1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <backtrace/BacktraceMap.h>
20 #include <dirent.h>
21 #include <ScopedLocalRef.h>
22 #include <ScopedUtfChars.h>
23 #include <sys/types.h>
24 #include <unistd.h>
25
26 #include <sstream>
27
28 #include "android-base/stringprintf.h"
29
30 #include "base/histogram-inl.h"
31 #include "base/mutex-inl.h"
32 #include "base/systrace.h"
33 #include "base/time_utils.h"
34 #include "base/timing_logger.h"
35 #include "debugger.h"
36 #include "gc/collector/concurrent_copying.h"
37 #include "gc/reference_processor.h"
38 #include "jni_internal.h"
39 #include "lock_word.h"
40 #include "monitor.h"
41 #include "native_stack_dump.h"
42 #include "scoped_thread_state_change-inl.h"
43 #include "thread.h"
44 #include "trace.h"
45 #include "well_known_classes.h"
46
47 #if ART_USE_FUTEXES
48 #include "linux/futex.h"
49 #include "sys/syscall.h"
50 #ifndef SYS_futex
51 #define SYS_futex __NR_futex
52 #endif
53 #endif // ART_USE_FUTEXES
54
55 namespace art {
56
57 using android::base::StringPrintf;
58
59 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
60 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
61 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
62 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
63 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
64
65 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
66 // some history.
67 // Turned off again. b/29248079
68 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = false;
69
ThreadList(uint64_t thread_suspend_timeout_ns)70 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
71 : suspend_all_count_(0),
72 debug_suspend_all_count_(0),
73 unregistering_count_(0),
74 suspend_all_historam_("suspend all histogram", 16, 64),
75 long_suspend_(false),
76 thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
77 empty_checkpoint_barrier_(new Barrier(0)) {
78 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
79 }
80
~ThreadList()81 ThreadList::~ThreadList() {
82 ScopedTrace trace(__PRETTY_FUNCTION__);
83 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
84 // We need to detach the current thread here in case there's another thread waiting to join with
85 // us.
86 bool contains = false;
87 Thread* self = Thread::Current();
88 {
89 MutexLock mu(self, *Locks::thread_list_lock_);
90 contains = Contains(self);
91 }
92 if (contains) {
93 Runtime::Current()->DetachCurrentThread();
94 }
95 WaitForOtherNonDaemonThreadsToExit();
96 // Disable GC and wait for GC to complete in case there are still daemon threads doing
97 // allocations.
98 gc::Heap* const heap = Runtime::Current()->GetHeap();
99 heap->DisableGCForShutdown();
100 // In case a GC is in progress, wait for it to finish.
101 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
102 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
103 // Thread::Init.
104 SuspendAllDaemonThreadsForShutdown();
105 }
106
Contains(Thread * thread)107 bool ThreadList::Contains(Thread* thread) {
108 return find(list_.begin(), list_.end(), thread) != list_.end();
109 }
110
Contains(pid_t tid)111 bool ThreadList::Contains(pid_t tid) {
112 for (const auto& thread : list_) {
113 if (thread->GetTid() == tid) {
114 return true;
115 }
116 }
117 return false;
118 }
119
GetLockOwner()120 pid_t ThreadList::GetLockOwner() {
121 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
122 }
123
DumpNativeStacks(std::ostream & os)124 void ThreadList::DumpNativeStacks(std::ostream& os) {
125 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
126 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
127 for (const auto& thread : list_) {
128 os << "DUMPING THREAD " << thread->GetTid() << "\n";
129 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
130 os << "\n";
131 }
132 }
133
DumpForSigQuit(std::ostream & os)134 void ThreadList::DumpForSigQuit(std::ostream& os) {
135 {
136 ScopedObjectAccess soa(Thread::Current());
137 // Only print if we have samples.
138 if (suspend_all_historam_.SampleSize() > 0) {
139 Histogram<uint64_t>::CumulativeData data;
140 suspend_all_historam_.CreateHistogram(&data);
141 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
142 }
143 }
144 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
145 Dump(os, dump_native_stack);
146 DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
147 }
148
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)149 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
150 NO_THREAD_SAFETY_ANALYSIS {
151 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
152 // refactor DumpState to avoid skipping analysis.
153 Thread::DumpState(os, nullptr, tid);
154 DumpKernelStack(os, tid, " kernel: ", false);
155 if (dump_native_stack) {
156 DumpNativeStack(os, tid, nullptr, " native: ");
157 }
158 os << "\n";
159 }
160
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
162 DIR* d = opendir("/proc/self/task");
163 if (!d) {
164 return;
165 }
166
167 Thread* self = Thread::Current();
168 dirent* e;
169 while ((e = readdir(d)) != nullptr) {
170 char* end;
171 pid_t tid = strtol(e->d_name, &end, 10);
172 if (!*end) {
173 bool contains;
174 {
175 MutexLock mu(self, *Locks::thread_list_lock_);
176 contains = Contains(tid);
177 }
178 if (!contains) {
179 DumpUnattachedThread(os, tid, dump_native_stack);
180 }
181 }
182 }
183 closedir(d);
184 }
185
186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
187 // overloaded with ANR dumps.
188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
189
190 // A closure used by Thread::Dump.
191 class DumpCheckpoint FINAL : public Closure {
192 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)193 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
194 : os_(os),
195 barrier_(0),
196 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
197 dump_native_stack_(dump_native_stack) {}
198
Run(Thread * thread)199 void Run(Thread* thread) OVERRIDE {
200 // Note thread and self may not be equal if thread was already suspended at the point of the
201 // request.
202 Thread* self = Thread::Current();
203 CHECK(self != nullptr);
204 std::ostringstream local_os;
205 {
206 ScopedObjectAccess soa(self);
207 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
208 }
209 local_os << "\n";
210 {
211 // Use the logging lock to ensure serialization when writing to the common ostream.
212 MutexLock mu(self, *Locks::logging_lock_);
213 *os_ << local_os.str();
214 }
215 barrier_.Pass(self);
216 }
217
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)218 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
219 Thread* self = Thread::Current();
220 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
221 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
222 if (timed_out) {
223 // Avoid a recursive abort.
224 LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
225 << "Unexpected time out during dump checkpoint.";
226 }
227 }
228
229 private:
230 // The common stream that will accumulate all the dumps.
231 std::ostream* const os_;
232 // The barrier to be passed through and for the requestor to wait upon.
233 Barrier barrier_;
234 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
235 std::unique_ptr<BacktraceMap> backtrace_map_;
236 // Whether we should dump the native stack.
237 const bool dump_native_stack_;
238 };
239
Dump(std::ostream & os,bool dump_native_stack)240 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
241 Thread* self = Thread::Current();
242 {
243 MutexLock mu(self, *Locks::thread_list_lock_);
244 os << "DALVIK THREADS (" << list_.size() << "):\n";
245 }
246 if (self != nullptr) {
247 DumpCheckpoint checkpoint(&os, dump_native_stack);
248 size_t threads_running_checkpoint;
249 {
250 // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
251 ScopedObjectAccess soa(self);
252 threads_running_checkpoint = RunCheckpoint(&checkpoint);
253 }
254 if (threads_running_checkpoint != 0) {
255 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
256 }
257 } else {
258 DumpUnattachedThreads(os, dump_native_stack);
259 }
260 }
261
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)262 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
263 MutexLock mu(self, *Locks::thread_list_lock_);
264 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
265 for (const auto& thread : list_) {
266 if (thread != ignore1 && thread != ignore2) {
267 CHECK(thread->IsSuspended())
268 << "\nUnsuspended thread: <<" << *thread << "\n"
269 << "self: <<" << *Thread::Current();
270 }
271 }
272 }
273
274 #if HAVE_TIMED_RWLOCK
275 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()276 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
277 Runtime* runtime = Runtime::Current();
278 std::ostringstream ss;
279 ss << "Thread suspend timeout\n";
280 Locks::mutator_lock_->Dump(ss);
281 ss << "\n";
282 runtime->GetThreadList()->Dump(ss);
283 LOG(FATAL) << ss.str();
284 exit(0);
285 }
286 #endif
287
288 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
289 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
290 // we use sched_yield instead of calling usleep.
ThreadSuspendSleep(useconds_t delay_us)291 static void ThreadSuspendSleep(useconds_t delay_us) {
292 if (delay_us == 0) {
293 sched_yield();
294 } else {
295 usleep(delay_us);
296 }
297 }
298
RunCheckpoint(Closure * checkpoint_function,Closure * callback)299 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
300 Thread* self = Thread::Current();
301 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
302 Locks::thread_list_lock_->AssertNotHeld(self);
303 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
304
305 std::vector<Thread*> suspended_count_modified_threads;
306 size_t count = 0;
307 {
308 // Call a checkpoint function for each thread, threads which are suspend get their checkpoint
309 // manually called.
310 MutexLock mu(self, *Locks::thread_list_lock_);
311 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
312 count = list_.size();
313 for (const auto& thread : list_) {
314 if (thread != self) {
315 while (true) {
316 if (thread->RequestCheckpoint(checkpoint_function)) {
317 // This thread will run its checkpoint some time in the near future.
318 break;
319 } else {
320 // We are probably suspended, try to make sure that we stay suspended.
321 // The thread switched back to runnable.
322 if (thread->GetState() == kRunnable) {
323 // Spurious fail, try again.
324 continue;
325 }
326 bool updated = thread->ModifySuspendCount(self, +1, nullptr, false);
327 DCHECK(updated);
328 suspended_count_modified_threads.push_back(thread);
329 break;
330 }
331 }
332 }
333 }
334 // Run the callback to be called inside this critical section.
335 if (callback != nullptr) {
336 callback->Run(self);
337 }
338 }
339
340 // Run the checkpoint on ourself while we wait for threads to suspend.
341 checkpoint_function->Run(self);
342
343 // Run the checkpoint on the suspended threads.
344 for (const auto& thread : suspended_count_modified_threads) {
345 if (!thread->IsSuspended()) {
346 if (ATRACE_ENABLED()) {
347 std::ostringstream oss;
348 thread->ShortDump(oss);
349 ATRACE_BEGIN((std::string("Waiting for suspension of thread ") + oss.str()).c_str());
350 }
351 // Busy wait until the thread is suspended.
352 const uint64_t start_time = NanoTime();
353 do {
354 ThreadSuspendSleep(kThreadSuspendInitialSleepUs);
355 } while (!thread->IsSuspended());
356 const uint64_t total_delay = NanoTime() - start_time;
357 // Shouldn't need to wait for longer than 1000 microseconds.
358 constexpr uint64_t kLongWaitThreshold = MsToNs(1);
359 ATRACE_END();
360 if (UNLIKELY(total_delay > kLongWaitThreshold)) {
361 LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for "
362 << *thread << " suspension!";
363 }
364 }
365 // We know for sure that the thread is suspended at this point.
366 checkpoint_function->Run(thread);
367 {
368 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
369 bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
370 DCHECK(updated);
371 }
372 }
373
374 {
375 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
376 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
377 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
378 Thread::resume_cond_->Broadcast(self);
379 }
380
381 return count;
382 }
383
RunEmptyCheckpoint()384 void ThreadList::RunEmptyCheckpoint() {
385 Thread* self = Thread::Current();
386 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
387 Locks::thread_list_lock_->AssertNotHeld(self);
388 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
389 std::vector<uint32_t> runnable_thread_ids;
390 size_t count = 0;
391 Barrier* barrier = empty_checkpoint_barrier_.get();
392 barrier->Init(self, 0);
393 {
394 MutexLock mu(self, *Locks::thread_list_lock_);
395 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
396 for (Thread* thread : list_) {
397 if (thread != self) {
398 while (true) {
399 if (thread->RequestEmptyCheckpoint()) {
400 // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
401 // some time in the near future.
402 ++count;
403 if (kIsDebugBuild) {
404 runnable_thread_ids.push_back(thread->GetThreadId());
405 }
406 break;
407 }
408 if (thread->GetState() != kRunnable) {
409 // It's seen suspended, we are done because it must not be in the middle of a mutator
410 // heap access.
411 break;
412 }
413 }
414 }
415 }
416 }
417
418 // Wake up the threads blocking for weak ref access so that they will respond to the empty
419 // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
420 Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
421 Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint*/true);
422 {
423 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
424 uint64_t total_wait_time = 0;
425 bool first_iter = true;
426 while (true) {
427 // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
428 // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
429 // and a mutex.) This needs to be done periodically because the thread may be preempted
430 // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
431 // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
432 // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
433 // handled in the first iteration.
434 for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
435 mutex->WakeupToRespondToEmptyCheckpoint();
436 }
437 static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
438 static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
439 size_t barrier_count = first_iter ? count : 0;
440 first_iter = false; // Don't add to the barrier count from the second iteration on.
441 bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
442 if (!timed_out) {
443 break; // Success
444 }
445 // This is a very rare case.
446 total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
447 if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
448 std::ostringstream ss;
449 ss << "Empty checkpoint timeout\n";
450 ss << "Barrier count " << barrier->GetCount(self) << "\n";
451 ss << "Runnable thread IDs";
452 for (uint32_t tid : runnable_thread_ids) {
453 ss << " " << tid;
454 }
455 ss << "\n";
456 Locks::mutator_lock_->Dump(ss);
457 ss << "\n";
458 LOG(FATAL_WITHOUT_ABORT) << ss.str();
459 // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
460 // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
461 {
462 ScopedObjectAccess soa(self);
463 MutexLock mu1(self, *Locks::thread_list_lock_);
464 for (Thread* thread : GetList()) {
465 uint32_t tid = thread->GetThreadId();
466 bool is_in_runnable_thread_ids =
467 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
468 runnable_thread_ids.end();
469 if (is_in_runnable_thread_ids &&
470 thread->ReadFlag(kEmptyCheckpointRequest)) {
471 // Found a runnable thread that hasn't responded to the empty checkpoint request.
472 // Assume it's stuck and safe to dump its stack.
473 thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
474 /*dump_native_stack*/ true,
475 /*backtrace_map*/ nullptr,
476 /*force_dump_stack*/ true);
477 }
478 }
479 }
480 LOG(FATAL_WITHOUT_ABORT)
481 << "Dumped runnable threads that haven't responded to empty checkpoint.";
482 // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
483 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
484 LOG(FATAL) << "Dumped all threads.";
485 }
486 }
487 }
488 }
489
490 // Request that a checkpoint function be run on all active (non-suspended)
491 // threads. Returns the number of successful requests.
RunCheckpointOnRunnableThreads(Closure * checkpoint_function)492 size_t ThreadList::RunCheckpointOnRunnableThreads(Closure* checkpoint_function) {
493 Thread* self = Thread::Current();
494 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
495 Locks::thread_list_lock_->AssertNotHeld(self);
496 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
497 CHECK_NE(self->GetState(), kRunnable);
498
499 size_t count = 0;
500 {
501 // Call a checkpoint function for each non-suspended thread.
502 MutexLock mu(self, *Locks::thread_list_lock_);
503 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
504 for (const auto& thread : list_) {
505 if (thread != self) {
506 if (thread->RequestCheckpoint(checkpoint_function)) {
507 // This thread will run its checkpoint some time in the near future.
508 count++;
509 }
510 }
511 }
512 }
513
514 // Return the number of threads that will run the checkpoint function.
515 return count;
516 }
517
518 // A checkpoint/suspend-all hybrid to switch thread roots from
519 // from-space to to-space refs. Used to synchronize threads at a point
520 // to mark the initiation of marking while maintaining the to-space
521 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector)522 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
523 Closure* flip_callback,
524 gc::collector::GarbageCollector* collector) {
525 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
526 Thread* self = Thread::Current();
527 Locks::mutator_lock_->AssertNotHeld(self);
528 Locks::thread_list_lock_->AssertNotHeld(self);
529 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
530 CHECK_NE(self->GetState(), kRunnable);
531
532 collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
533
534 // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
535 // pause.
536 const uint64_t suspend_start_time = NanoTime();
537 SuspendAllInternal(self, self, nullptr);
538
539 // Run the flip callback for the collector.
540 Locks::mutator_lock_->ExclusiveLock(self);
541 suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
542 flip_callback->Run(self);
543 Locks::mutator_lock_->ExclusiveUnlock(self);
544 collector->RegisterPause(NanoTime() - suspend_start_time);
545
546 // Resume runnable threads.
547 size_t runnable_thread_count = 0;
548 std::vector<Thread*> other_threads;
549 {
550 TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
551 MutexLock mu(self, *Locks::thread_list_lock_);
552 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
553 --suspend_all_count_;
554 for (const auto& thread : list_) {
555 // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
556 // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
557 // a runnable thread runs it for itself or we run it for a suspended thread below.
558 thread->SetFlipFunction(thread_flip_visitor);
559 if (thread == self) {
560 continue;
561 }
562 // Resume early the threads that were runnable but are suspended just for this thread flip or
563 // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
564 // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
565 // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
566 ThreadState state = thread->GetState();
567 if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
568 thread->GetSuspendCount() == 1) {
569 // The thread will resume right after the broadcast.
570 bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
571 DCHECK(updated);
572 ++runnable_thread_count;
573 } else {
574 other_threads.push_back(thread);
575 }
576 }
577 Thread::resume_cond_->Broadcast(self);
578 }
579
580 collector->GetHeap()->ThreadFlipEnd(self);
581
582 // Run the closure on the other threads and let them resume.
583 {
584 TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
585 ReaderMutexLock mu(self, *Locks::mutator_lock_);
586 for (const auto& thread : other_threads) {
587 Closure* flip_func = thread->GetFlipFunction();
588 if (flip_func != nullptr) {
589 flip_func->Run(thread);
590 }
591 }
592 // Run it for self.
593 Closure* flip_func = self->GetFlipFunction();
594 if (flip_func != nullptr) {
595 flip_func->Run(self);
596 }
597 }
598
599 // Resume other threads.
600 {
601 TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
602 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
603 for (const auto& thread : other_threads) {
604 bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
605 DCHECK(updated);
606 }
607 Thread::resume_cond_->Broadcast(self);
608 }
609
610 return runnable_thread_count + other_threads.size() + 1; // +1 for self.
611 }
612
SuspendAll(const char * cause,bool long_suspend)613 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
614 Thread* self = Thread::Current();
615
616 if (self != nullptr) {
617 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
618 } else {
619 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
620 }
621 {
622 ScopedTrace trace("Suspending mutator threads");
623 const uint64_t start_time = NanoTime();
624
625 SuspendAllInternal(self, self);
626 // All threads are known to have suspended (but a thread may still own the mutator lock)
627 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
628 #if HAVE_TIMED_RWLOCK
629 while (true) {
630 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
631 NsToMs(thread_suspend_timeout_ns_),
632 0)) {
633 break;
634 } else if (!long_suspend_) {
635 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
636 // could result in a thread suspend timeout.
637 // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
638 UnsafeLogFatalForThreadSuspendAllTimeout();
639 }
640 }
641 #else
642 Locks::mutator_lock_->ExclusiveLock(self);
643 #endif
644
645 long_suspend_ = long_suspend;
646
647 const uint64_t end_time = NanoTime();
648 const uint64_t suspend_time = end_time - start_time;
649 suspend_all_historam_.AdjustAndAddValue(suspend_time);
650 if (suspend_time > kLongThreadSuspendThreshold) {
651 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
652 }
653
654 if (kDebugLocking) {
655 // Debug check that all threads are suspended.
656 AssertThreadsAreSuspended(self, self);
657 }
658 }
659 ATRACE_BEGIN((std::string("Mutator threads suspended for ") + cause).c_str());
660
661 if (self != nullptr) {
662 VLOG(threads) << *self << " SuspendAll complete";
663 } else {
664 VLOG(threads) << "Thread[null] SuspendAll complete";
665 }
666 }
667
668 // Ensures all threads running Java suspend and that those not running Java don't start.
669 // Debugger thread might be set to kRunnable for a short period of time after the
670 // SuspendAllInternal. This is safe because it will be set back to suspended state before
671 // the SuspendAll returns.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,bool debug_suspend)672 void ThreadList::SuspendAllInternal(Thread* self,
673 Thread* ignore1,
674 Thread* ignore2,
675 bool debug_suspend) {
676 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
677 Locks::thread_list_lock_->AssertNotHeld(self);
678 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
679 if (kDebugLocking && self != nullptr) {
680 CHECK_NE(self->GetState(), kRunnable);
681 }
682
683 // First request that all threads suspend, then wait for them to suspend before
684 // returning. This suspension scheme also relies on other behaviour:
685 // 1. Threads cannot be deleted while they are suspended or have a suspend-
686 // request flag set - (see Unregister() below).
687 // 2. When threads are created, they are created in a suspended state (actually
688 // kNative) and will never begin executing Java code without first checking
689 // the suspend-request flag.
690
691 // The atomic counter for number of threads that need to pass the barrier.
692 AtomicInteger pending_threads;
693 uint32_t num_ignored = 0;
694 if (ignore1 != nullptr) {
695 ++num_ignored;
696 }
697 if (ignore2 != nullptr && ignore1 != ignore2) {
698 ++num_ignored;
699 }
700 {
701 MutexLock mu(self, *Locks::thread_list_lock_);
702 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
703 // Update global suspend all state for attaching threads.
704 ++suspend_all_count_;
705 if (debug_suspend) {
706 ++debug_suspend_all_count_;
707 }
708 pending_threads.StoreRelaxed(list_.size() - num_ignored);
709 // Increment everybody's suspend count (except those that should be ignored).
710 for (const auto& thread : list_) {
711 if (thread == ignore1 || thread == ignore2) {
712 continue;
713 }
714 VLOG(threads) << "requesting thread suspend: " << *thread;
715 bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, debug_suspend);
716 DCHECK(updated);
717
718 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
719 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
720 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
721 if (thread->IsSuspended()) {
722 // Only clear the counter for the current thread.
723 thread->ClearSuspendBarrier(&pending_threads);
724 pending_threads.FetchAndSubSequentiallyConsistent(1);
725 }
726 }
727 }
728
729 // Wait for the barrier to be passed by all runnable threads. This wait
730 // is done with a timeout so that we can detect problems.
731 #if ART_USE_FUTEXES
732 timespec wait_timeout;
733 InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
734 #endif
735 const uint64_t start_time = NanoTime();
736 while (true) {
737 int32_t cur_val = pending_threads.LoadRelaxed();
738 if (LIKELY(cur_val > 0)) {
739 #if ART_USE_FUTEXES
740 if (futex(pending_threads.Address(), FUTEX_WAIT, cur_val, &wait_timeout, nullptr, 0) != 0) {
741 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
742 if ((errno != EAGAIN) && (errno != EINTR)) {
743 if (errno == ETIMEDOUT) {
744 LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
745 << "Timed out waiting for threads to suspend, waited for "
746 << PrettyDuration(NanoTime() - start_time);
747 } else {
748 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
749 }
750 }
751 } // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
752 #else
753 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
754 UNUSED(start_time);
755 #endif
756 } else {
757 CHECK_EQ(cur_val, 0);
758 break;
759 }
760 }
761 }
762
ResumeAll()763 void ThreadList::ResumeAll() {
764 Thread* self = Thread::Current();
765
766 if (self != nullptr) {
767 VLOG(threads) << *self << " ResumeAll starting";
768 } else {
769 VLOG(threads) << "Thread[null] ResumeAll starting";
770 }
771
772 ATRACE_END();
773
774 ScopedTrace trace("Resuming mutator threads");
775
776 if (kDebugLocking) {
777 // Debug check that all threads are suspended.
778 AssertThreadsAreSuspended(self, self);
779 }
780
781 long_suspend_ = false;
782
783 Locks::mutator_lock_->ExclusiveUnlock(self);
784 {
785 MutexLock mu(self, *Locks::thread_list_lock_);
786 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
787 // Update global suspend all state for attaching threads.
788 --suspend_all_count_;
789 // Decrement the suspend counts for all threads.
790 for (const auto& thread : list_) {
791 if (thread == self) {
792 continue;
793 }
794 bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
795 DCHECK(updated);
796 }
797
798 // Broadcast a notification to all suspended threads, some or all of
799 // which may choose to wake up. No need to wait for them.
800 if (self != nullptr) {
801 VLOG(threads) << *self << " ResumeAll waking others";
802 } else {
803 VLOG(threads) << "Thread[null] ResumeAll waking others";
804 }
805 Thread::resume_cond_->Broadcast(self);
806 }
807
808 if (self != nullptr) {
809 VLOG(threads) << *self << " ResumeAll complete";
810 } else {
811 VLOG(threads) << "Thread[null] ResumeAll complete";
812 }
813 }
814
Resume(Thread * thread,bool for_debugger)815 void ThreadList::Resume(Thread* thread, bool for_debugger) {
816 // This assumes there was an ATRACE_BEGIN when we suspended the thread.
817 ATRACE_END();
818
819 Thread* self = Thread::Current();
820 DCHECK_NE(thread, self);
821 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..."
822 << (for_debugger ? " (debugger)" : "");
823
824 {
825 // To check Contains.
826 MutexLock mu(self, *Locks::thread_list_lock_);
827 // To check IsSuspended.
828 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
829 DCHECK(thread->IsSuspended());
830 if (!Contains(thread)) {
831 // We only expect threads within the thread-list to have been suspended otherwise we can't
832 // stop such threads from delete-ing themselves.
833 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
834 << ") thread not within thread list";
835 return;
836 }
837 bool updated = thread->ModifySuspendCount(self, -1, nullptr, for_debugger);
838 DCHECK(updated);
839 }
840
841 {
842 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
843 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
844 Thread::resume_cond_->Broadcast(self);
845 }
846
847 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
848 }
849
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)850 static void ThreadSuspendByPeerWarning(Thread* self,
851 LogSeverity severity,
852 const char* message,
853 jobject peer) {
854 JNIEnvExt* env = self->GetJniEnv();
855 ScopedLocalRef<jstring>
856 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
857 peer, WellKnownClasses::java_lang_Thread_name)));
858 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
859 if (scoped_name_chars.c_str() == nullptr) {
860 LOG(severity) << message << ": " << peer;
861 env->ExceptionClear();
862 } else {
863 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
864 }
865 }
866
SuspendThreadByPeer(jobject peer,bool request_suspension,bool debug_suspension,bool * timed_out)867 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
868 bool request_suspension,
869 bool debug_suspension,
870 bool* timed_out) {
871 const uint64_t start_time = NanoTime();
872 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
873 *timed_out = false;
874 Thread* const self = Thread::Current();
875 Thread* suspended_thread = nullptr;
876 VLOG(threads) << "SuspendThreadByPeer starting";
877 while (true) {
878 Thread* thread;
879 {
880 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
881 // is requesting another suspend, to avoid deadlock, by requiring this function be called
882 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
883 // than request thread suspension, to avoid potential cycles in threads requesting each other
884 // suspend.
885 ScopedObjectAccess soa(self);
886 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
887 thread = Thread::FromManagedThread(soa, peer);
888 if (thread == nullptr) {
889 if (suspended_thread != nullptr) {
890 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
891 // If we incremented the suspend count but the thread reset its peer, we need to
892 // re-decrement it since it is shutting down and may deadlock the runtime in
893 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
894 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
895 -1,
896 nullptr,
897 debug_suspension);
898 DCHECK(updated);
899 }
900 ThreadSuspendByPeerWarning(self,
901 ::android::base::WARNING,
902 "No such thread for suspend",
903 peer);
904 return nullptr;
905 }
906 if (!Contains(thread)) {
907 CHECK(suspended_thread == nullptr);
908 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
909 << reinterpret_cast<void*>(thread);
910 return nullptr;
911 }
912 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
913 {
914 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
915 if (request_suspension) {
916 if (self->GetSuspendCount() > 0) {
917 // We hold the suspend count lock but another thread is trying to suspend us. Its not
918 // safe to try to suspend another thread in case we get a cycle. Start the loop again
919 // which will allow this thread to be suspended.
920 continue;
921 }
922 CHECK(suspended_thread == nullptr);
923 suspended_thread = thread;
924 bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, debug_suspension);
925 DCHECK(updated);
926 request_suspension = false;
927 } else {
928 // If the caller isn't requesting suspension, a suspension should have already occurred.
929 CHECK_GT(thread->GetSuspendCount(), 0);
930 }
931 // IsSuspended on the current thread will fail as the current thread is changed into
932 // Runnable above. As the suspend count is now raised if this is the current thread
933 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
934 // to just explicitly handle the current thread in the callers to this code.
935 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
936 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
937 // count, or else we've waited and it has self suspended) or is the current thread, we're
938 // done.
939 if (thread->IsSuspended()) {
940 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
941 if (ATRACE_ENABLED()) {
942 std::string name;
943 thread->GetThreadName(name);
944 ATRACE_BEGIN(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
945 peer).c_str());
946 }
947 return thread;
948 }
949 const uint64_t total_delay = NanoTime() - start_time;
950 if (total_delay >= thread_suspend_timeout_ns_) {
951 ThreadSuspendByPeerWarning(self,
952 ::android::base::FATAL,
953 "Thread suspension timed out",
954 peer);
955 if (suspended_thread != nullptr) {
956 CHECK_EQ(suspended_thread, thread);
957 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
958 -1,
959 nullptr,
960 debug_suspension);
961 DCHECK(updated);
962 }
963 *timed_out = true;
964 return nullptr;
965 } else if (sleep_us == 0 &&
966 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
967 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
968 // excessive CPU usage.
969 sleep_us = kThreadSuspendMaxYieldUs / 2;
970 }
971 }
972 // Release locks and come out of runnable state.
973 }
974 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
975 ThreadSuspendSleep(sleep_us);
976 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
977 // all if possible. This shouldn't be an issue since time to suspend should always be small.
978 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
979 }
980 }
981
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)982 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
983 const char* message,
984 uint32_t thread_id) {
985 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
986 }
987
SuspendThreadByThreadId(uint32_t thread_id,bool debug_suspension,bool * timed_out)988 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
989 bool debug_suspension,
990 bool* timed_out) {
991 const uint64_t start_time = NanoTime();
992 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
993 *timed_out = false;
994 Thread* suspended_thread = nullptr;
995 Thread* const self = Thread::Current();
996 CHECK_NE(thread_id, kInvalidThreadId);
997 VLOG(threads) << "SuspendThreadByThreadId starting";
998 while (true) {
999 {
1000 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1001 // is requesting another suspend, to avoid deadlock, by requiring this function be called
1002 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1003 // than request thread suspension, to avoid potential cycles in threads requesting each other
1004 // suspend.
1005 ScopedObjectAccess soa(self);
1006 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1007 Thread* thread = nullptr;
1008 for (const auto& it : list_) {
1009 if (it->GetThreadId() == thread_id) {
1010 thread = it;
1011 break;
1012 }
1013 }
1014 if (thread == nullptr) {
1015 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1016 << " no longer in thread list";
1017 // There's a race in inflating a lock and the owner giving up ownership and then dying.
1018 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1019 "No such thread id for suspend",
1020 thread_id);
1021 return nullptr;
1022 }
1023 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1024 DCHECK(Contains(thread));
1025 {
1026 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1027 if (suspended_thread == nullptr) {
1028 if (self->GetSuspendCount() > 0) {
1029 // We hold the suspend count lock but another thread is trying to suspend us. Its not
1030 // safe to try to suspend another thread in case we get a cycle. Start the loop again
1031 // which will allow this thread to be suspended.
1032 continue;
1033 }
1034 bool updated = thread->ModifySuspendCount(self, +1, nullptr, debug_suspension);
1035 DCHECK(updated);
1036 suspended_thread = thread;
1037 } else {
1038 CHECK_EQ(suspended_thread, thread);
1039 // If the caller isn't requesting suspension, a suspension should have already occurred.
1040 CHECK_GT(thread->GetSuspendCount(), 0);
1041 }
1042 // IsSuspended on the current thread will fail as the current thread is changed into
1043 // Runnable above. As the suspend count is now raised if this is the current thread
1044 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1045 // to just explicitly handle the current thread in the callers to this code.
1046 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1047 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1048 // count, or else we've waited and it has self suspended) or is the current thread, we're
1049 // done.
1050 if (thread->IsSuspended()) {
1051 if (ATRACE_ENABLED()) {
1052 std::string name;
1053 thread->GetThreadName(name);
1054 ATRACE_BEGIN(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1055 name.c_str(), thread_id).c_str());
1056 }
1057 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1058 return thread;
1059 }
1060 const uint64_t total_delay = NanoTime() - start_time;
1061 if (total_delay >= thread_suspend_timeout_ns_) {
1062 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1063 "Thread suspension timed out",
1064 thread_id);
1065 if (suspended_thread != nullptr) {
1066 bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension);
1067 DCHECK(updated);
1068 }
1069 *timed_out = true;
1070 return nullptr;
1071 } else if (sleep_us == 0 &&
1072 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1073 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1074 // excessive CPU usage.
1075 sleep_us = kThreadSuspendMaxYieldUs / 2;
1076 }
1077 }
1078 // Release locks and come out of runnable state.
1079 }
1080 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1081 ThreadSuspendSleep(sleep_us);
1082 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1083 }
1084 }
1085
FindThreadByThreadId(uint32_t thread_id)1086 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1087 for (const auto& thread : list_) {
1088 if (thread->GetThreadId() == thread_id) {
1089 return thread;
1090 }
1091 }
1092 return nullptr;
1093 }
1094
SuspendAllForDebugger()1095 void ThreadList::SuspendAllForDebugger() {
1096 Thread* self = Thread::Current();
1097 Thread* debug_thread = Dbg::GetDebugThread();
1098
1099 VLOG(threads) << *self << " SuspendAllForDebugger starting...";
1100
1101 SuspendAllInternal(self, self, debug_thread, true);
1102 // Block on the mutator lock until all Runnable threads release their share of access then
1103 // immediately unlock again.
1104 #if HAVE_TIMED_RWLOCK
1105 // Timeout if we wait more than 30 seconds.
1106 if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) {
1107 UnsafeLogFatalForThreadSuspendAllTimeout();
1108 } else {
1109 Locks::mutator_lock_->ExclusiveUnlock(self);
1110 }
1111 #else
1112 Locks::mutator_lock_->ExclusiveLock(self);
1113 Locks::mutator_lock_->ExclusiveUnlock(self);
1114 #endif
1115 // Disabled for the following race condition:
1116 // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock.
1117 // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected).
1118 // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable
1119 // state (from SetStateUnsafe).
1120 // AssertThreadsAreSuspended(self, self, debug_thread);
1121
1122 VLOG(threads) << *self << " SuspendAllForDebugger complete";
1123 }
1124
SuspendSelfForDebugger()1125 void ThreadList::SuspendSelfForDebugger() {
1126 Thread* const self = Thread::Current();
1127 self->SetReadyForDebugInvoke(true);
1128
1129 // The debugger thread must not suspend itself due to debugger activity!
1130 Thread* debug_thread = Dbg::GetDebugThread();
1131 CHECK(self != debug_thread);
1132 CHECK_NE(self->GetState(), kRunnable);
1133 Locks::mutator_lock_->AssertNotHeld(self);
1134
1135 // The debugger may have detached while we were executing an invoke request. In that case, we
1136 // must not suspend ourself.
1137 DebugInvokeReq* pReq = self->GetInvokeReq();
1138 const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive());
1139 if (!skip_thread_suspension) {
1140 // Collisions with other suspends aren't really interesting. We want
1141 // to ensure that we're the only one fiddling with the suspend count
1142 // though.
1143 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1144 bool updated = self->ModifySuspendCount(self, +1, nullptr, true);
1145 DCHECK(updated);
1146 CHECK_GT(self->GetSuspendCount(), 0);
1147
1148 VLOG(threads) << *self << " self-suspending (debugger)";
1149 } else {
1150 // We must no longer be subject to debugger suspension.
1151 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1152 CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us";
1153
1154 VLOG(threads) << *self << " not self-suspending because debugger detached during invoke";
1155 }
1156
1157 // If the debugger requested an invoke, we need to send the reply and clear the request.
1158 if (pReq != nullptr) {
1159 Dbg::FinishInvokeMethod(pReq);
1160 self->ClearDebugInvokeReq();
1161 pReq = nullptr; // object has been deleted, clear it for safety.
1162 }
1163
1164 // Tell JDWP that we've completed suspension. The JDWP thread can't
1165 // tell us to resume before we're fully asleep because we hold the
1166 // suspend count lock.
1167 Dbg::ClearWaitForEventThread();
1168
1169 {
1170 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1171 while (self->GetSuspendCount() != 0) {
1172 Thread::resume_cond_->Wait(self);
1173 if (self->GetSuspendCount() != 0) {
1174 // The condition was signaled but we're still suspended. This
1175 // can happen when we suspend then resume all threads to
1176 // update instrumentation or compute monitor info. This can
1177 // also happen if the debugger lets go while a SIGQUIT thread
1178 // dump event is pending (assuming SignalCatcher was resumed for
1179 // just long enough to try to grab the thread-suspend lock).
1180 VLOG(jdwp) << *self << " still suspended after undo "
1181 << "(suspend count=" << self->GetSuspendCount() << ", "
1182 << "debug suspend count=" << self->GetDebugSuspendCount() << ")";
1183 }
1184 }
1185 CHECK_EQ(self->GetSuspendCount(), 0);
1186 }
1187
1188 self->SetReadyForDebugInvoke(false);
1189 VLOG(threads) << *self << " self-reviving (debugger)";
1190 }
1191
ResumeAllForDebugger()1192 void ThreadList::ResumeAllForDebugger() {
1193 Thread* self = Thread::Current();
1194 Thread* debug_thread = Dbg::GetDebugThread();
1195
1196 VLOG(threads) << *self << " ResumeAllForDebugger starting...";
1197
1198 // Threads can't resume if we exclusively hold the mutator lock.
1199 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
1200
1201 {
1202 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1203 {
1204 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1205 // Update global suspend all state for attaching threads.
1206 DCHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1207 if (debug_suspend_all_count_ > 0) {
1208 --suspend_all_count_;
1209 --debug_suspend_all_count_;
1210 } else {
1211 // We've been asked to resume all threads without being asked to
1212 // suspend them all before. That may happen if a debugger tries
1213 // to resume some suspended threads (with suspend count == 1)
1214 // at once with a VirtualMachine.Resume command. Let's print a
1215 // warning.
1216 LOG(WARNING) << "Debugger attempted to resume all threads without "
1217 << "having suspended them all before.";
1218 }
1219 // Decrement everybody's suspend count (except our own).
1220 for (const auto& thread : list_) {
1221 if (thread == self || thread == debug_thread) {
1222 continue;
1223 }
1224 if (thread->GetDebugSuspendCount() == 0) {
1225 // This thread may have been individually resumed with ThreadReference.Resume.
1226 continue;
1227 }
1228 VLOG(threads) << "requesting thread resume: " << *thread;
1229 bool updated = thread->ModifySuspendCount(self, -1, nullptr, true);
1230 DCHECK(updated);
1231 }
1232 }
1233 }
1234
1235 {
1236 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1237 Thread::resume_cond_->Broadcast(self);
1238 }
1239
1240 VLOG(threads) << *self << " ResumeAllForDebugger complete";
1241 }
1242
UndoDebuggerSuspensions()1243 void ThreadList::UndoDebuggerSuspensions() {
1244 Thread* self = Thread::Current();
1245
1246 VLOG(threads) << *self << " UndoDebuggerSuspensions starting";
1247
1248 {
1249 MutexLock mu(self, *Locks::thread_list_lock_);
1250 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1251 // Update global suspend all state for attaching threads.
1252 suspend_all_count_ -= debug_suspend_all_count_;
1253 debug_suspend_all_count_ = 0;
1254 // Update running threads.
1255 for (const auto& thread : list_) {
1256 if (thread == self || thread->GetDebugSuspendCount() == 0) {
1257 continue;
1258 }
1259 bool suspended = thread->ModifySuspendCount(self,
1260 -thread->GetDebugSuspendCount(),
1261 nullptr,
1262 true);
1263 DCHECK(suspended);
1264 }
1265 }
1266
1267 {
1268 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1269 Thread::resume_cond_->Broadcast(self);
1270 }
1271
1272 VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete";
1273 }
1274
WaitForOtherNonDaemonThreadsToExit()1275 void ThreadList::WaitForOtherNonDaemonThreadsToExit() {
1276 ScopedTrace trace(__PRETTY_FUNCTION__);
1277 Thread* self = Thread::Current();
1278 Locks::mutator_lock_->AssertNotHeld(self);
1279 while (true) {
1280 {
1281 // No more threads can be born after we start to shutdown.
1282 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1283 CHECK(Runtime::Current()->IsShuttingDownLocked());
1284 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1285 }
1286 MutexLock mu(self, *Locks::thread_list_lock_);
1287 // Also wait for any threads that are unregistering to finish. This is required so that no
1288 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1289 // threads since they could unregister at the wrong time.
1290 bool done = unregistering_count_ == 0;
1291 if (done) {
1292 for (const auto& thread : list_) {
1293 if (thread != self && !thread->IsDaemon()) {
1294 done = false;
1295 break;
1296 }
1297 }
1298 }
1299 if (done) {
1300 break;
1301 }
1302 // Wait for another thread to exit before re-checking.
1303 Locks::thread_exit_cond_->Wait(self);
1304 }
1305 }
1306
SuspendAllDaemonThreadsForShutdown()1307 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1308 ScopedTrace trace(__PRETTY_FUNCTION__);
1309 Thread* self = Thread::Current();
1310 size_t daemons_left = 0;
1311 {
1312 // Tell all the daemons it's time to suspend.
1313 MutexLock mu(self, *Locks::thread_list_lock_);
1314 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1315 for (const auto& thread : list_) {
1316 // This is only run after all non-daemon threads have exited, so the remainder should all be
1317 // daemons.
1318 CHECK(thread->IsDaemon()) << *thread;
1319 if (thread != self) {
1320 bool updated = thread->ModifySuspendCount(self, +1, nullptr, false);
1321 DCHECK(updated);
1322 ++daemons_left;
1323 }
1324 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1325 // the sleep forever one.
1326 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1327 }
1328 }
1329 // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they
1330 // are about to access runtime state and are not in a runnable state. Examples: Monitor code
1331 // or waking up from a condition variable. TODO: Try and see if there is a better way to wait
1332 // for daemon threads to be in a blocked state.
1333 if (daemons_left > 0) {
1334 static constexpr size_t kDaemonSleepTime = 200 * 1000;
1335 usleep(kDaemonSleepTime);
1336 }
1337 // Give the threads a chance to suspend, complaining if they're slow.
1338 bool have_complained = false;
1339 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1340 static constexpr size_t kSleepMicroseconds = 1000;
1341 for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1342 bool all_suspended = true;
1343 {
1344 MutexLock mu(self, *Locks::thread_list_lock_);
1345 for (const auto& thread : list_) {
1346 if (thread != self && thread->GetState() == kRunnable) {
1347 if (!have_complained) {
1348 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1349 have_complained = true;
1350 }
1351 all_suspended = false;
1352 }
1353 }
1354 }
1355 if (all_suspended) {
1356 return;
1357 }
1358 usleep(kSleepMicroseconds);
1359 }
1360 LOG(WARNING) << "timed out suspending all daemon threads";
1361 }
1362
Register(Thread * self)1363 void ThreadList::Register(Thread* self) {
1364 DCHECK_EQ(self, Thread::Current());
1365
1366 if (VLOG_IS_ON(threads)) {
1367 std::ostringstream oss;
1368 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1369 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1370 }
1371
1372 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1373 // SuspendAll requests.
1374 MutexLock mu(self, *Locks::thread_list_lock_);
1375 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1376 CHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1377 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1378 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1379 for (int delta = debug_suspend_all_count_; delta > 0; delta--) {
1380 bool updated = self->ModifySuspendCount(self, +1, nullptr, true);
1381 DCHECK(updated);
1382 }
1383 for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) {
1384 bool updated = self->ModifySuspendCount(self, +1, nullptr, false);
1385 DCHECK(updated);
1386 }
1387 CHECK(!Contains(self));
1388 list_.push_back(self);
1389 if (kUseReadBarrier) {
1390 // Initialize according to the state of the CC collector.
1391 bool is_gc_marking =
1392 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsMarking();
1393 self->SetIsGcMarkingAndUpdateEntrypoints(is_gc_marking);
1394 bool weak_ref_access_enabled =
1395 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsWeakRefAccessEnabled();
1396 self->SetWeakRefAccessEnabled(weak_ref_access_enabled);
1397 }
1398 }
1399
Unregister(Thread * self)1400 void ThreadList::Unregister(Thread* self) {
1401 DCHECK_EQ(self, Thread::Current());
1402 CHECK_NE(self->GetState(), kRunnable);
1403 Locks::mutator_lock_->AssertNotHeld(self);
1404
1405 VLOG(threads) << "ThreadList::Unregister() " << *self;
1406
1407 {
1408 MutexLock mu(self, *Locks::thread_list_lock_);
1409 ++unregistering_count_;
1410 }
1411
1412 // Any time-consuming destruction, plus anything that can call back into managed code or
1413 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1414 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1415 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1416 // list.
1417 self->Destroy();
1418
1419 // If tracing, remember thread id and name before thread exits.
1420 Trace::StoreExitingThreadInfo(self);
1421
1422 uint32_t thin_lock_id = self->GetThreadId();
1423 while (true) {
1424 // Remove and delete the Thread* while holding the thread_list_lock_ and
1425 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1426 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1427 MutexLock mu(self, *Locks::thread_list_lock_);
1428 if (!Contains(self)) {
1429 std::string thread_name;
1430 self->GetThreadName(thread_name);
1431 std::ostringstream os;
1432 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1433 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1434 break;
1435 } else {
1436 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1437 if (!self->IsSuspended()) {
1438 list_.remove(self);
1439 break;
1440 }
1441 }
1442 // We failed to remove the thread due to a suspend request, loop and try again.
1443 }
1444 delete self;
1445
1446 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1447 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1448 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1449 ReleaseThreadId(nullptr, thin_lock_id);
1450
1451 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1452 // (It may wish to reattach later.)
1453 #ifdef ART_TARGET_ANDROID
1454 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1455 #else
1456 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1457 #endif
1458
1459 // Signal that a thread just detached.
1460 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1461 --unregistering_count_;
1462 Locks::thread_exit_cond_->Broadcast(nullptr);
1463 }
1464
ForEach(void (* callback)(Thread *,void *),void * context)1465 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1466 for (const auto& thread : list_) {
1467 callback(thread, context);
1468 }
1469 }
1470
VisitRootsForSuspendedThreads(RootVisitor * visitor)1471 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1472 Thread* const self = Thread::Current();
1473 std::vector<Thread*> threads_to_visit;
1474
1475 // Tell threads to suspend and copy them into list.
1476 {
1477 MutexLock mu(self, *Locks::thread_list_lock_);
1478 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1479 for (Thread* thread : list_) {
1480 bool suspended = thread->ModifySuspendCount(self, +1, nullptr, false);
1481 DCHECK(suspended);
1482 if (thread == self || thread->IsSuspended()) {
1483 threads_to_visit.push_back(thread);
1484 } else {
1485 bool resumed = thread->ModifySuspendCount(self, -1, nullptr, false);
1486 DCHECK(resumed);
1487 }
1488 }
1489 }
1490
1491 // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1492 // order violations.
1493 for (Thread* thread : threads_to_visit) {
1494 thread->VisitRoots(visitor);
1495 }
1496
1497 // Restore suspend counts.
1498 {
1499 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1500 for (Thread* thread : threads_to_visit) {
1501 bool updated = thread->ModifySuspendCount(self, -1, nullptr, false);
1502 DCHECK(updated);
1503 }
1504 }
1505 }
1506
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1507 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1508 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1509 for (const auto& thread : list_) {
1510 thread->VisitRoots(visitor, flags);
1511 }
1512 }
1513
AllocThreadId(Thread * self)1514 uint32_t ThreadList::AllocThreadId(Thread* self) {
1515 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1516 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1517 if (!allocated_ids_[i]) {
1518 allocated_ids_.set(i);
1519 return i + 1; // Zero is reserved to mean "invalid".
1520 }
1521 }
1522 LOG(FATAL) << "Out of internal thread ids";
1523 return 0;
1524 }
1525
ReleaseThreadId(Thread * self,uint32_t id)1526 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1527 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1528 --id; // Zero is reserved to mean "invalid".
1529 DCHECK(allocated_ids_[id]) << id;
1530 allocated_ids_.reset(id);
1531 }
1532
ScopedSuspendAll(const char * cause,bool long_suspend)1533 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1534 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1535 }
1536
~ScopedSuspendAll()1537 ScopedSuspendAll::~ScopedSuspendAll() {
1538 Runtime::Current()->GetThreadList()->ResumeAll();
1539 }
1540
1541 } // namespace art
1542