
668 // LdaLookupGlobalSlot <name_index> <feedback_slot> <depth>
669 //
670 // Lookup the object with the name in constant pool entry |name_index|
671 // dynamically.
DoLdaLookupGlobalSlot(InterpreterAssembler * assembler)672 void Interpreter::DoLdaLookupGlobalSlot(InterpreterAssembler* assembler) {
673 DoLdaLookupGlobalSlot(Runtime::kLoadLookupSlot, assembler);
674 }
675
676 // LdaLookupGlobalSlotInsideTypeof <name_index> <feedback_slot> <depth>
677 //
678 // Lookup the object with the name in constant pool entry |name_index|
679 // dynamically without causing a NoReferenceError.
DoLdaLookupGlobalSlotInsideTypeof(InterpreterAssembler * assembler)680 void Interpreter::DoLdaLookupGlobalSlotInsideTypeof(
681 InterpreterAssembler* assembler) {
682 DoLdaLookupGlobalSlot(Runtime::kLoadLookupSlotInsideTypeof, assembler);
683 }
684
DoStaLookupSlot(LanguageMode language_mode,InterpreterAssembler * assembler)685 void Interpreter::DoStaLookupSlot(LanguageMode language_mode,
686 InterpreterAssembler* assembler) {
687 Node* value = __ GetAccumulator();
688 Node* index = __ BytecodeOperandIdx(0);
689 Node* name = __ LoadConstantPoolEntry(index);
690 Node* context = __ GetContext();
691 Node* result = __ CallRuntime(is_strict(language_mode)
692 ? Runtime::kStoreLookupSlot_Strict
693 : Runtime::kStoreLookupSlot_Sloppy,
694 context, name, value);
695 __ SetAccumulator(result);
696 __ Dispatch();
697 }
698
699 // StaLookupSlotSloppy <name_index>
700 //
701 // Store the object in accumulator to the object with the name in constant
702 // pool entry |name_index| in sloppy mode.
DoStaLookupSlotSloppy(InterpreterAssembler * assembler)703 void Interpreter::DoStaLookupSlotSloppy(InterpreterAssembler* assembler) {
704 DoStaLookupSlot(LanguageMode::SLOPPY, assembler);
705 }
706
707 // StaLookupSlotStrict <name_index>
708 //
709 // Store the object in accumulator to the object with the name in constant
710 // pool entry |name_index| in strict mode.
DoStaLookupSlotStrict(InterpreterAssembler * assembler)711 void Interpreter::DoStaLookupSlotStrict(InterpreterAssembler* assembler) {
712 DoStaLookupSlot(LanguageMode::STRICT, assembler);
713 }
714
715 // LdaNamedProperty <object> <name_index> <slot>
716 //
717 // Calls the LoadIC at FeedBackVector slot <slot> for <object> and the name at
718 // constant pool entry <name_index>.
DoLdaNamedProperty(InterpreterAssembler * assembler)719 void Interpreter::DoLdaNamedProperty(InterpreterAssembler* assembler) {
720 typedef LoadWithVectorDescriptor Descriptor;
721 Callable ic = CodeFactory::LoadICInOptimizedCode(isolate_);
722 Node* code_target = __ HeapConstant(ic.code());
723 Node* register_index = __ BytecodeOperandReg(0);
724 Node* object = __ LoadRegister(register_index);
725 Node* constant_index = __ BytecodeOperandIdx(1);
726 Node* name = __ LoadConstantPoolEntry(constant_index);
727 Node* raw_slot = __ BytecodeOperandIdx(2);
728 Node* smi_slot = __ SmiTag(raw_slot);
729 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
730 Node* context = __ GetContext();
731 Node* result = __ CallStub(
732 ic.descriptor(), code_target, context, Arg(Descriptor::kReceiver, object),
733 Arg(Descriptor::kName, name), Arg(Descriptor::kSlot, smi_slot),
734 Arg(Descriptor::kVector, type_feedback_vector));
735 __ SetAccumulator(result);
736 __ Dispatch();
737 }
738
739 // KeyedLoadIC <object> <slot>
740 //
741 // Calls the KeyedLoadIC at FeedBackVector slot <slot> for <object> and the key
742 // in the accumulator.
DoLdaKeyedProperty(InterpreterAssembler * assembler)743 void Interpreter::DoLdaKeyedProperty(InterpreterAssembler* assembler) {
744 typedef LoadWithVectorDescriptor Descriptor;
745 Callable ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate_);
746 Node* code_target = __ HeapConstant(ic.code());
747 Node* reg_index = __ BytecodeOperandReg(0);
748 Node* object = __ LoadRegister(reg_index);
749 Node* name = __ GetAccumulator();
750 Node* raw_slot = __ BytecodeOperandIdx(1);
751 Node* smi_slot = __ SmiTag(raw_slot);
752 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
753 Node* context = __ GetContext();
754 Node* result = __ CallStub(
755 ic.descriptor(), code_target, context, Arg(Descriptor::kReceiver, object),
756 Arg(Descriptor::kName, name), Arg(Descriptor::kSlot, smi_slot),
757 Arg(Descriptor::kVector, type_feedback_vector));
758 __ SetAccumulator(result);
759 __ Dispatch();
760 }
761
DoStoreIC(Callable ic,InterpreterAssembler * assembler)762 void Interpreter::DoStoreIC(Callable ic, InterpreterAssembler* assembler) {
763 typedef StoreWithVectorDescriptor Descriptor;
764 Node* code_target = __ HeapConstant(ic.code());
765 Node* object_reg_index = __ BytecodeOperandReg(0);
766 Node* object = __ LoadRegister(object_reg_index);
767 Node* constant_index = __ BytecodeOperandIdx(1);
768 Node* name = __ LoadConstantPoolEntry(constant_index);
769 Node* value = __ GetAccumulator();
770 Node* raw_slot = __ BytecodeOperandIdx(2);
771 Node* smi_slot = __ SmiTag(raw_slot);
772 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
773 Node* context = __ GetContext();
774 __ CallStub(ic.descriptor(), code_target, context,
775 Arg(Descriptor::kReceiver, object), Arg(Descriptor::kName, name),
776 Arg(Descriptor::kValue, value), Arg(Descriptor::kSlot, smi_slot),
777 Arg(Descriptor::kVector, type_feedback_vector));
778 __ Dispatch();
779 }
780
781 // StaNamedPropertySloppy <object> <name_index> <slot>
782 //
783 // Calls the sloppy mode StoreIC at FeedBackVector slot <slot> for <object> and
784 // the name in constant pool entry <name_index> with the value in the
785 // accumulator.
DoStaNamedPropertySloppy(InterpreterAssembler * assembler)786 void Interpreter::DoStaNamedPropertySloppy(InterpreterAssembler* assembler) {
787 Callable ic = CodeFactory::StoreICInOptimizedCode(isolate_, SLOPPY);
788 DoStoreIC(ic, assembler);
789 }
790
791 // StaNamedPropertyStrict <object> <name_index> <slot>
792 //
793 // Calls the strict mode StoreIC at FeedBackVector slot <slot> for <object> and
794 // the name in constant pool entry <name_index> with the value in the
795 // accumulator.
DoStaNamedPropertyStrict(InterpreterAssembler * assembler)796 void Interpreter::DoStaNamedPropertyStrict(InterpreterAssembler* assembler) {
797 Callable ic = CodeFactory::StoreICInOptimizedCode(isolate_, STRICT);
798 DoStoreIC(ic, assembler);
799 }
800
DoKeyedStoreIC(Callable ic,InterpreterAssembler * assembler)801 void Interpreter::DoKeyedStoreIC(Callable ic, InterpreterAssembler* assembler) {
802 typedef StoreWithVectorDescriptor Descriptor;
803 Node* code_target = __ HeapConstant(ic.code());
804 Node* object_reg_index = __ BytecodeOperandReg(0);
805 Node* object = __ LoadRegister(object_reg_index);
806 Node* name_reg_index = __ BytecodeOperandReg(1);
807 Node* name = __ LoadRegister(name_reg_index);
808 Node* value = __ GetAccumulator();
809 Node* raw_slot = __ BytecodeOperandIdx(2);
810 Node* smi_slot = __ SmiTag(raw_slot);
811 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
812 Node* context = __ GetContext();
813 __ CallStub(ic.descriptor(), code_target, context,
814 Arg(Descriptor::kReceiver, object), Arg(Descriptor::kName, name),
815 Arg(Descriptor::kValue, value), Arg(Descriptor::kSlot, smi_slot),
816 Arg(Descriptor::kVector, type_feedback_vector));
817 __ Dispatch();
818 }
819
820 // StaKeyedPropertySloppy <object> <key> <slot>
821 //
822 // Calls the sloppy mode KeyStoreIC at FeedBackVector slot <slot> for <object>
823 // and the key <key> with the value in the accumulator.
DoStaKeyedPropertySloppy(InterpreterAssembler * assembler)824 void Interpreter::DoStaKeyedPropertySloppy(InterpreterAssembler* assembler) {
825 Callable ic = CodeFactory::KeyedStoreICInOptimizedCode(isolate_, SLOPPY);
826 DoKeyedStoreIC(ic, assembler);
827 }
828
829 // StaKeyedPropertyStrict <object> <key> <slot>
830 //
831 // Calls the strict mode KeyStoreIC at FeedBackVector slot <slot> for <object>
832 // and the key <key> with the value in the accumulator.
DoStaKeyedPropertyStrict(InterpreterAssembler * assembler)833 void Interpreter::DoStaKeyedPropertyStrict(InterpreterAssembler* assembler) {
834 Callable ic = CodeFactory::KeyedStoreICInOptimizedCode(isolate_, STRICT);
835 DoKeyedStoreIC(ic, assembler);
836 }
837
838 // LdaModuleVariable <cell_index> <depth>
839 //
840 // Load the contents of a module variable into the accumulator. The variable is
841 // identified by <cell_index>. <depth> is the depth of the current context
842 // relative to the module context.
DoLdaModuleVariable(InterpreterAssembler * assembler)843 void Interpreter::DoLdaModuleVariable(InterpreterAssembler* assembler) {
844 Node* cell_index = __ BytecodeOperandImm(0);
845 Node* depth = __ BytecodeOperandUImm(1);
846
847 Node* module_context = __ GetContextAtDepth(__ GetContext(), depth);
848 Node* module =
849 __ LoadContextElement(module_context, Context::EXTENSION_INDEX);
850
851 Label if_export(assembler), if_import(assembler), end(assembler);
852 __ Branch(__ IntPtrGreaterThan(cell_index, __ IntPtrConstant(0)), &if_export,
853 &if_import);
854
855 __ Bind(&if_export);
856 {
857 Node* regular_exports =
858 __ LoadObjectField(module, Module::kRegularExportsOffset);
859 // The actual array index is (cell_index - 1).
860 Node* export_index = __ IntPtrSub(cell_index, __ IntPtrConstant(1));
861 Node* cell = __ LoadFixedArrayElement(regular_exports, export_index);
862 __ SetAccumulator(__ LoadObjectField(cell, Cell::kValueOffset));
863 __ Goto(&end);
864 }
865
866 __ Bind(&if_import);
867 {
868 Node* regular_imports =
869 __ LoadObjectField(module, Module::kRegularImportsOffset);
870 // The actual array index is (-cell_index - 1).
871 Node* import_index = __ IntPtrSub(__ IntPtrConstant(-1), cell_index);
872 Node* cell = __ LoadFixedArrayElement(regular_imports, import_index);
873 __ SetAccumulator(__ LoadObjectField(cell, Cell::kValueOffset));
874 __ Goto(&end);
875 }
876
877 __ Bind(&end);
878 __ Dispatch();
879 }
880
881 // StaModuleVariable <cell_index> <depth>
882 //
883 // Store accumulator to the module variable identified by <cell_index>.
884 // <depth> is the depth of the current context relative to the module context.
DoStaModuleVariable(InterpreterAssembler * assembler)885 void Interpreter::DoStaModuleVariable(InterpreterAssembler* assembler) {
886 Node* value = __ GetAccumulator();
887 Node* cell_index = __ BytecodeOperandImm(0);
888 Node* depth = __ BytecodeOperandUImm(1);
889
890 Node* module_context = __ GetContextAtDepth(__ GetContext(), depth);
891 Node* module =
892 __ LoadContextElement(module_context, Context::EXTENSION_INDEX);
893
894 Label if_export(assembler), if_import(assembler), end(assembler);
895 __ Branch(__ IntPtrGreaterThan(cell_index, __ IntPtrConstant(0)), &if_export,
896 &if_import);
897
898 __ Bind(&if_export);
899 {
900 Node* regular_exports =
901 __ LoadObjectField(module, Module::kRegularExportsOffset);
902 // The actual array index is (cell_index - 1).
903 Node* export_index = __ IntPtrSub(cell_index, __ IntPtrConstant(1));
904 Node* cell = __ LoadFixedArrayElement(regular_exports, export_index);
905 __ StoreObjectField(cell, Cell::kValueOffset, value);
906 __ Goto(&end);
907 }
908
909 __ Bind(&if_import);
910 {
911 // Not supported (probably never).
912 __ Abort(kUnsupportedModuleOperation);
913 __ Goto(&end);
914 }
915
916 __ Bind(&end);
917 __ Dispatch();
918 }
919
920 // PushContext <context>
921 //
922 // Saves the current context in <context>, and pushes the accumulator as the
923 // new current context.
DoPushContext(InterpreterAssembler * assembler)924 void Interpreter::DoPushContext(InterpreterAssembler* assembler) {
925 Node* reg_index = __ BytecodeOperandReg(0);
926 Node* new_context = __ GetAccumulator();
927 Node* old_context = __ GetContext();
928 __ StoreRegister(old_context, reg_index);
929 __ SetContext(new_context);
930 __ Dispatch();
931 }
932
933 // PopContext <context>
934 //
935 // Pops the current context and sets <context> as the new context.
DoPopContext(InterpreterAssembler * assembler)936 void Interpreter::DoPopContext(InterpreterAssembler* assembler) {
937 Node* reg_index = __ BytecodeOperandReg(0);
938 Node* context = __ LoadRegister(reg_index);
939 __ SetContext(context);
940 __ Dispatch();
941 }
942
943 // TODO(mythria): Remove this function once all CompareOps record type feedback.
DoCompareOp(Token::Value compare_op,InterpreterAssembler * assembler)944 void Interpreter::DoCompareOp(Token::Value compare_op,
945 InterpreterAssembler* assembler) {
946 Node* reg_index = __ BytecodeOperandReg(0);
947 Node* lhs = __ LoadRegister(reg_index);
948 Node* rhs = __ GetAccumulator();
949 Node* context = __ GetContext();
950 Node* result;
951 switch (compare_op) {
952 case Token::IN:
953 result = assembler->HasProperty(rhs, lhs, context);
954 break;
955 case Token::INSTANCEOF:
956 result = assembler->InstanceOf(lhs, rhs, context);
957 break;
958 default:
959 UNREACHABLE();
960 }
961 __ SetAccumulator(result);
962 __ Dispatch();
963 }
964
965 template <class Generator>
DoBinaryOpWithFeedback(InterpreterAssembler * assembler)966 void Interpreter::DoBinaryOpWithFeedback(InterpreterAssembler* assembler) {
967 Node* reg_index = __ BytecodeOperandReg(0);
968 Node* lhs = __ LoadRegister(reg_index);
969 Node* rhs = __ GetAccumulator();
970 Node* context = __ GetContext();
971 Node* slot_index = __ BytecodeOperandIdx(1);
972 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
973 Node* result = Generator::Generate(assembler, lhs, rhs, slot_index,
974 type_feedback_vector, context);
975 __ SetAccumulator(result);
976 __ Dispatch();
977 }
978
DoCompareOpWithFeedback(Token::Value compare_op,InterpreterAssembler * assembler)979 void Interpreter::DoCompareOpWithFeedback(Token::Value compare_op,
980 InterpreterAssembler* assembler) {
981 Node* reg_index = __ BytecodeOperandReg(0);
982 Node* lhs = __ LoadRegister(reg_index);
983 Node* rhs = __ GetAccumulator();
984 Node* context = __ GetContext();
985 Node* slot_index = __ BytecodeOperandIdx(1);
986 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
987
988 // TODO(interpreter): the only reason this check is here is because we
989 // sometimes emit comparisons that shouldn't collect feedback (e.g.
990 // try-finally blocks and generators), and we could get rid of this by
991 // introducing Smi equality tests.
992 Label skip_feedback_update(assembler);
993 __ GotoIf(__ WordEqual(slot_index, __ IntPtrConstant(0)),
994 &skip_feedback_update);
995
996 Variable var_type_feedback(assembler, MachineRepresentation::kWord32);
997 Label lhs_is_smi(assembler), lhs_is_not_smi(assembler),
998 gather_rhs_type(assembler), do_compare(assembler);
999 __ Branch(__ TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi);
1000
1001 __ Bind(&lhs_is_smi);
1002 var_type_feedback.Bind(
1003 __ Int32Constant(CompareOperationFeedback::kSignedSmall));
1004 __ Goto(&gather_rhs_type);
1005
1006 __ Bind(&lhs_is_not_smi);
1007 {
1008 Label lhs_is_number(assembler), lhs_is_not_number(assembler);
1009 Node* lhs_map = __ LoadMap(lhs);
1010 __ Branch(__ WordEqual(lhs_map, __ HeapNumberMapConstant()), &lhs_is_number,
1011 &lhs_is_not_number);
1012
1013 __ Bind(&lhs_is_number);
1014 var_type_feedback.Bind(__ Int32Constant(CompareOperationFeedback::kNumber));
1015 __ Goto(&gather_rhs_type);
1016
1017 __ Bind(&lhs_is_not_number);
1018 var_type_feedback.Bind(__ Int32Constant(CompareOperationFeedback::kAny));
1019 __ Goto(&do_compare);
1020 }
1021
1022 __ Bind(&gather_rhs_type);
1023 {
1024 Label rhs_is_smi(assembler);
1025 __ GotoIf(__ TaggedIsSmi(rhs), &rhs_is_smi);
1026
1027 Node* rhs_map = __ LoadMap(rhs);
1028 Node* rhs_type =
1029 __ Select(__ WordEqual(rhs_map, __ HeapNumberMapConstant()),
1030 __ Int32Constant(CompareOperationFeedback::kNumber),
1031 __ Int32Constant(CompareOperationFeedback::kAny));
1032 var_type_feedback.Bind(__ Word32Or(var_type_feedback.value(), rhs_type));
1033 __ Goto(&do_compare);
1034
1035 __ Bind(&rhs_is_smi);
1036 var_type_feedback.Bind(
1037 __ Word32Or(var_type_feedback.value(),
1038 __ Int32Constant(CompareOperationFeedback::kSignedSmall)));
1039 __ Goto(&do_compare);
1040 }
1041
1042 __ Bind(&do_compare);
1043 __ UpdateFeedback(var_type_feedback.value(), type_feedback_vector,
1044 slot_index);
1045 __ Goto(&skip_feedback_update);
1046
1047 __ Bind(&skip_feedback_update);
1048 Node* result;
1049 switch (compare_op) {
1050 case Token::EQ:
1051 result = assembler->Equal(CodeStubAssembler::kDontNegateResult, lhs, rhs,
1052 context);
1053 break;
1054 case Token::NE:
1055 result =
1056 assembler->Equal(CodeStubAssembler::kNegateResult, lhs, rhs, context);
1057 break;
1058 case Token::EQ_STRICT:
1059 result = assembler->StrictEqual(CodeStubAssembler::kDontNegateResult, lhs,
1060 rhs, context);
1061 break;
1062 case Token::LT:
1063 result = assembler->RelationalComparison(CodeStubAssembler::kLessThan,
1064 lhs, rhs, context);
1065 break;
1066 case Token::GT:
1067 result = assembler->RelationalComparison(CodeStubAssembler::kGreaterThan,
1068 lhs, rhs, context);
1069 break;
1070 case Token::LTE:
1071 result = assembler->RelationalComparison(
1072 CodeStubAssembler::kLessThanOrEqual, lhs, rhs, context);
1073 break;
1074 case Token::GTE:
1075 result = assembler->RelationalComparison(
1076 CodeStubAssembler::kGreaterThanOrEqual, lhs, rhs, context);
1077 break;
1078 default:
1079 UNREACHABLE();
1080 }
1081 __ SetAccumulator(result);
1082 __ Dispatch();
1083 }
1084
1085 // Add <src>
1086 //
1087 // Add register <src> to accumulator.
DoAdd(InterpreterAssembler * assembler)1088 void Interpreter::DoAdd(InterpreterAssembler* assembler) {
1089 DoBinaryOpWithFeedback<AddWithFeedbackStub>(assembler);
1090 }
1091
1092 // Sub <src>
1093 //
1094 // Subtract register <src> from accumulator.
DoSub(InterpreterAssembler * assembler)1095 void Interpreter::DoSub(InterpreterAssembler* assembler) {
1096 DoBinaryOpWithFeedback<SubtractWithFeedbackStub>(assembler);
1097 }
1098
1099 // Mul <src>
1100 //
1101 // Multiply accumulator by register <src>.
DoMul(InterpreterAssembler * assembler)1102 void Interpreter::DoMul(InterpreterAssembler* assembler) {
1103 DoBinaryOpWithFeedback<MultiplyWithFeedbackStub>(assembler);
1104 }
1105
1106 // Div <src>
1107 //
1108 // Divide register <src> by accumulator.
DoDiv(InterpreterAssembler * assembler)1109 void Interpreter::DoDiv(InterpreterAssembler* assembler) {
1110 DoBinaryOpWithFeedback<DivideWithFeedbackStub>(assembler);
1111 }
1112
1113 // Mod <src>
1114 //
1115 // Modulo register <src> by accumulator.
DoMod(InterpreterAssembler * assembler)1116 void Interpreter::DoMod(InterpreterAssembler* assembler) {
1117 DoBinaryOpWithFeedback<ModulusWithFeedbackStub>(assembler);
1118 }
1119
DoBitwiseBinaryOp(Token::Value bitwise_op,InterpreterAssembler * assembler)1120 void Interpreter::DoBitwiseBinaryOp(Token::Value bitwise_op,
1121 InterpreterAssembler* assembler) {
1122 Node* reg_index = __ BytecodeOperandReg(0);
1123 Node* lhs = __ LoadRegister(reg_index);
1124 Node* rhs = __ GetAccumulator();
1125 Node* context = __ GetContext();
1126 Node* slot_index = __ BytecodeOperandIdx(1);
1127 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1128
1129 Variable var_lhs_type_feedback(assembler, MachineRepresentation::kWord32),
1130 var_rhs_type_feedback(assembler, MachineRepresentation::kWord32);
1131 Node* lhs_value = __ TruncateTaggedToWord32WithFeedback(
1132 context, lhs, &var_lhs_type_feedback);
1133 Node* rhs_value = __ TruncateTaggedToWord32WithFeedback(
1134 context, rhs, &var_rhs_type_feedback);
1135 Node* result = nullptr;
1136
1137 switch (bitwise_op) {
1138 case Token::BIT_OR: {
1139 Node* value = __ Word32Or(lhs_value, rhs_value);
1140 result = __ ChangeInt32ToTagged(value);
1141 } break;
1142 case Token::BIT_AND: {
1143 Node* value = __ Word32And(lhs_value, rhs_value);
1144 result = __ ChangeInt32ToTagged(value);
1145 } break;
1146 case Token::BIT_XOR: {
1147 Node* value = __ Word32Xor(lhs_value, rhs_value);
1148 result = __ ChangeInt32ToTagged(value);
1149 } break;
1150 case Token::SHL: {
1151 Node* value = __ Word32Shl(
1152 lhs_value, __ Word32And(rhs_value, __ Int32Constant(0x1f)));
1153 result = __ ChangeInt32ToTagged(value);
1154 } break;
1155 case Token::SHR: {
1156 Node* value = __ Word32Shr(
1157 lhs_value, __ Word32And(rhs_value, __ Int32Constant(0x1f)));
1158 result = __ ChangeUint32ToTagged(value);
1159 } break;
1160 case Token::SAR: {
1161 Node* value = __ Word32Sar(
1162 lhs_value, __ Word32And(rhs_value, __ Int32Constant(0x1f)));
1163 result = __ ChangeInt32ToTagged(value);
1164 } break;
1165 default:
1166 UNREACHABLE();
1167 }
1168
1169 Node* result_type =
1170 __ Select(__ TaggedIsSmi(result),
1171 __ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1172 __ Int32Constant(BinaryOperationFeedback::kNumber));
1173
1174 if (FLAG_debug_code) {
1175 Label ok(assembler);
1176 __ GotoIf(__ TaggedIsSmi(result), &ok);
1177 Node* result_map = __ LoadMap(result);
1178 __ AbortIfWordNotEqual(result_map, __ HeapNumberMapConstant(),
1179 kExpectedHeapNumber);
1180 __ Goto(&ok);
1181 __ Bind(&ok);
1182 }
1183
1184 Node* input_feedback =
1185 __ Word32Or(var_lhs_type_feedback.value(), var_rhs_type_feedback.value());
1186 __ UpdateFeedback(__ Word32Or(result_type, input_feedback),
1187 type_feedback_vector, slot_index);
1188 __ SetAccumulator(result);
1189 __ Dispatch();
1190 }
1191
1192 // BitwiseOr <src>
1193 //
1194 // BitwiseOr register <src> to accumulator.
DoBitwiseOr(InterpreterAssembler * assembler)1195 void Interpreter::DoBitwiseOr(InterpreterAssembler* assembler) {
1196 DoBitwiseBinaryOp(Token::BIT_OR, assembler);
1197 }
1198
1199 // BitwiseXor <src>
1200 //
1201 // BitwiseXor register <src> to accumulator.
DoBitwiseXor(InterpreterAssembler * assembler)1202 void Interpreter::DoBitwiseXor(InterpreterAssembler* assembler) {
1203 DoBitwiseBinaryOp(Token::BIT_XOR, assembler);
1204 }
1205
1206 // BitwiseAnd <src>
1207 //
1208 // BitwiseAnd register <src> to accumulator.
DoBitwiseAnd(InterpreterAssembler * assembler)1209 void Interpreter::DoBitwiseAnd(InterpreterAssembler* assembler) {
1210 DoBitwiseBinaryOp(Token::BIT_AND, assembler);
1211 }
1212
1213 // ShiftLeft <src>
1214 //
1215 // Left shifts register <src> by the count specified in the accumulator.
1216 // Register <src> is converted to an int32 and the accumulator to uint32
1217 // before the operation. 5 lsb bits from the accumulator are used as count
1218 // i.e. <src> << (accumulator & 0x1F).
DoShiftLeft(InterpreterAssembler * assembler)1219 void Interpreter::DoShiftLeft(InterpreterAssembler* assembler) {
1220 DoBitwiseBinaryOp(Token::SHL, assembler);
1221 }
1222
1223 // ShiftRight <src>
1224 //
1225 // Right shifts register <src> by the count specified in the accumulator.
1226 // Result is sign extended. Register <src> is converted to an int32 and the
1227 // accumulator to uint32 before the operation. 5 lsb bits from the accumulator
1228 // are used as count i.e. <src> >> (accumulator & 0x1F).
DoShiftRight(InterpreterAssembler * assembler)1229 void Interpreter::DoShiftRight(InterpreterAssembler* assembler) {
1230 DoBitwiseBinaryOp(Token::SAR, assembler);
1231 }
1232
1233 // ShiftRightLogical <src>
1234 //
1235 // Right Shifts register <src> by the count specified in the accumulator.
1236 // Result is zero-filled. The accumulator and register <src> are converted to
1237 // uint32 before the operation 5 lsb bits from the accumulator are used as
1238 // count i.e. <src> << (accumulator & 0x1F).
DoShiftRightLogical(InterpreterAssembler * assembler)1239 void Interpreter::DoShiftRightLogical(InterpreterAssembler* assembler) {
1240 DoBitwiseBinaryOp(Token::SHR, assembler);
1241 }
1242
1243 // AddSmi <imm> <reg>
1244 //
1245 // Adds an immediate value <imm> to register <reg>. For this
1246 // operation <reg> is the lhs operand and <imm> is the <rhs> operand.
DoAddSmi(InterpreterAssembler * assembler)1247 void Interpreter::DoAddSmi(InterpreterAssembler* assembler) {
1248 Variable var_result(assembler, MachineRepresentation::kTagged);
1249 Label fastpath(assembler), slowpath(assembler, Label::kDeferred),
1250 end(assembler);
1251
1252 Node* reg_index = __ BytecodeOperandReg(1);
1253 Node* left = __ LoadRegister(reg_index);
1254 Node* raw_int = __ BytecodeOperandImm(0);
1255 Node* right = __ SmiTag(raw_int);
1256 Node* slot_index = __ BytecodeOperandIdx(2);
1257 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1258
1259 // {right} is known to be a Smi.
1260 // Check if the {left} is a Smi take the fast path.
1261 __ Branch(__ TaggedIsSmi(left), &fastpath, &slowpath);
1262 __ Bind(&fastpath);
1263 {
1264 // Try fast Smi addition first.
1265 Node* pair = __ IntPtrAddWithOverflow(__ BitcastTaggedToWord(left),
1266 __ BitcastTaggedToWord(right));
1267 Node* overflow = __ Projection(1, pair);
1268
1269 // Check if the Smi additon overflowed.
1270 Label if_notoverflow(assembler);
1271 __ Branch(overflow, &slowpath, &if_notoverflow);
1272 __ Bind(&if_notoverflow);
1273 {
1274 __ UpdateFeedback(__ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1275 type_feedback_vector, slot_index);
1276 var_result.Bind(__ BitcastWordToTaggedSigned(__ Projection(0, pair)));
1277 __ Goto(&end);
1278 }
1279 }
1280 __ Bind(&slowpath);
1281 {
1282 Node* context = __ GetContext();
1283 AddWithFeedbackStub stub(__ isolate());
1284 Callable callable =
1285 Callable(stub.GetCode(), AddWithFeedbackStub::Descriptor(__ isolate()));
1286 Node* args[] = {left, right, slot_index, type_feedback_vector, context};
1287 var_result.Bind(__ CallStubN(callable, args, 1));
1288 __ Goto(&end);
1289 }
1290 __ Bind(&end);
1291 {
1292 __ SetAccumulator(var_result.value());
1293 __ Dispatch();
1294 }
1295 }
1296
1297 // SubSmi <imm> <reg>
1298 //
1299 // Subtracts an immediate value <imm> to register <reg>. For this
1300 // operation <reg> is the lhs operand and <imm> is the rhs operand.
DoSubSmi(InterpreterAssembler * assembler)1301 void Interpreter::DoSubSmi(InterpreterAssembler* assembler) {
1302 Variable var_result(assembler, MachineRepresentation::kTagged);
1303 Label fastpath(assembler), slowpath(assembler, Label::kDeferred),
1304 end(assembler);
1305
1306 Node* reg_index = __ BytecodeOperandReg(1);
1307 Node* left = __ LoadRegister(reg_index);
1308 Node* raw_int = __ BytecodeOperandImm(0);
1309 Node* right = __ SmiTag(raw_int);
1310 Node* slot_index = __ BytecodeOperandIdx(2);
1311 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1312
1313 // {right} is known to be a Smi.
1314 // Check if the {left} is a Smi take the fast path.
1315 __ Branch(__ TaggedIsSmi(left), &fastpath, &slowpath);
1316 __ Bind(&fastpath);
1317 {
1318 // Try fast Smi subtraction first.
1319 Node* pair = __ IntPtrSubWithOverflow(__ BitcastTaggedToWord(left),
1320 __ BitcastTaggedToWord(right));
1321 Node* overflow = __ Projection(1, pair);
1322
1323 // Check if the Smi subtraction overflowed.
1324 Label if_notoverflow(assembler);
1325 __ Branch(overflow, &slowpath, &if_notoverflow);
1326 __ Bind(&if_notoverflow);
1327 {
1328 __ UpdateFeedback(__ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1329 type_feedback_vector, slot_index);
1330 var_result.Bind(__ BitcastWordToTaggedSigned(__ Projection(0, pair)));
1331 __ Goto(&end);
1332 }
1333 }
1334 __ Bind(&slowpath);
1335 {
1336 Node* context = __ GetContext();
1337 SubtractWithFeedbackStub stub(__ isolate());
1338 Callable callable = Callable(
1339 stub.GetCode(), SubtractWithFeedbackStub::Descriptor(__ isolate()));
1340 Node* args[] = {left, right, slot_index, type_feedback_vector, context};
1341 var_result.Bind(__ CallStubN(callable, args, 1));
1342 __ Goto(&end);
1343 }
1344 __ Bind(&end);
1345 {
1346 __ SetAccumulator(var_result.value());
1347 __ Dispatch();
1348 }
1349 }
1350
1351 // BitwiseOr <imm> <reg>
1352 //
1353 // BitwiseOr <reg> with <imm>. For this operation <reg> is the lhs
1354 // operand and <imm> is the rhs operand.
DoBitwiseOrSmi(InterpreterAssembler * assembler)1355 void Interpreter::DoBitwiseOrSmi(InterpreterAssembler* assembler) {
1356 Node* reg_index = __ BytecodeOperandReg(1);
1357 Node* left = __ LoadRegister(reg_index);
1358 Node* raw_int = __ BytecodeOperandImm(0);
1359 Node* right = __ SmiTag(raw_int);
1360 Node* context = __ GetContext();
1361 Node* slot_index = __ BytecodeOperandIdx(2);
1362 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1363 Variable var_lhs_type_feedback(assembler, MachineRepresentation::kWord32);
1364 Node* lhs_value = __ TruncateTaggedToWord32WithFeedback(
1365 context, left, &var_lhs_type_feedback);
1366 Node* rhs_value = __ SmiToWord32(right);
1367 Node* value = __ Word32Or(lhs_value, rhs_value);
1368 Node* result = __ ChangeInt32ToTagged(value);
1369 Node* result_type =
1370 __ Select(__ TaggedIsSmi(result),
1371 __ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1372 __ Int32Constant(BinaryOperationFeedback::kNumber));
1373 __ UpdateFeedback(__ Word32Or(result_type, var_lhs_type_feedback.value()),
1374 type_feedback_vector, slot_index);
1375 __ SetAccumulator(result);
1376 __ Dispatch();
1377 }
1378
1379 // BitwiseAnd <imm> <reg>
1380 //
1381 // BitwiseAnd <reg> with <imm>. For this operation <reg> is the lhs
1382 // operand and <imm> is the rhs operand.
DoBitwiseAndSmi(InterpreterAssembler * assembler)1383 void Interpreter::DoBitwiseAndSmi(InterpreterAssembler* assembler) {
1384 Node* reg_index = __ BytecodeOperandReg(1);
1385 Node* left = __ LoadRegister(reg_index);
1386 Node* raw_int = __ BytecodeOperandImm(0);
1387 Node* right = __ SmiTag(raw_int);
1388 Node* context = __ GetContext();
1389 Node* slot_index = __ BytecodeOperandIdx(2);
1390 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1391 Variable var_lhs_type_feedback(assembler, MachineRepresentation::kWord32);
1392 Node* lhs_value = __ TruncateTaggedToWord32WithFeedback(
1393 context, left, &var_lhs_type_feedback);
1394 Node* rhs_value = __ SmiToWord32(right);
1395 Node* value = __ Word32And(lhs_value, rhs_value);
1396 Node* result = __ ChangeInt32ToTagged(value);
1397 Node* result_type =
1398 __ Select(__ TaggedIsSmi(result),
1399 __ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1400 __ Int32Constant(BinaryOperationFeedback::kNumber));
1401 __ UpdateFeedback(__ Word32Or(result_type, var_lhs_type_feedback.value()),
1402 type_feedback_vector, slot_index);
1403 __ SetAccumulator(result);
1404 __ Dispatch();
1405 }
1406
1407 // ShiftLeftSmi <imm> <reg>
1408 //
1409 // Left shifts register <src> by the count specified in <imm>.
1410 // Register <src> is converted to an int32 before the operation. The 5
1411 // lsb bits from <imm> are used as count i.e. <src> << (<imm> & 0x1F).
DoShiftLeftSmi(InterpreterAssembler * assembler)1412 void Interpreter::DoShiftLeftSmi(InterpreterAssembler* assembler) {
1413 Node* reg_index = __ BytecodeOperandReg(1);
1414 Node* left = __ LoadRegister(reg_index);
1415 Node* raw_int = __ BytecodeOperandImm(0);
1416 Node* right = __ SmiTag(raw_int);
1417 Node* context = __ GetContext();
1418 Node* slot_index = __ BytecodeOperandIdx(2);
1419 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1420 Variable var_lhs_type_feedback(assembler, MachineRepresentation::kWord32);
1421 Node* lhs_value = __ TruncateTaggedToWord32WithFeedback(
1422 context, left, &var_lhs_type_feedback);
1423 Node* rhs_value = __ SmiToWord32(right);
1424 Node* shift_count = __ Word32And(rhs_value, __ Int32Constant(0x1f));
1425 Node* value = __ Word32Shl(lhs_value, shift_count);
1426 Node* result = __ ChangeInt32ToTagged(value);
1427 Node* result_type =
1428 __ Select(__ TaggedIsSmi(result),
1429 __ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1430 __ Int32Constant(BinaryOperationFeedback::kNumber));
1431 __ UpdateFeedback(__ Word32Or(result_type, var_lhs_type_feedback.value()),
1432 type_feedback_vector, slot_index);
1433 __ SetAccumulator(result);
1434 __ Dispatch();
1435 }
1436
1437 // ShiftRightSmi <imm> <reg>
1438 //
1439 // Right shifts register <src> by the count specified in <imm>.
1440 // Register <src> is converted to an int32 before the operation. The 5
1441 // lsb bits from <imm> are used as count i.e. <src> << (<imm> & 0x1F).
DoShiftRightSmi(InterpreterAssembler * assembler)1442 void Interpreter::DoShiftRightSmi(InterpreterAssembler* assembler) {
1443 Node* reg_index = __ BytecodeOperandReg(1);
1444 Node* left = __ LoadRegister(reg_index);
1445 Node* raw_int = __ BytecodeOperandImm(0);
1446 Node* right = __ SmiTag(raw_int);
1447 Node* context = __ GetContext();
1448 Node* slot_index = __ BytecodeOperandIdx(2);
1449 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1450 Variable var_lhs_type_feedback(assembler, MachineRepresentation::kWord32);
1451 Node* lhs_value = __ TruncateTaggedToWord32WithFeedback(
1452 context, left, &var_lhs_type_feedback);
1453 Node* rhs_value = __ SmiToWord32(right);
1454 Node* shift_count = __ Word32And(rhs_value, __ Int32Constant(0x1f));
1455 Node* value = __ Word32Sar(lhs_value, shift_count);
1456 Node* result = __ ChangeInt32ToTagged(value);
1457 Node* result_type =
1458 __ Select(__ TaggedIsSmi(result),
1459 __ Int32Constant(BinaryOperationFeedback::kSignedSmall),
1460 __ Int32Constant(BinaryOperationFeedback::kNumber));
1461 __ UpdateFeedback(__ Word32Or(result_type, var_lhs_type_feedback.value()),
1462 type_feedback_vector, slot_index);
1463 __ SetAccumulator(result);
1464 __ Dispatch();
1465 }
1466
BuildUnaryOp(Callable callable,InterpreterAssembler * assembler)1467 Node* Interpreter::BuildUnaryOp(Callable callable,
1468 InterpreterAssembler* assembler) {
1469 Node* target = __ HeapConstant(callable.code());
1470 Node* accumulator = __ GetAccumulator();
1471 Node* context = __ GetContext();
1472 return __ CallStub(callable.descriptor(), target, context, accumulator);
1473 }
1474
1475 template <class Generator>
DoUnaryOpWithFeedback(InterpreterAssembler * assembler)1476 void Interpreter::DoUnaryOpWithFeedback(InterpreterAssembler* assembler) {
1477 Node* value = __ GetAccumulator();
1478 Node* context = __ GetContext();
1479 Node* slot_index = __ BytecodeOperandIdx(0);
1480 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1481 Node* result = Generator::Generate(assembler, value, context,
1482 type_feedback_vector, slot_index);
1483 __ SetAccumulator(result);
1484 __ Dispatch();
1485 }
1486
1487 // ToName
1488 //
1489 // Convert the object referenced by the accumulator to a name.
DoToName(InterpreterAssembler * assembler)1490 void Interpreter::DoToName(InterpreterAssembler* assembler) {
1491 Node* object = __ GetAccumulator();
1492 Node* context = __ GetContext();
1493 Node* result = __ ToName(context, object);
1494 __ StoreRegister(result, __ BytecodeOperandReg(0));
1495 __ Dispatch();
1496 }
1497
1498 // ToNumber
1499 //
1500 // Convert the object referenced by the accumulator to a number.
DoToNumber(InterpreterAssembler * assembler)1501 void Interpreter::DoToNumber(InterpreterAssembler* assembler) {
1502 Node* object = __ GetAccumulator();
1503 Node* context = __ GetContext();
1504 Node* result = __ ToNumber(context, object);
1505 __ StoreRegister(result, __ BytecodeOperandReg(0));
1506 __ Dispatch();
1507 }
1508
1509 // ToObject
1510 //
1511 // Convert the object referenced by the accumulator to a JSReceiver.
DoToObject(InterpreterAssembler * assembler)1512 void Interpreter::DoToObject(InterpreterAssembler* assembler) {
1513 Node* result = BuildUnaryOp(CodeFactory::ToObject(isolate_), assembler);
1514 __ StoreRegister(result, __ BytecodeOperandReg(0));
1515 __ Dispatch();
1516 }
1517
1518 // Inc
1519 //
1520 // Increments value in the accumulator by one.
DoInc(InterpreterAssembler * assembler)1521 void Interpreter::DoInc(InterpreterAssembler* assembler) {
1522 DoUnaryOpWithFeedback<IncStub>(assembler);
1523 }
1524
1525 // Dec
1526 //
1527 // Decrements value in the accumulator by one.
DoDec(InterpreterAssembler * assembler)1528 void Interpreter::DoDec(InterpreterAssembler* assembler) {
1529 DoUnaryOpWithFeedback<DecStub>(assembler);
1530 }
1531
1532 // LogicalNot
1533 //
1534 // Perform logical-not on the accumulator, first casting the
1535 // accumulator to a boolean value if required.
1536 // ToBooleanLogicalNot
DoToBooleanLogicalNot(InterpreterAssembler * assembler)1537 void Interpreter::DoToBooleanLogicalNot(InterpreterAssembler* assembler) {
1538 Node* value = __ GetAccumulator();
1539 Variable result(assembler, MachineRepresentation::kTagged);
1540 Label if_true(assembler), if_false(assembler), end(assembler);
1541 Node* true_value = __ BooleanConstant(true);
1542 Node* false_value = __ BooleanConstant(false);
1543 __ BranchIfToBooleanIsTrue(value, &if_true, &if_false);
1544 __ Bind(&if_true);
1545 {
1546 result.Bind(false_value);
1547 __ Goto(&end);
1548 }
1549 __ Bind(&if_false);
1550 {
1551 result.Bind(true_value);
1552 __ Goto(&end);
1553 }
1554 __ Bind(&end);
1555 __ SetAccumulator(result.value());
1556 __ Dispatch();
1557 }
1558
1559 // LogicalNot
1560 //
1561 // Perform logical-not on the accumulator, which must already be a boolean
1562 // value.
DoLogicalNot(InterpreterAssembler * assembler)1563 void Interpreter::DoLogicalNot(InterpreterAssembler* assembler) {
1564 Node* value = __ GetAccumulator();
1565 Variable result(assembler, MachineRepresentation::kTagged);
1566 Label if_true(assembler), if_false(assembler), end(assembler);
1567 Node* true_value = __ BooleanConstant(true);
1568 Node* false_value = __ BooleanConstant(false);
1569 __ Branch(__ WordEqual(value, true_value), &if_true, &if_false);
1570 __ Bind(&if_true);
1571 {
1572 result.Bind(false_value);
1573 __ Goto(&end);
1574 }
1575 __ Bind(&if_false);
1576 {
1577 if (FLAG_debug_code) {
1578 __ AbortIfWordNotEqual(value, false_value,
1579 BailoutReason::kExpectedBooleanValue);
1580 }
1581 result.Bind(true_value);
1582 __ Goto(&end);
1583 }
1584 __ Bind(&end);
1585 __ SetAccumulator(result.value());
1586 __ Dispatch();
1587 }
1588
1589 // TypeOf
1590 //
1591 // Load the accumulator with the string representating type of the
1592 // object in the accumulator.
DoTypeOf(InterpreterAssembler * assembler)1593 void Interpreter::DoTypeOf(InterpreterAssembler* assembler) {
1594 Node* value = __ GetAccumulator();
1595 Node* context = __ GetContext();
1596 Node* result = assembler->Typeof(value, context);
1597 __ SetAccumulator(result);
1598 __ Dispatch();
1599 }
1600
DoDelete(Runtime::FunctionId function_id,InterpreterAssembler * assembler)1601 void Interpreter::DoDelete(Runtime::FunctionId function_id,
1602 InterpreterAssembler* assembler) {
1603 Node* reg_index = __ BytecodeOperandReg(0);
1604 Node* object = __ LoadRegister(reg_index);
1605 Node* key = __ GetAccumulator();
1606 Node* context = __ GetContext();
1607 Node* result = __ CallRuntime(function_id, context, object, key);
1608 __ SetAccumulator(result);
1609 __ Dispatch();
1610 }
1611
1612 // DeletePropertyStrict
1613 //
1614 // Delete the property specified in the accumulator from the object
1615 // referenced by the register operand following strict mode semantics.
DoDeletePropertyStrict(InterpreterAssembler * assembler)1616 void Interpreter::DoDeletePropertyStrict(InterpreterAssembler* assembler) {
1617 DoDelete(Runtime::kDeleteProperty_Strict, assembler);
1618 }
1619
1620 // DeletePropertySloppy
1621 //
1622 // Delete the property specified in the accumulator from the object
1623 // referenced by the register operand following sloppy mode semantics.
DoDeletePropertySloppy(InterpreterAssembler * assembler)1624 void Interpreter::DoDeletePropertySloppy(InterpreterAssembler* assembler) {
1625 DoDelete(Runtime::kDeleteProperty_Sloppy, assembler);
1626 }
1627
DoJSCall(InterpreterAssembler * assembler,TailCallMode tail_call_mode)1628 void Interpreter::DoJSCall(InterpreterAssembler* assembler,
1629 TailCallMode tail_call_mode) {
1630 Node* function_reg = __ BytecodeOperandReg(0);
1631 Node* function = __ LoadRegister(function_reg);
1632 Node* receiver_reg = __ BytecodeOperandReg(1);
1633 Node* receiver_arg = __ RegisterLocation(receiver_reg);
1634 Node* receiver_args_count = __ BytecodeOperandCount(2);
1635 Node* receiver_count = __ Int32Constant(1);
1636 Node* args_count = __ Int32Sub(receiver_args_count, receiver_count);
1637 Node* slot_id = __ BytecodeOperandIdx(3);
1638 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1639 Node* context = __ GetContext();
1640 Node* result =
1641 __ CallJSWithFeedback(function, context, receiver_arg, args_count,
1642 slot_id, type_feedback_vector, tail_call_mode);
1643 __ SetAccumulator(result);
1644 __ Dispatch();
1645 }
1646
1647 // Call <callable> <receiver> <arg_count> <feedback_slot_id>
1648 //
1649 // Call a JSfunction or Callable in |callable| with the |receiver| and
1650 // |arg_count| arguments in subsequent registers. Collect type feedback
1651 // into |feedback_slot_id|
DoCall(InterpreterAssembler * assembler)1652 void Interpreter::DoCall(InterpreterAssembler* assembler) {
1653 DoJSCall(assembler, TailCallMode::kDisallow);
1654 }
1655
1656 // CallProperty <callable> <receiver> <arg_count> <feedback_slot_id>
1657 //
1658 // Call a JSfunction or Callable in |callable| with the |receiver| and
1659 // |arg_count| arguments in subsequent registers. Collect type feedback into
1660 // |feedback_slot_id|. The callable is known to be a property of the receiver.
DoCallProperty(InterpreterAssembler * assembler)1661 void Interpreter::DoCallProperty(InterpreterAssembler* assembler) {
1662 // TODO(leszeks): Look into making the interpreter use the fact that the
1663 // receiver is non-null.
1664 DoJSCall(assembler, TailCallMode::kDisallow);
1665 }
1666
1667 // TailCall <callable> <receiver> <arg_count> <feedback_slot_id>
1668 //
1669 // Tail call a JSfunction or Callable in |callable| with the |receiver| and
1670 // |arg_count| arguments in subsequent registers. Collect type feedback
1671 // into |feedback_slot_id|
DoTailCall(InterpreterAssembler * assembler)1672 void Interpreter::DoTailCall(InterpreterAssembler* assembler) {
1673 DoJSCall(assembler, TailCallMode::kAllow);
1674 }
1675
1676 // CallRuntime <function_id> <first_arg> <arg_count>
1677 //
1678 // Call the runtime function |function_id| with the first argument in
1679 // register |first_arg| and |arg_count| arguments in subsequent
1680 // registers.
DoCallRuntime(InterpreterAssembler * assembler)1681 void Interpreter::DoCallRuntime(InterpreterAssembler* assembler) {
1682 Node* function_id = __ BytecodeOperandRuntimeId(0);
1683 Node* first_arg_reg = __ BytecodeOperandReg(1);
1684 Node* first_arg = __ RegisterLocation(first_arg_reg);
1685 Node* args_count = __ BytecodeOperandCount(2);
1686 Node* context = __ GetContext();
1687 Node* result = __ CallRuntimeN(function_id, context, first_arg, args_count);
1688 __ SetAccumulator(result);
1689 __ Dispatch();
1690 }
1691
1692 // InvokeIntrinsic <function_id> <first_arg> <arg_count>
1693 //
1694 // Implements the semantic equivalent of calling the runtime function
1695 // |function_id| with the first argument in |first_arg| and |arg_count|
1696 // arguments in subsequent registers.
DoInvokeIntrinsic(InterpreterAssembler * assembler)1697 void Interpreter::DoInvokeIntrinsic(InterpreterAssembler* assembler) {
1698 Node* function_id = __ BytecodeOperandIntrinsicId(0);
1699 Node* first_arg_reg = __ BytecodeOperandReg(1);
1700 Node* arg_count = __ BytecodeOperandCount(2);
1701 Node* context = __ GetContext();
1702 IntrinsicsHelper helper(assembler);
1703 Node* result =
1704 helper.InvokeIntrinsic(function_id, context, first_arg_reg, arg_count);
1705 __ SetAccumulator(result);
1706 __ Dispatch();
1707 }
1708
1709 // CallRuntimeForPair <function_id> <first_arg> <arg_count> <first_return>
1710 //
1711 // Call the runtime function |function_id| which returns a pair, with the
1712 // first argument in register |first_arg| and |arg_count| arguments in
1713 // subsequent registers. Returns the result in <first_return> and
1714 // <first_return + 1>
DoCallRuntimeForPair(InterpreterAssembler * assembler)1715 void Interpreter::DoCallRuntimeForPair(InterpreterAssembler* assembler) {
1716 // Call the runtime function.
1717 Node* function_id = __ BytecodeOperandRuntimeId(0);
1718 Node* first_arg_reg = __ BytecodeOperandReg(1);
1719 Node* first_arg = __ RegisterLocation(first_arg_reg);
1720 Node* args_count = __ BytecodeOperandCount(2);
1721 Node* context = __ GetContext();
1722 Node* result_pair =
1723 __ CallRuntimeN(function_id, context, first_arg, args_count, 2);
1724
1725 // Store the results in <first_return> and <first_return + 1>
1726 Node* first_return_reg = __ BytecodeOperandReg(3);
1727 Node* second_return_reg = __ NextRegister(first_return_reg);
1728 Node* result0 = __ Projection(0, result_pair);
1729 Node* result1 = __ Projection(1, result_pair);
1730 __ StoreRegister(result0, first_return_reg);
1731 __ StoreRegister(result1, second_return_reg);
1732 __ Dispatch();
1733 }
1734
1735 // CallJSRuntime <context_index> <receiver> <arg_count>
1736 //
1737 // Call the JS runtime function that has the |context_index| with the receiver
1738 // in register |receiver| and |arg_count| arguments in subsequent registers.
DoCallJSRuntime(InterpreterAssembler * assembler)1739 void Interpreter::DoCallJSRuntime(InterpreterAssembler* assembler) {
1740 Node* context_index = __ BytecodeOperandIdx(0);
1741 Node* receiver_reg = __ BytecodeOperandReg(1);
1742 Node* first_arg = __ RegisterLocation(receiver_reg);
1743 Node* receiver_args_count = __ BytecodeOperandCount(2);
1744 Node* receiver_count = __ Int32Constant(1);
1745 Node* args_count = __ Int32Sub(receiver_args_count, receiver_count);
1746
1747 // Get the function to call from the native context.
1748 Node* context = __ GetContext();
1749 Node* native_context = __ LoadNativeContext(context);
1750 Node* function = __ LoadContextElement(native_context, context_index);
1751
1752 // Call the function.
1753 Node* result = __ CallJS(function, context, first_arg, args_count,
1754 TailCallMode::kDisallow);
1755 __ SetAccumulator(result);
1756 __ Dispatch();
1757 }
1758
1759 // New <constructor> <first_arg> <arg_count>
1760 //
1761 // Call operator new with |constructor| and the first argument in
1762 // register |first_arg| and |arg_count| arguments in subsequent
1763 // registers. The new.target is in the accumulator.
1764 //
DoNew(InterpreterAssembler * assembler)1765 void Interpreter::DoNew(InterpreterAssembler* assembler) {
1766 Callable ic = CodeFactory::InterpreterPushArgsAndConstruct(isolate_);
1767 Node* new_target = __ GetAccumulator();
1768 Node* constructor_reg = __ BytecodeOperandReg(0);
1769 Node* constructor = __ LoadRegister(constructor_reg);
1770 Node* first_arg_reg = __ BytecodeOperandReg(1);
1771 Node* first_arg = __ RegisterLocation(first_arg_reg);
1772 Node* args_count = __ BytecodeOperandCount(2);
1773 Node* slot_id = __ BytecodeOperandIdx(3);
1774 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
1775 Node* context = __ GetContext();
1776 Node* result = __ CallConstruct(constructor, context, new_target, first_arg,
1777 args_count, slot_id, type_feedback_vector);
1778 __ SetAccumulator(result);
1779 __ Dispatch();
1780 }
1781
1782 // TestEqual <src>
1783 //
1784 // Test if the value in the <src> register equals the accumulator.
DoTestEqual(InterpreterAssembler * assembler)1785 void Interpreter::DoTestEqual(InterpreterAssembler* assembler) {
1786 DoCompareOpWithFeedback(Token::Value::EQ, assembler);
1787 }
1788
1789 // TestNotEqual <src>
1790 //
1791 // Test if the value in the <src> register is not equal to the accumulator.
DoTestNotEqual(InterpreterAssembler * assembler)1792 void Interpreter::DoTestNotEqual(InterpreterAssembler* assembler) {
1793 DoCompareOpWithFeedback(Token::Value::NE, assembler);
1794 }
1795
1796 // TestEqualStrict <src>
1797 //
1798 // Test if the value in the <src> register is strictly equal to the accumulator.
DoTestEqualStrict(InterpreterAssembler * assembler)1799 void Interpreter::DoTestEqualStrict(InterpreterAssembler* assembler) {
1800 DoCompareOpWithFeedback(Token::Value::EQ_STRICT, assembler);
1801 }
1802
1803 // TestLessThan <src>
1804 //
1805 // Test if the value in the <src> register is less than the accumulator.
DoTestLessThan(InterpreterAssembler * assembler)1806 void Interpreter::DoTestLessThan(InterpreterAssembler* assembler) {
1807 DoCompareOpWithFeedback(Token::Value::LT, assembler);
1808 }
1809
1810 // TestGreaterThan <src>
1811 //
1812 // Test if the value in the <src> register is greater than the accumulator.
DoTestGreaterThan(InterpreterAssembler * assembler)1813 void Interpreter::DoTestGreaterThan(InterpreterAssembler* assembler) {
1814 DoCompareOpWithFeedback(Token::Value::GT, assembler);
1815 }
1816
1817 // TestLessThanOrEqual <src>
1818 //
1819 // Test if the value in the <src> register is less than or equal to the
1820 // accumulator.
DoTestLessThanOrEqual(InterpreterAssembler * assembler)1821 void Interpreter::DoTestLessThanOrEqual(InterpreterAssembler* assembler) {
1822 DoCompareOpWithFeedback(Token::Value::LTE, assembler);
1823 }
1824
1825 // TestGreaterThanOrEqual <src>
1826 //
1827 // Test if the value in the <src> register is greater than or equal to the
1828 // accumulator.
DoTestGreaterThanOrEqual(InterpreterAssembler * assembler)1829 void Interpreter::DoTestGreaterThanOrEqual(InterpreterAssembler* assembler) {
1830 DoCompareOpWithFeedback(Token::Value::GTE, assembler);
1831 }
1832
1833 // TestIn <src>
1834 //
1835 // Test if the object referenced by the register operand is a property of the
1836 // object referenced by the accumulator.
DoTestIn(InterpreterAssembler * assembler)1837 void Interpreter::DoTestIn(InterpreterAssembler* assembler) {
1838 DoCompareOp(Token::IN, assembler);
1839 }
1840
1841 // TestInstanceOf <src>
1842 //
1843 // Test if the object referenced by the <src> register is an an instance of type
1844 // referenced by the accumulator.
DoTestInstanceOf(InterpreterAssembler * assembler)1845 void Interpreter::DoTestInstanceOf(InterpreterAssembler* assembler) {
1846 DoCompareOp(Token::INSTANCEOF, assembler);
1847 }
1848
1849 // Jump <imm>
1850 //
1851 // Jump by number of bytes represented by the immediate operand |imm|.
DoJump(InterpreterAssembler * assembler)1852 void Interpreter::DoJump(InterpreterAssembler* assembler) {
1853 Node* relative_jump = __ BytecodeOperandImm(0);
1854 __ Jump(relative_jump);
1855 }
1856
1857 // JumpConstant <idx>
1858 //
1859 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool.
DoJumpConstant(InterpreterAssembler * assembler)1860 void Interpreter::DoJumpConstant(InterpreterAssembler* assembler) {
1861 Node* index = __ BytecodeOperandIdx(0);
1862 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
1863 __ Jump(relative_jump);
1864 }
1865
1866 // JumpIfTrue <imm>
1867 //
1868 // Jump by number of bytes represented by an immediate operand if the
1869 // accumulator contains true.
DoJumpIfTrue(InterpreterAssembler * assembler)1870 void Interpreter::DoJumpIfTrue(InterpreterAssembler* assembler) {
1871 Node* accumulator = __ GetAccumulator();
1872 Node* relative_jump = __ BytecodeOperandImm(0);
1873 Node* true_value = __ BooleanConstant(true);
1874 __ JumpIfWordEqual(accumulator, true_value, relative_jump);
1875 }
1876
1877 // JumpIfTrueConstant <idx>
1878 //
1879 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
1880 // if the accumulator contains true.
DoJumpIfTrueConstant(InterpreterAssembler * assembler)1881 void Interpreter::DoJumpIfTrueConstant(InterpreterAssembler* assembler) {
1882 Node* accumulator = __ GetAccumulator();
1883 Node* index = __ BytecodeOperandIdx(0);
1884 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
1885 Node* true_value = __ BooleanConstant(true);
1886 __ JumpIfWordEqual(accumulator, true_value, relative_jump);
1887 }
1888
1889 // JumpIfFalse <imm>
1890 //
1891 // Jump by number of bytes represented by an immediate operand if the
1892 // accumulator contains false.
DoJumpIfFalse(InterpreterAssembler * assembler)1893 void Interpreter::DoJumpIfFalse(InterpreterAssembler* assembler) {
1894 Node* accumulator = __ GetAccumulator();
1895 Node* relative_jump = __ BytecodeOperandImm(0);
1896 Node* false_value = __ BooleanConstant(false);
1897 __ JumpIfWordEqual(accumulator, false_value, relative_jump);
1898 }
1899
1900 // JumpIfFalseConstant <idx>
1901 //
1902 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
1903 // if the accumulator contains false.
DoJumpIfFalseConstant(InterpreterAssembler * assembler)1904 void Interpreter::DoJumpIfFalseConstant(InterpreterAssembler* assembler) {
1905 Node* accumulator = __ GetAccumulator();
1906 Node* index = __ BytecodeOperandIdx(0);
1907 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
1908 Node* false_value = __ BooleanConstant(false);
1909 __ JumpIfWordEqual(accumulator, false_value, relative_jump);
1910 }
1911
1912 // JumpIfToBooleanTrue <imm>
1913 //
1914 // Jump by number of bytes represented by an immediate operand if the object
1915 // referenced by the accumulator is true when the object is cast to boolean.
DoJumpIfToBooleanTrue(InterpreterAssembler * assembler)1916 void Interpreter::DoJumpIfToBooleanTrue(InterpreterAssembler* assembler) {
1917 Node* value = __ GetAccumulator();
1918 Node* relative_jump = __ BytecodeOperandImm(0);
1919 Label if_true(assembler), if_false(assembler);
1920 __ BranchIfToBooleanIsTrue(value, &if_true, &if_false);
1921 __ Bind(&if_true);
1922 __ Jump(relative_jump);
1923 __ Bind(&if_false);
1924 __ Dispatch();
1925 }
1926
1927 // JumpIfToBooleanTrueConstant <idx>
1928 //
1929 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
1930 // if the object referenced by the accumulator is true when the object is cast
1931 // to boolean.
DoJumpIfToBooleanTrueConstant(InterpreterAssembler * assembler)1932 void Interpreter::DoJumpIfToBooleanTrueConstant(
1933 InterpreterAssembler* assembler) {
1934 Node* value = __ GetAccumulator();
1935 Node* index = __ BytecodeOperandIdx(0);
1936 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
1937 Label if_true(assembler), if_false(assembler);
1938 __ BranchIfToBooleanIsTrue(value, &if_true, &if_false);
1939 __ Bind(&if_true);
1940 __ Jump(relative_jump);
1941 __ Bind(&if_false);
1942 __ Dispatch();
1943 }
1944
1945 // JumpIfToBooleanFalse <imm>
1946 //
1947 // Jump by number of bytes represented by an immediate operand if the object
1948 // referenced by the accumulator is false when the object is cast to boolean.
DoJumpIfToBooleanFalse(InterpreterAssembler * assembler)1949 void Interpreter::DoJumpIfToBooleanFalse(InterpreterAssembler* assembler) {
1950 Node* value = __ GetAccumulator();
1951 Node* relative_jump = __ BytecodeOperandImm(0);
1952 Label if_true(assembler), if_false(assembler);
1953 __ BranchIfToBooleanIsTrue(value, &if_true, &if_false);
1954 __ Bind(&if_true);
1955 __ Dispatch();
1956 __ Bind(&if_false);
1957 __ Jump(relative_jump);
1958 }
1959
1960 // JumpIfToBooleanFalseConstant <idx>
1961 //
1962 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
1963 // if the object referenced by the accumulator is false when the object is cast
1964 // to boolean.
DoJumpIfToBooleanFalseConstant(InterpreterAssembler * assembler)1965 void Interpreter::DoJumpIfToBooleanFalseConstant(
1966 InterpreterAssembler* assembler) {
1967 Node* value = __ GetAccumulator();
1968 Node* index = __ BytecodeOperandIdx(0);
1969 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
1970 Label if_true(assembler), if_false(assembler);
1971 __ BranchIfToBooleanIsTrue(value, &if_true, &if_false);
1972 __ Bind(&if_true);
1973 __ Dispatch();
1974 __ Bind(&if_false);
1975 __ Jump(relative_jump);
1976 }
1977
1978 // JumpIfNull <imm>
1979 //
1980 // Jump by number of bytes represented by an immediate operand if the object
1981 // referenced by the accumulator is the null constant.
DoJumpIfNull(InterpreterAssembler * assembler)1982 void Interpreter::DoJumpIfNull(InterpreterAssembler* assembler) {
1983 Node* accumulator = __ GetAccumulator();
1984 Node* null_value = __ HeapConstant(isolate_->factory()->null_value());
1985 Node* relative_jump = __ BytecodeOperandImm(0);
1986 __ JumpIfWordEqual(accumulator, null_value, relative_jump);
1987 }
1988
1989 // JumpIfNullConstant <idx>
1990 //
1991 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
1992 // if the object referenced by the accumulator is the null constant.
DoJumpIfNullConstant(InterpreterAssembler * assembler)1993 void Interpreter::DoJumpIfNullConstant(InterpreterAssembler* assembler) {
1994 Node* accumulator = __ GetAccumulator();
1995 Node* null_value = __ HeapConstant(isolate_->factory()->null_value());
1996 Node* index = __ BytecodeOperandIdx(0);
1997 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
1998 __ JumpIfWordEqual(accumulator, null_value, relative_jump);
1999 }
2000
2001 // JumpIfUndefined <imm>
2002 //
2003 // Jump by number of bytes represented by an immediate operand if the object
2004 // referenced by the accumulator is the undefined constant.
DoJumpIfUndefined(InterpreterAssembler * assembler)2005 void Interpreter::DoJumpIfUndefined(InterpreterAssembler* assembler) {
2006 Node* accumulator = __ GetAccumulator();
2007 Node* undefined_value =
2008 __ HeapConstant(isolate_->factory()->undefined_value());
2009 Node* relative_jump = __ BytecodeOperandImm(0);
2010 __ JumpIfWordEqual(accumulator, undefined_value, relative_jump);
2011 }
2012
2013 // JumpIfUndefinedConstant <idx>
2014 //
2015 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
2016 // if the object referenced by the accumulator is the undefined constant.
DoJumpIfUndefinedConstant(InterpreterAssembler * assembler)2017 void Interpreter::DoJumpIfUndefinedConstant(InterpreterAssembler* assembler) {
2018 Node* accumulator = __ GetAccumulator();
2019 Node* undefined_value =
2020 __ HeapConstant(isolate_->factory()->undefined_value());
2021 Node* index = __ BytecodeOperandIdx(0);
2022 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
2023 __ JumpIfWordEqual(accumulator, undefined_value, relative_jump);
2024 }
2025
2026 // JumpIfNotHole <imm>
2027 //
2028 // Jump by number of bytes represented by an immediate operand if the object
2029 // referenced by the accumulator is the hole.
DoJumpIfNotHole(InterpreterAssembler * assembler)2030 void Interpreter::DoJumpIfNotHole(InterpreterAssembler* assembler) {
2031 Node* accumulator = __ GetAccumulator();
2032 Node* the_hole_value = __ HeapConstant(isolate_->factory()->the_hole_value());
2033 Node* relative_jump = __ BytecodeOperandImm(0);
2034 __ JumpIfWordNotEqual(accumulator, the_hole_value, relative_jump);
2035 }
2036
2037 // JumpIfNotHoleConstant <idx>
2038 //
2039 // Jump by number of bytes in the Smi in the |idx| entry in the constant pool
2040 // if the object referenced by the accumulator is the hole constant.
DoJumpIfNotHoleConstant(InterpreterAssembler * assembler)2041 void Interpreter::DoJumpIfNotHoleConstant(InterpreterAssembler* assembler) {
2042 Node* accumulator = __ GetAccumulator();
2043 Node* the_hole_value = __ HeapConstant(isolate_->factory()->the_hole_value());
2044 Node* index = __ BytecodeOperandIdx(0);
2045 Node* relative_jump = __ LoadAndUntagConstantPoolEntry(index);
2046 __ JumpIfWordNotEqual(accumulator, the_hole_value, relative_jump);
2047 }
2048
2049 // JumpLoop <imm> <loop_depth>
2050 //
2051 // Jump by number of bytes represented by the immediate operand |imm|. Also
2052 // performs a loop nesting check and potentially triggers OSR in case the
2053 // current OSR level matches (or exceeds) the specified |loop_depth|.
DoJumpLoop(InterpreterAssembler * assembler)2054 void Interpreter::DoJumpLoop(InterpreterAssembler* assembler) {
2055 Node* relative_jump = __ BytecodeOperandImm(0);
2056 Node* loop_depth = __ BytecodeOperandImm(1);
2057 Node* osr_level = __ LoadOSRNestingLevel();
2058
2059 // Check if OSR points at the given {loop_depth} are armed by comparing it to
2060 // the current {osr_level} loaded from the header of the BytecodeArray.
2061 Label ok(assembler), osr_armed(assembler, Label::kDeferred);
2062 Node* condition = __ Int32GreaterThanOrEqual(loop_depth, osr_level);
2063 __ Branch(condition, &ok, &osr_armed);
2064
2065 __ Bind(&ok);
2066 __ Jump(relative_jump);
2067
2068 __ Bind(&osr_armed);
2069 {
2070 Callable callable = CodeFactory::InterpreterOnStackReplacement(isolate_);
2071 Node* target = __ HeapConstant(callable.code());
2072 Node* context = __ GetContext();
2073 __ CallStub(callable.descriptor(), target, context);
2074 __ Jump(relative_jump);
2075 }
2076 }
2077
2078 // CreateRegExpLiteral <pattern_idx> <literal_idx> <flags>
2079 //
2080 // Creates a regular expression literal for literal index <literal_idx> with
2081 // <flags> and the pattern in <pattern_idx>.
DoCreateRegExpLiteral(InterpreterAssembler * assembler)2082 void Interpreter::DoCreateRegExpLiteral(InterpreterAssembler* assembler) {
2083 Node* index = __ BytecodeOperandIdx(0);
2084 Node* pattern = __ LoadConstantPoolEntry(index);
2085 Node* literal_index_raw = __ BytecodeOperandIdx(1);
2086 Node* literal_index = __ SmiTag(literal_index_raw);
2087 Node* flags_raw = __ BytecodeOperandFlag(2);
2088 Node* flags = __ SmiTag(flags_raw);
2089 Node* closure = __ LoadRegister(Register::function_closure());
2090 Node* context = __ GetContext();
2091 Node* result = FastCloneRegExpStub::Generate(
2092 assembler, closure, literal_index, pattern, flags, context);
2093 __ SetAccumulator(result);
2094 __ Dispatch();
2095 }
2096
2097 // CreateArrayLiteral <element_idx> <literal_idx> <flags>
2098 //
2099 // Creates an array literal for literal index <literal_idx> with
2100 // CreateArrayLiteral flags <flags> and constant elements in <element_idx>.
DoCreateArrayLiteral(InterpreterAssembler * assembler)2101 void Interpreter::DoCreateArrayLiteral(InterpreterAssembler* assembler) {
2102 Node* literal_index_raw = __ BytecodeOperandIdx(1);
2103 Node* literal_index = __ SmiTag(literal_index_raw);
2104 Node* closure = __ LoadRegister(Register::function_closure());
2105 Node* context = __ GetContext();
2106 Node* bytecode_flags = __ BytecodeOperandFlag(2);
2107
2108 Label fast_shallow_clone(assembler),
2109 call_runtime(assembler, Label::kDeferred);
2110 Node* use_fast_shallow_clone = __ Word32And(
2111 bytecode_flags,
2112 __ Int32Constant(CreateArrayLiteralFlags::FastShallowCloneBit::kMask));
2113 __ Branch(use_fast_shallow_clone, &fast_shallow_clone, &call_runtime);
2114
2115 __ Bind(&fast_shallow_clone);
2116 {
2117 DCHECK(FLAG_allocation_site_pretenuring);
2118 Node* result = FastCloneShallowArrayStub::Generate(
2119 assembler, closure, literal_index, context, &call_runtime,
2120 TRACK_ALLOCATION_SITE);
2121 __ SetAccumulator(result);
2122 __ Dispatch();
2123 }
2124
2125 __ Bind(&call_runtime);
2126 {
2127 STATIC_ASSERT(CreateArrayLiteralFlags::FlagsBits::kShift == 0);
2128 Node* flags_raw = __ Word32And(
2129 bytecode_flags,
2130 __ Int32Constant(CreateArrayLiteralFlags::FlagsBits::kMask));
2131 Node* flags = __ SmiTag(flags_raw);
2132 Node* index = __ BytecodeOperandIdx(0);
2133 Node* constant_elements = __ LoadConstantPoolEntry(index);
2134 Node* result =
2135 __ CallRuntime(Runtime::kCreateArrayLiteral, context, closure,
2136 literal_index, constant_elements, flags);
2137 __ SetAccumulator(result);
2138 __ Dispatch();
2139 }
2140 }
2141
2142 // CreateObjectLiteral <element_idx> <literal_idx> <flags>
2143 //
2144 // Creates an object literal for literal index <literal_idx> with
2145 // CreateObjectLiteralFlags <flags> and constant elements in <element_idx>.
DoCreateObjectLiteral(InterpreterAssembler * assembler)2146 void Interpreter::DoCreateObjectLiteral(InterpreterAssembler* assembler) {
2147 Node* literal_index_raw = __ BytecodeOperandIdx(1);
2148 Node* literal_index = __ SmiTag(literal_index_raw);
2149 Node* bytecode_flags = __ BytecodeOperandFlag(2);
2150 Node* closure = __ LoadRegister(Register::function_closure());
2151
2152 // Check if we can do a fast clone or have to call the runtime.
2153 Label if_fast_clone(assembler),
2154 if_not_fast_clone(assembler, Label::kDeferred);
2155 Node* fast_clone_properties_count =
2156 __ DecodeWord32<CreateObjectLiteralFlags::FastClonePropertiesCountBits>(
2157 bytecode_flags);
2158 __ Branch(fast_clone_properties_count, &if_fast_clone, &if_not_fast_clone);
2159
2160 __ Bind(&if_fast_clone);
2161 {
2162 // If we can do a fast clone do the fast-path in FastCloneShallowObjectStub.
2163 Node* result = FastCloneShallowObjectStub::GenerateFastPath(
2164 assembler, &if_not_fast_clone, closure, literal_index,
2165 fast_clone_properties_count);
2166 __ StoreRegister(result, __ BytecodeOperandReg(3));
2167 __ Dispatch();
2168 }
2169
2170 __ Bind(&if_not_fast_clone);
2171 {
2172 // If we can't do a fast clone, call into the runtime.
2173 Node* index = __ BytecodeOperandIdx(0);
2174 Node* constant_elements = __ LoadConstantPoolEntry(index);
2175 Node* context = __ GetContext();
2176
2177 STATIC_ASSERT(CreateObjectLiteralFlags::FlagsBits::kShift == 0);
2178 Node* flags_raw = __ Word32And(
2179 bytecode_flags,
2180 __ Int32Constant(CreateObjectLiteralFlags::FlagsBits::kMask));
2181 Node* flags = __ SmiTag(flags_raw);
2182
2183 Node* result =
2184 __ CallRuntime(Runtime::kCreateObjectLiteral, context, closure,
2185 literal_index, constant_elements, flags);
2186 __ StoreRegister(result, __ BytecodeOperandReg(3));
2187 // TODO(klaasb) build a single dispatch once the call is inlined
2188 __ Dispatch();
2189 }
2190 }
2191
2192 // CreateClosure <index> <tenured>
2193 //
2194 // Creates a new closure for SharedFunctionInfo at position |index| in the
2195 // constant pool and with the PretenureFlag <tenured>.
DoCreateClosure(InterpreterAssembler * assembler)2196 void Interpreter::DoCreateClosure(InterpreterAssembler* assembler) {
2197 Node* index = __ BytecodeOperandIdx(0);
2198 Node* shared = __ LoadConstantPoolEntry(index);
2199 Node* flags = __ BytecodeOperandFlag(1);
2200 Node* context = __ GetContext();
2201
2202 Label call_runtime(assembler, Label::kDeferred);
2203 Node* fast_new_closure = __ Word32And(
2204 flags, __ Int32Constant(CreateClosureFlags::FastNewClosureBit::kMask));
2205 __ GotoUnless(fast_new_closure, &call_runtime);
2206 __ SetAccumulator(FastNewClosureStub::Generate(assembler, shared, context));
2207 __ Dispatch();
2208
2209 __ Bind(&call_runtime);
2210 {
2211 STATIC_ASSERT(CreateClosureFlags::PretenuredBit::kShift == 0);
2212 Node* tenured_raw = __ Word32And(
2213 flags, __ Int32Constant(CreateClosureFlags::PretenuredBit::kMask));
2214 Node* tenured = __ SmiTag(tenured_raw);
2215 Node* result = __ CallRuntime(Runtime::kInterpreterNewClosure, context,
2216 shared, tenured);
2217 __ SetAccumulator(result);
2218 __ Dispatch();
2219 }
2220 }
2221
2222 // CreateBlockContext <index>
2223 //
2224 // Creates a new block context with the scope info constant at |index| and the
2225 // closure in the accumulator.
DoCreateBlockContext(InterpreterAssembler * assembler)2226 void Interpreter::DoCreateBlockContext(InterpreterAssembler* assembler) {
2227 Node* index = __ BytecodeOperandIdx(0);
2228 Node* scope_info = __ LoadConstantPoolEntry(index);
2229 Node* closure = __ GetAccumulator();
2230 Node* context = __ GetContext();
2231 __ SetAccumulator(
2232 __ CallRuntime(Runtime::kPushBlockContext, context, scope_info, closure));
2233 __ Dispatch();
2234 }
2235
2236 // CreateCatchContext <exception> <name_idx> <scope_info_idx>
2237 //
2238 // Creates a new context for a catch block with the |exception| in a register,
2239 // the variable name at |name_idx|, the ScopeInfo at |scope_info_idx|, and the
2240 // closure in the accumulator.
DoCreateCatchContext(InterpreterAssembler * assembler)2241 void Interpreter::DoCreateCatchContext(InterpreterAssembler* assembler) {
2242 Node* exception_reg = __ BytecodeOperandReg(0);
2243 Node* exception = __ LoadRegister(exception_reg);
2244 Node* name_idx = __ BytecodeOperandIdx(1);
2245 Node* name = __ LoadConstantPoolEntry(name_idx);
2246 Node* scope_info_idx = __ BytecodeOperandIdx(2);
2247 Node* scope_info = __ LoadConstantPoolEntry(scope_info_idx);
2248 Node* closure = __ GetAccumulator();
2249 Node* context = __ GetContext();
2250 __ SetAccumulator(__ CallRuntime(Runtime::kPushCatchContext, context, name,
2251 exception, scope_info, closure));
2252 __ Dispatch();
2253 }
2254
2255 // CreateFunctionContext <slots>
2256 //
2257 // Creates a new context with number of |slots| for the function closure.
DoCreateFunctionContext(InterpreterAssembler * assembler)2258 void Interpreter::DoCreateFunctionContext(InterpreterAssembler* assembler) {
2259 Node* closure = __ LoadRegister(Register::function_closure());
2260 Node* slots = __ BytecodeOperandUImm(0);
2261 Node* context = __ GetContext();
2262 __ SetAccumulator(
2263 FastNewFunctionContextStub::Generate(assembler, closure, slots, context));
2264 __ Dispatch();
2265 }
2266
2267 // CreateWithContext <register> <scope_info_idx>
2268 //
2269 // Creates a new context with the ScopeInfo at |scope_info_idx| for a
2270 // with-statement with the object in |register| and the closure in the
2271 // accumulator.
DoCreateWithContext(InterpreterAssembler * assembler)2272 void Interpreter::DoCreateWithContext(InterpreterAssembler* assembler) {
2273 Node* reg_index = __ BytecodeOperandReg(0);
2274 Node* object = __ LoadRegister(reg_index);
2275 Node* scope_info_idx = __ BytecodeOperandIdx(1);
2276 Node* scope_info = __ LoadConstantPoolEntry(scope_info_idx);
2277 Node* closure = __ GetAccumulator();
2278 Node* context = __ GetContext();
2279 __ SetAccumulator(__ CallRuntime(Runtime::kPushWithContext, context, object,
2280 scope_info, closure));
2281 __ Dispatch();
2282 }
2283
2284 // CreateMappedArguments
2285 //
2286 // Creates a new mapped arguments object.
DoCreateMappedArguments(InterpreterAssembler * assembler)2287 void Interpreter::DoCreateMappedArguments(InterpreterAssembler* assembler) {
2288 Node* closure = __ LoadRegister(Register::function_closure());
2289 Node* context = __ GetContext();
2290
2291 Label if_duplicate_parameters(assembler, Label::kDeferred);
2292 Label if_not_duplicate_parameters(assembler);
2293
2294 // Check if function has duplicate parameters.
2295 // TODO(rmcilroy): Remove this check when FastNewSloppyArgumentsStub supports
2296 // duplicate parameters.
2297 Node* shared_info =
2298 __ LoadObjectField(closure, JSFunction::kSharedFunctionInfoOffset);
2299 Node* compiler_hints = __ LoadObjectField(
2300 shared_info, SharedFunctionInfo::kHasDuplicateParametersByteOffset,
2301 MachineType::Uint8());
2302 Node* duplicate_parameters_bit = __ Int32Constant(
2303 1 << SharedFunctionInfo::kHasDuplicateParametersBitWithinByte);
2304 Node* compare = __ Word32And(compiler_hints, duplicate_parameters_bit);
2305 __ Branch(compare, &if_duplicate_parameters, &if_not_duplicate_parameters);
2306
2307 __ Bind(&if_not_duplicate_parameters);
2308 {
2309 // TODO(rmcilroy): Inline FastNewSloppyArguments when it is a TurboFan stub.
2310 Callable callable = CodeFactory::FastNewSloppyArguments(isolate_, true);
2311 Node* target = __ HeapConstant(callable.code());
2312 Node* result = __ CallStub(callable.descriptor(), target, context, closure);
2313 __ SetAccumulator(result);
2314 __ Dispatch();
2315 }
2316
2317 __ Bind(&if_duplicate_parameters);
2318 {
2319 Node* result =
2320 __ CallRuntime(Runtime::kNewSloppyArguments_Generic, context, closure);
2321 __ SetAccumulator(result);
2322 __ Dispatch();
2323 }
2324 }
2325
2326 // CreateUnmappedArguments
2327 //
2328 // Creates a new unmapped arguments object.
DoCreateUnmappedArguments(InterpreterAssembler * assembler)2329 void Interpreter::DoCreateUnmappedArguments(InterpreterAssembler* assembler) {
2330 // TODO(rmcilroy): Inline FastNewStrictArguments when it is a TurboFan stub.
2331 Callable callable = CodeFactory::FastNewStrictArguments(isolate_, true);
2332 Node* target = __ HeapConstant(callable.code());
2333 Node* context = __ GetContext();
2334 Node* closure = __ LoadRegister(Register::function_closure());
2335 Node* result = __ CallStub(callable.descriptor(), target, context, closure);
2336 __ SetAccumulator(result);
2337 __ Dispatch();
2338 }
2339
2340 // CreateRestParameter
2341 //
2342 // Creates a new rest parameter array.
DoCreateRestParameter(InterpreterAssembler * assembler)2343 void Interpreter::DoCreateRestParameter(InterpreterAssembler* assembler) {
2344 // TODO(rmcilroy): Inline FastNewRestArguments when it is a TurboFan stub.
2345 Callable callable = CodeFactory::FastNewRestParameter(isolate_, true);
2346 Node* target = __ HeapConstant(callable.code());
2347 Node* closure = __ LoadRegister(Register::function_closure());
2348 Node* context = __ GetContext();
2349 Node* result = __ CallStub(callable.descriptor(), target, context, closure);
2350 __ SetAccumulator(result);
2351 __ Dispatch();
2352 }
2353
2354 // StackCheck
2355 //
2356 // Performs a stack guard check.
DoStackCheck(InterpreterAssembler * assembler)2357 void Interpreter::DoStackCheck(InterpreterAssembler* assembler) {
2358 Label ok(assembler), stack_check_interrupt(assembler, Label::kDeferred);
2359
2360 Node* interrupt = __ StackCheckTriggeredInterrupt();
2361 __ Branch(interrupt, &stack_check_interrupt, &ok);
2362
2363 __ Bind(&ok);
2364 __ Dispatch();
2365
2366 __ Bind(&stack_check_interrupt);
2367 {
2368 Node* context = __ GetContext();
2369 __ CallRuntime(Runtime::kStackGuard, context);
2370 __ Dispatch();
2371 }
2372 }
2373
2374 // Throw
2375 //
2376 // Throws the exception in the accumulator.
DoThrow(InterpreterAssembler * assembler)2377 void Interpreter::DoThrow(InterpreterAssembler* assembler) {
2378 Node* exception = __ GetAccumulator();
2379 Node* context = __ GetContext();
2380 __ CallRuntime(Runtime::kThrow, context, exception);
2381 // We shouldn't ever return from a throw.
2382 __ Abort(kUnexpectedReturnFromThrow);
2383 }
2384
2385 // ReThrow
2386 //
2387 // Re-throws the exception in the accumulator.
DoReThrow(InterpreterAssembler * assembler)2388 void Interpreter::DoReThrow(InterpreterAssembler* assembler) {
2389 Node* exception = __ GetAccumulator();
2390 Node* context = __ GetContext();
2391 __ CallRuntime(Runtime::kReThrow, context, exception);
2392 // We shouldn't ever return from a throw.
2393 __ Abort(kUnexpectedReturnFromThrow);
2394 }
2395
2396 // Return
2397 //
2398 // Return the value in the accumulator.
DoReturn(InterpreterAssembler * assembler)2399 void Interpreter::DoReturn(InterpreterAssembler* assembler) {
2400 __ UpdateInterruptBudgetOnReturn();
2401 Node* accumulator = __ GetAccumulator();
2402 __ Return(accumulator);
2403 }
2404
2405 // Debugger
2406 //
2407 // Call runtime to handle debugger statement.
DoDebugger(InterpreterAssembler * assembler)2408 void Interpreter::DoDebugger(InterpreterAssembler* assembler) {
2409 Node* context = __ GetContext();
2410 __ CallRuntime(Runtime::kHandleDebuggerStatement, context);
2411 __ Dispatch();
2412 }
2413
2414 // DebugBreak
2415 //
2416 // Call runtime to handle a debug break.
2417 #define DEBUG_BREAK(Name, ...) \
2418 void Interpreter::Do##Name(InterpreterAssembler* assembler) { \
2419 Node* context = __ GetContext(); \
2420 Node* accumulator = __ GetAccumulator(); \
2421 Node* original_handler = \
2422 __ CallRuntime(Runtime::kDebugBreakOnBytecode, context, accumulator); \
2423 __ DispatchToBytecodeHandler(original_handler); \
2424 }
2425 DEBUG_BREAK_BYTECODE_LIST(DEBUG_BREAK);
2426 #undef DEBUG_BREAK
2427
BuildForInPrepareResult(Node * output_register,Node * cache_type,Node * cache_array,Node * cache_length,InterpreterAssembler * assembler)2428 void Interpreter::BuildForInPrepareResult(Node* output_register,
2429 Node* cache_type, Node* cache_array,
2430 Node* cache_length,
2431 InterpreterAssembler* assembler) {
2432 __ StoreRegister(cache_type, output_register);
2433 output_register = __ NextRegister(output_register);
2434 __ StoreRegister(cache_array, output_register);
2435 output_register = __ NextRegister(output_register);
2436 __ StoreRegister(cache_length, output_register);
2437 }
2438
2439 // ForInPrepare <receiver> <cache_info_triple>
2440 //
2441 // Returns state for for..in loop execution based on the object in the register
2442 // |receiver|. The object must not be null or undefined and must have been
2443 // converted to a receiver already.
2444 // The result is output in registers |cache_info_triple| to
2445 // |cache_info_triple + 2|, with the registers holding cache_type, cache_array,
2446 // and cache_length respectively.
DoForInPrepare(InterpreterAssembler * assembler)2447 void Interpreter::DoForInPrepare(InterpreterAssembler* assembler) {
2448 Node* object_reg = __ BytecodeOperandReg(0);
2449 Node* receiver = __ LoadRegister(object_reg);
2450 Node* context = __ GetContext();
2451 Node* const zero_smi = __ SmiConstant(Smi::kZero);
2452
2453 Label nothing_to_iterate(assembler, Label::kDeferred),
2454 use_enum_cache(assembler), use_runtime(assembler, Label::kDeferred);
2455
2456 if (FLAG_debug_code) {
2457 Label already_receiver(assembler), abort(assembler);
2458 Node* instance_type = __ LoadInstanceType(receiver);
2459 __ Branch(__ IsJSReceiverInstanceType(instance_type), &already_receiver,
2460 &abort);
2461 __ Bind(&abort);
2462 {
2463 __ Abort(kExpectedJSReceiver);
2464 // TODO(klaasb) remove this unreachable Goto once Abort ends the block
2465 __ Goto(&already_receiver);
2466 }
2467 __ Bind(&already_receiver);
2468 }
2469
2470 __ CheckEnumCache(receiver, &use_enum_cache, &use_runtime);
2471
2472 __ Bind(&use_enum_cache);
2473 {
2474 // The enum cache is valid. Load the map of the object being
2475 // iterated over and use the cache for the iteration.
2476 Node* cache_type = __ LoadMap(receiver);
2477 Node* cache_length = __ EnumLength(cache_type);
2478 __ GotoIf(assembler->WordEqual(cache_length, zero_smi),
2479 ¬hing_to_iterate);
2480 Node* descriptors = __ LoadMapDescriptors(cache_type);
2481 Node* cache_offset =
2482 __ LoadObjectField(descriptors, DescriptorArray::kEnumCacheOffset);
2483 Node* cache_array = __ LoadObjectField(
2484 cache_offset, DescriptorArray::kEnumCacheBridgeCacheOffset);
2485 Node* output_register = __ BytecodeOperandReg(1);
2486 BuildForInPrepareResult(output_register, cache_type, cache_array,
2487 cache_length, assembler);
2488 __ Dispatch();
2489 }
2490
2491 __ Bind(&use_runtime);
2492 {
2493 Node* result_triple =
2494 __ CallRuntime(Runtime::kForInPrepare, context, receiver);
2495 Node* cache_type = __ Projection(0, result_triple);
2496 Node* cache_array = __ Projection(1, result_triple);
2497 Node* cache_length = __ Projection(2, result_triple);
2498 Node* output_register = __ BytecodeOperandReg(1);
2499 BuildForInPrepareResult(output_register, cache_type, cache_array,
2500 cache_length, assembler);
2501 __ Dispatch();
2502 }
2503
2504 __ Bind(¬hing_to_iterate);
2505 {
2506 // Receiver is null or undefined or descriptors are zero length.
2507 Node* output_register = __ BytecodeOperandReg(1);
2508 BuildForInPrepareResult(output_register, zero_smi, zero_smi, zero_smi,
2509 assembler);
2510 __ Dispatch();
2511 }
2512 }
2513
2514 // ForInNext <receiver> <index> <cache_info_pair>
2515 //
2516 // Returns the next enumerable property in the the accumulator.
DoForInNext(InterpreterAssembler * assembler)2517 void Interpreter::DoForInNext(InterpreterAssembler* assembler) {
2518 Node* receiver_reg = __ BytecodeOperandReg(0);
2519 Node* receiver = __ LoadRegister(receiver_reg);
2520 Node* index_reg = __ BytecodeOperandReg(1);
2521 Node* index = __ LoadRegister(index_reg);
2522 Node* cache_type_reg = __ BytecodeOperandReg(2);
2523 Node* cache_type = __ LoadRegister(cache_type_reg);
2524 Node* cache_array_reg = __ NextRegister(cache_type_reg);
2525 Node* cache_array = __ LoadRegister(cache_array_reg);
2526
2527 // Load the next key from the enumeration array.
2528 Node* key = __ LoadFixedArrayElement(cache_array, index, 0,
2529 CodeStubAssembler::SMI_PARAMETERS);
2530
2531 // Check if we can use the for-in fast path potentially using the enum cache.
2532 Label if_fast(assembler), if_slow(assembler, Label::kDeferred);
2533 Node* receiver_map = __ LoadObjectField(receiver, HeapObject::kMapOffset);
2534 __ Branch(__ WordEqual(receiver_map, cache_type), &if_fast, &if_slow);
2535 __ Bind(&if_fast);
2536 {
2537 // Enum cache in use for {receiver}, the {key} is definitely valid.
2538 __ SetAccumulator(key);
2539 __ Dispatch();
2540 }
2541 __ Bind(&if_slow);
2542 {
2543 // Record the fact that we hit the for-in slow path.
2544 Node* vector_index = __ BytecodeOperandIdx(3);
2545 Node* type_feedback_vector = __ LoadTypeFeedbackVector();
2546 Node* megamorphic_sentinel =
2547 __ HeapConstant(TypeFeedbackVector::MegamorphicSentinel(isolate_));
2548 __ StoreFixedArrayElement(type_feedback_vector, vector_index,
2549 megamorphic_sentinel, SKIP_WRITE_BARRIER);
2550
2551 // Need to filter the {key} for the {receiver}.
2552 Node* context = __ GetContext();
2553 Callable callable = CodeFactory::ForInFilter(assembler->isolate());
2554 Node* result = __ CallStub(callable, context, key, receiver);
2555 __ SetAccumulator(result);
2556 __ Dispatch();
2557 }
2558 }
2559
2560 // ForInContinue <index> <cache_length>
2561 //
2562 // Returns false if the end of the enumerable properties has been reached.
DoForInContinue(InterpreterAssembler * assembler)2563 void Interpreter::DoForInContinue(InterpreterAssembler* assembler) {
2564 Node* index_reg = __ BytecodeOperandReg(0);
2565 Node* index = __ LoadRegister(index_reg);
2566 Node* cache_length_reg = __ BytecodeOperandReg(1);
2567 Node* cache_length = __ LoadRegister(cache_length_reg);
2568
2569 // Check if {index} is at {cache_length} already.
2570 Label if_true(assembler), if_false(assembler), end(assembler);
2571 __ Branch(__ WordEqual(index, cache_length), &if_true, &if_false);
2572 __ Bind(&if_true);
2573 {
2574 __ SetAccumulator(__ BooleanConstant(false));
2575 __ Goto(&end);
2576 }
2577 __ Bind(&if_false);
2578 {
2579 __ SetAccumulator(__ BooleanConstant(true));
2580 __ Goto(&end);
2581 }
2582 __ Bind(&end);
2583 __ Dispatch();
2584 }
2585
2586 // ForInStep <index>
2587 //
2588 // Increments the loop counter in register |index| and stores the result
2589 // in the accumulator.
DoForInStep(InterpreterAssembler * assembler)2590 void Interpreter::DoForInStep(InterpreterAssembler* assembler) {
2591 Node* index_reg = __ BytecodeOperandReg(0);
2592 Node* index = __ LoadRegister(index_reg);
2593 Node* one = __ SmiConstant(Smi::FromInt(1));
2594 Node* result = __ SmiAdd(index, one);
2595 __ SetAccumulator(result);
2596 __ Dispatch();
2597 }
2598
2599 // Wide
2600 //
2601 // Prefix bytecode indicating next bytecode has wide (16-bit) operands.
DoWide(InterpreterAssembler * assembler)2602 void Interpreter::DoWide(InterpreterAssembler* assembler) {
2603 __ DispatchWide(OperandScale::kDouble);
2604 }
2605
2606 // ExtraWide
2607 //
2608 // Prefix bytecode indicating next bytecode has extra-wide (32-bit) operands.
DoExtraWide(InterpreterAssembler * assembler)2609 void Interpreter::DoExtraWide(InterpreterAssembler* assembler) {
2610 __ DispatchWide(OperandScale::kQuadruple);
2611 }
2612
2613 // Illegal
2614 //
2615 // An invalid bytecode aborting execution if dispatched.
DoIllegal(InterpreterAssembler * assembler)2616 void Interpreter::DoIllegal(InterpreterAssembler* assembler) {
2617 __ Abort(kInvalidBytecode);
2618 }
2619
2620 // Nop
2621 //
2622 // No operation.
DoNop(InterpreterAssembler * assembler)2623 void Interpreter::DoNop(InterpreterAssembler* assembler) { __ Dispatch(); }
2624
2625 // SuspendGenerator <generator>
2626 //
2627 // Exports the register file and stores it into the generator. Also stores the
2628 // current context, the state given in the accumulator, and the current bytecode
2629 // offset (for debugging purposes) into the generator.
DoSuspendGenerator(InterpreterAssembler * assembler)2630 void Interpreter::DoSuspendGenerator(InterpreterAssembler* assembler) {
2631 Node* generator_reg = __ BytecodeOperandReg(0);
2632 Node* generator = __ LoadRegister(generator_reg);
2633
2634 Label if_stepping(assembler, Label::kDeferred), ok(assembler);
2635 Node* step_action_address = __ ExternalConstant(
2636 ExternalReference::debug_last_step_action_address(isolate_));
2637 Node* step_action = __ Load(MachineType::Int8(), step_action_address);
2638 STATIC_ASSERT(StepIn > StepNext);
2639 STATIC_ASSERT(StepFrame > StepNext);
2640 STATIC_ASSERT(LastStepAction == StepFrame);
2641 Node* step_next = __ Int32Constant(StepNext);
2642 __ Branch(__ Int32LessThanOrEqual(step_next, step_action), &if_stepping, &ok);
2643 __ Bind(&ok);
2644
2645 Node* array =
2646 __ LoadObjectField(generator, JSGeneratorObject::kOperandStackOffset);
2647 Node* context = __ GetContext();
2648 Node* state = __ GetAccumulator();
2649
2650 __ ExportRegisterFile(array);
2651 __ StoreObjectField(generator, JSGeneratorObject::kContextOffset, context);
2652 __ StoreObjectField(generator, JSGeneratorObject::kContinuationOffset, state);
2653
2654 Node* offset = __ SmiTag(__ BytecodeOffset());
2655 __ StoreObjectField(generator, JSGeneratorObject::kInputOrDebugPosOffset,
2656 offset);
2657
2658 __ Dispatch();
2659
2660 __ Bind(&if_stepping);
2661 {
2662 Node* context = __ GetContext();
2663 __ CallRuntime(Runtime::kDebugRecordAsyncFunction, context, generator);
2664 __ Goto(&ok);
2665 }
2666 }
2667
2668 // ResumeGenerator <generator>
2669 //
2670 // Imports the register file stored in the generator. Also loads the
2671 // generator's state and stores it in the accumulator, before overwriting it
2672 // with kGeneratorExecuting.
DoResumeGenerator(InterpreterAssembler * assembler)2673 void Interpreter::DoResumeGenerator(InterpreterAssembler* assembler) {
2674 Node* generator_reg = __ BytecodeOperandReg(0);
2675 Node* generator = __ LoadRegister(generator_reg);
2676
2677 __ ImportRegisterFile(
2678 __ LoadObjectField(generator, JSGeneratorObject::kOperandStackOffset));
2679
2680 Node* old_state =
2681 __ LoadObjectField(generator, JSGeneratorObject::kContinuationOffset);
2682 Node* new_state = __ Int32Constant(JSGeneratorObject::kGeneratorExecuting);
2683 __ StoreObjectField(generator, JSGeneratorObject::kContinuationOffset,
2684 __ SmiTag(new_state));
2685 __ SetAccumulator(old_state);
2686
2687 __ Dispatch();
2688 }
2689
2690 } // namespace interpreter
2691 } // namespace internal
2692 } // namespace v8
2693