1 /** @file
2 Provides the basic UNID functions.
3
4 Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "Undi32.h"
16
17 //
18 // Global variables defined in this file
19 //
20 UNDI_CALL_TABLE api_table[PXE_OPCODE_LAST_VALID+1] = { \
21 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, (UINT16)(ANY_STATE),UNDI_GetState },\
22 {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,0,(UINT16)(ANY_STATE),UNDI_Start },\
23 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0,MUST_BE_STARTED,UNDI_Stop },\
24 {PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_INIT_INFO),0,MUST_BE_STARTED, UNDI_GetInitInfo },\
25 {PXE_CPBSIZE_NOT_USED,sizeof(PXE_DB_GET_CONFIG_INFO),0,MUST_BE_STARTED, UNDI_GetConfigInfo },\
26 {sizeof(PXE_CPB_INITIALIZE),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),MUST_BE_STARTED,UNDI_Initialize },\
27 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Reset },\
28 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,0, MUST_BE_INITIALIZED,UNDI_Shutdown },\
29 {PXE_CPBSIZE_NOT_USED,PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED,UNDI_Interrupt },\
30 {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_RecFilter },\
31 {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_StnAddr },\
32 {PXE_CPBSIZE_NOT_USED, (UINT16)(DONT_CHECK), (UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Statistics },\
33 {sizeof(PXE_CPB_MCAST_IP_TO_MAC),sizeof(PXE_DB_MCAST_IP_TO_MAC), (UINT16)(DONT_CHECK),MUST_BE_INITIALIZED, UNDI_ip2mac },\
34 {(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_NVData },\
35 {PXE_CPBSIZE_NOT_USED,(UINT16)(DONT_CHECK),(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Status },\
36 {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_FillHeader },\
37 {(UINT16)(DONT_CHECK),PXE_DBSIZE_NOT_USED,(UINT16)(DONT_CHECK), MUST_BE_INITIALIZED, UNDI_Transmit },\
38 {sizeof(PXE_CPB_RECEIVE),sizeof(PXE_DB_RECEIVE),0,MUST_BE_INITIALIZED, UNDI_Receive } \
39 };
40
41 //
42 // end of global variables
43 //
44
45
46 /**
47 This routine determines the operational state of the UNDI. It updates the state flags in the
48 Command Descriptor Block based on information derived from the AdapterInfo instance data.
49 To ensure the command has completed successfully, CdbPtr->StatCode will contain the result of
50 the command execution.
51 The CdbPtr->StatFlags will contain a STOPPED, STARTED, or INITIALIZED state once the command
52 has successfully completed.
53 Keep in mind the AdapterInfo->State is the active state of the adapter (based on software
54 interrogation), and the CdbPtr->StateFlags is the passed back information that is reflected
55 to the caller of the UNDI API.
56
57 @param CdbPtr Pointer to the command descriptor block.
58 @param AdapterInfo Pointer to the NIC data structure information which
59 the UNDI driver is layering on..
60
61 @return None
62
63 **/
64 VOID
UNDI_GetState(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)65 UNDI_GetState (
66 IN PXE_CDB *CdbPtr,
67 IN NIC_DATA_INSTANCE *AdapterInfo
68 )
69 {
70 CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->State);
71 return ;
72 }
73
74
75 /**
76 This routine is used to change the operational state of the UNDI from stopped to started.
77 It will do this as long as the adapter's state is PXE_STATFLAGS_GET_STATE_STOPPED, otherwise
78 the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the
79 UNDI as having already been started.
80 This routine is modified to reflect the undi 1.1 specification changes. The
81 changes in the spec are mainly in the callback routines, the new spec adds
82 3 more callbacks and a unique id.
83 Since this UNDI supports both old and new undi specifications,
84 The NIC's data structure is filled in with the callback routines (depending
85 on the version) pointed to in the caller's CpbPtr. This seeds the Delay,
86 Virt2Phys, Block, and Mem_IO for old and new versions and Map_Mem, UnMap_Mem
87 and Sync_Mem routines and a unique id variable for the new version.
88 This is the function which an external entity (SNP, O/S, etc) would call
89 to provide it's I/O abstraction to the UNDI.
90 It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STARTED.
91
92 @param CdbPtr Pointer to the command descriptor block.
93 @param AdapterInfo Pointer to the NIC data structure information which
94 the UNDI driver is layering on..
95
96 @return None
97
98 **/
99 VOID
UNDI_Start(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)100 UNDI_Start (
101 IN PXE_CDB *CdbPtr,
102 IN NIC_DATA_INSTANCE *AdapterInfo
103 )
104 {
105 PXE_CPB_START_30 *CpbPtr;
106 PXE_CPB_START_31 *CpbPtr_31;
107
108 //
109 // check if it is already started.
110 //
111 if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_STOPPED) {
112 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
113 CdbPtr->StatCode = PXE_STATCODE_ALREADY_STARTED;
114 return ;
115 }
116
117 if (CdbPtr->CPBsize != sizeof(PXE_CPB_START_30) &&
118 CdbPtr->CPBsize != sizeof(PXE_CPB_START_31)) {
119
120 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
121 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
122 return ;
123 }
124
125 CpbPtr = (PXE_CPB_START_30 *) (UINTN) (CdbPtr->CPBaddr);
126 CpbPtr_31 = (PXE_CPB_START_31 *) (UINTN) (CdbPtr->CPBaddr);
127
128 if (AdapterInfo->VersionFlag == 0x30) {
129 AdapterInfo->Delay_30 = (bsptr_30) (UINTN) CpbPtr->Delay;
130 AdapterInfo->Virt2Phys_30 = (virtphys_30) (UINTN) CpbPtr->Virt2Phys;
131 AdapterInfo->Block_30 = (block_30) (UINTN) CpbPtr->Block;
132 //
133 // patch for old buggy 3.0 code:
134 // In EFI1.0 undi used to provide the full (absolute) I/O address to the
135 // i/o calls and SNP used to provide a callback that used GlobalIoFncs and
136 // everything worked fine! In EFI 1.1, UNDI is not using the full
137 // i/o or memory address to access the device, The base values for the i/o
138 // and memory address is abstracted by the device specific PciIoFncs and
139 // UNDI only uses the offset values. Since UNDI3.0 cannot provide any
140 // identification to SNP, SNP cannot use nic specific PciIoFncs callback!
141 //
142 // To fix this and make undi3.0 work with SNP in EFI1.1 we
143 // use a TmpMemIo function that is defined in init.c
144 // This breaks the runtime driver feature of undi, but what to do
145 // if we have to provide the 3.0 compatibility (including the 3.0 bugs)
146 //
147 // This TmpMemIo function also takes a UniqueId parameter
148 // (as in undi3.1 design) and so initialize the UniqueId as well here
149 // Note: AdapterInfo->Mem_Io_30 is just filled for consistency with other
150 // parameters but never used, we only use Mem_Io field in the In/Out routines
151 // inside e100b.c.
152 //
153 AdapterInfo->Mem_Io_30 = (mem_io_30) (UINTN) CpbPtr->Mem_IO;
154 AdapterInfo->Mem_Io = (mem_io) (UINTN) TmpMemIo;
155 AdapterInfo->Unique_ID = (UINT64) (UINTN) AdapterInfo;
156
157 } else {
158 AdapterInfo->Delay = (bsptr) (UINTN) CpbPtr_31->Delay;
159 AdapterInfo->Virt2Phys = (virtphys) (UINTN) CpbPtr_31->Virt2Phys;
160 AdapterInfo->Block = (block) (UINTN) CpbPtr_31->Block;
161 AdapterInfo->Mem_Io = (mem_io) (UINTN) CpbPtr_31->Mem_IO;
162
163 AdapterInfo->Map_Mem = (map_mem) (UINTN) CpbPtr_31->Map_Mem;
164 AdapterInfo->UnMap_Mem = (unmap_mem) (UINTN) CpbPtr_31->UnMap_Mem;
165 AdapterInfo->Sync_Mem = (sync_mem) (UINTN) CpbPtr_31->Sync_Mem;
166 AdapterInfo->Unique_ID = CpbPtr_31->Unique_ID;
167 }
168
169 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;
170
171 return ;
172 }
173
174
175 /**
176 This routine is used to change the operational state of the UNDI from started to stopped.
177 It will not do this if the adapter's state is PXE_STATFLAGS_GET_STATE_INITIALIZED, otherwise
178 the CdbPtr->StatFlags will reflect a command failure, and the CdbPtr->StatCode will reflect the
179 UNDI as having already not been shut down.
180 The NIC's data structure will have the Delay, Virt2Phys, and Block, pointers zero'd out..
181 It's final action is to change the AdapterInfo->State to PXE_STATFLAGS_GET_STATE_STOPPED.
182
183 @param CdbPtr Pointer to the command descriptor block.
184 @param AdapterInfo Pointer to the NIC data structure information which
185 the UNDI driver is layering on..
186
187 @return None
188
189 **/
190 VOID
UNDI_Stop(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)191 UNDI_Stop (
192 IN PXE_CDB *CdbPtr,
193 IN NIC_DATA_INSTANCE *AdapterInfo
194 )
195 {
196 if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {
197 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
198 CdbPtr->StatCode = PXE_STATCODE_NOT_SHUTDOWN;
199 return ;
200 }
201
202 AdapterInfo->Delay_30 = 0;
203 AdapterInfo->Virt2Phys_30 = 0;
204 AdapterInfo->Block_30 = 0;
205
206 AdapterInfo->Delay = 0;
207 AdapterInfo->Virt2Phys = 0;
208 AdapterInfo->Block = 0;
209
210 AdapterInfo->Map_Mem = 0;
211 AdapterInfo->UnMap_Mem = 0;
212 AdapterInfo->Sync_Mem = 0;
213
214 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STOPPED;
215
216 return ;
217 }
218
219
220 /**
221 This routine is used to retrieve the initialization information that is needed by drivers and
222 applications to initialize the UNDI. This will fill in data in the Data Block structure that is
223 pointed to by the caller's CdbPtr->DBaddr. The fields filled in are as follows:
224 MemoryRequired, FrameDataLen, LinkSpeeds[0-3], NvCount, NvWidth, MediaHeaderLen, HWaddrLen,
225 MCastFilterCnt, TxBufCnt, TxBufSize, RxBufCnt, RxBufSize, IFtype, Duplex, and LoopBack.
226 In addition, the CdbPtr->StatFlags ORs in that this NIC supports cable detection. (APRIORI knowledge)
227
228 @param CdbPtr Pointer to the command descriptor block.
229 @param AdapterInfo Pointer to the NIC data structure information which
230 the UNDI driver is layering on..
231
232 @return None
233
234 **/
235 VOID
UNDI_GetInitInfo(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)236 UNDI_GetInitInfo (
237 IN PXE_CDB *CdbPtr,
238 IN NIC_DATA_INSTANCE *AdapterInfo
239 )
240 {
241 PXE_DB_GET_INIT_INFO *DbPtr;
242
243 DbPtr = (PXE_DB_GET_INIT_INFO *) (UINTN) (CdbPtr->DBaddr);
244
245 DbPtr->MemoryRequired = MEMORY_NEEDED;
246 DbPtr->FrameDataLen = PXE_MAX_TXRX_UNIT_ETHER;
247 DbPtr->LinkSpeeds[0] = 10;
248 DbPtr->LinkSpeeds[1] = 100;
249 DbPtr->LinkSpeeds[2] = DbPtr->LinkSpeeds[3] = 0;
250 DbPtr->NvCount = MAX_EEPROM_LEN;
251 DbPtr->NvWidth = 4;
252 DbPtr->MediaHeaderLen = PXE_MAC_HEADER_LEN_ETHER;
253 DbPtr->HWaddrLen = PXE_HWADDR_LEN_ETHER;
254 DbPtr->MCastFilterCnt = MAX_MCAST_ADDRESS_CNT;
255
256 DbPtr->TxBufCnt = TX_BUFFER_COUNT;
257 DbPtr->TxBufSize = (UINT16) sizeof (TxCB);
258 DbPtr->RxBufCnt = RX_BUFFER_COUNT;
259 DbPtr->RxBufSize = (UINT16) sizeof (RxFD);
260
261 DbPtr->IFtype = PXE_IFTYPE_ETHERNET;
262 DbPtr->SupportedDuplexModes = PXE_DUPLEX_ENABLE_FULL_SUPPORTED |
263 PXE_DUPLEX_FORCE_FULL_SUPPORTED;
264 DbPtr->SupportedLoopBackModes = PXE_LOOPBACK_INTERNAL_SUPPORTED |
265 PXE_LOOPBACK_EXTERNAL_SUPPORTED;
266
267 CdbPtr->StatFlags |= (PXE_STATFLAGS_CABLE_DETECT_SUPPORTED |
268 PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED);
269 return ;
270 }
271
272
273 /**
274 This routine is used to retrieve the configuration information about the NIC being controlled by
275 this driver. This will fill in data in the Data Block structure that is pointed to by the caller's CdbPtr->DBaddr.
276 The fields filled in are as follows:
277 DbPtr->pci.BusType, DbPtr->pci.Bus, DbPtr->pci.Device, and DbPtr->pci.
278 In addition, the DbPtr->pci.Config.Dword[0-63] grabs a copy of this NIC's PCI configuration space.
279
280 @param CdbPtr Pointer to the command descriptor block.
281 @param AdapterInfo Pointer to the NIC data structure information which
282 the UNDI driver is layering on..
283
284 @return None
285
286 **/
287 VOID
UNDI_GetConfigInfo(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)288 UNDI_GetConfigInfo (
289 IN PXE_CDB *CdbPtr,
290 IN NIC_DATA_INSTANCE *AdapterInfo
291 )
292 {
293 UINT16 Index;
294 PXE_DB_GET_CONFIG_INFO *DbPtr;
295
296 DbPtr = (PXE_DB_GET_CONFIG_INFO *) (UINTN) (CdbPtr->DBaddr);
297
298 DbPtr->pci.BusType = PXE_BUSTYPE_PCI;
299 DbPtr->pci.Bus = AdapterInfo->Bus;
300 DbPtr->pci.Device = AdapterInfo->Device;
301 DbPtr->pci.Function = AdapterInfo->Function;
302
303 for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {
304 DbPtr->pci.Config.Dword[Index] = AdapterInfo->Config[Index];
305 }
306
307 return ;
308 }
309
310
311 /**
312 This routine resets the network adapter and initializes the UNDI using the parameters supplied in
313 the CPB. This command must be issued before the network adapter can be setup to transmit and
314 receive packets.
315 Once the memory requirements of the UNDI are obtained by using the GetInitInfo command, a block
316 of non-swappable memory may need to be allocated. The address of this memory must be passed to
317 UNDI during the Initialize in the CPB. This memory is used primarily for transmit and receive buffers.
318 The fields CableDetect, LinkSpeed, Duplex, LoopBack, MemoryPtr, and MemoryLength are set with information
319 that was passed in the CPB and the NIC is initialized.
320 If the NIC initialization fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED
321 Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_INITIALIZED showing the state of
322 the UNDI is now initialized.
323
324 @param CdbPtr Pointer to the command descriptor block.
325 @param AdapterInfo Pointer to the NIC data structure information which
326 the UNDI driver is layering on..
327
328 @return None
329
330 **/
331 VOID
UNDI_Initialize(IN PXE_CDB * CdbPtr,NIC_DATA_INSTANCE * AdapterInfo)332 UNDI_Initialize (
333 IN PXE_CDB *CdbPtr,
334 NIC_DATA_INSTANCE *AdapterInfo
335 )
336 {
337 PXE_CPB_INITIALIZE *CpbPtr;
338
339 if ((CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DETECT_CABLE) &&
340 (CdbPtr->OpFlags != PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE)) {
341 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
342 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
343 return ;
344 }
345
346 //
347 // check if it is already initialized
348 //
349 if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_INITIALIZED) {
350 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
351 CdbPtr->StatCode = PXE_STATCODE_ALREADY_INITIALIZED;
352 return ;
353 }
354
355 CpbPtr = (PXE_CPB_INITIALIZE *) (UINTN) CdbPtr->CPBaddr;
356
357 if (CpbPtr->MemoryLength < (UINT32) MEMORY_NEEDED) {
358 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
359 CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;
360 return ;
361 }
362
363 //
364 // default behaviour is to detect the cable, if the 3rd param is 1,
365 // do not do that
366 //
367 AdapterInfo->CableDetect = (UINT8) ((CdbPtr->OpFlags == (UINT16) PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE) ? (UINT8) 0 : (UINT8) 1);
368 AdapterInfo->LinkSpeedReq = (UINT16) CpbPtr->LinkSpeed;
369 AdapterInfo->DuplexReq = CpbPtr->DuplexMode;
370 AdapterInfo->LoopBack = CpbPtr->LoopBackMode;
371 AdapterInfo->MemoryPtr = CpbPtr->MemoryAddr;
372 AdapterInfo->MemoryLength = CpbPtr->MemoryLength;
373
374 CdbPtr->StatCode = (PXE_STATCODE) E100bInit (AdapterInfo);
375
376 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
377 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
378 } else {
379 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_INITIALIZED;
380 }
381
382 return ;
383 }
384
385
386 /**
387 This routine resets the network adapter and initializes the UNDI using the parameters supplied in
388 the CPB. The transmit and receive queues are emptied and any pending interrupts are cleared.
389 If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED
390
391 @param CdbPtr Pointer to the command descriptor block.
392 @param AdapterInfo Pointer to the NIC data structure information which
393 the UNDI driver is layering on..
394
395 @return None
396
397 **/
398 VOID
UNDI_Reset(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)399 UNDI_Reset (
400 IN PXE_CDB *CdbPtr,
401 IN NIC_DATA_INSTANCE *AdapterInfo
402 )
403 {
404 if (CdbPtr->OpFlags != PXE_OPFLAGS_NOT_USED &&
405 CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS &&
406 CdbPtr->OpFlags != PXE_OPFLAGS_RESET_DISABLE_FILTERS ) {
407
408 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
409 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
410 return ;
411 }
412
413 CdbPtr->StatCode = (UINT16) E100bReset (AdapterInfo, CdbPtr->OpFlags);
414
415 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
416 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
417 }
418 }
419
420
421 /**
422 This routine resets the network adapter and leaves it in a safe state for another driver to
423 initialize. Any pending transmits or receives are lost. Receive filters and external
424 interrupt enables are disabled. Once the UNDI has been shutdown, it can then be stopped
425 or initialized again.
426 If the NIC reset fails, the CdbPtr->StatFlags are updated with PXE_STATFLAGS_COMMAND_FAILED
427 Otherwise, AdapterInfo->State is updated with PXE_STATFLAGS_GET_STATE_STARTED showing the state of
428 the NIC as being started.
429
430 @param CdbPtr Pointer to the command descriptor block.
431 @param AdapterInfo Pointer to the NIC data structure information which
432 the UNDI driver is layering on..
433
434 @return None
435
436 **/
437 VOID
UNDI_Shutdown(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)438 UNDI_Shutdown (
439 IN PXE_CDB *CdbPtr,
440 IN NIC_DATA_INSTANCE *AdapterInfo
441 )
442 {
443 //
444 // do the shutdown stuff here
445 //
446 CdbPtr->StatCode = (UINT16) E100bShutdown (AdapterInfo);
447
448 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
449 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
450 } else {
451 AdapterInfo->State = PXE_STATFLAGS_GET_STATE_STARTED;
452 }
453
454 return ;
455 }
456
457
458 /**
459 This routine can be used to read and/or change the current external interrupt enable
460 settings. Disabling an external interrupt enable prevents and external (hardware)
461 interrupt from being signaled by the network device. Internally the interrupt events
462 can still be polled by using the UNDI_GetState command.
463 The resulting information on the interrupt state will be passed back in the CdbPtr->StatFlags.
464
465 @param CdbPtr Pointer to the command descriptor block.
466 @param AdapterInfo Pointer to the NIC data structure information which
467 the UNDI driver is layering on..
468
469 @return None
470
471 **/
472 VOID
UNDI_Interrupt(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)473 UNDI_Interrupt (
474 IN PXE_CDB *CdbPtr,
475 IN NIC_DATA_INSTANCE *AdapterInfo
476 )
477 {
478 UINT8 IntMask;
479
480 IntMask = (UINT8)(UINTN)(CdbPtr->OpFlags & (PXE_OPFLAGS_INTERRUPT_RECEIVE |
481 PXE_OPFLAGS_INTERRUPT_TRANSMIT |
482 PXE_OPFLAGS_INTERRUPT_COMMAND |
483 PXE_OPFLAGS_INTERRUPT_SOFTWARE));
484
485 switch (CdbPtr->OpFlags & PXE_OPFLAGS_INTERRUPT_OPMASK) {
486 case PXE_OPFLAGS_INTERRUPT_READ:
487 break;
488
489 case PXE_OPFLAGS_INTERRUPT_ENABLE:
490 if (IntMask == 0) {
491 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
492 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
493 return ;
494 }
495
496 AdapterInfo->int_mask = IntMask;
497 E100bSetInterruptState (AdapterInfo);
498 break;
499
500 case PXE_OPFLAGS_INTERRUPT_DISABLE:
501 if (IntMask != 0) {
502 AdapterInfo->int_mask = (UINT16) (AdapterInfo->int_mask & ~(IntMask));
503 E100bSetInterruptState (AdapterInfo);
504 break;
505 }
506
507 //
508 // else fall thru.
509 //
510 default:
511 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
512 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
513 return ;
514 }
515
516 if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_RECEIVE) != 0) {
517 CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_RECEIVE;
518
519 }
520
521 if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_TRANSMIT) != 0) {
522 CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_TRANSMIT;
523
524 }
525
526 if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_COMMAND) != 0) {
527 CdbPtr->StatFlags |= PXE_STATFLAGS_INTERRUPT_COMMAND;
528
529 }
530
531 return ;
532 }
533
534
535 /**
536 This routine is used to read and change receive filters and, if supported, read
537 and change multicast MAC address filter list.
538
539 @param CdbPtr Pointer to the command descriptor block.
540 @param AdapterInfo Pointer to the NIC data structure information which
541 the UNDI driver is layering on..
542
543 @return None
544
545 **/
546 VOID
UNDI_RecFilter(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)547 UNDI_RecFilter (
548 IN PXE_CDB *CdbPtr,
549 IN NIC_DATA_INSTANCE *AdapterInfo
550 )
551 {
552 UINT16 NewFilter;
553 UINT16 OpFlags;
554 PXE_DB_RECEIVE_FILTERS *DbPtr;
555 UINT8 *MacAddr;
556 UINTN MacCount;
557 UINT16 Index;
558 UINT16 copy_len;
559 UINT8 *ptr1;
560 UINT8 *ptr2;
561 BOOLEAN InvalidMacAddr;
562
563 OpFlags = CdbPtr->OpFlags;
564 NewFilter = (UINT16) (OpFlags & 0x1F);
565
566 switch (OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_OPMASK) {
567 case PXE_OPFLAGS_RECEIVE_FILTER_READ:
568
569 //
570 // not expecting a cpb, not expecting any filter bits
571 //
572 if ((NewFilter != 0) || (CdbPtr->CPBsize != 0)) {
573 goto BadCdb;
574
575 }
576
577 if ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) == 0) {
578 goto JustRead;
579
580 }
581
582 NewFilter = (UINT16) (NewFilter | AdapterInfo->Rx_Filter);
583 //
584 // all other flags are ignored except mcast_reset
585 //
586 break;
587
588 case PXE_OPFLAGS_RECEIVE_FILTER_ENABLE:
589 //
590 // there should be atleast one other filter bit set.
591 //
592 if (NewFilter == 0) {
593 //
594 // nothing to enable
595 //
596 goto BadCdb;
597 }
598
599 if (CdbPtr->CPBsize != 0) {
600 //
601 // this must be a multicast address list!
602 // don't accept the list unless selective_mcast is set
603 // don't accept confusing mcast settings with this
604 //
605 if (((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) == 0) ||
606 ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||
607 ((NewFilter & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ||
608 ((CdbPtr->CPBsize % sizeof (PXE_MAC_ADDR)) != 0) ) {
609 goto BadCdb;
610 }
611
612 MacAddr = (UINT8 *) ((UINTN) (CdbPtr->CPBaddr));
613 MacCount = CdbPtr->CPBsize / sizeof (PXE_MAC_ADDR);
614
615 //
616 // The format of Ethernet multicast address for IPv6 is defined in RFC2464,
617 // for IPv4 is defined in RFC1112. Check whether the address is valid.
618 //
619 InvalidMacAddr = FALSE;
620
621 for (; MacCount-- != 0; MacAddr += sizeof (PXE_MAC_ADDR)) {
622 if (MacAddr[0] == 0x01) {
623 //
624 // This multicast MAC address is mapped from IPv4 address.
625 //
626 if (MacAddr[1] != 0x00 || MacAddr[2] != 0x5E || (MacAddr[3] & 0x80) != 0) {
627 InvalidMacAddr = TRUE;
628 }
629 } else if (MacAddr[0] == 0x33) {
630 //
631 // This multicast MAC address is mapped from IPv6 address.
632 //
633 if (MacAddr[1] != 0x33) {
634 InvalidMacAddr = TRUE;
635 }
636 } else {
637 InvalidMacAddr = TRUE;
638 }
639
640 if (InvalidMacAddr) {
641 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
642 CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;
643 return ;
644 }
645 }
646 }
647
648 //
649 // check selective mcast case enable case
650 //
651 if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != 0) {
652 if (((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) ||
653 ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) != 0) ) {
654 goto BadCdb;
655
656 }
657 //
658 // if no cpb, make sure we have an old list
659 //
660 if ((CdbPtr->CPBsize == 0) && (AdapterInfo->mcast_list.list_len == 0)) {
661 goto BadCdb;
662 }
663 }
664 //
665 // if you want to enable anything, you got to have unicast
666 // and you have what you already enabled!
667 //
668 NewFilter = (UINT16) (NewFilter | (PXE_OPFLAGS_RECEIVE_FILTER_UNICAST | AdapterInfo->Rx_Filter));
669
670 break;
671
672 case PXE_OPFLAGS_RECEIVE_FILTER_DISABLE:
673
674 //
675 // mcast list not expected, i.e. no cpb here!
676 //
677 if (CdbPtr->CPBsize != PXE_CPBSIZE_NOT_USED) {
678 goto BadCdb;
679 }
680
681 NewFilter = (UINT16) ((~(CdbPtr->OpFlags & 0x1F)) & AdapterInfo->Rx_Filter);
682
683 break;
684
685 default:
686 goto BadCdb;
687 }
688
689 if ((OpFlags & PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST) != 0) {
690 AdapterInfo->mcast_list.list_len = 0;
691 NewFilter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST);
692 }
693
694 E100bSetfilter (AdapterInfo, NewFilter, CdbPtr->CPBaddr, CdbPtr->CPBsize);
695
696 JustRead:
697 //
698 // give the current mcast list
699 //
700 if ((CdbPtr->DBsize != 0) && (AdapterInfo->mcast_list.list_len != 0)) {
701 //
702 // copy the mc list to db
703 //
704
705 DbPtr = (PXE_DB_RECEIVE_FILTERS *) (UINTN) CdbPtr->DBaddr;
706 ptr1 = (UINT8 *) (&DbPtr->MCastList[0]);
707
708 //
709 // DbPtr->mc_count = AdapterInfo->mcast_list.list_len;
710 //
711 copy_len = (UINT16) (AdapterInfo->mcast_list.list_len * PXE_MAC_LENGTH);
712
713 if (copy_len > CdbPtr->DBsize) {
714 copy_len = CdbPtr->DBsize;
715
716 }
717
718 ptr2 = (UINT8 *) (&AdapterInfo->mcast_list.mc_list[0]);
719 for (Index = 0; Index < copy_len; Index++) {
720 ptr1[Index] = ptr2[Index];
721 }
722 }
723 //
724 // give the stat flags here
725 //
726 if (AdapterInfo->Receive_Started) {
727 CdbPtr->StatFlags = (PXE_STATFLAGS) (CdbPtr->StatFlags | AdapterInfo->Rx_Filter);
728
729 }
730
731 return ;
732
733 BadCdb:
734 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
735 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
736 }
737
738
739 /**
740 This routine is used to get the current station and broadcast MAC addresses, and to change the
741 current station MAC address.
742
743 @param CdbPtr Pointer to the command descriptor block.
744 @param AdapterInfo Pointer to the NIC data structure information which
745 the UNDI driver is layering on..
746
747 @return None
748
749 **/
750 VOID
UNDI_StnAddr(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)751 UNDI_StnAddr (
752 IN PXE_CDB *CdbPtr,
753 IN NIC_DATA_INSTANCE *AdapterInfo
754 )
755 {
756 PXE_CPB_STATION_ADDRESS *CpbPtr;
757 PXE_DB_STATION_ADDRESS *DbPtr;
758 UINT16 Index;
759
760 if (CdbPtr->OpFlags == PXE_OPFLAGS_STATION_ADDRESS_RESET) {
761 //
762 // configure the permanent address.
763 // change the AdapterInfo->CurrentNodeAddress field.
764 //
765 if (CompareMem (
766 &AdapterInfo->CurrentNodeAddress[0],
767 &AdapterInfo->PermNodeAddress[0],
768 PXE_MAC_LENGTH
769 ) != 0) {
770 for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {
771 AdapterInfo->CurrentNodeAddress[Index] = AdapterInfo->PermNodeAddress[Index];
772 }
773
774 E100bSetupIAAddr (AdapterInfo);
775 }
776 }
777
778 if (CdbPtr->CPBaddr != (UINT64) 0) {
779 CpbPtr = (PXE_CPB_STATION_ADDRESS *) (UINTN) (CdbPtr->CPBaddr);
780 //
781 // configure the new address
782 //
783 for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {
784 AdapterInfo->CurrentNodeAddress[Index] = CpbPtr->StationAddr[Index];
785 }
786
787 E100bSetupIAAddr (AdapterInfo);
788 }
789
790 if (CdbPtr->DBaddr != (UINT64) 0) {
791 DbPtr = (PXE_DB_STATION_ADDRESS *) (UINTN) (CdbPtr->DBaddr);
792 //
793 // fill it with the new values
794 //
795 for (Index = 0; Index < PXE_MAC_LENGTH; Index++) {
796 DbPtr->StationAddr[Index] = AdapterInfo->CurrentNodeAddress[Index];
797 DbPtr->BroadcastAddr[Index] = AdapterInfo->BroadcastNodeAddress[Index];
798 DbPtr->PermanentAddr[Index] = AdapterInfo->PermNodeAddress[Index];
799 }
800 }
801
802 return ;
803 }
804
805
806 /**
807 This routine is used to read and clear the NIC traffic statistics. This command is supported only
808 if the !PXE structure's Implementation flags say so.
809 Results will be parsed out in the following manner:
810 CdbPtr->DBaddr.Data[0] R Total Frames (Including frames with errors and dropped frames)
811 CdbPtr->DBaddr.Data[1] R Good Frames (All frames copied into receive buffer)
812 CdbPtr->DBaddr.Data[2] R Undersize Frames (Frames below minimum length for media <64 for ethernet)
813 CdbPtr->DBaddr.Data[4] R Dropped Frames (Frames that were dropped because receive buffers were full)
814 CdbPtr->DBaddr.Data[8] R CRC Error Frames (Frames with alignment or CRC errors)
815 CdbPtr->DBaddr.Data[A] T Total Frames (Including frames with errors and dropped frames)
816 CdbPtr->DBaddr.Data[B] T Good Frames (All frames copied into transmit buffer)
817 CdbPtr->DBaddr.Data[C] T Undersize Frames (Frames below minimum length for media <64 for ethernet)
818 CdbPtr->DBaddr.Data[E] T Dropped Frames (Frames that were dropped because of collisions)
819 CdbPtr->DBaddr.Data[14] T Total Collision Frames (Total collisions on this subnet)
820
821 @param CdbPtr Pointer to the command descriptor block.
822 @param AdapterInfo Pointer to the NIC data structure information which
823 the UNDI driver is layering on..
824
825 @return None
826
827 **/
828 VOID
UNDI_Statistics(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)829 UNDI_Statistics (
830 IN PXE_CDB *CdbPtr,
831 IN NIC_DATA_INSTANCE *AdapterInfo
832 )
833 {
834 if ((CdbPtr->OpFlags &~(PXE_OPFLAGS_STATISTICS_RESET)) != 0) {
835 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
836 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
837 return ;
838 }
839
840 if ((CdbPtr->OpFlags & PXE_OPFLAGS_STATISTICS_RESET) != 0) {
841 //
842 // Reset the statistics
843 //
844 CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, 0, 0);
845 } else {
846 CdbPtr->StatCode = (UINT16) E100bStatistics (AdapterInfo, CdbPtr->DBaddr, CdbPtr->DBsize);
847 }
848
849 return ;
850 }
851
852
853 /**
854 This routine is used to translate a multicast IP address to a multicast MAC address.
855 This results in a MAC address composed of 25 bits of fixed data with the upper 23 bits of the IP
856 address being appended to it. Results passed back in the equivalent of CdbPtr->DBaddr->MAC[0-5].
857
858 @param CdbPtr Pointer to the command descriptor block.
859 @param AdapterInfo Pointer to the NIC data structure information which
860 the UNDI driver is layering on..
861
862 @return None
863
864 **/
865 VOID
UNDI_ip2mac(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)866 UNDI_ip2mac (
867 IN PXE_CDB *CdbPtr,
868 IN NIC_DATA_INSTANCE *AdapterInfo
869 )
870 {
871 PXE_CPB_MCAST_IP_TO_MAC *CpbPtr;
872 PXE_DB_MCAST_IP_TO_MAC *DbPtr;
873 UINT8 *TmpPtr;
874
875 CpbPtr = (PXE_CPB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->CPBaddr;
876 DbPtr = (PXE_DB_MCAST_IP_TO_MAC *) (UINTN) CdbPtr->DBaddr;
877
878 if ((CdbPtr->OpFlags & PXE_OPFLAGS_MCAST_IPV6_TO_MAC) != 0) {
879 //
880 // for now this is not supported
881 //
882 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
883 CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;
884 return ;
885 }
886
887 TmpPtr = (UINT8 *) (&CpbPtr->IP.IPv4);
888 //
889 // check if the ip given is a mcast IP
890 //
891 if ((TmpPtr[0] & 0xF0) != 0xE0) {
892 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
893 CdbPtr->StatCode = PXE_STATCODE_INVALID_CPB;
894 }
895 //
896 // take the last 23 bits in IP.
897 // be very careful. accessing word on a non-word boundary will hang motherboard codenamed Big Sur
898 // casting the mac array (in the middle) to a UINT32 pointer and accessing
899 // the UINT32 content hung the system...
900 //
901 DbPtr->MAC[0] = 0x01;
902 DbPtr->MAC[1] = 0x00;
903 DbPtr->MAC[2] = 0x5e;
904 DbPtr->MAC[3] = (UINT8) (TmpPtr[1] & 0x7f);
905 DbPtr->MAC[4] = (UINT8) TmpPtr[2];
906 DbPtr->MAC[5] = (UINT8) TmpPtr[3];
907
908 return ;
909 }
910
911
912 /**
913 This routine is used to read and write non-volatile storage on the NIC (if supported). The NVRAM
914 could be EEPROM, FLASH, or battery backed RAM.
915 This is an optional function according to the UNDI specification (or will be......)
916
917 @param CdbPtr Pointer to the command descriptor block.
918 @param AdapterInfo Pointer to the NIC data structure information which
919 the UNDI driver is layering on..
920
921 @return None
922
923 **/
924 VOID
UNDI_NVData(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)925 UNDI_NVData (
926 IN PXE_CDB *CdbPtr,
927 IN NIC_DATA_INSTANCE *AdapterInfo
928 )
929 {
930 PXE_DB_NVDATA *DbPtr;
931 UINT16 Index;
932
933 if ((CdbPtr->OpFlags == PXE_OPFLAGS_NVDATA_READ) != 0) {
934
935 if ((CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) != 0) {
936 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
937 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
938 return ;
939 }
940
941 DbPtr = (PXE_DB_NVDATA *) (UINTN) CdbPtr->DBaddr;
942
943 for (Index = 0; Index < MAX_PCI_CONFIG_LEN; Index++) {
944 DbPtr->Data.Dword[Index] = AdapterInfo->NVData[Index];
945
946 }
947
948 } else {
949 //
950 // no write for now
951 //
952 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
953 CdbPtr->StatCode = PXE_STATCODE_UNSUPPORTED;
954 }
955
956 return ;
957 }
958
959
960 /**
961 This routine returns the current interrupt status and/or the transmitted buffer addresses.
962 If the current interrupt status is returned, pending interrupts will be acknowledged by this
963 command. Transmitted buffer addresses that are written to the DB are removed from the transmit
964 buffer queue.
965 Normally, this command would be polled with interrupts disabled.
966 The transmit buffers are returned in CdbPtr->DBaddr->TxBufer[0 - NumEntries].
967 The interrupt status is returned in CdbPtr->StatFlags.
968
969 @param CdbPtr Pointer to the command descriptor block.
970 @param AdapterInfo Pointer to the NIC data structure information which
971 the UNDI driver is layering on..
972
973 @return None
974
975 **/
976 VOID
UNDI_Status(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)977 UNDI_Status (
978 IN PXE_CDB *CdbPtr,
979 IN NIC_DATA_INSTANCE *AdapterInfo
980 )
981 {
982 PXE_DB_GET_STATUS *DbPtr;
983 PXE_DB_GET_STATUS TmpGetStatus;
984 UINT16 Index;
985 UINT16 Status;
986 UINT16 NumEntries;
987 RxFD *RxPtr;
988
989 //
990 // Fill in temporary GetStatus storage.
991 //
992 RxPtr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind];
993
994 if ((RxPtr->cb_header.status & RX_COMPLETE) != 0) {
995 TmpGetStatus.RxFrameLen = RxPtr->ActualCount & 0x3fff;
996 } else {
997 TmpGetStatus.RxFrameLen = 0;
998 }
999
1000 TmpGetStatus.reserved = 0;
1001
1002 //
1003 // Fill in size of next available receive packet and
1004 // reserved field in caller's DB storage.
1005 //
1006 DbPtr = (PXE_DB_GET_STATUS *) (UINTN) CdbPtr->DBaddr;
1007
1008 if (CdbPtr->DBsize > 0 && CdbPtr->DBsize < sizeof (UINT32) * 2) {
1009 CopyMem (DbPtr, &TmpGetStatus, CdbPtr->DBsize);
1010 } else {
1011 CopyMem (DbPtr, &TmpGetStatus, sizeof (UINT32) * 2);
1012 }
1013
1014 //
1015 //
1016 //
1017 if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS) != 0) {
1018 //
1019 // DBsize of zero is invalid if Tx buffers are requested.
1020 //
1021 if (CdbPtr->DBsize == 0) {
1022 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1023 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
1024 return ;
1025 }
1026
1027 //
1028 // remember this b4 we overwrite
1029 //
1030 NumEntries = (UINT16) (CdbPtr->DBsize - sizeof (UINT64));
1031
1032 //
1033 // We already filled in 2 UINT32s.
1034 //
1035 CdbPtr->DBsize = (UINT16) (sizeof (UINT32) * 2);
1036
1037 //
1038 // will claim any hanging free CBs
1039 //
1040 CheckCBList (AdapterInfo);
1041
1042 if (AdapterInfo->xmit_done_head == AdapterInfo->xmit_done_tail) {
1043 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY;
1044 } else {
1045 for (Index = 0; ((Index < MAX_XMIT_BUFFERS) && (NumEntries >= sizeof (UINT64))); Index++, NumEntries -= sizeof (UINT64)) {
1046 if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {
1047 DbPtr->TxBuffer[Index] = AdapterInfo->xmit_done[AdapterInfo->xmit_done_head];
1048 AdapterInfo->xmit_done_head = next (AdapterInfo->xmit_done_head);
1049 CdbPtr->DBsize += sizeof (UINT64);
1050 } else {
1051 break;
1052 }
1053 }
1054 }
1055
1056 if (AdapterInfo->xmit_done_head != AdapterInfo->xmit_done_tail) {
1057 CdbPtr->StatFlags |= PXE_STATFLAGS_DB_WRITE_TRUNCATED;
1058
1059 }
1060 //
1061 // check for a receive buffer and give it's size in db
1062 //
1063 }
1064 //
1065 //
1066 //
1067 if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_INTERRUPT_STATUS) != 0) {
1068
1069 Status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus);
1070 AdapterInfo->Int_Status = (UINT16) (AdapterInfo->Int_Status | Status);
1071
1072 //
1073 // acknoledge the interrupts
1074 //
1075 OutWord (AdapterInfo, (UINT16) (Status & 0xfc00), (UINT32) (AdapterInfo->ioaddr + SCBStatus));
1076
1077 //
1078 // report all the outstanding interrupts
1079 //
1080 Status = AdapterInfo->Int_Status;
1081 if ((Status & SCB_STATUS_FR) != 0) {
1082 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_RECEIVE;
1083 }
1084
1085 if ((Status & SCB_STATUS_SWI) != 0) {
1086 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_SOFTWARE;
1087 }
1088 }
1089
1090 //
1091 // Return current media status
1092 //
1093 if ((CdbPtr->OpFlags & PXE_OPFLAGS_GET_MEDIA_STATUS) != 0) {
1094 AdapterInfo->PhyAddress = 0xFF;
1095 AdapterInfo->CableDetect = 1;
1096
1097 if (!PhyDetect (AdapterInfo)) {
1098 CdbPtr->StatFlags |= PXE_STATFLAGS_GET_STATUS_NO_MEDIA;
1099 }
1100 }
1101
1102 return ;
1103 }
1104
1105
1106 /**
1107 This routine is used to fill media header(s) in transmit packet(s).
1108 Copies the MAC address into the media header whether it is dealing
1109 with fragmented or non-fragmented packets.
1110
1111 @param CdbPtr Pointer to the command descriptor block.
1112 @param AdapterInfo Pointer to the NIC data structure information which
1113 the UNDI driver is layering on..
1114
1115 @return None
1116
1117 **/
1118 VOID
UNDI_FillHeader(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)1119 UNDI_FillHeader (
1120 IN PXE_CDB *CdbPtr,
1121 IN NIC_DATA_INSTANCE *AdapterInfo
1122 )
1123 {
1124 PXE_CPB_FILL_HEADER *Cpb;
1125 PXE_CPB_FILL_HEADER_FRAGMENTED *Cpbf;
1126 EtherHeader *MacHeader;
1127 UINTN Index;
1128
1129 if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {
1130 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1131 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
1132 return ;
1133 }
1134
1135 if ((CdbPtr->OpFlags & PXE_OPFLAGS_FILL_HEADER_FRAGMENTED) != 0) {
1136 Cpbf = (PXE_CPB_FILL_HEADER_FRAGMENTED *) (UINTN) CdbPtr->CPBaddr;
1137
1138 //
1139 // assume 1st fragment is big enough for the mac header
1140 //
1141 if ((Cpbf->FragCnt == 0) || (Cpbf->FragDesc[0].FragLen < PXE_MAC_HEADER_LEN_ETHER)) {
1142 //
1143 // no buffers given
1144 //
1145 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1146 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
1147 return ;
1148 }
1149
1150 MacHeader = (EtherHeader *) (UINTN) Cpbf->FragDesc[0].FragAddr;
1151 //
1152 // we don't swap the protocol bytes
1153 //
1154 MacHeader->type = Cpbf->Protocol;
1155
1156 for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {
1157 MacHeader->dest_addr[Index] = Cpbf->DestAddr[Index];
1158 MacHeader->src_addr[Index] = Cpbf->SrcAddr[Index];
1159 }
1160 } else {
1161 Cpb = (PXE_CPB_FILL_HEADER *) (UINTN) CdbPtr->CPBaddr;
1162
1163 MacHeader = (EtherHeader *) (UINTN) Cpb->MediaHeader;
1164 //
1165 // we don't swap the protocol bytes
1166 //
1167 MacHeader->type = Cpb->Protocol;
1168
1169 for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) {
1170 MacHeader->dest_addr[Index] = Cpb->DestAddr[Index];
1171 MacHeader->src_addr[Index] = Cpb->SrcAddr[Index];
1172 }
1173 }
1174
1175 return ;
1176 }
1177
1178
1179 /**
1180 This routine is used to place a packet into the transmit queue. The data buffers given to
1181 this command are to be considered locked and the application or network driver loses
1182 ownership of these buffers and must not free or relocate them until the ownership returns.
1183 When the packets are transmitted, a transmit complete interrupt is generated (if interrupts
1184 are disabled, the transmit interrupt status is still set and can be checked using the UNDI_Status
1185 command.
1186 Some implementations and adapters support transmitting multiple packets with one transmit
1187 command. If this feature is supported, the transmit CPBs can be linked in one transmit
1188 command.
1189 All UNDIs support fragmented frames, now all network devices or protocols do. If a fragmented
1190 frame CPB is given to UNDI and the network device does not support fragmented frames
1191 (see !PXE.Implementation flag), the UNDI will have to copy the fragments into a local buffer
1192 before transmitting.
1193
1194 @param CdbPtr Pointer to the command descriptor block.
1195 @param AdapterInfo Pointer to the NIC data structure information which
1196 the UNDI driver is layering on..
1197
1198 @return None
1199
1200 **/
1201 VOID
UNDI_Transmit(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)1202 UNDI_Transmit (
1203 IN PXE_CDB *CdbPtr,
1204 IN NIC_DATA_INSTANCE *AdapterInfo
1205 )
1206 {
1207
1208 if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {
1209 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1210 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
1211 return ;
1212 }
1213
1214 CdbPtr->StatCode = (PXE_STATCODE) E100bTransmit (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->OpFlags);
1215
1216 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
1217 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1218 }
1219
1220 return ;
1221 }
1222
1223
1224 /**
1225 When the network adapter has received a frame, this command is used to copy the frame
1226 into the driver/application storage location. Once a frame has been copied, it is
1227 removed from the receive queue.
1228
1229 @param CdbPtr Pointer to the command descriptor block.
1230 @param AdapterInfo Pointer to the NIC data structure information which
1231 the UNDI driver is layering on..
1232
1233 @return None
1234
1235 **/
1236 VOID
UNDI_Receive(IN PXE_CDB * CdbPtr,IN NIC_DATA_INSTANCE * AdapterInfo)1237 UNDI_Receive (
1238 IN PXE_CDB *CdbPtr,
1239 IN NIC_DATA_INSTANCE *AdapterInfo
1240 )
1241 {
1242
1243 //
1244 // check if RU has started...
1245 //
1246 if (!AdapterInfo->Receive_Started) {
1247 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1248 CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;
1249 return ;
1250 }
1251
1252
1253 CdbPtr->StatCode = (UINT16) E100bReceive (AdapterInfo, CdbPtr->CPBaddr, CdbPtr->DBaddr);
1254 if (CdbPtr->StatCode != PXE_STATCODE_SUCCESS) {
1255 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1256
1257 }
1258
1259 return ;
1260 }
1261
1262
1263
1264 /**
1265 This is the main SW UNDI API entry using the newer nii protocol.
1266 The parameter passed in is a 64 bit flat model virtual
1267 address of the cdb. We then jump into the common routine for both old and
1268 new nii protocol entries.
1269
1270 @param CdbPtr Pointer to the command descriptor block.
1271 @param AdapterInfo Pointer to the NIC data structure information which
1272 the UNDI driver is layering on..
1273
1274 @return None
1275
1276 **/
1277 // TODO: cdb - add argument and description to function comment
1278 VOID
UNDI_APIEntry_new(IN UINT64 cdb)1279 UNDI_APIEntry_new (
1280 IN UINT64 cdb
1281 )
1282 {
1283 PXE_CDB *CdbPtr;
1284 NIC_DATA_INSTANCE *AdapterInfo;
1285
1286 if (cdb == (UINT64) 0) {
1287 return ;
1288
1289 }
1290
1291 CdbPtr = (PXE_CDB *) (UINTN) cdb;
1292
1293 if (CdbPtr->IFnum >= (pxe_31->IFcnt | pxe_31->IFcntExt << 8) ) {
1294 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1295 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
1296 return ;
1297 }
1298
1299 AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);
1300 //
1301 // entering from older entry point
1302 //
1303 AdapterInfo->VersionFlag = 0x31;
1304 UNDI_APIEntry_Common (cdb);
1305 }
1306
1307
1308 /**
1309 This is the common routine for both old and new entry point procedures.
1310 The parameter passed in is a 64 bit flat model virtual
1311 address of the cdb. We then jump into the service routine pointed to by the
1312 Api_Table[OpCode].
1313
1314 @param CdbPtr Pointer to the command descriptor block.
1315 @param AdapterInfo Pointer to the NIC data structure information which
1316 the UNDI driver is layering on..
1317
1318 @return None
1319
1320 **/
1321 // TODO: cdb - add argument and description to function comment
1322 VOID
UNDI_APIEntry_Common(IN UINT64 cdb)1323 UNDI_APIEntry_Common (
1324 IN UINT64 cdb
1325 )
1326 {
1327 PXE_CDB *CdbPtr;
1328 NIC_DATA_INSTANCE *AdapterInfo;
1329 UNDI_CALL_TABLE *tab_ptr;
1330
1331 CdbPtr = (PXE_CDB *) (UINTN) cdb;
1332
1333 //
1334 // check the OPCODE range
1335 //
1336 if ((CdbPtr->OpCode > PXE_OPCODE_LAST_VALID) ||
1337 (CdbPtr->StatCode != PXE_STATCODE_INITIALIZE) ||
1338 (CdbPtr->StatFlags != PXE_STATFLAGS_INITIALIZE) ||
1339 (CdbPtr->IFnum >= (pxe_31->IFcnt | pxe_31->IFcntExt << 8))) {
1340 goto badcdb;
1341
1342 }
1343
1344 if (CdbPtr->CPBsize == PXE_CPBSIZE_NOT_USED) {
1345 if (CdbPtr->CPBaddr != PXE_CPBADDR_NOT_USED) {
1346 goto badcdb;
1347 }
1348 } else if (CdbPtr->CPBaddr == PXE_CPBADDR_NOT_USED) {
1349 goto badcdb;
1350 }
1351
1352 if (CdbPtr->DBsize == PXE_DBSIZE_NOT_USED) {
1353 if (CdbPtr->DBaddr != PXE_DBADDR_NOT_USED) {
1354 goto badcdb;
1355 }
1356 } else if (CdbPtr->DBaddr == PXE_DBADDR_NOT_USED) {
1357 goto badcdb;
1358 }
1359
1360 //
1361 // check if cpbsize and dbsize are as needed
1362 // check if opflags are as expected
1363 //
1364 tab_ptr = &api_table[CdbPtr->OpCode];
1365
1366 if (tab_ptr->cpbsize != (UINT16) (DONT_CHECK) && tab_ptr->cpbsize != CdbPtr->CPBsize) {
1367 goto badcdb;
1368 }
1369
1370 if (tab_ptr->dbsize != (UINT16) (DONT_CHECK) && tab_ptr->dbsize != CdbPtr->DBsize) {
1371 goto badcdb;
1372 }
1373
1374 if (tab_ptr->opflags != (UINT16) (DONT_CHECK) && tab_ptr->opflags != CdbPtr->OpFlags) {
1375 goto badcdb;
1376
1377 }
1378
1379 AdapterInfo = &(UNDI32DeviceList[CdbPtr->IFnum]->NicInfo);
1380
1381 //
1382 // check if UNDI_State is valid for this call
1383 //
1384 if (tab_ptr->state != (UINT16) (-1)) {
1385 //
1386 // should atleast be started
1387 //
1388 if (AdapterInfo->State == PXE_STATFLAGS_GET_STATE_STOPPED) {
1389 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1390 CdbPtr->StatCode = PXE_STATCODE_NOT_STARTED;
1391 return ;
1392 }
1393 //
1394 // check if it should be initialized
1395 //
1396 if (tab_ptr->state == 2) {
1397 if (AdapterInfo->State != PXE_STATFLAGS_GET_STATE_INITIALIZED) {
1398 CdbPtr->StatCode = PXE_STATCODE_NOT_INITIALIZED;
1399 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1400 return ;
1401 }
1402 }
1403 }
1404 //
1405 // set the return variable for success case here
1406 //
1407 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_COMPLETE;
1408 CdbPtr->StatCode = PXE_STATCODE_SUCCESS;
1409
1410 tab_ptr->api_ptr (CdbPtr, AdapterInfo);
1411 return ;
1412 //
1413 // %% AVL - check for command linking
1414 //
1415 badcdb:
1416 CdbPtr->StatFlags = PXE_STATFLAGS_COMMAND_FAILED;
1417 CdbPtr->StatCode = PXE_STATCODE_INVALID_CDB;
1418 return ;
1419 }
1420
1421
1422 /**
1423 When called with a null NicPtr, this routine decrements the number of NICs
1424 this UNDI is supporting and removes the NIC_DATA_POINTER from the array.
1425 Otherwise, it increments the number of NICs this UNDI is supported and
1426 updates the pxe.Fudge to ensure a proper check sum results.
1427
1428 @param NicPtr Pointer to the NIC data structure.
1429
1430 @return None
1431
1432 **/
1433 VOID
PxeUpdate(IN NIC_DATA_INSTANCE * NicPtr,IN PXE_SW_UNDI * PxePtr)1434 PxeUpdate (
1435 IN NIC_DATA_INSTANCE *NicPtr,
1436 IN PXE_SW_UNDI *PxePtr
1437 )
1438 {
1439 UINT16 NicNum;
1440 NicNum = (PxePtr->IFcnt | PxePtr->IFcntExt << 8);
1441
1442 if (NicPtr == NULL) {
1443 if (NicNum > 0) {
1444 //
1445 // number of NICs this undi supports
1446 //
1447 NicNum --;
1448 }
1449 goto done;
1450 }
1451
1452 //
1453 // number of NICs this undi supports
1454 //
1455 NicNum++;
1456
1457 done:
1458 PxePtr->IFcnt = (UINT8)(NicNum & 0xFF);
1459 PxePtr->IFcntExt = (UINT8) ((NicNum & 0xFF00) >> 8);
1460 PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));
1461 return ;
1462 }
1463
1464
1465 /**
1466 Initialize the !PXE structure
1467
1468 @param PxePtr Pointer to SW_UNDI data structure.
1469
1470 @retval EFI_SUCCESS This driver is added to Controller.
1471 @retval other This driver does not support this device.
1472
1473 **/
1474 VOID
PxeStructInit(IN PXE_SW_UNDI * PxePtr)1475 PxeStructInit (
1476 IN PXE_SW_UNDI *PxePtr
1477 )
1478 {
1479 //
1480 // Initialize the !PXE structure
1481 //
1482 PxePtr->Signature = PXE_ROMID_SIGNATURE;
1483 PxePtr->Len = (UINT8) sizeof (PXE_SW_UNDI);
1484 //
1485 // cksum
1486 //
1487 PxePtr->Fudge = 0;
1488 //
1489 // number of NICs this undi supports
1490 //
1491 PxePtr->IFcnt = 0;
1492 PxePtr->IFcntExt = 0;
1493 PxePtr->Rev = PXE_ROMID_REV;
1494 PxePtr->MajorVer = PXE_ROMID_MAJORVER;
1495 PxePtr->MinorVer = PXE_ROMID_MINORVER;
1496 PxePtr->reserved1 = 0;
1497
1498 PxePtr->Implementation = PXE_ROMID_IMP_SW_VIRT_ADDR |
1499 PXE_ROMID_IMP_FRAG_SUPPORTED |
1500 PXE_ROMID_IMP_CMD_LINK_SUPPORTED |
1501 PXE_ROMID_IMP_NVDATA_READ_ONLY |
1502 PXE_ROMID_IMP_STATION_ADDR_SETTABLE |
1503 PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED |
1504 PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED |
1505 PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED |
1506 PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED |
1507 PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED |
1508 PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED;
1509
1510 PxePtr->EntryPoint = (UINT64) (UINTN) UNDI_APIEntry_new;
1511 PxePtr->MinorVer = PXE_ROMID_MINORVER_31;
1512
1513 PxePtr->reserved2[0] = 0;
1514 PxePtr->reserved2[1] = 0;
1515 PxePtr->reserved2[2] = 0;
1516 PxePtr->BusCnt = 1;
1517 PxePtr->BusType[0] = PXE_BUSTYPE_PCI;
1518
1519 PxePtr->Fudge = (UINT8) (PxePtr->Fudge - CalculateSum8 ((VOID *) PxePtr, PxePtr->Len));
1520 }
1521
1522