1 /** @file
2 This implementation of EFI_PXE_BASE_CODE_PROTOCOL and EFI_LOAD_FILE_PROTOCOL.
3
4 Copyright (c) 2007 - 2015, Intel Corporation. All rights reserved.<BR>
5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php.
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "PxeBcImpl.h"
17
18
19 /**
20 Enables the use of the PXE Base Code Protocol functions.
21
22 This function enables the use of the PXE Base Code Protocol functions. If the
23 Started field of the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then
24 EFI_ALREADY_STARTED will be returned. If UseIpv6 is TRUE, then IPv6 formatted
25 addresses will be used in this session. If UseIpv6 is FALSE, then IPv4 formatted
26 addresses will be used in this session. If UseIpv6 is TRUE, and the Ipv6Supported
27 field of the EFI_PXE_BASE_CODE_MODE structure is FALSE, then EFI_UNSUPPORTED will
28 be returned. If there is not enough memory or other resources to start the PXE
29 Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise, the
30 PXE Base Code Protocol will be started.
31
32 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
33 @param[in] UseIpv6 Specifies the type of IP addresses that are to be
34 used during the session that is being started.
35 Set to TRUE for IPv6, and FALSE for IPv4.
36
37 @retval EFI_SUCCESS The PXE Base Code Protocol was started.
38 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
39 @retval EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
40 EFI_PXE_BASE_CODE_MODE structure is FALSE.
41 @retval EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.
42 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
43 EFI_PXE_BASE_CODE_PROTOCOL structure.
44 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
45 PXE Base Code Protocol.
46
47 **/
48 EFI_STATUS
49 EFIAPI
EfiPxeBcStart(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN BOOLEAN UseIpv6)50 EfiPxeBcStart (
51 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
52 IN BOOLEAN UseIpv6
53 )
54 {
55 PXEBC_PRIVATE_DATA *Private;
56 EFI_PXE_BASE_CODE_MODE *Mode;
57 UINTN Index;
58 EFI_STATUS Status;
59
60 if (This == NULL) {
61 return EFI_INVALID_PARAMETER;
62 }
63
64 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
65 Mode = Private->PxeBc.Mode;
66
67 if (Mode->Started) {
68 return EFI_ALREADY_STARTED;
69 }
70
71 //
72 // Detect whether using IPv6 or not, and set it into mode data.
73 //
74 if (UseIpv6 && Mode->Ipv6Available && Mode->Ipv6Supported && Private->Ip6Nic != NULL) {
75 Mode->UsingIpv6 = TRUE;
76 } else if (!UseIpv6 && Private->Ip4Nic != NULL) {
77 Mode->UsingIpv6 = FALSE;
78 } else {
79 return EFI_UNSUPPORTED;
80 }
81
82 if (Mode->UsingIpv6) {
83 AsciiPrint ("\n>>Start PXE over IPv6");
84 //
85 // Configure udp6 instance to receive data.
86 //
87 Status = Private->Udp6Read->Configure (
88 Private->Udp6Read,
89 &Private->Udp6CfgData
90 );
91 if (EFI_ERROR (Status)) {
92 goto ON_ERROR;
93 }
94
95 //
96 // Configure block size for TFTP as a default value to handle all link layers.
97 //
98 Private->BlockSize = (UINTN) (Private->Ip6MaxPacketSize -
99 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE);
100
101 //
102 // PXE over IPv6 starts here, initialize the fields and list header.
103 //
104 Private->Ip6Policy = PXEBC_IP6_POLICY_MAX;
105 Private->ProxyOffer.Dhcp6.Packet.Offer.Size = PXEBC_DHCP6_PACKET_MAX_SIZE;
106 Private->DhcpAck.Dhcp6.Packet.Ack.Size = PXEBC_DHCP6_PACKET_MAX_SIZE;
107 Private->PxeReply.Dhcp6.Packet.Ack.Size = PXEBC_DHCP6_PACKET_MAX_SIZE;
108
109 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) {
110 Private->OfferBuffer[Index].Dhcp6.Packet.Offer.Size = PXEBC_DHCP6_PACKET_MAX_SIZE;
111 }
112
113 //
114 // Create event and set status for token to capture ICMP6 error message.
115 //
116 Private->Icmp6Token.Status = EFI_NOT_READY;
117 Status = gBS->CreateEvent (
118 EVT_NOTIFY_SIGNAL,
119 TPL_NOTIFY,
120 PxeBcIcmp6ErrorUpdate,
121 Private,
122 &Private->Icmp6Token.Event
123 );
124 if (EFI_ERROR (Status)) {
125 goto ON_ERROR;
126 }
127
128 //
129 // Set Ip6 policy to Automatic to start the IP6 router discovery.
130 //
131 Status = PxeBcSetIp6Policy (Private);
132 if (EFI_ERROR (Status)) {
133 goto ON_ERROR;
134 }
135 } else {
136 AsciiPrint ("\n>>Start PXE over IPv4");
137 //
138 // Configure udp4 instance to receive data.
139 //
140 Status = Private->Udp4Read->Configure (
141 Private->Udp4Read,
142 &Private->Udp4CfgData
143 );
144 if (EFI_ERROR (Status)) {
145 goto ON_ERROR;
146 }
147
148 //
149 // Configure block size for TFTP as a default value to handle all link layers.
150 //
151 Private->BlockSize = (UINTN) (Private->Ip4MaxPacketSize -
152 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE);
153
154 //
155 // PXE over IPv4 starts here, initialize the fields.
156 //
157 Private->ProxyOffer.Dhcp4.Packet.Offer.Size = PXEBC_DHCP4_PACKET_MAX_SIZE;
158 Private->DhcpAck.Dhcp4.Packet.Ack.Size = PXEBC_DHCP4_PACKET_MAX_SIZE;
159 Private->PxeReply.Dhcp4.Packet.Ack.Size = PXEBC_DHCP4_PACKET_MAX_SIZE;
160
161 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) {
162 Private->OfferBuffer[Index].Dhcp4.Packet.Offer.Size = PXEBC_DHCP4_PACKET_MAX_SIZE;
163 }
164
165 PxeBcSeedDhcp4Packet (&Private->SeedPacket, Private->Udp4Read);
166
167 //
168 // Create the event for Arp cache update.
169 //
170 Status = gBS->CreateEvent (
171 EVT_TIMER | EVT_NOTIFY_SIGNAL,
172 TPL_CALLBACK,
173 PxeBcArpCacheUpdate,
174 Private,
175 &Private->ArpUpdateEvent
176 );
177 if (EFI_ERROR (Status)) {
178 goto ON_ERROR;
179 }
180
181 //
182 // Start a periodic timer by second to update Arp cache.
183 //
184 Status = gBS->SetTimer (
185 Private->ArpUpdateEvent,
186 TimerPeriodic,
187 TICKS_PER_SECOND
188 );
189 if (EFI_ERROR (Status)) {
190 goto ON_ERROR;
191 }
192
193 //
194 // Create event and set status for token to capture ICMP error message.
195 //
196 Private->Icmp6Token.Status = EFI_NOT_READY;
197 Status = gBS->CreateEvent (
198 EVT_NOTIFY_SIGNAL,
199 TPL_NOTIFY,
200 PxeBcIcmpErrorUpdate,
201 Private,
202 &Private->IcmpToken.Event
203 );
204 if (EFI_ERROR (Status)) {
205 goto ON_ERROR;
206 }
207
208 //
209 //DHCP4 service allows only one of its children to be configured in
210 //the active state, If the DHCP4 D.O.R.A started by IP4 auto
211 //configuration and has not been completed, the Dhcp4 state machine
212 //will not be in the right state for the PXE to start a new round D.O.R.A.
213 //so we need to switch it's policy to static.
214 //
215 Status = PxeBcSetIp4Policy (Private);
216 if (EFI_ERROR (Status)) {
217 goto ON_ERROR;
218 }
219 }
220
221 //
222 // If PcdTftpBlockSize is set to non-zero, override the default value.
223 //
224 if (PcdGet64 (PcdTftpBlockSize) != 0) {
225 Private->BlockSize = (UINTN) PcdGet64 (PcdTftpBlockSize);
226 }
227
228 //
229 // Create event for UdpRead/UdpWrite timeout since they are both blocking API.
230 //
231 Status = gBS->CreateEvent (
232 EVT_TIMER,
233 TPL_CALLBACK,
234 NULL,
235 NULL,
236 &Private->UdpTimeOutEvent
237 );
238 if (EFI_ERROR (Status)) {
239 goto ON_ERROR;
240 }
241
242 Private->IsAddressOk = FALSE;
243 Mode->Started = TRUE;
244
245 return EFI_SUCCESS;
246
247 ON_ERROR:
248 if (Mode->UsingIpv6) {
249 if (Private->Icmp6Token.Event != NULL) {
250 gBS->CloseEvent (Private->Icmp6Token.Event);
251 Private->Icmp6Token.Event = NULL;
252 }
253 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
254 Private->Ip6->Configure (Private->Ip6, NULL);
255 } else {
256 if (Private->ArpUpdateEvent != NULL) {
257 gBS->CloseEvent (Private->ArpUpdateEvent);
258 Private->ArpUpdateEvent = NULL;
259 }
260 if (Private->IcmpToken.Event != NULL) {
261 gBS->CloseEvent (Private->IcmpToken.Event);
262 Private->IcmpToken.Event = NULL;
263 }
264 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
265 Private->Ip4->Configure (Private->Ip4, NULL);
266 }
267 return Status;
268 }
269
270
271 /**
272 Disable the use of the PXE Base Code Protocol functions.
273
274 This function stops all activity on the network device. All the resources allocated
275 in Start() are released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is
276 set to FALSE, and EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE
277 structure is already FALSE, then EFI_NOT_STARTED will be returned.
278
279 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
280
281 @retval EFI_SUCCESS The PXE Base Code Protocol was stopped.
282 @retval EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.
283 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
284 EFI_PXE_BASE_CODE_PROTOCOL structure.
285 @retval Others
286
287 **/
288 EFI_STATUS
289 EFIAPI
EfiPxeBcStop(IN EFI_PXE_BASE_CODE_PROTOCOL * This)290 EfiPxeBcStop (
291 IN EFI_PXE_BASE_CODE_PROTOCOL *This
292 )
293 {
294 PXEBC_PRIVATE_DATA *Private;
295 EFI_PXE_BASE_CODE_MODE *Mode;
296 BOOLEAN Ipv6Supported;
297 BOOLEAN Ipv6Available;
298
299 if (This == NULL) {
300 return EFI_INVALID_PARAMETER;
301 }
302
303 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
304 Mode = Private->PxeBc.Mode;
305 Ipv6Supported = Mode->Ipv6Supported;
306 Ipv6Available = Mode->Ipv6Available;
307
308 if (!Mode->Started) {
309 return EFI_NOT_STARTED;
310 }
311
312 if (Mode->UsingIpv6) {
313 //
314 // Configure all the instances for IPv6 as NULL.
315 //
316 ZeroMem (&Private->Udp6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS));
317 ZeroMem (&Private->Ip6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS));
318 Private->Dhcp6->Stop (Private->Dhcp6);
319 Private->Dhcp6->Configure (Private->Dhcp6, NULL);
320 Private->Udp6Write->Configure (Private->Udp6Write, NULL);
321 Private->Udp6Read->Groups (Private->Udp6Read, FALSE, NULL);
322 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
323 Private->Ip6->Cancel (Private->Ip6, &Private->Icmp6Token);
324 Private->Ip6->Configure (Private->Ip6, NULL);
325 PxeBcUnregisterIp6Address (Private);
326 if (Private->Icmp6Token.Event != NULL) {
327 gBS->CloseEvent (Private->Icmp6Token.Event);
328 Private->Icmp6Token.Event = NULL;
329 }
330 if (Private->Dhcp6Request != NULL) {
331 FreePool (Private->Dhcp6Request);
332 Private->Dhcp6Request = NULL;
333 }
334 if (Private->BootFileName != NULL) {
335 FreePool (Private->BootFileName);
336 Private->BootFileName = NULL;
337 }
338 } else {
339 //
340 // Configure all the instances for IPv4 as NULL.
341 //
342 ZeroMem (&Private->Udp4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS));
343 ZeroMem (&Private->Udp4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
344 ZeroMem (&Private->Ip4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS));
345 ZeroMem (&Private->Ip4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
346 Private->Dhcp4->Stop (Private->Dhcp4);
347 Private->Dhcp4->Configure (Private->Dhcp4, NULL);
348 Private->Udp4Write->Configure (Private->Udp4Write, NULL);
349 Private->Udp4Read->Groups (Private->Udp4Read, FALSE, NULL);
350 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
351 Private->Ip4->Cancel (Private->Ip4, &Private->IcmpToken);
352 Private->Ip4->Configure (Private->Ip4, NULL);
353 if (Private->ArpUpdateEvent != NULL) {
354 gBS->CloseEvent (Private->ArpUpdateEvent);
355 Private->ArpUpdateEvent = NULL;
356 }
357 if (Private->IcmpToken.Event != NULL) {
358 gBS->CloseEvent (Private->IcmpToken.Event);
359 Private->IcmpToken.Event = NULL;
360 }
361 Private->BootFileName = NULL;
362 }
363
364 gBS->CloseEvent (Private->UdpTimeOutEvent);
365 Private->CurSrcPort = 0;
366 Private->BootFileSize = 0;
367 Private->SolicitTimes = 0;
368 Private->ElapsedTime = 0;
369 ZeroMem (&Private->StationIp, sizeof (EFI_IP_ADDRESS));
370 ZeroMem (&Private->SubnetMask, sizeof (EFI_IP_ADDRESS));
371 ZeroMem (&Private->GatewayIp, sizeof (EFI_IP_ADDRESS));
372 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS));
373
374 //
375 // Reset the mode data.
376 //
377 ZeroMem (Mode, sizeof (EFI_PXE_BASE_CODE_MODE));
378 Mode->Ipv6Available = Ipv6Available;
379 Mode->Ipv6Supported = Ipv6Supported;
380 Mode->AutoArp = TRUE;
381 Mode->TTL = DEFAULT_TTL;
382 Mode->ToS = DEFAULT_ToS;
383
384 return EFI_SUCCESS;
385 }
386
387
388 /**
389 Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
390 S.A.R.R (solicit / advertise / request / reply) sequence.
391
392 If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before
393 they are tried. If SortOffers is FALSE, then the cached DHCP offer packets will
394 be tried in the order in which they are received. Please see the Preboot Execution
395 Environment (PXE) Specification and Unified Extensible Firmware Interface (UEFI)
396 Specification for additional details on the implementation of DHCP.
397 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
398 then the DHCP sequence will be stopped and EFI_ABORTED will be returned.
399
400 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
401 @param[in] SortOffers TRUE if the offers received should be sorted. Set to FALSE to
402 try the offers in the order that they are received.
403
404 @retval EFI_SUCCESS Valid DHCP has completed.
405 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
406 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
407 EFI_PXE_BASE_CODE_PROTOCOL structure.
408 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
409 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.
410 @retval EFI_ABORTED The callback function aborted the DHCP Protocol.
411 @retval EFI_TIMEOUT The DHCP Protocol timed out.
412 @retval EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session.
413 @retval EFI_NO_RESPONSE Valid PXE offer was not received.
414
415 **/
416 EFI_STATUS
417 EFIAPI
EfiPxeBcDhcp(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN BOOLEAN SortOffers)418 EfiPxeBcDhcp (
419 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
420 IN BOOLEAN SortOffers
421 )
422 {
423 PXEBC_PRIVATE_DATA *Private;
424 EFI_PXE_BASE_CODE_MODE *Mode;
425 EFI_STATUS Status;
426 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
427
428 if (This == NULL) {
429 return EFI_INVALID_PARAMETER;
430 }
431
432 Status = EFI_SUCCESS;
433 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
434 Mode = Private->PxeBc.Mode;
435 Mode->IcmpErrorReceived = FALSE;
436 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DHCP;
437 Private->IsOfferSorted = SortOffers;
438 Private->SolicitTimes = 0;
439 Private->ElapsedTime = 0;
440
441 if (!Mode->Started) {
442 return EFI_NOT_STARTED;
443 }
444
445 if (Mode->UsingIpv6) {
446
447 //
448 // Stop Udp6Read instance
449 //
450 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
451
452 //
453 // Start S.A.R.R. process to get a IPv6 address and other boot information.
454 //
455 Status = PxeBcDhcp6Sarr (Private, Private->Dhcp6);
456 } else {
457
458 //
459 // Stop Udp4Read instance
460 //
461 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
462
463 //
464 // Start D.O.R.A. process to get a IPv4 address and other boot information.
465 //
466 Status = PxeBcDhcp4Dora (Private, Private->Dhcp4);
467 }
468
469 //
470 // Reconfigure the UDP instance with the default configuration.
471 //
472 if (Mode->UsingIpv6) {
473 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
474 } else {
475 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
476 }
477 //
478 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
479 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
480 //
481 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
482 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
483 This->SetIpFilter (This, &IpFilter);
484
485 return Status;
486 }
487
488
489 /**
490 Attempts to complete the PXE Boot Server and/or boot image discovery sequence.
491
492 This function attempts to complete the PXE Boot Server and/or boot image discovery
493 sequence. If this sequence is completed, then EFI_SUCCESS is returned, and the
494 PxeDiscoverValid, PxeDiscover, PxeReplyReceived, and PxeReply fields of the
495 EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
496 PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE structure
497 will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to FALSE.
498 In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[],
499 has two uses: It is the Boot Server IP address list used for unicast discovery
500 (if the UseUCast field is TRUE), and it is the list used for Boot Server verification
501 (if the MustUseList field is TRUE). Also, if the MustUseList field in that structure
502 is TRUE and the AcceptAnyResponse field in the SrvList[] array is TRUE, any Boot
503 Server reply of that type will be accepted. If the AcceptAnyResponse field is
504 FALSE, only responses from Boot Servers with matching IP addresses will be accepted.
505 This function can take at least 10 seconds to timeout and return control to the
506 caller. If the Discovery sequence does not complete, then EFI_TIMEOUT will be
507 returned. Please see the Preboot Execution Environment (PXE) Specification for
508 additional details on the implementation of the Discovery sequence.
509 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
510 then the Discovery sequence is stopped and EFI_ABORTED will be returned.
511
512 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
513 @param[in] Type The type of bootstrap to perform.
514 @param[in] Layer Pointer to the boot server layer number to discover, which must be
515 PXE_BOOT_LAYER_INITIAL when a new server type is being
516 discovered.
517 @param[in] UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.
518 @param[in] Info Pointer to a data structure that contains additional information
519 on the type of discovery operation that is to be performed.
520 It is optional.
521
522 @retval EFI_SUCCESS The Discovery sequence has been completed.
523 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
524 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
525 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
526 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.
527 @retval EFI_ABORTED The callback function aborted the Discovery sequence.
528 @retval EFI_TIMEOUT The Discovery sequence timed out.
529 @retval EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery
530 session.
531
532 **/
533 EFI_STATUS
534 EFIAPI
EfiPxeBcDiscover(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN UINT16 Type,IN UINT16 * Layer,IN BOOLEAN UseBis,IN EFI_PXE_BASE_CODE_DISCOVER_INFO * Info OPTIONAL)535 EfiPxeBcDiscover (
536 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
537 IN UINT16 Type,
538 IN UINT16 *Layer,
539 IN BOOLEAN UseBis,
540 IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL
541 )
542 {
543 PXEBC_PRIVATE_DATA *Private;
544 EFI_PXE_BASE_CODE_MODE *Mode;
545 EFI_PXE_BASE_CODE_DISCOVER_INFO DefaultInfo;
546 EFI_PXE_BASE_CODE_SRVLIST *SrvList;
547 PXEBC_BOOT_SVR_ENTRY *BootSvrEntry;
548 UINT16 Index;
549 EFI_STATUS Status;
550 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
551 EFI_PXE_BASE_CODE_DISCOVER_INFO *NewCreatedInfo;
552
553 if (This == NULL) {
554 return EFI_INVALID_PARAMETER;
555 }
556
557 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
558 Mode = Private->PxeBc.Mode;
559 Mode->IcmpErrorReceived = FALSE;
560 BootSvrEntry = NULL;
561 SrvList = NULL;
562 Status = EFI_DEVICE_ERROR;
563 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DISCOVER;
564 NewCreatedInfo = NULL;
565
566 if (!Mode->Started) {
567 return EFI_NOT_STARTED;
568 }
569
570 //
571 // Station address should be ready before do discover.
572 //
573 if (!Private->IsAddressOk) {
574 return EFI_INVALID_PARAMETER;
575 }
576
577 if (Mode->UsingIpv6) {
578
579 //
580 // Stop Udp6Read instance
581 //
582 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
583 } else {
584
585 //
586 // Stop Udp4Read instance
587 //
588 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
589 }
590
591 //
592 // There are 3 methods to get the information for discover.
593 //
594 ZeroMem (&DefaultInfo, sizeof (EFI_PXE_BASE_CODE_DISCOVER_INFO));
595 if (*Layer != EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL) {
596 //
597 // 1. Take the previous setting as the discover info.
598 //
599 if (!Mode->PxeDiscoverValid ||
600 !Mode->PxeReplyReceived ||
601 (!Mode->PxeBisReplyReceived && UseBis)) {
602 Status = EFI_INVALID_PARAMETER;
603 goto ON_EXIT;
604 }
605
606 Info = &DefaultInfo;
607 Info->IpCnt = 1;
608 Info->UseUCast = TRUE;
609 SrvList = Info->SrvList;
610 SrvList[0].Type = Type;
611 SrvList[0].AcceptAnyResponse = FALSE;
612
613 CopyMem (&SrvList->IpAddr, &Private->ServerIp, sizeof (EFI_IP_ADDRESS));
614
615 } else if (Info == NULL) {
616 //
617 // 2. Extract the discover information from the cached packets if unspecified.
618 //
619 NewCreatedInfo = &DefaultInfo;
620 Status = PxeBcExtractDiscoverInfo (Private, Type, &NewCreatedInfo, &BootSvrEntry, &SrvList);
621 if (EFI_ERROR (Status)) {
622 goto ON_EXIT;
623 }
624 ASSERT (NewCreatedInfo != NULL);
625 Info = NewCreatedInfo;
626 } else {
627 //
628 // 3. Take the pass-in information as the discover info, and validate the server list.
629 //
630 SrvList = Info->SrvList;
631
632 if (!SrvList[0].AcceptAnyResponse) {
633 for (Index = 1; Index < Info->IpCnt; Index++) {
634 if (SrvList[Index].AcceptAnyResponse) {
635 break;
636 }
637 }
638 if (Index != Info->IpCnt) {
639 //
640 // It's invalid if the first server doesn't accecpt any response
641 // but any of the other servers does accept any response.
642 //
643 Status = EFI_INVALID_PARAMETER;
644 goto ON_EXIT;
645 }
646 }
647 }
648
649 //
650 // Info and BootSvrEntry/SrvList are all ready by now, so execute discover by UniCast/BroadCast/MultiCast.
651 //
652 if ((!Info->UseUCast && !Info->UseBCast && !Info->UseMCast) ||
653 (Info->MustUseList && Info->IpCnt == 0)) {
654 Status = EFI_INVALID_PARAMETER;
655 goto ON_EXIT;
656 }
657
658 Private->IsDoDiscover = TRUE;
659
660 if (Info->UseMCast) {
661 //
662 // Do discover by multicast.
663 //
664 Status = PxeBcDiscoverBootServer (
665 Private,
666 Type,
667 Layer,
668 UseBis,
669 &Info->ServerMCastIp,
670 Info->IpCnt,
671 SrvList
672 );
673
674 } else if (Info->UseBCast) {
675 //
676 // Do discover by broadcast, but only valid for IPv4.
677 //
678 ASSERT (!Mode->UsingIpv6);
679 Status = PxeBcDiscoverBootServer (
680 Private,
681 Type,
682 Layer,
683 UseBis,
684 NULL,
685 Info->IpCnt,
686 SrvList
687 );
688
689 } else if (Info->UseUCast) {
690 //
691 // Do discover by unicast.
692 //
693 for (Index = 0; Index < Info->IpCnt; Index++) {
694 if (BootSvrEntry == NULL) {
695 CopyMem (&Private->ServerIp, &SrvList[Index].IpAddr, sizeof (EFI_IP_ADDRESS));
696 } else {
697 ASSERT (!Mode->UsingIpv6);
698 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS));
699 CopyMem (&Private->ServerIp, &BootSvrEntry->IpAddr[Index], sizeof (EFI_IPv4_ADDRESS));
700 }
701
702 Status = PxeBcDiscoverBootServer (
703 Private,
704 Type,
705 Layer,
706 UseBis,
707 &Private->ServerIp,
708 Info->IpCnt,
709 SrvList
710 );
711 }
712 }
713
714 if (!EFI_ERROR (Status)) {
715 //
716 // Parse the cached PXE reply packet, and store it into mode data if valid.
717 //
718 if (Mode->UsingIpv6) {
719 Status = PxeBcParseDhcp6Packet (&Private->PxeReply.Dhcp6);
720 if (!EFI_ERROR (Status)) {
721 CopyMem (
722 &Mode->PxeReply.Dhcpv6,
723 &Private->PxeReply.Dhcp6.Packet.Ack.Dhcp6,
724 Private->PxeReply.Dhcp6.Packet.Ack.Length
725 );
726 Mode->PxeReplyReceived = TRUE;
727 Mode->PxeDiscoverValid = TRUE;
728 }
729 } else {
730 Status = PxeBcParseDhcp4Packet (&Private->PxeReply.Dhcp4);
731 if (!EFI_ERROR (Status)) {
732 CopyMem (
733 &Mode->PxeReply.Dhcpv4,
734 &Private->PxeReply.Dhcp4.Packet.Ack.Dhcp4,
735 Private->PxeReply.Dhcp4.Packet.Ack.Length
736 );
737 Mode->PxeReplyReceived = TRUE;
738 Mode->PxeDiscoverValid = TRUE;
739 }
740 }
741 }
742
743 ON_EXIT:
744
745 if (NewCreatedInfo != NULL && NewCreatedInfo != &DefaultInfo) {
746 FreePool (NewCreatedInfo);
747 }
748
749 if (Mode->UsingIpv6) {
750 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
751 } else {
752 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
753 }
754
755 //
756 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
757 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
758 //
759 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
760 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
761 This->SetIpFilter (This, &IpFilter);
762
763 return Status;
764 }
765
766
767 /**
768 Used to perform TFTP and MTFTP services.
769
770 This function is used to perform TFTP and MTFTP services. This includes the
771 TFTP operations to get the size of a file, read a directory, read a file, and
772 write a file. It also includes the MTFTP operations to get the size of a file,
773 read a directory, and read a file. The type of operation is specified by Operation.
774 If the callback function that is invoked during the TFTP/MTFTP operation does
775 not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will
776 be returned.
777 For read operations, the return data will be placed in the buffer specified by
778 BufferPtr. If BufferSize is too small to contain the entire downloaded file,
779 then EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero,
780 or the size of the requested file. (NOTE: the size of the requested file is only returned
781 if the TFTP server supports TFTP options). If BufferSize is large enough for the
782 read operation, then BufferSize will be set to the size of the downloaded file,
783 and EFI_SUCCESS will be returned. Applications using the PxeBc.Mtftp() services
784 should use the get-file-size operations to determine the size of the downloaded
785 file prior to using the read-file operations-especially when downloading large
786 (greater than 64 MB) files-instead of making two calls to the read-file operation.
787 Following this recommendation will save time if the file is larger than expected
788 and the TFTP server does not support TFTP option extensions. Without TFTP option
789 extension support, the client must download the entire file, counting and discarding
790 the received packets, to determine the file size.
791 For write operations, the data to be sent is in the buffer specified by BufferPtr.
792 BufferSize specifies the number of bytes to send. If the write operation completes
793 successfully, then EFI_SUCCESS will be returned.
794 For TFTP "get file size" operations, the size of the requested file or directory
795 is returned in BufferSize, and EFI_SUCCESS will be returned. If the TFTP server
796 does not support options, the file will be downloaded into a bit bucket and the
797 length of the downloaded file will be returned. For MTFTP "get file size" operations,
798 if the MTFTP server does not support the "get file size" option, EFI_UNSUPPORTED
799 will be returned.
800 This function can take up to 10 seconds to timeout and return control to the caller.
801 If the TFTP sequence does not complete, EFI_TIMEOUT will be returned.
802 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
803 then the TFTP sequence is stopped and EFI_ABORTED will be returned.
804
805 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
806 @param[in] Operation The type of operation to perform.
807 @param[in, out] BufferPtr A pointer to the data buffer.
808 @param[in] Overwrite Only used on write file operations. TRUE if a file on a remote
809 server can be overwritten.
810 @param[in, out] BufferSize For get-file-size operations, *BufferSize returns the size of the
811 requested file.
812 @param[in] BlockSize The requested block size to be used during a TFTP transfer.
813 @param[in] ServerIp The TFTP / MTFTP server IP address.
814 @param[in] Filename A Null-terminated ASCII string that specifies a directory name
815 or a file name.
816 @param[in] Info Pointer to the MTFTP information.
817 @param[in] DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation.
818
819 @retval EFI_SUCCESS The TFTP/MTFTP operation was completed.
820 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
821 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
822 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
823 @retval EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.
824 @retval EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.
825 @retval EFI_TIMEOUT The TFTP/MTFTP operation timed out.
826 @retval EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session.
827 @retval EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session.
828
829 **/
830 EFI_STATUS
831 EFIAPI
EfiPxeBcMtftp(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,IN OUT VOID * BufferPtr OPTIONAL,IN BOOLEAN Overwrite,IN OUT UINT64 * BufferSize,IN UINTN * BlockSize OPTIONAL,IN EFI_IP_ADDRESS * ServerIp,IN UINT8 * Filename,IN EFI_PXE_BASE_CODE_MTFTP_INFO * Info OPTIONAL,IN BOOLEAN DontUseBuffer)832 EfiPxeBcMtftp (
833 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
834 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
835 IN OUT VOID *BufferPtr OPTIONAL,
836 IN BOOLEAN Overwrite,
837 IN OUT UINT64 *BufferSize,
838 IN UINTN *BlockSize OPTIONAL,
839 IN EFI_IP_ADDRESS *ServerIp,
840 IN UINT8 *Filename,
841 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info OPTIONAL,
842 IN BOOLEAN DontUseBuffer
843 )
844 {
845 PXEBC_PRIVATE_DATA *Private;
846 EFI_PXE_BASE_CODE_MODE *Mode;
847 EFI_MTFTP4_CONFIG_DATA Mtftp4Config;
848 EFI_MTFTP6_CONFIG_DATA Mtftp6Config;
849 VOID *Config;
850 EFI_STATUS Status;
851 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
852
853
854 if ((This == NULL) ||
855 (Filename == NULL) ||
856 (BufferSize == NULL) ||
857 (ServerIp == NULL) ||
858 ((BufferPtr == NULL) && DontUseBuffer) ||
859 ((BlockSize != NULL) && (*BlockSize < PXE_MTFTP_DEFAULT_BLOCK_SIZE)) ||
860 (!NetIp4IsUnicast (NTOHL (ServerIp->Addr[0]), 0) && !NetIp6IsValidUnicast (&ServerIp->v6))) {
861 return EFI_INVALID_PARAMETER;
862 }
863
864 Config = NULL;
865 Status = EFI_DEVICE_ERROR;
866 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
867 Mode = Private->PxeBc.Mode;
868
869 if (Mode->UsingIpv6) {
870 //
871 // Set configuration data for Mtftp6 instance.
872 //
873 ZeroMem (&Mtftp6Config, sizeof (EFI_MTFTP6_CONFIG_DATA));
874 Config = &Mtftp6Config;
875 Mtftp6Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
876 Mtftp6Config.TryCount = PXEBC_MTFTP_RETRIES;
877 CopyMem (&Mtftp6Config.StationIp, &Private->StationIp.v6, sizeof (EFI_IPv6_ADDRESS));
878 CopyMem (&Mtftp6Config.ServerIp, &ServerIp->v6, sizeof (EFI_IPv6_ADDRESS));
879 //
880 // Stop Udp6Read instance
881 //
882 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
883 } else {
884 //
885 // Set configuration data for Mtftp4 instance.
886 //
887 ZeroMem (&Mtftp4Config, sizeof (EFI_MTFTP4_CONFIG_DATA));
888 Config = &Mtftp4Config;
889 Mtftp4Config.UseDefaultSetting = FALSE;
890 Mtftp4Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
891 Mtftp4Config.TryCount = PXEBC_MTFTP_RETRIES;
892 CopyMem (&Mtftp4Config.StationIp, &Private->StationIp.v4, sizeof (EFI_IPv4_ADDRESS));
893 CopyMem (&Mtftp4Config.SubnetMask, &Private->SubnetMask.v4, sizeof (EFI_IPv4_ADDRESS));
894 CopyMem (&Mtftp4Config.GatewayIp, &Private->GatewayIp.v4, sizeof (EFI_IPv4_ADDRESS));
895 CopyMem (&Mtftp4Config.ServerIp, &ServerIp->v4, sizeof (EFI_IPv4_ADDRESS));
896 //
897 // Stop Udp4Read instance
898 //
899 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
900 }
901
902 Mode->TftpErrorReceived = FALSE;
903 Mode->IcmpErrorReceived = FALSE;
904
905 switch (Operation) {
906
907 case EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE:
908 //
909 // Send TFTP request to get file size.
910 //
911 Status = PxeBcTftpGetFileSize (
912 Private,
913 Config,
914 Filename,
915 BlockSize,
916 BufferSize
917 );
918
919 break;
920
921 case EFI_PXE_BASE_CODE_TFTP_READ_FILE:
922 //
923 // Send TFTP request to read file.
924 //
925 Status = PxeBcTftpReadFile (
926 Private,
927 Config,
928 Filename,
929 BlockSize,
930 BufferPtr,
931 BufferSize,
932 DontUseBuffer
933 );
934
935 break;
936
937 case EFI_PXE_BASE_CODE_TFTP_WRITE_FILE:
938 //
939 // Send TFTP request to write file.
940 //
941 Status = PxeBcTftpWriteFile (
942 Private,
943 Config,
944 Filename,
945 Overwrite,
946 BlockSize,
947 BufferPtr,
948 BufferSize
949 );
950
951 break;
952
953 case EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY:
954 //
955 // Send TFTP request to read directory.
956 //
957 Status = PxeBcTftpReadDirectory (
958 Private,
959 Config,
960 Filename,
961 BlockSize,
962 BufferPtr,
963 BufferSize,
964 DontUseBuffer
965 );
966
967 break;
968
969 case EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE:
970 case EFI_PXE_BASE_CODE_MTFTP_READ_FILE:
971 case EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY:
972 Status = EFI_UNSUPPORTED;
973
974 break;
975
976 default:
977 Status = EFI_INVALID_PARAMETER;
978
979 break;
980 }
981
982 if (Status == EFI_ICMP_ERROR) {
983 Mode->IcmpErrorReceived = TRUE;
984 }
985
986 //
987 // Reconfigure the UDP instance with the default configuration.
988 //
989 if (Mode->UsingIpv6) {
990 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
991 } else {
992 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
993 }
994 //
995 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
996 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
997 //
998 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
999 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
1000 This->SetIpFilter (This, &IpFilter);
1001
1002 return Status;
1003 }
1004
1005
1006 /**
1007 Writes a UDP packet to the network interface.
1008
1009 This function writes a UDP packet specified by the (optional HeaderPtr and)
1010 BufferPtr parameters to the network interface. The UDP header is automatically
1011 built by this routine. It uses the parameters OpFlags, DestIp, DestPort, GatewayIp,
1012 SrcIp, and SrcPort to build this header. If the packet is successfully built and
1013 transmitted through the network interface, then EFI_SUCCESS will be returned.
1014 If a timeout occurs during the transmission of the packet, then EFI_TIMEOUT will
1015 be returned. If an ICMP error occurs during the transmission of the packet, then
1016 the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
1017 EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
1018 EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned.
1019
1020 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1021 @param[in] OpFlags The UDP operation flags.
1022 @param[in] DestIp The destination IP address.
1023 @param[in] DestPort The destination UDP port number.
1024 @param[in] GatewayIp The gateway IP address.
1025 @param[in] SrcIp The source IP address.
1026 @param[in, out] SrcPort The source UDP port number.
1027 @param[in] HeaderSize An optional field which may be set to the length of a header
1028 at HeaderPtr to be prefixed to the data at BufferPtr.
1029 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be
1030 prefixed to the data at BufferPtr.
1031 @param[in] BufferSize A pointer to the size of the data at BufferPtr.
1032 @param[in] BufferPtr A pointer to the data to be written.
1033
1034 @retval EFI_SUCCESS The UDP Write operation completed.
1035 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1036 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1037 @retval EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.
1038 @retval EFI_ABORTED The callback function aborted the UDP Write operation.
1039 @retval EFI_TIMEOUT The UDP Write operation timed out.
1040 @retval EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session.
1041
1042 **/
1043 EFI_STATUS
1044 EFIAPI
EfiPxeBcUdpWrite(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN UINT16 OpFlags,IN EFI_IP_ADDRESS * DestIp,IN EFI_PXE_BASE_CODE_UDP_PORT * DestPort,IN EFI_IP_ADDRESS * GatewayIp OPTIONAL,IN EFI_IP_ADDRESS * SrcIp OPTIONAL,IN OUT EFI_PXE_BASE_CODE_UDP_PORT * SrcPort OPTIONAL,IN UINTN * HeaderSize OPTIONAL,IN VOID * HeaderPtr OPTIONAL,IN UINTN * BufferSize,IN VOID * BufferPtr)1045 EfiPxeBcUdpWrite (
1046 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1047 IN UINT16 OpFlags,
1048 IN EFI_IP_ADDRESS *DestIp,
1049 IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
1050 IN EFI_IP_ADDRESS *GatewayIp OPTIONAL,
1051 IN EFI_IP_ADDRESS *SrcIp OPTIONAL,
1052 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
1053 IN UINTN *HeaderSize OPTIONAL,
1054 IN VOID *HeaderPtr OPTIONAL,
1055 IN UINTN *BufferSize,
1056 IN VOID *BufferPtr
1057 )
1058 {
1059 PXEBC_PRIVATE_DATA *Private;
1060 EFI_PXE_BASE_CODE_MODE *Mode;
1061 EFI_UDP4_SESSION_DATA Udp4Session;
1062 EFI_UDP6_SESSION_DATA Udp6Session;
1063 EFI_STATUS Status;
1064 BOOLEAN DoNotFragment;
1065
1066 if (This == NULL || DestIp == NULL || DestPort == NULL) {
1067 return EFI_INVALID_PARAMETER;
1068 }
1069
1070 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1071 Mode = Private->PxeBc.Mode;
1072
1073 if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT) != 0) {
1074 DoNotFragment = FALSE;
1075 } else {
1076 DoNotFragment = TRUE;
1077 }
1078
1079 if (!Mode->UsingIpv6 && GatewayIp != NULL && !NetIp4IsUnicast (NTOHL (GatewayIp->Addr[0]), 0)) {
1080 //
1081 // Gateway is provided but it's not a unicast IPv4 address, while it will be ignored for IPv6.
1082 //
1083 return EFI_INVALID_PARAMETER;
1084 }
1085
1086 if (HeaderSize != NULL && (*HeaderSize == 0 || HeaderPtr == NULL)) {
1087 return EFI_INVALID_PARAMETER;
1088 }
1089
1090 if (BufferSize == NULL || (*BufferSize != 0 && BufferPtr == NULL)) {
1091 return EFI_INVALID_PARAMETER;
1092 }
1093
1094 if (!Mode->Started) {
1095 return EFI_NOT_STARTED;
1096 }
1097
1098 if (!Private->IsAddressOk && SrcIp == NULL) {
1099 return EFI_INVALID_PARAMETER;
1100 }
1101
1102 if (Private->CurSrcPort == 0 ||
1103 (SrcPort != NULL && *SrcPort != Private->CurSrcPort)) {
1104 //
1105 // Reconfigure UDPv4/UDPv6 for UdpWrite if the source port changed.
1106 //
1107 if (SrcPort != NULL) {
1108 Private->CurSrcPort = *SrcPort;
1109 }
1110 }
1111
1112 if (Mode->UsingIpv6) {
1113 Status = PxeBcConfigUdp6Write (
1114 Private->Udp6Write,
1115 &Private->StationIp.v6,
1116 &Private->CurSrcPort
1117 );
1118 } else {
1119 //
1120 // Configure the UDPv4 instance with gateway information from DHCP server as default.
1121 //
1122 Status = PxeBcConfigUdp4Write (
1123 Private->Udp4Write,
1124 &Private->StationIp.v4,
1125 &Private->SubnetMask.v4,
1126 &Private->GatewayIp.v4,
1127 &Private->CurSrcPort,
1128 DoNotFragment
1129 );
1130 }
1131
1132 if (EFI_ERROR (Status)) {
1133 Private->CurSrcPort = 0;
1134 return EFI_INVALID_PARAMETER;
1135 } else if (SrcPort != NULL) {
1136 *SrcPort = Private->CurSrcPort;
1137 }
1138
1139 //
1140 // Start a timer as timeout event for this blocking API.
1141 //
1142 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT);
1143
1144 if (Mode->UsingIpv6) {
1145 //
1146 // Construct UDPv6 session data.
1147 //
1148 ZeroMem (&Udp6Session, sizeof (EFI_UDP6_SESSION_DATA));
1149 CopyMem (&Udp6Session.DestinationAddress, DestIp, sizeof (EFI_IPv6_ADDRESS));
1150 Udp6Session.DestinationPort = *DestPort;
1151 if (SrcIp != NULL) {
1152 CopyMem (&Udp6Session.SourceAddress, SrcIp, sizeof (EFI_IPv6_ADDRESS));
1153 }
1154 if (SrcPort != NULL) {
1155 Udp6Session.SourcePort = *SrcPort;
1156 }
1157
1158 Status = PxeBcUdp6Write (
1159 Private->Udp6Write,
1160 &Udp6Session,
1161 Private->UdpTimeOutEvent,
1162 HeaderSize,
1163 HeaderPtr,
1164 BufferSize,
1165 BufferPtr
1166 );
1167 } else {
1168 //
1169 // Construct UDPv4 session data.
1170 //
1171 ZeroMem (&Udp4Session, sizeof (EFI_UDP4_SESSION_DATA));
1172 CopyMem (&Udp4Session.DestinationAddress, DestIp, sizeof (EFI_IPv4_ADDRESS));
1173 Udp4Session.DestinationPort = *DestPort;
1174 if (SrcIp != NULL) {
1175 CopyMem (&Udp4Session.SourceAddress, SrcIp, sizeof (EFI_IPv4_ADDRESS));
1176 }
1177 if (SrcPort != NULL) {
1178 Udp4Session.SourcePort = *SrcPort;
1179 }
1180 //
1181 // Override the gateway information if user specified.
1182 //
1183 Status = PxeBcUdp4Write (
1184 Private->Udp4Write,
1185 &Udp4Session,
1186 Private->UdpTimeOutEvent,
1187 (EFI_IPv4_ADDRESS *) GatewayIp,
1188 HeaderSize,
1189 HeaderPtr,
1190 BufferSize,
1191 BufferPtr
1192 );
1193 }
1194
1195 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0);
1196
1197
1198 //
1199 // Reset the UdpWrite instance.
1200 //
1201 if (Mode->UsingIpv6) {
1202 Private->Udp6Write->Configure (Private->Udp6Write, NULL);
1203 } else {
1204 Private->Udp4Write->Configure (Private->Udp4Write, NULL);
1205 }
1206
1207 return Status;
1208 }
1209
1210
1211 /**
1212 Reads a UDP packet from the network interface.
1213 +
1214 This function reads a UDP packet from a network interface. The data contents
1215 are returned in (the optional HeaderPtr and) BufferPtr, and the size of the
1216 buffer received is returned in BufferSize . If the input BufferSize is smaller
1217 than the UDP packet received (less optional HeaderSize), it will be set to the
1218 required size, and EFI_BUFFER_TOO_SMALL will be returned. In this case, the
1219 contents of BufferPtr are undefined, and the packet is lost. If a UDP packet is
1220 successfully received, then EFI_SUCCESS will be returned, and the information
1221 from the UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if
1222 they are not NULL. Depending on the values of OpFlags and the DestIp, DestPort,
1223 SrcIp, and SrcPort input values, different types of UDP packet receive filtering
1224 will be performed. The following tables summarize these receive filter operations.
1225
1226 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1227 @param[in] OpFlags The UDP operation flags.
1228 @param[in, out] DestIp The destination IP address.
1229 @param[in, out] DestPort The destination UDP port number.
1230 @param[in, out] SrcIp The source IP address.
1231 @param[in, out] SrcPort The source UDP port number.
1232 @param[in] HeaderSize An optional field which may be set to the length of a
1233 header at HeaderPtr to be prefixed to the data at BufferPtr.
1234 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be
1235 prefixed to the data at BufferPtr.
1236 @param[in, out] BufferSize A pointer to the size of the data at BufferPtr.
1237 @param[in] BufferPtr A pointer to the data to be read.
1238
1239 @retval EFI_SUCCESS The UDP Read operation was completed.
1240 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1241 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1242 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
1243 @retval EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.
1244 @retval EFI_ABORTED The callback function aborted the UDP Read operation.
1245 @retval EFI_TIMEOUT The UDP Read operation timed out.
1246
1247 **/
1248 EFI_STATUS
1249 EFIAPI
EfiPxeBcUdpRead(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN UINT16 OpFlags,IN OUT EFI_IP_ADDRESS * DestIp OPTIONAL,IN OUT EFI_PXE_BASE_CODE_UDP_PORT * DestPort OPTIONAL,IN OUT EFI_IP_ADDRESS * SrcIp OPTIONAL,IN OUT EFI_PXE_BASE_CODE_UDP_PORT * SrcPort OPTIONAL,IN UINTN * HeaderSize OPTIONAL,IN VOID * HeaderPtr OPTIONAL,IN OUT UINTN * BufferSize,IN VOID * BufferPtr)1250 EfiPxeBcUdpRead (
1251 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1252 IN UINT16 OpFlags,
1253 IN OUT EFI_IP_ADDRESS *DestIp OPTIONAL,
1254 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort OPTIONAL,
1255 IN OUT EFI_IP_ADDRESS *SrcIp OPTIONAL,
1256 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
1257 IN UINTN *HeaderSize OPTIONAL,
1258 IN VOID *HeaderPtr OPTIONAL,
1259 IN OUT UINTN *BufferSize,
1260 IN VOID *BufferPtr
1261 )
1262 {
1263 PXEBC_PRIVATE_DATA *Private;
1264 EFI_PXE_BASE_CODE_MODE *Mode;
1265 EFI_UDP4_COMPLETION_TOKEN Udp4Token;
1266 EFI_UDP6_COMPLETION_TOKEN Udp6Token;
1267 EFI_UDP4_RECEIVE_DATA *Udp4Rx;
1268 EFI_UDP6_RECEIVE_DATA *Udp6Rx;
1269 EFI_STATUS Status;
1270 BOOLEAN IsDone;
1271 BOOLEAN IsMatched;
1272 UINTN CopiedLen;
1273 UINTN HeaderLen;
1274 UINTN HeaderCopiedLen;
1275 UINTN BufferCopiedLen;
1276 UINT32 FragmentLength;
1277 UINTN FragmentIndex;
1278 UINT8 *FragmentBuffer;
1279
1280 if (This == NULL) {
1281 return EFI_INVALID_PARAMETER;
1282 }
1283
1284 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1285 Mode = Private->PxeBc.Mode;
1286 IsDone = FALSE;
1287 IsMatched = FALSE;
1288 Udp4Rx = NULL;
1289 Udp6Rx = NULL;
1290
1291 if (((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) == 0 && DestPort == NULL) ||
1292 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP) == 0 && SrcIp == NULL) ||
1293 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT) == 0 && SrcPort == NULL)) {
1294 return EFI_INVALID_PARAMETER;
1295 }
1296
1297 if ((HeaderSize != NULL && *HeaderSize == 0) || (HeaderSize != NULL && HeaderPtr == NULL)) {
1298 return EFI_INVALID_PARAMETER;
1299 }
1300
1301 if ((BufferSize == NULL) || (BufferPtr == NULL)) {
1302 return EFI_INVALID_PARAMETER;
1303 }
1304
1305 if (!Mode->Started) {
1306 return EFI_NOT_STARTED;
1307 }
1308
1309 ZeroMem (&Udp6Token, sizeof (EFI_UDP6_COMPLETION_TOKEN));
1310 ZeroMem (&Udp4Token, sizeof (EFI_UDP4_COMPLETION_TOKEN));
1311
1312 if (Mode->UsingIpv6) {
1313 Status = gBS->CreateEvent (
1314 EVT_NOTIFY_SIGNAL,
1315 TPL_NOTIFY,
1316 PxeBcCommonNotify,
1317 &IsDone,
1318 &Udp6Token.Event
1319 );
1320 if (EFI_ERROR (Status)) {
1321 return EFI_OUT_OF_RESOURCES;
1322 }
1323 } else {
1324 Status = gBS->CreateEvent (
1325 EVT_NOTIFY_SIGNAL,
1326 TPL_NOTIFY,
1327 PxeBcCommonNotify,
1328 &IsDone,
1329 &Udp4Token.Event
1330 );
1331 if (EFI_ERROR (Status)) {
1332 return EFI_OUT_OF_RESOURCES;
1333 }
1334 }
1335
1336 //
1337 // Start a timer as timeout event for this blocking API.
1338 //
1339 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT);
1340 Mode->IcmpErrorReceived = FALSE;
1341
1342 //
1343 // Read packet by Udp4Read/Udp6Read until matched or timeout.
1344 //
1345 while (!IsMatched && !EFI_ERROR (Status)) {
1346 if (Mode->UsingIpv6) {
1347 Status = PxeBcUdp6Read (
1348 Private->Udp6Read,
1349 &Udp6Token,
1350 Mode,
1351 Private->UdpTimeOutEvent,
1352 OpFlags,
1353 &IsDone,
1354 &IsMatched,
1355 DestIp,
1356 DestPort,
1357 SrcIp,
1358 SrcPort
1359 );
1360 } else {
1361 Status = PxeBcUdp4Read (
1362 Private->Udp4Read,
1363 &Udp4Token,
1364 Mode,
1365 Private->UdpTimeOutEvent,
1366 OpFlags,
1367 &IsDone,
1368 &IsMatched,
1369 DestIp,
1370 DestPort,
1371 SrcIp,
1372 SrcPort
1373 );
1374 }
1375 }
1376
1377 if (Status == EFI_ICMP_ERROR ||
1378 Status == EFI_NETWORK_UNREACHABLE ||
1379 Status == EFI_HOST_UNREACHABLE ||
1380 Status == EFI_PROTOCOL_UNREACHABLE ||
1381 Status == EFI_PORT_UNREACHABLE) {
1382 //
1383 // Get different return status for icmp error from Udp, refers to UEFI spec.
1384 //
1385 Mode->IcmpErrorReceived = TRUE;
1386 }
1387 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0);
1388
1389 if (IsMatched) {
1390 //
1391 // Copy the rececived packet to user if matched by filter.
1392 //
1393 if (Mode->UsingIpv6) {
1394 Udp6Rx = Udp6Token.Packet.RxData;
1395 ASSERT (Udp6Rx != NULL);
1396
1397 HeaderLen = 0;
1398 if (HeaderSize != NULL) {
1399 HeaderLen = MIN (*HeaderSize, Udp6Rx->DataLength);
1400 }
1401
1402 if (Udp6Rx->DataLength - HeaderLen > *BufferSize) {
1403 Status = EFI_BUFFER_TOO_SMALL;
1404 } else {
1405 if (HeaderSize != NULL) {
1406 *HeaderSize = HeaderLen;
1407 }
1408 *BufferSize = Udp6Rx->DataLength - HeaderLen;
1409
1410 HeaderCopiedLen = 0;
1411 BufferCopiedLen = 0;
1412 for (FragmentIndex = 0; FragmentIndex < Udp6Rx->FragmentCount; FragmentIndex++) {
1413 FragmentLength = Udp6Rx->FragmentTable[FragmentIndex].FragmentLength;
1414 FragmentBuffer = Udp6Rx->FragmentTable[FragmentIndex].FragmentBuffer;
1415 if (HeaderCopiedLen + FragmentLength < HeaderLen) {
1416 //
1417 // Copy the header part of received data.
1418 //
1419 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
1420 HeaderCopiedLen += FragmentLength;
1421 } else if (HeaderCopiedLen < HeaderLen) {
1422 //
1423 // Copy the header part of received data.
1424 //
1425 CopiedLen = HeaderLen - HeaderCopiedLen;
1426 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
1427 HeaderCopiedLen += CopiedLen;
1428
1429 //
1430 // Copy the other part of received data.
1431 //
1432 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
1433 BufferCopiedLen += (FragmentLength - CopiedLen);
1434 } else {
1435 //
1436 // Copy the other part of received data.
1437 //
1438 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
1439 BufferCopiedLen += FragmentLength;
1440 }
1441 }
1442 }
1443 //
1444 // Recycle the receiving buffer after copy to user.
1445 //
1446 gBS->SignalEvent (Udp6Rx->RecycleSignal);
1447 } else {
1448 Udp4Rx = Udp4Token.Packet.RxData;
1449 ASSERT (Udp4Rx != NULL);
1450
1451 HeaderLen = 0;
1452 if (HeaderSize != NULL) {
1453 HeaderLen = MIN (*HeaderSize, Udp4Rx->DataLength);
1454 }
1455
1456 if (Udp4Rx->DataLength - HeaderLen > *BufferSize) {
1457 Status = EFI_BUFFER_TOO_SMALL;
1458 } else {
1459 if (HeaderSize != NULL) {
1460 *HeaderSize = HeaderLen;
1461 }
1462 *BufferSize = Udp4Rx->DataLength - HeaderLen;
1463
1464 HeaderCopiedLen = 0;
1465 BufferCopiedLen = 0;
1466 for (FragmentIndex = 0; FragmentIndex < Udp4Rx->FragmentCount; FragmentIndex++) {
1467 FragmentLength = Udp4Rx->FragmentTable[FragmentIndex].FragmentLength;
1468 FragmentBuffer = Udp4Rx->FragmentTable[FragmentIndex].FragmentBuffer;
1469 if (HeaderCopiedLen + FragmentLength < HeaderLen) {
1470 //
1471 // Copy the header part of received data.
1472 //
1473 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
1474 HeaderCopiedLen += FragmentLength;
1475 } else if (HeaderCopiedLen < HeaderLen) {
1476 //
1477 // Copy the header part of received data.
1478 //
1479 CopiedLen = HeaderLen - HeaderCopiedLen;
1480 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
1481 HeaderCopiedLen += CopiedLen;
1482
1483 //
1484 // Copy the other part of received data.
1485 //
1486 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
1487 BufferCopiedLen += (FragmentLength - CopiedLen);
1488 } else {
1489 //
1490 // Copy the other part of received data.
1491 //
1492 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
1493 BufferCopiedLen += FragmentLength;
1494 }
1495 }
1496 }
1497 //
1498 // Recycle the receiving buffer after copy to user.
1499 //
1500 gBS->SignalEvent (Udp4Rx->RecycleSignal);
1501 }
1502 }
1503
1504 if (Mode->UsingIpv6) {
1505 Private->Udp6Read->Cancel (Private->Udp6Read, &Udp6Token);
1506 gBS->CloseEvent (Udp6Token.Event);
1507 } else {
1508 Private->Udp4Read->Cancel (Private->Udp4Read, &Udp4Token);
1509 gBS->CloseEvent (Udp4Token.Event);
1510 }
1511
1512 return Status;
1513 }
1514
1515
1516 /**
1517 Updates the IP receive filters of a network device and enables software filtering.
1518
1519 The NewFilter field is used to modify the network device's current IP receive
1520 filter settings and to enable a software filter. This function updates the IpFilter
1521 field of the EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter.
1522 The software filter is used when the USE_FILTER in OpFlags is set to UdpRead().
1523 The current hardware filter remains in effect no matter what the settings of OpFlags.
1524 This is so that the meaning of ANY_DEST_IP set in OpFlags to UdpRead() is from those
1525 packets whose reception is enabled in hardware-physical NIC address (unicast),
1526 broadcast address, logical address or addresses (multicast), or all (promiscuous).
1527 UdpRead() does not modify the IP filter settings.
1528 Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive
1529 filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
1530 If an application or driver wishes to preserve the IP receive filter settings,
1531 it will have to preserve the IP receive filter settings before these calls, and
1532 use SetIpFilter() to restore them after the calls. If incompatible filtering is
1533 requested (for example, PROMISCUOUS with anything else), or if the device does not
1534 support a requested filter setting and it cannot be accommodated in software
1535 (for example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned.
1536 The IPlist field is used to enable IPs other than the StationIP. They may be
1537 multicast or unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP,
1538 then both the StationIP and the IPs from the IPlist will be used.
1539
1540 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1541 @param[in] NewFilter Pointer to the new set of IP receive filters.
1542
1543 @retval EFI_SUCCESS The IP receive filter settings were updated.
1544 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1545 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1546
1547 **/
1548 EFI_STATUS
1549 EFIAPI
EfiPxeBcSetIpFilter(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN EFI_PXE_BASE_CODE_IP_FILTER * NewFilter)1550 EfiPxeBcSetIpFilter (
1551 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1552 IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
1553 )
1554 {
1555 EFI_STATUS Status;
1556 PXEBC_PRIVATE_DATA *Private;
1557 EFI_PXE_BASE_CODE_MODE *Mode;
1558 EFI_UDP4_CONFIG_DATA *Udp4Cfg;
1559 EFI_UDP6_CONFIG_DATA *Udp6Cfg;
1560 UINTN Index;
1561 BOOLEAN NeedPromiscuous;
1562 BOOLEAN AcceptPromiscuous;
1563 BOOLEAN AcceptBroadcast;
1564 BOOLEAN MultiCastUpdate;
1565
1566 if (This == NULL || NewFilter == NULL) {
1567 return EFI_INVALID_PARAMETER;
1568 }
1569
1570 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1571 Mode = Private->PxeBc.Mode;
1572 Status = EFI_SUCCESS;
1573 NeedPromiscuous = FALSE;
1574
1575 if (!Mode->Started) {
1576 return EFI_NOT_STARTED;
1577 }
1578
1579 for (Index = 0; Index < NewFilter->IpCnt; Index++) {
1580 ASSERT (Index < EFI_PXE_BASE_CODE_MAX_IPCNT);
1581 if (!Mode->UsingIpv6 &&
1582 IP4_IS_LOCAL_BROADCAST (EFI_IP4 (NewFilter->IpList[Index].v4))) {
1583 //
1584 // IPv4 broadcast address should not be in IP filter.
1585 //
1586 return EFI_INVALID_PARAMETER;
1587 }
1588 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0 &&
1589 (NetIp4IsUnicast (EFI_IP4 (NewFilter->IpList[Index].v4), 0) ||
1590 NetIp6IsValidUnicast (&NewFilter->IpList[Index].v6))) {
1591 //
1592 // If EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP is set and IPv4/IPv6 address
1593 // is in IpList, promiscuous mode is needed.
1594 //
1595 NeedPromiscuous = TRUE;
1596 }
1597 }
1598
1599 AcceptPromiscuous = FALSE;
1600 AcceptBroadcast = FALSE;
1601 MultiCastUpdate = FALSE;
1602
1603 if (NeedPromiscuous ||
1604 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS) != 0 ||
1605 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST) != 0) {
1606 //
1607 // Configure UDPv4/UDPv6 as promiscuous mode to receive all packets.
1608 //
1609 AcceptPromiscuous = TRUE;
1610 } else if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST) != 0) {
1611 //
1612 // Configure UDPv4 to receive all broadcast packets.
1613 //
1614 AcceptBroadcast = TRUE;
1615 }
1616
1617 //
1618 // In multicast condition when Promiscuous FALSE and IpCnt no-zero.
1619 // Here check if there is any update of the multicast ip address. If yes,
1620 // we need leave the old multicast group (by Config UDP instance to NULL),
1621 // and join the new multicast group.
1622 //
1623 if (!AcceptPromiscuous) {
1624 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0) {
1625 if (Mode->IpFilter.IpCnt != NewFilter->IpCnt) {
1626 MultiCastUpdate = TRUE;
1627 } else if (CompareMem (Mode->IpFilter.IpList, NewFilter->IpList, NewFilter->IpCnt * sizeof (EFI_IP_ADDRESS)) != 0 ) {
1628 MultiCastUpdate = TRUE;
1629 }
1630 }
1631 }
1632
1633 if (!Mode->UsingIpv6) {
1634 //
1635 // Check whether we need reconfigure the UDP4 instance.
1636 //
1637 Udp4Cfg = &Private->Udp4CfgData;
1638 if ((AcceptPromiscuous != Udp4Cfg->AcceptPromiscuous) ||
1639 (AcceptBroadcast != Udp4Cfg->AcceptBroadcast) || MultiCastUpdate) {
1640 //
1641 // Clear the UDP4 instance configuration, all joined groups will be left
1642 // during the operation.
1643 //
1644 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
1645
1646 //
1647 // Configure the UDP instance with the new configuration.
1648 //
1649 Udp4Cfg->AcceptPromiscuous = AcceptPromiscuous;
1650 Udp4Cfg->AcceptBroadcast = AcceptBroadcast;
1651 Status = Private->Udp4Read->Configure (Private->Udp4Read, Udp4Cfg);
1652 if (EFI_ERROR (Status)) {
1653 return Status;
1654 }
1655
1656 //
1657 // In not Promiscuous mode, need to join the new multicast group.
1658 //
1659 if (!AcceptPromiscuous) {
1660 for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
1661 if (IP4_IS_MULTICAST (EFI_NTOHL (NewFilter->IpList[Index].v4))) {
1662 //
1663 // Join the mutilcast group.
1664 //
1665 Status = Private->Udp4Read->Groups (Private->Udp4Read, TRUE, &NewFilter->IpList[Index].v4);
1666 if (EFI_ERROR (Status)) {
1667 return Status;
1668 }
1669 }
1670 }
1671 }
1672 }
1673 } else {
1674 //
1675 // Check whether we need reconfigure the UDP6 instance.
1676 //
1677 Udp6Cfg = &Private->Udp6CfgData;
1678 if ((AcceptPromiscuous != Udp6Cfg->AcceptPromiscuous) || MultiCastUpdate) {
1679 //
1680 // Clear the UDP6 instance configuration, all joined groups will be left
1681 // during the operation.
1682 //
1683 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
1684
1685 //
1686 // Configure the UDP instance with the new configuration.
1687 //
1688 Udp6Cfg->AcceptPromiscuous = AcceptPromiscuous;
1689 Status = Private->Udp6Read->Configure (Private->Udp6Read, Udp6Cfg);
1690 if (EFI_ERROR (Status)) {
1691 return Status;
1692 }
1693
1694 //
1695 // In not Promiscuous mode, need to join the new multicast group.
1696 //
1697 if (!AcceptPromiscuous) {
1698 for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
1699 if (IP6_IS_MULTICAST (&NewFilter->IpList[Index].v6)) {
1700 //
1701 // Join the mutilcast group.
1702 //
1703 Status = Private->Udp6Read->Groups (Private->Udp6Read, TRUE, &NewFilter->IpList[Index].v6);
1704 if (EFI_ERROR (Status)) {
1705 return Status;
1706 }
1707 }
1708 }
1709 }
1710 }
1711 }
1712
1713 //
1714 // Save the new IP filter into mode data.
1715 //
1716 CopyMem (&Mode->IpFilter, NewFilter, sizeof (Mode->IpFilter));
1717
1718 return Status;
1719 }
1720
1721
1722 /**
1723 Uses the ARP protocol to resolve a MAC address. It is not supported for IPv6.
1724
1725 This function uses the ARP protocol to resolve a MAC address. The IP address specified
1726 by IpAddr is used to resolve a MAC address. If the ARP protocol succeeds in resolving
1727 the specified address, then the ArpCacheEntries and ArpCache fields of the mode data
1728 are updated, and EFI_SUCCESS is returned. If MacAddr is not NULL, the resolved
1729 MAC address is placed there as well. If the PXE Base Code protocol is in the
1730 stopped state, then EFI_NOT_STARTED is returned. If the ARP protocol encounters
1731 a timeout condition while attempting to resolve an address, then EFI_TIMEOUT is
1732 returned. If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
1733 then EFI_ABORTED is returned.
1734
1735 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1736 @param[in] IpAddr Pointer to the IP address that is used to resolve a MAC address.
1737 @param[in] MacAddr If not NULL, a pointer to the MAC address that was resolved with the
1738 ARP protocol.
1739
1740 @retval EFI_SUCCESS The IP or MAC address was resolved.
1741 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1742 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1743 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
1744 @retval EFI_ICMP_ERROR An error occur with the ICMP packet message.
1745
1746 **/
1747 EFI_STATUS
1748 EFIAPI
EfiPxeBcArp(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN EFI_IP_ADDRESS * IpAddr,IN EFI_MAC_ADDRESS * MacAddr OPTIONAL)1749 EfiPxeBcArp (
1750 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1751 IN EFI_IP_ADDRESS *IpAddr,
1752 IN EFI_MAC_ADDRESS *MacAddr OPTIONAL
1753 )
1754 {
1755 PXEBC_PRIVATE_DATA *Private;
1756 EFI_PXE_BASE_CODE_MODE *Mode;
1757 EFI_EVENT ResolvedEvent;
1758 EFI_STATUS Status;
1759 EFI_MAC_ADDRESS TempMac;
1760 EFI_MAC_ADDRESS ZeroMac;
1761 BOOLEAN IsResolved;
1762
1763 if (This == NULL || IpAddr == NULL) {
1764 return EFI_INVALID_PARAMETER;
1765 }
1766
1767 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1768 Mode = Private->PxeBc.Mode;
1769 ResolvedEvent = NULL;
1770 Status = EFI_SUCCESS;
1771 IsResolved = FALSE;
1772
1773 if (!Mode->Started) {
1774 return EFI_NOT_STARTED;
1775 }
1776
1777 if (Mode->UsingIpv6) {
1778 return EFI_UNSUPPORTED;
1779 }
1780
1781 //
1782 // Station address should be ready before do arp.
1783 //
1784 if (!Private->IsAddressOk) {
1785 return EFI_INVALID_PARAMETER;
1786 }
1787
1788 Mode->IcmpErrorReceived = FALSE;
1789 ZeroMem (&TempMac, sizeof (EFI_MAC_ADDRESS));
1790 ZeroMem (&ZeroMac, sizeof (EFI_MAC_ADDRESS));
1791
1792 if (!Mode->AutoArp) {
1793 //
1794 // If AutoArp is FALSE, only search in the current Arp cache.
1795 //
1796 PxeBcArpCacheUpdate (NULL, Private);
1797 if (!PxeBcCheckArpCache (Mode, &IpAddr->v4, &TempMac)) {
1798 Status = EFI_DEVICE_ERROR;
1799 goto ON_EXIT;
1800 }
1801 } else {
1802 Status = gBS->CreateEvent (
1803 EVT_NOTIFY_SIGNAL,
1804 TPL_NOTIFY,
1805 PxeBcCommonNotify,
1806 &IsResolved,
1807 &ResolvedEvent
1808 );
1809 if (EFI_ERROR (Status)) {
1810 goto ON_EXIT;
1811 }
1812
1813 //
1814 // If AutoArp is TRUE, try to send Arp request on initiative.
1815 //
1816 Status = Private->Arp->Request (Private->Arp, &IpAddr->v4, ResolvedEvent, &TempMac);
1817 if (EFI_ERROR (Status) && Status != EFI_NOT_READY) {
1818 goto ON_EXIT;
1819 }
1820
1821 while (!IsResolved) {
1822 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) {
1823 break;
1824 }
1825 }
1826 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) {
1827 Status = EFI_SUCCESS;
1828 } else {
1829 Status = EFI_TIMEOUT;
1830 }
1831 }
1832
1833 //
1834 // Copy the Mac address to user if needed.
1835 //
1836 if (MacAddr != NULL && !EFI_ERROR (Status)) {
1837 CopyMem (MacAddr, &TempMac, sizeof (EFI_MAC_ADDRESS));
1838 }
1839
1840 ON_EXIT:
1841 if (ResolvedEvent != NULL) {
1842 gBS->CloseEvent (ResolvedEvent);
1843 }
1844 return Status;
1845 }
1846
1847
1848 /**
1849 Updates the parameters that affect the operation of the PXE Base Code Protocol.
1850
1851 This function sets parameters that affect the operation of the PXE Base Code Protocol.
1852 The parameter specified by NewAutoArp is used to control the generation of ARP
1853 protocol packets. If NewAutoArp is TRUE, then ARP Protocol packets will be generated
1854 as required by the PXE Base Code Protocol. If NewAutoArp is FALSE, then no ARP
1855 Protocol packets will be generated. In this case, the only mappings that are
1856 available are those stored in the ArpCache of the EFI_PXE_BASE_CODE_MODE structure.
1857 If there are not enough mappings in the ArpCache to perform a PXE Base Code Protocol
1858 service, then the service will fail. This function updates the AutoArp field of
1859 the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.
1860 The SetParameters() call must be invoked after a Callback Protocol is installed
1861 to enable the use of callbacks.
1862
1863 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1864 @param[in] NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
1865 current value of AutoARP.
1866 @param[in] NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
1867 current value of SendGUID.
1868 @param[in] NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
1869 the "time to live" field of the IP header.
1870 @param[in] NewToS If not NULL, a pointer to be used in place of the current value of ToS,
1871 the "type of service" field of the IP header.
1872 @param[in] NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
1873 current value of the MakeCallback field of the Mode structure.
1874
1875 @retval EFI_SUCCESS The new parameters values were updated.
1876 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1877 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1878
1879 **/
1880 EFI_STATUS
1881 EFIAPI
EfiPxeBcSetParameters(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN BOOLEAN * NewAutoArp OPTIONAL,IN BOOLEAN * NewSendGUID OPTIONAL,IN UINT8 * NewTTL OPTIONAL,IN UINT8 * NewToS OPTIONAL,IN BOOLEAN * NewMakeCallback OPTIONAL)1882 EfiPxeBcSetParameters (
1883 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1884 IN BOOLEAN *NewAutoArp OPTIONAL,
1885 IN BOOLEAN *NewSendGUID OPTIONAL,
1886 IN UINT8 *NewTTL OPTIONAL,
1887 IN UINT8 *NewToS OPTIONAL,
1888 IN BOOLEAN *NewMakeCallback OPTIONAL
1889 )
1890 {
1891 PXEBC_PRIVATE_DATA *Private;
1892 EFI_PXE_BASE_CODE_MODE *Mode;
1893 EFI_GUID SystemGuid;
1894 EFI_STATUS Status;
1895
1896 if (This == NULL) {
1897 return EFI_INVALID_PARAMETER;
1898 }
1899
1900 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1901 Mode = Private->PxeBc.Mode;
1902
1903 if (!Mode->Started) {
1904 return EFI_NOT_STARTED;
1905 }
1906
1907 if (NewMakeCallback != NULL) {
1908 if (*NewMakeCallback) {
1909 //
1910 // Update the previous PxeBcCallback protocol.
1911 //
1912 Status = gBS->HandleProtocol (
1913 Private->Controller,
1914 &gEfiPxeBaseCodeCallbackProtocolGuid,
1915 (VOID **) &Private->PxeBcCallback
1916 );
1917
1918 if (EFI_ERROR (Status) || (Private->PxeBcCallback->Callback == NULL)) {
1919 return EFI_INVALID_PARAMETER;
1920 }
1921 } else {
1922 Private->PxeBcCallback = NULL;
1923 }
1924 Mode->MakeCallbacks = *NewMakeCallback;
1925 }
1926
1927 if (NewSendGUID != NULL) {
1928 if (*NewSendGUID && EFI_ERROR (NetLibGetSystemGuid (&SystemGuid))) {
1929 return EFI_INVALID_PARAMETER;
1930 }
1931 Mode->SendGUID = *NewSendGUID;
1932 }
1933
1934 if (NewAutoArp != NULL) {
1935 Mode->AutoArp = *NewAutoArp;
1936 }
1937
1938 if (NewTTL != NULL) {
1939 Mode->TTL = *NewTTL;
1940 }
1941
1942 if (NewToS != NULL) {
1943 Mode->ToS = *NewToS;
1944 }
1945
1946 return EFI_SUCCESS;
1947 }
1948
1949
1950 /**
1951 Updates the station IP address and/or subnet mask values of a network device.
1952
1953 This function updates the station IP address and/or subnet mask values of a network
1954 device. The NewStationIp field is used to modify the network device's current IP address.
1955 If NewStationIP is NULL, then the current IP address will not be modified. Otherwise,
1956 this function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure
1957 with NewStationIp. The NewSubnetMask field is used to modify the network device's current subnet
1958 mask. If NewSubnetMask is NULL, then the current subnet mask will not be modified.
1959 Otherwise, this function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE
1960 structure with NewSubnetMask.
1961
1962 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1963 @param[in] NewStationIp Pointer to the new IP address to be used by the network device.
1964 @param[in] NewSubnetMask Pointer to the new subnet mask to be used by the network device.
1965
1966 @retval EFI_SUCCESS The new station IP address and/or subnet mask were updated.
1967 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1968 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1969
1970 **/
1971 EFI_STATUS
1972 EFIAPI
EfiPxeBcSetStationIP(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN EFI_IP_ADDRESS * NewStationIp OPTIONAL,IN EFI_IP_ADDRESS * NewSubnetMask OPTIONAL)1973 EfiPxeBcSetStationIP (
1974 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1975 IN EFI_IP_ADDRESS *NewStationIp OPTIONAL,
1976 IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL
1977 )
1978 {
1979 EFI_STATUS Status;
1980 PXEBC_PRIVATE_DATA *Private;
1981 EFI_PXE_BASE_CODE_MODE *Mode;
1982 EFI_ARP_CONFIG_DATA ArpConfigData;
1983
1984 if (This == NULL) {
1985 return EFI_INVALID_PARAMETER;
1986 }
1987
1988 if (NewStationIp != NULL &&
1989 (!NetIp4IsUnicast (NTOHL (NewStationIp->Addr[0]), 0) &&
1990 !NetIp6IsValidUnicast (&NewStationIp->v6))) {
1991 return EFI_INVALID_PARAMETER;
1992 }
1993
1994 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1995 Mode = Private->PxeBc.Mode;
1996 Status = EFI_SUCCESS;
1997
1998 if (!Mode->UsingIpv6 &&
1999 NewSubnetMask != NULL &&
2000 !IP4_IS_VALID_NETMASK (NTOHL (NewSubnetMask->Addr[0]))) {
2001 return EFI_INVALID_PARAMETER;
2002 }
2003
2004 if (!Mode->Started) {
2005 return EFI_NOT_STARTED;
2006 }
2007
2008 if (Mode->UsingIpv6 && NewStationIp != NULL) {
2009 //
2010 // Set the IPv6 address by Ip6Config protocol.
2011 //
2012 Status = PxeBcRegisterIp6Address (Private, &NewStationIp->v6);
2013 if (EFI_ERROR (Status)) {
2014 goto ON_EXIT;
2015 }
2016 } else if (!Mode->UsingIpv6 && NewStationIp != NULL) {
2017 //
2018 // Configure the corresponding ARP with the IPv4 address.
2019 //
2020 ZeroMem (&ArpConfigData, sizeof (EFI_ARP_CONFIG_DATA));
2021
2022 ArpConfigData.SwAddressType = 0x0800;
2023 ArpConfigData.SwAddressLength = (UINT8) sizeof (EFI_IPv4_ADDRESS);
2024 ArpConfigData.StationAddress = &NewStationIp->v4;
2025
2026 Private->Arp->Configure (Private->Arp, NULL);
2027 Private->Arp->Configure (Private->Arp, &ArpConfigData);
2028
2029 if (NewSubnetMask != NULL) {
2030 Mode->RouteTableEntries = 1;
2031 Mode->RouteTable[0].IpAddr.Addr[0] = NewStationIp->Addr[0] & NewSubnetMask->Addr[0];
2032 Mode->RouteTable[0].SubnetMask.Addr[0] = NewSubnetMask->Addr[0];
2033 Mode->RouteTable[0].GwAddr.Addr[0] = 0;
2034 }
2035
2036 Private->IsAddressOk = TRUE;
2037 }
2038
2039 if (NewStationIp != NULL) {
2040 CopyMem (&Mode->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
2041 CopyMem (&Private->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
2042 }
2043
2044 if (!Mode->UsingIpv6 && NewSubnetMask != NULL) {
2045 CopyMem (&Mode->SubnetMask, NewSubnetMask, sizeof (EFI_IP_ADDRESS));
2046 CopyMem (&Private->SubnetMask ,NewSubnetMask, sizeof (EFI_IP_ADDRESS));
2047 }
2048
2049 Status = PxeBcFlushStationIp (Private, NewStationIp, NewSubnetMask);
2050 ON_EXIT:
2051 return Status;
2052 }
2053
2054
2055 /**
2056 Updates the contents of the cached DHCP and Discover packets.
2057
2058 The pointers to the new packets are used to update the contents of the cached
2059 packets in the EFI_PXE_BASE_CODE_MODE structure.
2060
2061 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
2062 @param[in] NewDhcpDiscoverValid Pointer to a value that will replace the current
2063 DhcpDiscoverValid field.
2064 @param[in] NewDhcpAckReceived Pointer to a value that will replace the current
2065 DhcpAckReceived field.
2066 @param[in] NewProxyOfferReceived Pointer to a value that will replace the current
2067 ProxyOfferReceived field.
2068 @param[in] NewPxeDiscoverValid Pointer to a value that will replace the current
2069 ProxyOfferReceived field.
2070 @param[in] NewPxeReplyReceived Pointer to a value that will replace the current
2071 PxeReplyReceived field.
2072 @param[in] NewPxeBisReplyReceived Pointer to a value that will replace the current
2073 PxeBisReplyReceived field.
2074 @param[in] NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents.
2075 @param[in] NewDhcpAck Pointer to the new cached DHCP Ack packet contents.
2076 @param[in] NewProxyOffer Pointer to the new cached Proxy Offer packet contents.
2077 @param[in] NewPxeDiscover Pointer to the new cached PXE Discover packet contents.
2078 @param[in] NewPxeReply Pointer to the new cached PXE Reply packet contents.
2079 @param[in] NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents.
2080
2081 @retval EFI_SUCCESS The cached packet contents were updated.
2082 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
2083 @retval EFI_INVALID_PARAMETER This is NULL or does not point to a valid
2084 EFI_PXE_BASE_CODE_PROTOCOL structure.
2085
2086 **/
2087 EFI_STATUS
2088 EFIAPI
EfiPxeBcSetPackets(IN EFI_PXE_BASE_CODE_PROTOCOL * This,IN BOOLEAN * NewDhcpDiscoverValid OPTIONAL,IN BOOLEAN * NewDhcpAckReceived OPTIONAL,IN BOOLEAN * NewProxyOfferReceived OPTIONAL,IN BOOLEAN * NewPxeDiscoverValid OPTIONAL,IN BOOLEAN * NewPxeReplyReceived OPTIONAL,IN BOOLEAN * NewPxeBisReplyReceived OPTIONAL,IN EFI_PXE_BASE_CODE_PACKET * NewDhcpDiscover OPTIONAL,IN EFI_PXE_BASE_CODE_PACKET * NewDhcpAck OPTIONAL,IN EFI_PXE_BASE_CODE_PACKET * NewProxyOffer OPTIONAL,IN EFI_PXE_BASE_CODE_PACKET * NewPxeDiscover OPTIONAL,IN EFI_PXE_BASE_CODE_PACKET * NewPxeReply OPTIONAL,IN EFI_PXE_BASE_CODE_PACKET * NewPxeBisReply OPTIONAL)2089 EfiPxeBcSetPackets (
2090 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
2091 IN BOOLEAN *NewDhcpDiscoverValid OPTIONAL,
2092 IN BOOLEAN *NewDhcpAckReceived OPTIONAL,
2093 IN BOOLEAN *NewProxyOfferReceived OPTIONAL,
2094 IN BOOLEAN *NewPxeDiscoverValid OPTIONAL,
2095 IN BOOLEAN *NewPxeReplyReceived OPTIONAL,
2096 IN BOOLEAN *NewPxeBisReplyReceived OPTIONAL,
2097 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover OPTIONAL,
2098 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck OPTIONAL,
2099 IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer OPTIONAL,
2100 IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover OPTIONAL,
2101 IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply OPTIONAL,
2102 IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL
2103 )
2104 {
2105 PXEBC_PRIVATE_DATA *Private;
2106 EFI_PXE_BASE_CODE_MODE *Mode;
2107
2108 if (This == NULL) {
2109 return EFI_INVALID_PARAMETER;
2110 }
2111
2112 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
2113 Mode = Private->PxeBc.Mode;
2114
2115 if (!Mode->Started) {
2116 return EFI_NOT_STARTED;
2117 }
2118
2119 if (NewDhcpDiscoverValid != NULL) {
2120 Mode->DhcpDiscoverValid = *NewDhcpDiscoverValid;
2121 }
2122
2123 if (NewDhcpAckReceived != NULL) {
2124 Mode->DhcpAckReceived = *NewDhcpAckReceived;
2125 }
2126
2127 if (NewProxyOfferReceived != NULL) {
2128 Mode->ProxyOfferReceived = *NewProxyOfferReceived;
2129 }
2130
2131 if (NewPxeDiscoverValid != NULL) {
2132 Mode->PxeDiscoverValid = *NewPxeDiscoverValid;
2133 }
2134
2135 if (NewPxeReplyReceived != NULL) {
2136 Mode->PxeReplyReceived = *NewPxeReplyReceived;
2137 }
2138
2139 if (NewPxeBisReplyReceived != NULL) {
2140 Mode->PxeBisReplyReceived = *NewPxeBisReplyReceived;
2141 }
2142
2143 if (NewDhcpDiscover != NULL) {
2144 CopyMem (&Mode->DhcpDiscover, NewDhcpDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
2145 }
2146
2147 if (NewDhcpAck != NULL) {
2148 CopyMem (&Mode->DhcpAck, NewDhcpAck, sizeof (EFI_PXE_BASE_CODE_PACKET));
2149 }
2150
2151 if (NewProxyOffer != NULL) {
2152 CopyMem (&Mode->ProxyOffer, NewProxyOffer, sizeof (EFI_PXE_BASE_CODE_PACKET));
2153 }
2154
2155 if (NewPxeDiscover != NULL) {
2156 CopyMem (&Mode->PxeDiscover, NewPxeDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
2157 }
2158
2159 if (NewPxeReply != NULL) {
2160 CopyMem (&Mode->PxeReply, NewPxeReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
2161 }
2162
2163 if (NewPxeBisReply != NULL) {
2164 CopyMem (&Mode->PxeBisReply, NewPxeBisReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
2165 }
2166
2167 return EFI_SUCCESS;
2168 }
2169
2170 EFI_PXE_BASE_CODE_PROTOCOL gPxeBcProtocolTemplate = {
2171 EFI_PXE_BASE_CODE_PROTOCOL_REVISION,
2172 EfiPxeBcStart,
2173 EfiPxeBcStop,
2174 EfiPxeBcDhcp,
2175 EfiPxeBcDiscover,
2176 EfiPxeBcMtftp,
2177 EfiPxeBcUdpWrite,
2178 EfiPxeBcUdpRead,
2179 EfiPxeBcSetIpFilter,
2180 EfiPxeBcArp,
2181 EfiPxeBcSetParameters,
2182 EfiPxeBcSetStationIP,
2183 EfiPxeBcSetPackets,
2184 NULL
2185 };
2186
2187
2188 /**
2189 Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
2190 received, or is waiting to receive a packet.
2191
2192 This function is invoked when the PXE Base Code Protocol is about to transmit, has received,
2193 or is waiting to receive a packet. Parameters Function and Received specify the type of event.
2194 Parameters PacketLen and Packet specify the packet that generated the event. If these fields
2195 are zero and NULL respectively, then this is a status update callback. If the operation specified
2196 by Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the operation
2197 specified by Function should be aborted, then CALLBACK_STATUS_ABORT should be returned. Due to
2198 the polling nature of UEFI device drivers, a callback function should not execute for more than 5 ms.
2199 The SetParameters() function must be called after a Callback Protocol is installed to enable the
2200 use of callbacks.
2201
2202 @param[in] This Pointer to the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL instance.
2203 @param[in] Function The PXE Base Code Protocol function that is waiting for an event.
2204 @param[in] Received TRUE if the callback is being invoked due to a receive event. FALSE if
2205 the callback is being invoked due to a transmit event.
2206 @param[in] PacketLength The length, in bytes, of Packet. This field will have a value of zero if
2207 this is a wait for receive event.
2208 @param[in] PacketPtr If Received is TRUE, a pointer to the packet that was just received;
2209 otherwise a pointer to the packet that is about to be transmitted.
2210
2211 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE If Function specifies a continue operation.
2212 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT If Function specifies an abort operation.
2213
2214 **/
2215 EFI_PXE_BASE_CODE_CALLBACK_STATUS
2216 EFIAPI
EfiPxeLoadFileCallback(IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL * This,IN EFI_PXE_BASE_CODE_FUNCTION Function,IN BOOLEAN Received,IN UINT32 PacketLength,IN EFI_PXE_BASE_CODE_PACKET * PacketPtr OPTIONAL)2217 EfiPxeLoadFileCallback (
2218 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This,
2219 IN EFI_PXE_BASE_CODE_FUNCTION Function,
2220 IN BOOLEAN Received,
2221 IN UINT32 PacketLength,
2222 IN EFI_PXE_BASE_CODE_PACKET *PacketPtr OPTIONAL
2223 )
2224 {
2225 EFI_INPUT_KEY Key;
2226 EFI_STATUS Status;
2227
2228 //
2229 // Catch Ctrl-C or ESC to abort.
2230 //
2231 Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
2232
2233 if (!EFI_ERROR (Status)) {
2234
2235 if (Key.ScanCode == SCAN_ESC || Key.UnicodeChar == (0x1F & 'c')) {
2236
2237 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT;
2238 }
2239 }
2240 //
2241 // No print if receive packet
2242 //
2243 if (Received) {
2244 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2245 }
2246 //
2247 // Print only for three functions
2248 //
2249 switch (Function) {
2250
2251 case EFI_PXE_BASE_CODE_FUNCTION_MTFTP:
2252 //
2253 // Print only for open MTFTP packets, not every MTFTP packets
2254 //
2255 if (PacketLength != 0 && PacketPtr != NULL) {
2256 if (PacketPtr->Raw[0x1C] != 0x00 || PacketPtr->Raw[0x1D] != 0x01) {
2257 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2258 }
2259 }
2260 break;
2261
2262 case EFI_PXE_BASE_CODE_FUNCTION_DHCP:
2263 case EFI_PXE_BASE_CODE_FUNCTION_DISCOVER:
2264 break;
2265
2266 default:
2267 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2268 }
2269
2270 if (PacketLength != 0 && PacketPtr != NULL) {
2271 //
2272 // Print '.' when transmit a packet
2273 //
2274 AsciiPrint (".");
2275 }
2276
2277 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2278 }
2279
2280 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL gPxeBcCallBackTemplate = {
2281 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION,
2282 EfiPxeLoadFileCallback
2283 };
2284
2285
2286 /**
2287 Causes the driver to load a specified file.
2288
2289 @param[in] This Protocol instance pointer.
2290 @param[in] FilePath The device specific path of the file to load.
2291 @param[in] BootPolicy If TRUE, indicates that the request originates from the
2292 boot manager is attempting to load FilePath as a boot
2293 selection. If FALSE, then FilePath must match an exact file
2294 to be loaded.
2295 @param[in, out] BufferSize On input the size of Buffer in bytes. On output with a return
2296 code of EFI_SUCCESS, the amount of data transferred to
2297 Buffer. On output with a return code of EFI_BUFFER_TOO_SMALL,
2298 the size of Buffer required to retrieve the requested file.
2299 @param[in] Buffer The memory buffer to transfer the file to. IF Buffer is NULL,
2300 then no the size of the requested file is returned in
2301 BufferSize.
2302
2303 @retval EFI_SUCCESS The file was loaded.
2304 @retval EFI_UNSUPPORTED The device does not support the provided BootPolicy.
2305 @retval EFI_INVALID_PARAMETER FilePath is not a valid device path, or
2306 BufferSize is NULL.
2307 @retval EFI_NO_MEDIA No medium was present to load the file.
2308 @retval EFI_DEVICE_ERROR The file was not loaded due to a device error.
2309 @retval EFI_NO_RESPONSE The remote system did not respond.
2310 @retval EFI_NOT_FOUND The file was not found.
2311 @retval EFI_ABORTED The file load process was manually cancelled.
2312
2313 **/
2314 EFI_STATUS
2315 EFIAPI
EfiPxeLoadFile(IN EFI_LOAD_FILE_PROTOCOL * This,IN EFI_DEVICE_PATH_PROTOCOL * FilePath,IN BOOLEAN BootPolicy,IN OUT UINTN * BufferSize,IN VOID * Buffer OPTIONAL)2316 EfiPxeLoadFile (
2317 IN EFI_LOAD_FILE_PROTOCOL *This,
2318 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
2319 IN BOOLEAN BootPolicy,
2320 IN OUT UINTN *BufferSize,
2321 IN VOID *Buffer OPTIONAL
2322 )
2323 {
2324 PXEBC_PRIVATE_DATA *Private;
2325 PXEBC_VIRTUAL_NIC *VirtualNic;
2326 EFI_PXE_BASE_CODE_PROTOCOL *PxeBc;
2327 BOOLEAN UsingIpv6;
2328 EFI_STATUS Status;
2329 BOOLEAN MediaPresent;
2330
2331 if (FilePath == NULL || !IsDevicePathEnd (FilePath)) {
2332 return EFI_INVALID_PARAMETER;
2333 }
2334
2335 VirtualNic = PXEBC_VIRTUAL_NIC_FROM_LOADFILE (This);
2336 Private = VirtualNic->Private;
2337 PxeBc = &Private->PxeBc;
2338 UsingIpv6 = FALSE;
2339 Status = EFI_DEVICE_ERROR;
2340
2341 if (This == NULL || BufferSize == NULL) {
2342 return EFI_INVALID_PARAMETER;
2343 }
2344
2345 //
2346 // Only support BootPolicy
2347 //
2348 if (!BootPolicy) {
2349 return EFI_UNSUPPORTED;
2350 }
2351
2352 //
2353 // Check media status before PXE start
2354 //
2355 MediaPresent = TRUE;
2356 NetLibDetectMedia (Private->Controller, &MediaPresent);
2357 if (!MediaPresent) {
2358 return EFI_NO_MEDIA;
2359 }
2360
2361 //
2362 // Check whether the virtual nic is using IPv6 or not.
2363 //
2364 if (VirtualNic == Private->Ip6Nic) {
2365 UsingIpv6 = TRUE;
2366 }
2367
2368 //
2369 // Start Pxe Base Code to initialize PXE boot.
2370 //
2371 Status = PxeBc->Start (PxeBc, UsingIpv6);
2372 if (Status == EFI_ALREADY_STARTED && UsingIpv6 != PxeBc->Mode->UsingIpv6) {
2373 //
2374 // PxeBc protocol has already been started but not on the required IP version, restart it.
2375 //
2376 Status = PxeBc->Stop (PxeBc);
2377 if (!EFI_ERROR (Status)) {
2378 Status = PxeBc->Start (PxeBc, UsingIpv6);
2379 }
2380 }
2381 if (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED) {
2382 Status = PxeBcLoadBootFile (Private, BufferSize, Buffer);
2383 }
2384
2385 if (Status != EFI_SUCCESS &&
2386 Status != EFI_UNSUPPORTED &&
2387 Status != EFI_BUFFER_TOO_SMALL) {
2388 //
2389 // There are three cases, which needn't stop pxebc here.
2390 // 1. success to download file.
2391 // 2. success to get file size.
2392 // 3. unsupported.
2393 //
2394 PxeBc->Stop (PxeBc);
2395 } else {
2396 //
2397 // The DHCP4 can have only one configured child instance so we need to stop
2398 // reset the DHCP4 child before we return. Otherwise these programs which
2399 // also need to use DHCP4 will be impacted.
2400 //
2401 if (!PxeBc->Mode->UsingIpv6) {
2402 Private->Dhcp4->Stop (Private->Dhcp4);
2403 Private->Dhcp4->Configure (Private->Dhcp4, NULL);
2404 }
2405 }
2406
2407 return Status;
2408 }
2409
2410 EFI_LOAD_FILE_PROTOCOL gLoadFileProtocolTemplate = { EfiPxeLoadFile };
2411
2412