1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_ELF_BUILDER_H_ 18 #define ART_COMPILER_ELF_BUILDER_H_ 19 20 #include <vector> 21 22 #include "arch/instruction_set.h" 23 #include "arch/mips/instruction_set_features_mips.h" 24 #include "base/array_ref.h" 25 #include "base/bit_utils.h" 26 #include "base/casts.h" 27 #include "base/unix_file/fd_file.h" 28 #include "elf_utils.h" 29 #include "leb128.h" 30 #include "linker/error_delaying_output_stream.h" 31 32 namespace art { 33 34 // Writes ELF file. 35 // 36 // The basic layout of the elf file: 37 // Elf_Ehdr - The ELF header. 38 // Elf_Phdr[] - Program headers for the linker. 39 // .note.gnu.build-id - Optional build ID section (SHA-1 digest). 40 // .rodata - DEX files and oat metadata. 41 // .text - Compiled code. 42 // .bss - Zero-initialized writeable section. 43 // .MIPS.abiflags - MIPS specific section. 44 // .dynstr - Names for .dynsym. 45 // .dynsym - A few oat-specific dynamic symbols. 46 // .hash - Hash-table for .dynsym. 47 // .dynamic - Tags which let the linker locate .dynsym. 48 // .strtab - Names for .symtab. 49 // .symtab - Debug symbols. 50 // .eh_frame - Unwind information (CFI). 51 // .eh_frame_hdr - Index of .eh_frame. 52 // .debug_frame - Unwind information (CFI). 53 // .debug_frame.oat_patches - Addresses for relocation. 54 // .debug_info - Debug information. 55 // .debug_info.oat_patches - Addresses for relocation. 56 // .debug_abbrev - Decoding information for .debug_info. 57 // .debug_str - Strings for .debug_info. 58 // .debug_line - Line number tables. 59 // .debug_line.oat_patches - Addresses for relocation. 60 // .text.oat_patches - Addresses for relocation. 61 // .shstrtab - Names of ELF sections. 62 // Elf_Shdr[] - Section headers. 63 // 64 // Some section are optional (the debug sections in particular). 65 // 66 // We try write the section data directly into the file without much 67 // in-memory buffering. This means we generally write sections based on the 68 // dependency order (e.g. .dynamic points to .dynsym which points to .text). 69 // 70 // In the cases where we need to buffer, we write the larger section first 71 // and buffer the smaller one (e.g. .strtab is bigger than .symtab). 72 // 73 // The debug sections are written last for easier stripping. 74 // 75 template <typename ElfTypes> 76 class ElfBuilder FINAL { 77 public: 78 static constexpr size_t kMaxProgramHeaders = 16; 79 // SHA-1 digest. Not using SHA_DIGEST_LENGTH from openssl/sha.h to avoid 80 // spreading this header dependency for just this single constant. 81 static constexpr size_t kBuildIdLen = 20; 82 83 using Elf_Addr = typename ElfTypes::Addr; 84 using Elf_Off = typename ElfTypes::Off; 85 using Elf_Word = typename ElfTypes::Word; 86 using Elf_Sword = typename ElfTypes::Sword; 87 using Elf_Ehdr = typename ElfTypes::Ehdr; 88 using Elf_Shdr = typename ElfTypes::Shdr; 89 using Elf_Sym = typename ElfTypes::Sym; 90 using Elf_Phdr = typename ElfTypes::Phdr; 91 using Elf_Dyn = typename ElfTypes::Dyn; 92 93 // Base class of all sections. 94 class Section : public OutputStream { 95 public: Section(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize)96 Section(ElfBuilder<ElfTypes>* owner, 97 const std::string& name, 98 Elf_Word type, 99 Elf_Word flags, 100 const Section* link, 101 Elf_Word info, 102 Elf_Word align, 103 Elf_Word entsize) 104 : OutputStream(name), 105 owner_(owner), 106 header_(), 107 section_index_(0), 108 name_(name), 109 link_(link), 110 started_(false), 111 finished_(false), 112 phdr_flags_(PF_R), 113 phdr_type_(0) { 114 DCHECK_GE(align, 1u); 115 header_.sh_type = type; 116 header_.sh_flags = flags; 117 header_.sh_info = info; 118 header_.sh_addralign = align; 119 header_.sh_entsize = entsize; 120 } 121 122 // Start writing of this section. Start()123 void Start() { 124 CHECK(!started_); 125 CHECK(!finished_); 126 started_ = true; 127 auto& sections = owner_->sections_; 128 // Check that the previous section is complete. 129 CHECK(sections.empty() || sections.back()->finished_); 130 // The first ELF section index is 1. Index 0 is reserved for NULL. 131 section_index_ = sections.size() + 1; 132 // Page-align if we switch between allocated and non-allocated sections, 133 // or if we change the type of allocation (e.g. executable vs non-executable). 134 if (!sections.empty()) { 135 if (header_.sh_flags != sections.back()->header_.sh_flags) { 136 header_.sh_addralign = kPageSize; 137 } 138 } 139 // Align file position. 140 if (header_.sh_type != SHT_NOBITS) { 141 header_.sh_offset = owner_->AlignFileOffset(header_.sh_addralign); 142 } else { 143 header_.sh_offset = 0; 144 } 145 // Align virtual memory address. 146 if ((header_.sh_flags & SHF_ALLOC) != 0) { 147 header_.sh_addr = owner_->AlignVirtualAddress(header_.sh_addralign); 148 } else { 149 header_.sh_addr = 0; 150 } 151 // Push this section on the list of written sections. 152 sections.push_back(this); 153 } 154 155 // Finish writing of this section. End()156 void End() { 157 CHECK(started_); 158 CHECK(!finished_); 159 finished_ = true; 160 if (header_.sh_type == SHT_NOBITS) { 161 CHECK_GT(header_.sh_size, 0u); 162 } else { 163 // Use the current file position to determine section size. 164 off_t file_offset = owner_->stream_.Seek(0, kSeekCurrent); 165 CHECK_GE(file_offset, (off_t)header_.sh_offset); 166 header_.sh_size = file_offset - header_.sh_offset; 167 } 168 if ((header_.sh_flags & SHF_ALLOC) != 0) { 169 owner_->virtual_address_ += header_.sh_size; 170 } 171 } 172 173 // Get the location of this section in virtual memory. GetAddress()174 Elf_Addr GetAddress() const { 175 CHECK(started_); 176 return header_.sh_addr; 177 } 178 179 // Returns the size of the content of this section. GetSize()180 Elf_Word GetSize() const { 181 if (finished_) { 182 return header_.sh_size; 183 } else { 184 CHECK(started_); 185 CHECK_NE(header_.sh_type, (Elf_Word)SHT_NOBITS); 186 return owner_->stream_.Seek(0, kSeekCurrent) - header_.sh_offset; 187 } 188 } 189 190 // Write this section as "NOBITS" section. (used for the .bss section) 191 // This means that the ELF file does not contain the initial data for this section 192 // and it will be zero-initialized when the ELF file is loaded in the running program. WriteNoBitsSection(Elf_Word size)193 void WriteNoBitsSection(Elf_Word size) { 194 DCHECK_NE(header_.sh_flags & SHF_ALLOC, 0u); 195 header_.sh_type = SHT_NOBITS; 196 Start(); 197 header_.sh_size = size; 198 End(); 199 } 200 201 // This function always succeeds to simplify code. 202 // Use builder's Good() to check the actual status. WriteFully(const void * buffer,size_t byte_count)203 bool WriteFully(const void* buffer, size_t byte_count) OVERRIDE { 204 CHECK(started_); 205 CHECK(!finished_); 206 return owner_->stream_.WriteFully(buffer, byte_count); 207 } 208 209 // This function always succeeds to simplify code. 210 // Use builder's Good() to check the actual status. Seek(off_t offset,Whence whence)211 off_t Seek(off_t offset, Whence whence) OVERRIDE { 212 // Forward the seek as-is and trust the caller to use it reasonably. 213 return owner_->stream_.Seek(offset, whence); 214 } 215 216 // This function flushes the output and returns whether it succeeded. 217 // If there was a previous failure, this does nothing and returns false, i.e. failed. Flush()218 bool Flush() OVERRIDE { 219 return owner_->stream_.Flush(); 220 } 221 GetSectionIndex()222 Elf_Word GetSectionIndex() const { 223 DCHECK(started_); 224 DCHECK_NE(section_index_, 0u); 225 return section_index_; 226 } 227 228 private: 229 ElfBuilder<ElfTypes>* owner_; 230 Elf_Shdr header_; 231 Elf_Word section_index_; 232 const std::string name_; 233 const Section* const link_; 234 bool started_; 235 bool finished_; 236 Elf_Word phdr_flags_; 237 Elf_Word phdr_type_; 238 239 friend class ElfBuilder; 240 241 DISALLOW_COPY_AND_ASSIGN(Section); 242 }; 243 244 class CachedSection : public Section { 245 public: CachedSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize)246 CachedSection(ElfBuilder<ElfTypes>* owner, 247 const std::string& name, 248 Elf_Word type, 249 Elf_Word flags, 250 const Section* link, 251 Elf_Word info, 252 Elf_Word align, 253 Elf_Word entsize) 254 : Section(owner, name, type, flags, link, info, align, entsize), cache_() { } 255 Add(const void * data,size_t length)256 Elf_Word Add(const void* data, size_t length) { 257 Elf_Word offset = cache_.size(); 258 const uint8_t* d = reinterpret_cast<const uint8_t*>(data); 259 cache_.insert(cache_.end(), d, d + length); 260 return offset; 261 } 262 GetCacheSize()263 Elf_Word GetCacheSize() { 264 return cache_.size(); 265 } 266 Write()267 void Write() { 268 this->WriteFully(cache_.data(), cache_.size()); 269 cache_.clear(); 270 cache_.shrink_to_fit(); 271 } 272 WriteCachedSection()273 void WriteCachedSection() { 274 this->Start(); 275 Write(); 276 this->End(); 277 } 278 279 private: 280 std::vector<uint8_t> cache_; 281 }; 282 283 // Writer of .dynstr section. 284 class CachedStringSection FINAL : public CachedSection { 285 public: CachedStringSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word flags,Elf_Word align)286 CachedStringSection(ElfBuilder<ElfTypes>* owner, 287 const std::string& name, 288 Elf_Word flags, 289 Elf_Word align) 290 : CachedSection(owner, 291 name, 292 SHT_STRTAB, 293 flags, 294 /* link */ nullptr, 295 /* info */ 0, 296 align, 297 /* entsize */ 0) { } 298 Add(const std::string & name)299 Elf_Word Add(const std::string& name) { 300 if (CachedSection::GetCacheSize() == 0u) { 301 DCHECK(name.empty()); 302 } 303 return CachedSection::Add(name.c_str(), name.length() + 1); 304 } 305 }; 306 307 // Writer of .strtab and .shstrtab sections. 308 class StringSection FINAL : public Section { 309 public: StringSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word flags,Elf_Word align)310 StringSection(ElfBuilder<ElfTypes>* owner, 311 const std::string& name, 312 Elf_Word flags, 313 Elf_Word align) 314 : Section(owner, 315 name, 316 SHT_STRTAB, 317 flags, 318 /* link */ nullptr, 319 /* info */ 0, 320 align, 321 /* entsize */ 0), 322 current_offset_(0) { 323 } 324 Write(const std::string & name)325 Elf_Word Write(const std::string& name) { 326 if (current_offset_ == 0) { 327 DCHECK(name.empty()); 328 } 329 Elf_Word offset = current_offset_; 330 this->WriteFully(name.c_str(), name.length() + 1); 331 current_offset_ += name.length() + 1; 332 return offset; 333 } 334 335 private: 336 Elf_Word current_offset_; 337 }; 338 339 // Writer of .dynsym and .symtab sections. 340 class SymbolSection FINAL : public CachedSection { 341 public: SymbolSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,Section * strtab)342 SymbolSection(ElfBuilder<ElfTypes>* owner, 343 const std::string& name, 344 Elf_Word type, 345 Elf_Word flags, 346 Section* strtab) 347 : CachedSection(owner, 348 name, 349 type, 350 flags, 351 strtab, 352 /* info */ 0, 353 sizeof(Elf_Off), 354 sizeof(Elf_Sym)) { 355 // The symbol table always has to start with NULL symbol. 356 Elf_Sym null_symbol = Elf_Sym(); 357 CachedSection::Add(&null_symbol, sizeof(null_symbol)); 358 } 359 360 // Buffer symbol for this section. It will be written later. 361 // If the symbol's section is null, it will be considered absolute (SHN_ABS). 362 // (we use this in JIT to reference code which is stored outside the debug ELF file) Add(Elf_Word name,const Section * section,Elf_Addr addr,Elf_Word size,uint8_t binding,uint8_t type)363 void Add(Elf_Word name, 364 const Section* section, 365 Elf_Addr addr, 366 Elf_Word size, 367 uint8_t binding, 368 uint8_t type) { 369 Elf_Word section_index; 370 if (section != nullptr) { 371 DCHECK_LE(section->GetAddress(), addr); 372 DCHECK_LE(addr, section->GetAddress() + section->GetSize()); 373 section_index = section->GetSectionIndex(); 374 } else { 375 section_index = static_cast<Elf_Word>(SHN_ABS); 376 } 377 Add(name, section_index, addr, size, binding, type); 378 } 379 Add(Elf_Word name,Elf_Word section_index,Elf_Addr addr,Elf_Word size,uint8_t binding,uint8_t type)380 void Add(Elf_Word name, 381 Elf_Word section_index, 382 Elf_Addr addr, 383 Elf_Word size, 384 uint8_t binding, 385 uint8_t type) { 386 Elf_Sym sym = Elf_Sym(); 387 sym.st_name = name; 388 sym.st_value = addr; 389 sym.st_size = size; 390 sym.st_other = 0; 391 sym.st_shndx = section_index; 392 sym.st_info = (binding << 4) + (type & 0xf); 393 CachedSection::Add(&sym, sizeof(sym)); 394 } 395 }; 396 397 class AbiflagsSection FINAL : public Section { 398 public: 399 // Section with Mips abiflag info. 400 static constexpr uint8_t MIPS_AFL_REG_NONE = 0; // no registers 401 static constexpr uint8_t MIPS_AFL_REG_32 = 1; // 32-bit registers 402 static constexpr uint8_t MIPS_AFL_REG_64 = 2; // 64-bit registers 403 static constexpr uint32_t MIPS_AFL_FLAGS1_ODDSPREG = 1; // Uses odd single-prec fp regs 404 static constexpr uint8_t MIPS_ABI_FP_DOUBLE = 1; // -mdouble-float 405 static constexpr uint8_t MIPS_ABI_FP_XX = 5; // -mfpxx 406 static constexpr uint8_t MIPS_ABI_FP_64A = 7; // -mips32r* -mfp64 -mno-odd-spreg 407 AbiflagsSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize,InstructionSet isa,const InstructionSetFeatures * features)408 AbiflagsSection(ElfBuilder<ElfTypes>* owner, 409 const std::string& name, 410 Elf_Word type, 411 Elf_Word flags, 412 const Section* link, 413 Elf_Word info, 414 Elf_Word align, 415 Elf_Word entsize, 416 InstructionSet isa, 417 const InstructionSetFeatures* features) 418 : Section(owner, name, type, flags, link, info, align, entsize) { 419 if (isa == kMips || isa == kMips64) { 420 bool fpu32 = false; // assume mips64 values 421 uint8_t isa_rev = 6; // assume mips64 values 422 if (isa == kMips) { 423 // adjust for mips32 values 424 fpu32 = features->AsMipsInstructionSetFeatures()->Is32BitFloatingPoint(); 425 isa_rev = features->AsMipsInstructionSetFeatures()->IsR6() 426 ? 6 427 : features->AsMipsInstructionSetFeatures()->IsMipsIsaRevGreaterThanEqual2() 428 ? (fpu32 ? 2 : 5) 429 : 1; 430 } 431 abiflags_.version = 0; // version of flags structure 432 abiflags_.isa_level = (isa == kMips) ? 32 : 64; 433 abiflags_.isa_rev = isa_rev; 434 abiflags_.gpr_size = (isa == kMips) ? MIPS_AFL_REG_32 : MIPS_AFL_REG_64; 435 abiflags_.cpr1_size = fpu32 ? MIPS_AFL_REG_32 : MIPS_AFL_REG_64; 436 abiflags_.cpr2_size = MIPS_AFL_REG_NONE; 437 // Set the fp_abi to MIPS_ABI_FP_64A for mips32 with 64-bit FPUs (ie: mips32 R5 and R6). 438 // Otherwise set to MIPS_ABI_FP_DOUBLE. 439 abiflags_.fp_abi = (isa == kMips && !fpu32) ? MIPS_ABI_FP_64A : MIPS_ABI_FP_DOUBLE; 440 abiflags_.isa_ext = 0; 441 abiflags_.ases = 0; 442 // To keep the code simple, we are not using odd FP reg for single floats for both 443 // mips32 and mips64 ART. Therefore we are not setting the MIPS_AFL_FLAGS1_ODDSPREG bit. 444 abiflags_.flags1 = 0; 445 abiflags_.flags2 = 0; 446 } 447 } 448 GetSize()449 Elf_Word GetSize() const { 450 return sizeof(abiflags_); 451 } 452 Write()453 void Write() { 454 this->WriteFully(&abiflags_, sizeof(abiflags_)); 455 } 456 457 private: 458 struct { 459 uint16_t version; // version of this structure 460 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size; 461 uint8_t fp_abi; 462 uint32_t isa_ext, ases, flags1, flags2; 463 } abiflags_; 464 }; 465 466 class BuildIdSection FINAL : public Section { 467 public: BuildIdSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize)468 BuildIdSection(ElfBuilder<ElfTypes>* owner, 469 const std::string& name, 470 Elf_Word type, 471 Elf_Word flags, 472 const Section* link, 473 Elf_Word info, 474 Elf_Word align, 475 Elf_Word entsize) 476 : Section(owner, name, type, flags, link, info, align, entsize), 477 digest_start_(-1) { 478 } 479 Write()480 void Write() { 481 // The size fields are 32-bit on both 32-bit and 64-bit systems, confirmed 482 // with the 64-bit linker and libbfd code. The size of name and desc must 483 // be a multiple of 4 and it currently is. 484 this->WriteUint32(4); // namesz. 485 this->WriteUint32(kBuildIdLen); // descsz. 486 this->WriteUint32(3); // type = NT_GNU_BUILD_ID. 487 this->WriteFully("GNU", 4); // name. 488 digest_start_ = this->Seek(0, kSeekCurrent); 489 static_assert(kBuildIdLen % 4 == 0, "expecting a mutliple of 4 for build ID length"); 490 this->WriteFully(std::string(kBuildIdLen, '\0').c_str(), kBuildIdLen); // desc. 491 } 492 GetDigestStart()493 off_t GetDigestStart() { 494 CHECK_GT(digest_start_, 0); 495 return digest_start_; 496 } 497 498 private: WriteUint32(uint32_t v)499 bool WriteUint32(uint32_t v) { 500 return this->WriteFully(&v, sizeof(v)); 501 } 502 503 // File offset where the build ID digest starts. 504 // Populated with zeros first, then updated with the actual value as the 505 // very last thing in the output file creation. 506 off_t digest_start_; 507 }; 508 ElfBuilder(InstructionSet isa,const InstructionSetFeatures * features,OutputStream * output)509 ElfBuilder(InstructionSet isa, const InstructionSetFeatures* features, OutputStream* output) 510 : isa_(isa), 511 features_(features), 512 stream_(output), 513 rodata_(this, ".rodata", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0), 514 text_(this, ".text", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, nullptr, 0, kPageSize, 0), 515 bss_(this, ".bss", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0), 516 dynstr_(this, ".dynstr", SHF_ALLOC, kPageSize), 517 dynsym_(this, ".dynsym", SHT_DYNSYM, SHF_ALLOC, &dynstr_), 518 hash_(this, ".hash", SHT_HASH, SHF_ALLOC, &dynsym_, 0, sizeof(Elf_Word), sizeof(Elf_Word)), 519 dynamic_(this, ".dynamic", SHT_DYNAMIC, SHF_ALLOC, &dynstr_, 0, kPageSize, sizeof(Elf_Dyn)), 520 eh_frame_(this, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0), 521 eh_frame_hdr_(this, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4, 0), 522 strtab_(this, ".strtab", 0, 1), 523 symtab_(this, ".symtab", SHT_SYMTAB, 0, &strtab_), 524 debug_frame_(this, ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0), 525 debug_info_(this, ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0), 526 debug_line_(this, ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0), 527 shstrtab_(this, ".shstrtab", 0, 1), 528 abiflags_(this, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, nullptr, 0, kPageSize, 0, 529 isa, features), 530 build_id_(this, ".note.gnu.build-id", SHT_NOTE, SHF_ALLOC, nullptr, 0, 4, 0), 531 started_(false), 532 write_program_headers_(false), 533 loaded_size_(0u), 534 virtual_address_(0) { 535 text_.phdr_flags_ = PF_R | PF_X; 536 bss_.phdr_flags_ = PF_R | PF_W; 537 dynamic_.phdr_flags_ = PF_R | PF_W; 538 dynamic_.phdr_type_ = PT_DYNAMIC; 539 eh_frame_hdr_.phdr_type_ = PT_GNU_EH_FRAME; 540 abiflags_.phdr_type_ = PT_MIPS_ABIFLAGS; 541 build_id_.phdr_type_ = PT_NOTE; 542 } ~ElfBuilder()543 ~ElfBuilder() {} 544 GetIsa()545 InstructionSet GetIsa() { return isa_; } GetRoData()546 Section* GetRoData() { return &rodata_; } GetText()547 Section* GetText() { return &text_; } GetBss()548 Section* GetBss() { return &bss_; } GetStrTab()549 StringSection* GetStrTab() { return &strtab_; } GetSymTab()550 SymbolSection* GetSymTab() { return &symtab_; } GetEhFrame()551 Section* GetEhFrame() { return &eh_frame_; } GetEhFrameHdr()552 Section* GetEhFrameHdr() { return &eh_frame_hdr_; } GetDebugFrame()553 Section* GetDebugFrame() { return &debug_frame_; } GetDebugInfo()554 Section* GetDebugInfo() { return &debug_info_; } GetDebugLine()555 Section* GetDebugLine() { return &debug_line_; } 556 557 // Encode patch locations as LEB128 list of deltas between consecutive addresses. 558 // (exposed publicly for tests) EncodeOatPatches(const ArrayRef<const uintptr_t> & locations,std::vector<uint8_t> * buffer)559 static void EncodeOatPatches(const ArrayRef<const uintptr_t>& locations, 560 std::vector<uint8_t>* buffer) { 561 buffer->reserve(buffer->size() + locations.size() * 2); // guess 2 bytes per ULEB128. 562 uintptr_t address = 0; // relative to start of section. 563 for (uintptr_t location : locations) { 564 DCHECK_GE(location, address) << "Patch locations are not in sorted order"; 565 EncodeUnsignedLeb128(buffer, dchecked_integral_cast<uint32_t>(location - address)); 566 address = location; 567 } 568 } 569 WritePatches(const char * name,const ArrayRef<const uintptr_t> & patch_locations)570 void WritePatches(const char* name, const ArrayRef<const uintptr_t>& patch_locations) { 571 std::vector<uint8_t> buffer; 572 EncodeOatPatches(patch_locations, &buffer); 573 std::unique_ptr<Section> s(new Section(this, name, SHT_OAT_PATCH, 0, nullptr, 0, 1, 0)); 574 s->Start(); 575 s->WriteFully(buffer.data(), buffer.size()); 576 s->End(); 577 other_sections_.push_back(std::move(s)); 578 } 579 WriteSection(const char * name,const std::vector<uint8_t> * buffer)580 void WriteSection(const char* name, const std::vector<uint8_t>* buffer) { 581 std::unique_ptr<Section> s(new Section(this, name, SHT_PROGBITS, 0, nullptr, 0, 1, 0)); 582 s->Start(); 583 s->WriteFully(buffer->data(), buffer->size()); 584 s->End(); 585 other_sections_.push_back(std::move(s)); 586 } 587 588 // Reserve space for ELF header and program headers. 589 // We do not know the number of headers until later, so 590 // it is easiest to just reserve a fixed amount of space. 591 // Program headers are required for loading by the linker. 592 // It is possible to omit them for ELF files used for debugging. 593 void Start(bool write_program_headers = true) { 594 int size = sizeof(Elf_Ehdr); 595 if (write_program_headers) { 596 size += sizeof(Elf_Phdr) * kMaxProgramHeaders; 597 } 598 stream_.Seek(size, kSeekSet); 599 started_ = true; 600 virtual_address_ += size; 601 write_program_headers_ = write_program_headers; 602 } 603 End()604 void End() { 605 DCHECK(started_); 606 607 // Note: loaded_size_ == 0 for tests that don't write .rodata, .text, .bss, 608 // .dynstr, dynsym, .hash and .dynamic. These tests should not read loaded_size_. 609 // TODO: Either refactor the .eh_frame creation so that it counts towards loaded_size_, 610 // or remove all support for .eh_frame. (The currently unused .eh_frame counts towards 611 // the virtual_address_ but we don't consider it for loaded_size_.) 612 CHECK(loaded_size_ == 0 || loaded_size_ == RoundUp(virtual_address_, kPageSize)) 613 << loaded_size_ << " " << virtual_address_; 614 615 // Write section names and finish the section headers. 616 shstrtab_.Start(); 617 shstrtab_.Write(""); 618 for (auto* section : sections_) { 619 section->header_.sh_name = shstrtab_.Write(section->name_); 620 if (section->link_ != nullptr) { 621 section->header_.sh_link = section->link_->GetSectionIndex(); 622 } 623 } 624 shstrtab_.End(); 625 626 // Write section headers at the end of the ELF file. 627 std::vector<Elf_Shdr> shdrs; 628 shdrs.reserve(1u + sections_.size()); 629 shdrs.push_back(Elf_Shdr()); // NULL at index 0. 630 for (auto* section : sections_) { 631 shdrs.push_back(section->header_); 632 } 633 Elf_Off section_headers_offset; 634 section_headers_offset = AlignFileOffset(sizeof(Elf_Off)); 635 stream_.WriteFully(shdrs.data(), shdrs.size() * sizeof(shdrs[0])); 636 637 // Flush everything else before writing the program headers. This should prevent 638 // the OS from reordering writes, so that we don't end up with valid headers 639 // and partially written data if we suddenly lose power, for example. 640 stream_.Flush(); 641 642 // The main ELF header. 643 Elf_Ehdr elf_header = MakeElfHeader(isa_, features_); 644 elf_header.e_shoff = section_headers_offset; 645 elf_header.e_shnum = shdrs.size(); 646 elf_header.e_shstrndx = shstrtab_.GetSectionIndex(); 647 648 // Program headers (i.e. mmap instructions). 649 std::vector<Elf_Phdr> phdrs; 650 if (write_program_headers_) { 651 phdrs = MakeProgramHeaders(); 652 CHECK_LE(phdrs.size(), kMaxProgramHeaders); 653 elf_header.e_phoff = sizeof(Elf_Ehdr); 654 elf_header.e_phnum = phdrs.size(); 655 } 656 657 stream_.Seek(0, kSeekSet); 658 stream_.WriteFully(&elf_header, sizeof(elf_header)); 659 stream_.WriteFully(phdrs.data(), phdrs.size() * sizeof(phdrs[0])); 660 stream_.Flush(); 661 } 662 663 // The running program does not have access to section headers 664 // and the loader is not supposed to use them either. 665 // The dynamic sections therefore replicates some of the layout 666 // information like the address and size of .rodata and .text. 667 // It also contains other metadata like the SONAME. 668 // The .dynamic section is found using the PT_DYNAMIC program header. PrepareDynamicSection(const std::string & elf_file_path,Elf_Word rodata_size,Elf_Word text_size,Elf_Word bss_size,Elf_Word bss_roots_offset)669 void PrepareDynamicSection(const std::string& elf_file_path, 670 Elf_Word rodata_size, 671 Elf_Word text_size, 672 Elf_Word bss_size, 673 Elf_Word bss_roots_offset) { 674 std::string soname(elf_file_path); 675 size_t directory_separator_pos = soname.rfind('/'); 676 if (directory_separator_pos != std::string::npos) { 677 soname = soname.substr(directory_separator_pos + 1); 678 } 679 680 // Calculate addresses of .text, .bss and .dynstr. 681 DCHECK_EQ(rodata_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); 682 DCHECK_EQ(text_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); 683 DCHECK_EQ(bss_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); 684 DCHECK_EQ(dynstr_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); 685 Elf_Word rodata_address = rodata_.GetAddress(); 686 Elf_Word text_address = RoundUp(rodata_address + rodata_size, kPageSize); 687 Elf_Word bss_address = RoundUp(text_address + text_size, kPageSize); 688 Elf_Word abiflags_address = RoundUp(bss_address + bss_size, kPageSize); 689 Elf_Word abiflags_size = 0; 690 if (isa_ == kMips || isa_ == kMips64) { 691 abiflags_size = abiflags_.GetSize(); 692 } 693 Elf_Word dynstr_address = RoundUp(abiflags_address + abiflags_size, kPageSize); 694 695 // Cache .dynstr, .dynsym and .hash data. 696 dynstr_.Add(""); // dynstr should start with empty string. 697 Elf_Word rodata_index = rodata_.GetSectionIndex(); 698 Elf_Word oatdata = dynstr_.Add("oatdata"); 699 dynsym_.Add(oatdata, rodata_index, rodata_address, rodata_size, STB_GLOBAL, STT_OBJECT); 700 if (text_size != 0u) { 701 Elf_Word text_index = rodata_index + 1u; 702 Elf_Word oatexec = dynstr_.Add("oatexec"); 703 dynsym_.Add(oatexec, text_index, text_address, text_size, STB_GLOBAL, STT_OBJECT); 704 Elf_Word oatlastword = dynstr_.Add("oatlastword"); 705 Elf_Word oatlastword_address = text_address + text_size - 4; 706 dynsym_.Add(oatlastword, text_index, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT); 707 } else if (rodata_size != 0) { 708 // rodata_ can be size 0 for dwarf_test. 709 Elf_Word oatlastword = dynstr_.Add("oatlastword"); 710 Elf_Word oatlastword_address = rodata_address + rodata_size - 4; 711 dynsym_.Add(oatlastword, rodata_index, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT); 712 } 713 DCHECK_LE(bss_roots_offset, bss_size); 714 if (bss_size != 0u) { 715 Elf_Word bss_index = rodata_index + 1u + (text_size != 0 ? 1u : 0u); 716 Elf_Word oatbss = dynstr_.Add("oatbss"); 717 dynsym_.Add(oatbss, bss_index, bss_address, bss_roots_offset, STB_GLOBAL, STT_OBJECT); 718 // Add a symbol marking the start of the GC roots part of the .bss, if not empty. 719 if (bss_roots_offset != bss_size) { 720 DCHECK_LT(bss_roots_offset, bss_size); 721 Elf_Word bss_roots_address = bss_address + bss_roots_offset; 722 Elf_Word bss_roots_size = bss_size - bss_roots_offset; 723 Elf_Word oatbssroots = dynstr_.Add("oatbssroots"); 724 dynsym_.Add( 725 oatbssroots, bss_index, bss_roots_address, bss_roots_size, STB_GLOBAL, STT_OBJECT); 726 } 727 Elf_Word oatbsslastword = dynstr_.Add("oatbsslastword"); 728 Elf_Word bsslastword_address = bss_address + bss_size - 4; 729 dynsym_.Add(oatbsslastword, bss_index, bsslastword_address, 4, STB_GLOBAL, STT_OBJECT); 730 } 731 Elf_Word soname_offset = dynstr_.Add(soname); 732 733 // We do not really need a hash-table since there is so few entries. 734 // However, the hash-table is the only way the linker can actually 735 // determine the number of symbols in .dynsym so it is required. 736 int count = dynsym_.GetCacheSize() / sizeof(Elf_Sym); // Includes NULL. 737 std::vector<Elf_Word> hash; 738 hash.push_back(1); // Number of buckets. 739 hash.push_back(count); // Number of chains. 740 // Buckets. Having just one makes it linear search. 741 hash.push_back(1); // Point to first non-NULL symbol. 742 // Chains. This creates linked list of symbols. 743 hash.push_back(0); // Dummy entry for the NULL symbol. 744 for (int i = 1; i < count - 1; i++) { 745 hash.push_back(i + 1); // Each symbol points to the next one. 746 } 747 hash.push_back(0); // Last symbol terminates the chain. 748 hash_.Add(hash.data(), hash.size() * sizeof(hash[0])); 749 750 // Calculate addresses of .dynsym, .hash and .dynamic. 751 DCHECK_EQ(dynstr_.header_.sh_flags, dynsym_.header_.sh_flags); 752 DCHECK_EQ(dynsym_.header_.sh_flags, hash_.header_.sh_flags); 753 Elf_Word dynsym_address = 754 RoundUp(dynstr_address + dynstr_.GetCacheSize(), dynsym_.header_.sh_addralign); 755 Elf_Word hash_address = 756 RoundUp(dynsym_address + dynsym_.GetCacheSize(), hash_.header_.sh_addralign); 757 DCHECK_EQ(dynamic_.header_.sh_addralign, static_cast<Elf_Word>(kPageSize)); 758 Elf_Word dynamic_address = RoundUp(hash_address + dynsym_.GetCacheSize(), kPageSize); 759 760 Elf_Dyn dyns[] = { 761 { DT_HASH, { hash_address } }, 762 { DT_STRTAB, { dynstr_address } }, 763 { DT_SYMTAB, { dynsym_address } }, 764 { DT_SYMENT, { sizeof(Elf_Sym) } }, 765 { DT_STRSZ, { dynstr_.GetCacheSize() } }, 766 { DT_SONAME, { soname_offset } }, 767 { DT_NULL, { 0 } }, 768 }; 769 dynamic_.Add(&dyns, sizeof(dyns)); 770 771 loaded_size_ = RoundUp(dynamic_address + dynamic_.GetCacheSize(), kPageSize); 772 } 773 WriteDynamicSection()774 void WriteDynamicSection() { 775 dynstr_.WriteCachedSection(); 776 dynsym_.WriteCachedSection(); 777 hash_.WriteCachedSection(); 778 dynamic_.WriteCachedSection(); 779 780 CHECK_EQ(loaded_size_, RoundUp(dynamic_.GetAddress() + dynamic_.GetSize(), kPageSize)); 781 } 782 GetLoadedSize()783 Elf_Word GetLoadedSize() { 784 CHECK_NE(loaded_size_, 0u); 785 return loaded_size_; 786 } 787 WriteMIPSabiflagsSection()788 void WriteMIPSabiflagsSection() { 789 abiflags_.Start(); 790 abiflags_.Write(); 791 abiflags_.End(); 792 } 793 WriteBuildIdSection()794 void WriteBuildIdSection() { 795 build_id_.Start(); 796 build_id_.Write(); 797 build_id_.End(); 798 } 799 WriteBuildId(uint8_t build_id[kBuildIdLen])800 void WriteBuildId(uint8_t build_id[kBuildIdLen]) { 801 stream_.Seek(build_id_.GetDigestStart(), kSeekSet); 802 stream_.WriteFully(build_id, kBuildIdLen); 803 } 804 805 // Returns true if all writes and seeks on the output stream succeeded. Good()806 bool Good() { 807 return stream_.Good(); 808 } 809 810 // Returns the builder's internal stream. GetStream()811 OutputStream* GetStream() { 812 return &stream_; 813 } 814 AlignFileOffset(size_t alignment)815 off_t AlignFileOffset(size_t alignment) { 816 return stream_.Seek(RoundUp(stream_.Seek(0, kSeekCurrent), alignment), kSeekSet); 817 } 818 AlignVirtualAddress(size_t alignment)819 Elf_Addr AlignVirtualAddress(size_t alignment) { 820 return virtual_address_ = RoundUp(virtual_address_, alignment); 821 } 822 823 private: MakeElfHeader(InstructionSet isa,const InstructionSetFeatures * features)824 static Elf_Ehdr MakeElfHeader(InstructionSet isa, const InstructionSetFeatures* features) { 825 Elf_Ehdr elf_header = Elf_Ehdr(); 826 switch (isa) { 827 case kArm: 828 // Fall through. 829 case kThumb2: { 830 elf_header.e_machine = EM_ARM; 831 elf_header.e_flags = EF_ARM_EABI_VER5; 832 break; 833 } 834 case kArm64: { 835 elf_header.e_machine = EM_AARCH64; 836 elf_header.e_flags = 0; 837 break; 838 } 839 case kX86: { 840 elf_header.e_machine = EM_386; 841 elf_header.e_flags = 0; 842 break; 843 } 844 case kX86_64: { 845 elf_header.e_machine = EM_X86_64; 846 elf_header.e_flags = 0; 847 break; 848 } 849 case kMips: { 850 elf_header.e_machine = EM_MIPS; 851 elf_header.e_flags = (EF_MIPS_NOREORDER | 852 EF_MIPS_PIC | 853 EF_MIPS_CPIC | 854 EF_MIPS_ABI_O32 | 855 (features->AsMipsInstructionSetFeatures()->IsR6() 856 ? EF_MIPS_ARCH_32R6 857 : EF_MIPS_ARCH_32R2)); 858 break; 859 } 860 case kMips64: { 861 elf_header.e_machine = EM_MIPS; 862 elf_header.e_flags = (EF_MIPS_NOREORDER | 863 EF_MIPS_PIC | 864 EF_MIPS_CPIC | 865 EF_MIPS_ARCH_64R6); 866 break; 867 } 868 case kNone: { 869 LOG(FATAL) << "No instruction set"; 870 break; 871 } 872 default: { 873 LOG(FATAL) << "Unknown instruction set " << isa; 874 } 875 } 876 877 elf_header.e_ident[EI_MAG0] = ELFMAG0; 878 elf_header.e_ident[EI_MAG1] = ELFMAG1; 879 elf_header.e_ident[EI_MAG2] = ELFMAG2; 880 elf_header.e_ident[EI_MAG3] = ELFMAG3; 881 elf_header.e_ident[EI_CLASS] = (sizeof(Elf_Addr) == sizeof(Elf32_Addr)) 882 ? ELFCLASS32 : ELFCLASS64; 883 elf_header.e_ident[EI_DATA] = ELFDATA2LSB; 884 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 885 elf_header.e_ident[EI_OSABI] = ELFOSABI_LINUX; 886 elf_header.e_ident[EI_ABIVERSION] = 0; 887 elf_header.e_type = ET_DYN; 888 elf_header.e_version = 1; 889 elf_header.e_entry = 0; 890 elf_header.e_ehsize = sizeof(Elf_Ehdr); 891 elf_header.e_phentsize = sizeof(Elf_Phdr); 892 elf_header.e_shentsize = sizeof(Elf_Shdr); 893 elf_header.e_phoff = sizeof(Elf_Ehdr); 894 return elf_header; 895 } 896 897 // Create program headers based on written sections. MakeProgramHeaders()898 std::vector<Elf_Phdr> MakeProgramHeaders() { 899 CHECK(!sections_.empty()); 900 std::vector<Elf_Phdr> phdrs; 901 { 902 // The program headers must start with PT_PHDR which is used in 903 // loaded process to determine the number of program headers. 904 Elf_Phdr phdr = Elf_Phdr(); 905 phdr.p_type = PT_PHDR; 906 phdr.p_flags = PF_R; 907 phdr.p_offset = phdr.p_vaddr = phdr.p_paddr = sizeof(Elf_Ehdr); 908 phdr.p_filesz = phdr.p_memsz = 0; // We need to fill this later. 909 phdr.p_align = sizeof(Elf_Off); 910 phdrs.push_back(phdr); 911 // Tell the linker to mmap the start of file to memory. 912 Elf_Phdr load = Elf_Phdr(); 913 load.p_type = PT_LOAD; 914 load.p_flags = PF_R; 915 load.p_offset = load.p_vaddr = load.p_paddr = 0; 916 load.p_filesz = load.p_memsz = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * kMaxProgramHeaders; 917 load.p_align = kPageSize; 918 phdrs.push_back(load); 919 } 920 // Create program headers for sections. 921 for (auto* section : sections_) { 922 const Elf_Shdr& shdr = section->header_; 923 if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) { 924 // PT_LOAD tells the linker to mmap part of the file. 925 // The linker can only mmap page-aligned sections. 926 // Single PT_LOAD may contain several ELF sections. 927 Elf_Phdr& prev = phdrs.back(); 928 Elf_Phdr load = Elf_Phdr(); 929 load.p_type = PT_LOAD; 930 load.p_flags = section->phdr_flags_; 931 load.p_offset = shdr.sh_offset; 932 load.p_vaddr = load.p_paddr = shdr.sh_addr; 933 load.p_filesz = (shdr.sh_type != SHT_NOBITS ? shdr.sh_size : 0u); 934 load.p_memsz = shdr.sh_size; 935 load.p_align = shdr.sh_addralign; 936 if (prev.p_type == load.p_type && 937 prev.p_flags == load.p_flags && 938 prev.p_filesz == prev.p_memsz && // Do not merge .bss 939 load.p_filesz == load.p_memsz) { // Do not merge .bss 940 // Merge this PT_LOAD with the previous one. 941 Elf_Word size = shdr.sh_offset + shdr.sh_size - prev.p_offset; 942 prev.p_filesz = size; 943 prev.p_memsz = size; 944 } else { 945 // If we are adding new load, it must be aligned. 946 CHECK_EQ(shdr.sh_addralign, (Elf_Word)kPageSize); 947 phdrs.push_back(load); 948 } 949 } 950 } 951 for (auto* section : sections_) { 952 const Elf_Shdr& shdr = section->header_; 953 if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) { 954 // Other PT_* types allow the program to locate interesting 955 // parts of memory at runtime. They must overlap with PT_LOAD. 956 if (section->phdr_type_ != 0) { 957 Elf_Phdr phdr = Elf_Phdr(); 958 phdr.p_type = section->phdr_type_; 959 phdr.p_flags = section->phdr_flags_; 960 phdr.p_offset = shdr.sh_offset; 961 phdr.p_vaddr = phdr.p_paddr = shdr.sh_addr; 962 phdr.p_filesz = phdr.p_memsz = shdr.sh_size; 963 phdr.p_align = shdr.sh_addralign; 964 phdrs.push_back(phdr); 965 } 966 } 967 } 968 // Set the size of the initial PT_PHDR. 969 CHECK_EQ(phdrs[0].p_type, (Elf_Word)PT_PHDR); 970 phdrs[0].p_filesz = phdrs[0].p_memsz = phdrs.size() * sizeof(Elf_Phdr); 971 972 return phdrs; 973 } 974 975 InstructionSet isa_; 976 const InstructionSetFeatures* features_; 977 978 ErrorDelayingOutputStream stream_; 979 980 Section rodata_; 981 Section text_; 982 Section bss_; 983 CachedStringSection dynstr_; 984 SymbolSection dynsym_; 985 CachedSection hash_; 986 CachedSection dynamic_; 987 Section eh_frame_; 988 Section eh_frame_hdr_; 989 StringSection strtab_; 990 SymbolSection symtab_; 991 Section debug_frame_; 992 Section debug_info_; 993 Section debug_line_; 994 StringSection shstrtab_; 995 AbiflagsSection abiflags_; 996 BuildIdSection build_id_; 997 std::vector<std::unique_ptr<Section>> other_sections_; 998 999 // List of used section in the order in which they were written. 1000 std::vector<Section*> sections_; 1001 1002 bool started_; 1003 bool write_program_headers_; 1004 1005 // The size of the memory taken by the ELF file when loaded. 1006 size_t loaded_size_; 1007 1008 // Used for allocation of virtual address space. 1009 Elf_Addr virtual_address_; 1010 1011 DISALLOW_COPY_AND_ASSIGN(ElfBuilder); 1012 }; 1013 1014 } // namespace art 1015 1016 #endif // ART_COMPILER_ELF_BUILDER_H_ 1017