1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// TLS low level connection and record layer 6 7package runner 8 9import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/ecdsa" 13 "crypto/subtle" 14 "crypto/x509" 15 "encoding/binary" 16 "errors" 17 "fmt" 18 "io" 19 "net" 20 "sync" 21 "time" 22) 23 24var errNoCertificateAlert = errors.New("tls: no certificate alert") 25var errEndOfEarlyDataAlert = errors.New("tls: end of early data alert") 26 27// A Conn represents a secured connection. 28// It implements the net.Conn interface. 29type Conn struct { 30 // constant 31 conn net.Conn 32 isDTLS bool 33 isClient bool 34 35 // constant after handshake; protected by handshakeMutex 36 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 37 handshakeErr error // error resulting from handshake 38 vers uint16 // TLS version 39 haveVers bool // version has been negotiated 40 config *Config // configuration passed to constructor 41 handshakeComplete bool 42 skipEarlyData bool // On a server, indicates that the client is sending early data that must be skipped over. 43 didResume bool // whether this connection was a session resumption 44 extendedMasterSecret bool // whether this session used an extended master secret 45 cipherSuite *cipherSuite 46 ocspResponse []byte // stapled OCSP response 47 sctList []byte // signed certificate timestamp list 48 peerCertificates []*x509.Certificate 49 // verifiedChains contains the certificate chains that we built, as 50 // opposed to the ones presented by the server. 51 verifiedChains [][]*x509.Certificate 52 // serverName contains the server name indicated by the client, if any. 53 serverName string 54 // firstFinished contains the first Finished hash sent during the 55 // handshake. This is the "tls-unique" channel binding value. 56 firstFinished [12]byte 57 // peerSignatureAlgorithm contains the signature algorithm that was used 58 // by the peer in the handshake, or zero if not applicable. 59 peerSignatureAlgorithm signatureAlgorithm 60 // curveID contains the curve that was used in the handshake, or zero if 61 // not applicable. 62 curveID CurveID 63 64 clientRandom, serverRandom [32]byte 65 exporterSecret []byte 66 resumptionSecret []byte 67 68 clientProtocol string 69 clientProtocolFallback bool 70 usedALPN bool 71 72 // verify_data values for the renegotiation extension. 73 clientVerify []byte 74 serverVerify []byte 75 76 channelID *ecdsa.PublicKey 77 78 srtpProtectionProfile uint16 79 80 clientVersion uint16 81 82 // input/output 83 in, out halfConn // in.Mutex < out.Mutex 84 rawInput *block // raw input, right off the wire 85 input *block // application record waiting to be read 86 hand bytes.Buffer // handshake record waiting to be read 87 88 // pendingFlight, if PackHandshakeFlight is enabled, is the buffer of 89 // handshake data to be split into records at the end of the flight. 90 pendingFlight bytes.Buffer 91 92 // DTLS state 93 sendHandshakeSeq uint16 94 recvHandshakeSeq uint16 95 handMsg []byte // pending assembled handshake message 96 handMsgLen int // handshake message length, not including the header 97 pendingFragments [][]byte // pending outgoing handshake fragments. 98 99 keyUpdateRequested bool 100 101 tmp [16]byte 102} 103 104func (c *Conn) init() { 105 c.in.isDTLS = c.isDTLS 106 c.out.isDTLS = c.isDTLS 107 c.in.config = c.config 108 c.out.config = c.config 109 110 c.out.updateOutSeq() 111} 112 113// Access to net.Conn methods. 114// Cannot just embed net.Conn because that would 115// export the struct field too. 116 117// LocalAddr returns the local network address. 118func (c *Conn) LocalAddr() net.Addr { 119 return c.conn.LocalAddr() 120} 121 122// RemoteAddr returns the remote network address. 123func (c *Conn) RemoteAddr() net.Addr { 124 return c.conn.RemoteAddr() 125} 126 127// SetDeadline sets the read and write deadlines associated with the connection. 128// A zero value for t means Read and Write will not time out. 129// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 130func (c *Conn) SetDeadline(t time.Time) error { 131 return c.conn.SetDeadline(t) 132} 133 134// SetReadDeadline sets the read deadline on the underlying connection. 135// A zero value for t means Read will not time out. 136func (c *Conn) SetReadDeadline(t time.Time) error { 137 return c.conn.SetReadDeadline(t) 138} 139 140// SetWriteDeadline sets the write deadline on the underlying conneciton. 141// A zero value for t means Write will not time out. 142// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 143func (c *Conn) SetWriteDeadline(t time.Time) error { 144 return c.conn.SetWriteDeadline(t) 145} 146 147// A halfConn represents one direction of the record layer 148// connection, either sending or receiving. 149type halfConn struct { 150 sync.Mutex 151 152 err error // first permanent error 153 version uint16 // protocol version 154 isDTLS bool 155 cipher interface{} // cipher algorithm 156 mac macFunction 157 seq [8]byte // 64-bit sequence number 158 outSeq [8]byte // Mapped sequence number 159 bfree *block // list of free blocks 160 161 nextCipher interface{} // next encryption state 162 nextMac macFunction // next MAC algorithm 163 nextSeq [6]byte // next epoch's starting sequence number in DTLS 164 165 // used to save allocating a new buffer for each MAC. 166 inDigestBuf, outDigestBuf []byte 167 168 trafficSecret []byte 169 170 config *Config 171} 172 173func (hc *halfConn) setErrorLocked(err error) error { 174 hc.err = err 175 return err 176} 177 178func (hc *halfConn) error() error { 179 // This should be locked, but I've removed it for the renegotiation 180 // tests since we don't concurrently read and write the same tls.Conn 181 // in any case during testing. 182 err := hc.err 183 return err 184} 185 186// prepareCipherSpec sets the encryption and MAC states 187// that a subsequent changeCipherSpec will use. 188func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 189 hc.version = version 190 hc.nextCipher = cipher 191 hc.nextMac = mac 192} 193 194// changeCipherSpec changes the encryption and MAC states 195// to the ones previously passed to prepareCipherSpec. 196func (hc *halfConn) changeCipherSpec(config *Config) error { 197 if hc.nextCipher == nil { 198 return alertInternalError 199 } 200 hc.cipher = hc.nextCipher 201 hc.mac = hc.nextMac 202 hc.nextCipher = nil 203 hc.nextMac = nil 204 hc.config = config 205 hc.incEpoch() 206 207 if config.Bugs.NullAllCiphers { 208 hc.cipher = nullCipher{} 209 hc.mac = nil 210 } 211 return nil 212} 213 214// useTrafficSecret sets the current cipher state for TLS 1.3. 215func (hc *halfConn) useTrafficSecret(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) { 216 hc.version = version 217 hc.cipher = deriveTrafficAEAD(version, suite, secret, side) 218 if hc.config.Bugs.NullAllCiphers { 219 hc.cipher = nullCipher{} 220 } 221 hc.trafficSecret = secret 222 hc.incEpoch() 223} 224 225// resetCipher changes the cipher state back to no encryption to be able 226// to send an unencrypted ClientHello in response to HelloRetryRequest 227// after 0-RTT data was rejected. 228func (hc *halfConn) resetCipher() { 229 hc.cipher = nil 230 hc.incEpoch() 231} 232 233func (hc *halfConn) doKeyUpdate(c *Conn, isOutgoing bool) { 234 side := serverWrite 235 if c.isClient == isOutgoing { 236 side = clientWrite 237 } 238 hc.useTrafficSecret(hc.version, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), hc.trafficSecret), side) 239} 240 241// incSeq increments the sequence number. 242func (hc *halfConn) incSeq(isOutgoing bool) { 243 limit := 0 244 increment := uint64(1) 245 if hc.isDTLS { 246 // Increment up to the epoch in DTLS. 247 limit = 2 248 } 249 for i := 7; i >= limit; i-- { 250 increment += uint64(hc.seq[i]) 251 hc.seq[i] = byte(increment) 252 increment >>= 8 253 } 254 255 // Not allowed to let sequence number wrap. 256 // Instead, must renegotiate before it does. 257 // Not likely enough to bother. 258 if increment != 0 { 259 panic("TLS: sequence number wraparound") 260 } 261 262 hc.updateOutSeq() 263} 264 265// incNextSeq increments the starting sequence number for the next epoch. 266func (hc *halfConn) incNextSeq() { 267 for i := len(hc.nextSeq) - 1; i >= 0; i-- { 268 hc.nextSeq[i]++ 269 if hc.nextSeq[i] != 0 { 270 return 271 } 272 } 273 panic("TLS: sequence number wraparound") 274} 275 276// incEpoch resets the sequence number. In DTLS, it also increments the epoch 277// half of the sequence number. 278func (hc *halfConn) incEpoch() { 279 if hc.isDTLS { 280 for i := 1; i >= 0; i-- { 281 hc.seq[i]++ 282 if hc.seq[i] != 0 { 283 break 284 } 285 if i == 0 { 286 panic("TLS: epoch number wraparound") 287 } 288 } 289 copy(hc.seq[2:], hc.nextSeq[:]) 290 for i := range hc.nextSeq { 291 hc.nextSeq[i] = 0 292 } 293 } else { 294 for i := range hc.seq { 295 hc.seq[i] = 0 296 } 297 } 298 299 hc.updateOutSeq() 300} 301 302func (hc *halfConn) updateOutSeq() { 303 if hc.config.Bugs.SequenceNumberMapping != nil { 304 seqU64 := binary.BigEndian.Uint64(hc.seq[:]) 305 seqU64 = hc.config.Bugs.SequenceNumberMapping(seqU64) 306 binary.BigEndian.PutUint64(hc.outSeq[:], seqU64) 307 308 // The DTLS epoch cannot be changed. 309 copy(hc.outSeq[:2], hc.seq[:2]) 310 return 311 } 312 313 copy(hc.outSeq[:], hc.seq[:]) 314} 315 316func (hc *halfConn) recordHeaderLen() int { 317 if hc.isDTLS { 318 return dtlsRecordHeaderLen 319 } 320 return tlsRecordHeaderLen 321} 322 323// removePadding returns an unpadded slice, in constant time, which is a prefix 324// of the input. It also returns a byte which is equal to 255 if the padding 325// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 326func removePadding(payload []byte) ([]byte, byte) { 327 if len(payload) < 1 { 328 return payload, 0 329 } 330 331 paddingLen := payload[len(payload)-1] 332 t := uint(len(payload)-1) - uint(paddingLen) 333 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 334 good := byte(int32(^t) >> 31) 335 336 toCheck := 255 // the maximum possible padding length 337 // The length of the padded data is public, so we can use an if here 338 if toCheck+1 > len(payload) { 339 toCheck = len(payload) - 1 340 } 341 342 for i := 0; i < toCheck; i++ { 343 t := uint(paddingLen) - uint(i) 344 // if i <= paddingLen then the MSB of t is zero 345 mask := byte(int32(^t) >> 31) 346 b := payload[len(payload)-1-i] 347 good &^= mask&paddingLen ^ mask&b 348 } 349 350 // We AND together the bits of good and replicate the result across 351 // all the bits. 352 good &= good << 4 353 good &= good << 2 354 good &= good << 1 355 good = uint8(int8(good) >> 7) 356 357 toRemove := good&paddingLen + 1 358 return payload[:len(payload)-int(toRemove)], good 359} 360 361// removePaddingSSL30 is a replacement for removePadding in the case that the 362// protocol version is SSLv3. In this version, the contents of the padding 363// are random and cannot be checked. 364func removePaddingSSL30(payload []byte) ([]byte, byte) { 365 if len(payload) < 1 { 366 return payload, 0 367 } 368 369 paddingLen := int(payload[len(payload)-1]) + 1 370 if paddingLen > len(payload) { 371 return payload, 0 372 } 373 374 return payload[:len(payload)-paddingLen], 255 375} 376 377func roundUp(a, b int) int { 378 return a + (b-a%b)%b 379} 380 381// cbcMode is an interface for block ciphers using cipher block chaining. 382type cbcMode interface { 383 cipher.BlockMode 384 SetIV([]byte) 385} 386 387// decrypt checks and strips the mac and decrypts the data in b. Returns a 388// success boolean, the number of bytes to skip from the start of the record in 389// order to get the application payload, the encrypted record type (or 0 390// if there is none), and an optional alert value. 391func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, contentType recordType, alertValue alert) { 392 recordHeaderLen := hc.recordHeaderLen() 393 394 // pull out payload 395 payload := b.data[recordHeaderLen:] 396 397 macSize := 0 398 if hc.mac != nil { 399 macSize = hc.mac.Size() 400 } 401 402 paddingGood := byte(255) 403 explicitIVLen := 0 404 405 seq := hc.seq[:] 406 if hc.isDTLS { 407 // DTLS sequence numbers are explicit. 408 seq = b.data[3:11] 409 } 410 411 // decrypt 412 if hc.cipher != nil { 413 switch c := hc.cipher.(type) { 414 case cipher.Stream: 415 c.XORKeyStream(payload, payload) 416 case *tlsAead: 417 nonce := seq 418 if c.explicitNonce { 419 explicitIVLen = 8 420 if len(payload) < explicitIVLen { 421 return false, 0, 0, alertBadRecordMAC 422 } 423 nonce = payload[:8] 424 payload = payload[8:] 425 } 426 427 var additionalData []byte 428 if hc.version < VersionTLS13 { 429 additionalData = make([]byte, 13) 430 copy(additionalData, seq) 431 copy(additionalData[8:], b.data[:3]) 432 n := len(payload) - c.Overhead() 433 additionalData[11] = byte(n >> 8) 434 additionalData[12] = byte(n) 435 } 436 var err error 437 payload, err = c.Open(payload[:0], nonce, payload, additionalData) 438 if err != nil { 439 return false, 0, 0, alertBadRecordMAC 440 } 441 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 442 case cbcMode: 443 blockSize := c.BlockSize() 444 if hc.version >= VersionTLS11 || hc.isDTLS { 445 explicitIVLen = blockSize 446 } 447 448 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 449 return false, 0, 0, alertBadRecordMAC 450 } 451 452 if explicitIVLen > 0 { 453 c.SetIV(payload[:explicitIVLen]) 454 payload = payload[explicitIVLen:] 455 } 456 c.CryptBlocks(payload, payload) 457 if hc.version == VersionSSL30 { 458 payload, paddingGood = removePaddingSSL30(payload) 459 } else { 460 payload, paddingGood = removePadding(payload) 461 } 462 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 463 464 // note that we still have a timing side-channel in the 465 // MAC check, below. An attacker can align the record 466 // so that a correct padding will cause one less hash 467 // block to be calculated. Then they can iteratively 468 // decrypt a record by breaking each byte. See 469 // "Password Interception in a SSL/TLS Channel", Brice 470 // Canvel et al. 471 // 472 // However, our behavior matches OpenSSL, so we leak 473 // only as much as they do. 474 case nullCipher: 475 break 476 default: 477 panic("unknown cipher type") 478 } 479 480 if hc.version >= VersionTLS13 { 481 i := len(payload) 482 for i > 0 && payload[i-1] == 0 { 483 i-- 484 } 485 payload = payload[:i] 486 if len(payload) == 0 { 487 return false, 0, 0, alertUnexpectedMessage 488 } 489 contentType = recordType(payload[len(payload)-1]) 490 payload = payload[:len(payload)-1] 491 b.resize(recordHeaderLen + len(payload)) 492 } 493 } 494 495 // check, strip mac 496 if hc.mac != nil { 497 if len(payload) < macSize { 498 return false, 0, 0, alertBadRecordMAC 499 } 500 501 // strip mac off payload, b.data 502 n := len(payload) - macSize 503 b.data[recordHeaderLen-2] = byte(n >> 8) 504 b.data[recordHeaderLen-1] = byte(n) 505 b.resize(recordHeaderLen + explicitIVLen + n) 506 remoteMAC := payload[n:] 507 localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n]) 508 509 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 510 return false, 0, 0, alertBadRecordMAC 511 } 512 hc.inDigestBuf = localMAC 513 } 514 hc.incSeq(false) 515 516 return true, recordHeaderLen + explicitIVLen, contentType, 0 517} 518 519// padToBlockSize calculates the needed padding block, if any, for a payload. 520// On exit, prefix aliases payload and extends to the end of the last full 521// block of payload. finalBlock is a fresh slice which contains the contents of 522// any suffix of payload as well as the needed padding to make finalBlock a 523// full block. 524func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) { 525 overrun := len(payload) % blockSize 526 prefix = payload[:len(payload)-overrun] 527 528 paddingLen := blockSize - overrun 529 finalSize := blockSize 530 if config.Bugs.MaxPadding { 531 for paddingLen+blockSize <= 256 { 532 paddingLen += blockSize 533 } 534 finalSize = 256 535 } 536 finalBlock = make([]byte, finalSize) 537 for i := range finalBlock { 538 finalBlock[i] = byte(paddingLen - 1) 539 } 540 if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 { 541 finalBlock[overrun] ^= 0xff 542 } 543 copy(finalBlock, payload[len(payload)-overrun:]) 544 return 545} 546 547// encrypt encrypts and macs the data in b. 548func (hc *halfConn) encrypt(b *block, explicitIVLen int, typ recordType) (bool, alert) { 549 recordHeaderLen := hc.recordHeaderLen() 550 551 // mac 552 if hc.mac != nil { 553 mac := hc.mac.MAC(hc.outDigestBuf, hc.outSeq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:]) 554 555 n := len(b.data) 556 b.resize(n + len(mac)) 557 copy(b.data[n:], mac) 558 hc.outDigestBuf = mac 559 } 560 561 payload := b.data[recordHeaderLen:] 562 563 // encrypt 564 if hc.cipher != nil { 565 // Add TLS 1.3 padding. 566 if hc.version >= VersionTLS13 { 567 paddingLen := hc.config.Bugs.RecordPadding 568 if hc.config.Bugs.OmitRecordContents { 569 b.resize(recordHeaderLen + paddingLen) 570 } else { 571 b.resize(len(b.data) + 1 + paddingLen) 572 b.data[len(b.data)-paddingLen-1] = byte(typ) 573 } 574 for i := 0; i < paddingLen; i++ { 575 b.data[len(b.data)-paddingLen+i] = 0 576 } 577 } 578 579 switch c := hc.cipher.(type) { 580 case cipher.Stream: 581 c.XORKeyStream(payload, payload) 582 case *tlsAead: 583 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 584 b.resize(len(b.data) + c.Overhead()) 585 nonce := hc.outSeq[:] 586 if c.explicitNonce { 587 nonce = b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 588 } 589 payload := b.data[recordHeaderLen+explicitIVLen:] 590 payload = payload[:payloadLen] 591 592 var additionalData []byte 593 if hc.version < VersionTLS13 { 594 additionalData = make([]byte, 13) 595 copy(additionalData, hc.outSeq[:]) 596 copy(additionalData[8:], b.data[:3]) 597 additionalData[11] = byte(payloadLen >> 8) 598 additionalData[12] = byte(payloadLen) 599 } 600 601 c.Seal(payload[:0], nonce, payload, additionalData) 602 case cbcMode: 603 blockSize := c.BlockSize() 604 if explicitIVLen > 0 { 605 c.SetIV(payload[:explicitIVLen]) 606 payload = payload[explicitIVLen:] 607 } 608 prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config) 609 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 610 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 611 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 612 case nullCipher: 613 break 614 default: 615 panic("unknown cipher type") 616 } 617 } 618 619 // update length to include MAC and any block padding needed. 620 n := len(b.data) - recordHeaderLen 621 b.data[recordHeaderLen-2] = byte(n >> 8) 622 b.data[recordHeaderLen-1] = byte(n) 623 hc.incSeq(true) 624 625 return true, 0 626} 627 628// A block is a simple data buffer. 629type block struct { 630 data []byte 631 off int // index for Read 632 link *block 633} 634 635// resize resizes block to be n bytes, growing if necessary. 636func (b *block) resize(n int) { 637 if n > cap(b.data) { 638 b.reserve(n) 639 } 640 b.data = b.data[0:n] 641} 642 643// reserve makes sure that block contains a capacity of at least n bytes. 644func (b *block) reserve(n int) { 645 if cap(b.data) >= n { 646 return 647 } 648 m := cap(b.data) 649 if m == 0 { 650 m = 1024 651 } 652 for m < n { 653 m *= 2 654 } 655 data := make([]byte, len(b.data), m) 656 copy(data, b.data) 657 b.data = data 658} 659 660// readFromUntil reads from r into b until b contains at least n bytes 661// or else returns an error. 662func (b *block) readFromUntil(r io.Reader, n int) error { 663 // quick case 664 if len(b.data) >= n { 665 return nil 666 } 667 668 // read until have enough. 669 b.reserve(n) 670 for { 671 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 672 b.data = b.data[0 : len(b.data)+m] 673 if len(b.data) >= n { 674 // TODO(bradfitz,agl): slightly suspicious 675 // that we're throwing away r.Read's err here. 676 break 677 } 678 if err != nil { 679 return err 680 } 681 } 682 return nil 683} 684 685func (b *block) Read(p []byte) (n int, err error) { 686 n = copy(p, b.data[b.off:]) 687 b.off += n 688 return 689} 690 691// newBlock allocates a new block, from hc's free list if possible. 692func (hc *halfConn) newBlock() *block { 693 b := hc.bfree 694 if b == nil { 695 return new(block) 696 } 697 hc.bfree = b.link 698 b.link = nil 699 b.resize(0) 700 return b 701} 702 703// freeBlock returns a block to hc's free list. 704// The protocol is such that each side only has a block or two on 705// its free list at a time, so there's no need to worry about 706// trimming the list, etc. 707func (hc *halfConn) freeBlock(b *block) { 708 b.link = hc.bfree 709 hc.bfree = b 710} 711 712// splitBlock splits a block after the first n bytes, 713// returning a block with those n bytes and a 714// block with the remainder. the latter may be nil. 715func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 716 if len(b.data) <= n { 717 return b, nil 718 } 719 bb := hc.newBlock() 720 bb.resize(len(b.data) - n) 721 copy(bb.data, b.data[n:]) 722 b.data = b.data[0:n] 723 return b, bb 724} 725 726func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) { 727RestartReadRecord: 728 if c.isDTLS { 729 return c.dtlsDoReadRecord(want) 730 } 731 732 recordHeaderLen := c.in.recordHeaderLen() 733 734 if c.rawInput == nil { 735 c.rawInput = c.in.newBlock() 736 } 737 b := c.rawInput 738 739 // Read header, payload. 740 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 741 // RFC suggests that EOF without an alertCloseNotify is 742 // an error, but popular web sites seem to do this, 743 // so we can't make it an error, outside of tests. 744 if err == io.EOF && c.config.Bugs.ExpectCloseNotify { 745 err = io.ErrUnexpectedEOF 746 } 747 if e, ok := err.(net.Error); !ok || !e.Temporary() { 748 c.in.setErrorLocked(err) 749 } 750 return 0, nil, err 751 } 752 753 typ := recordType(b.data[0]) 754 755 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 756 // start with a uint16 length where the MSB is set and the first record 757 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 758 // an SSLv2 client. 759 if want == recordTypeHandshake && typ == 0x80 { 760 c.sendAlert(alertProtocolVersion) 761 return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received")) 762 } 763 764 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 765 n := int(b.data[3])<<8 | int(b.data[4]) 766 767 // Alerts sent near version negotiation do not have a well-defined 768 // record-layer version prior to TLS 1.3. (In TLS 1.3, the record-layer 769 // version is irrelevant.) 770 if typ != recordTypeAlert { 771 var expect uint16 772 if c.haveVers { 773 expect = c.vers 774 if c.vers >= VersionTLS13 { 775 expect = VersionTLS10 776 } 777 } else { 778 expect = c.config.Bugs.ExpectInitialRecordVersion 779 } 780 if expect != 0 && vers != expect { 781 c.sendAlert(alertProtocolVersion) 782 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect)) 783 } 784 } 785 if n > maxCiphertext { 786 c.sendAlert(alertRecordOverflow) 787 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n)) 788 } 789 if !c.haveVers { 790 // First message, be extra suspicious: 791 // this might not be a TLS client. 792 // Bail out before reading a full 'body', if possible. 793 // The current max version is 3.1. 794 // If the version is >= 16.0, it's probably not real. 795 // Similarly, a clientHello message encodes in 796 // well under a kilobyte. If the length is >= 12 kB, 797 // it's probably not real. 798 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 { 799 c.sendAlert(alertUnexpectedMessage) 800 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake")) 801 } 802 } 803 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 804 if err == io.EOF { 805 err = io.ErrUnexpectedEOF 806 } 807 if e, ok := err.(net.Error); !ok || !e.Temporary() { 808 c.in.setErrorLocked(err) 809 } 810 return 0, nil, err 811 } 812 813 // Process message. 814 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 815 ok, off, encTyp, alertValue := c.in.decrypt(b) 816 817 // Handle skipping over early data. 818 if !ok && c.skipEarlyData { 819 goto RestartReadRecord 820 } 821 822 // If the server is expecting a second ClientHello (in response to 823 // a HelloRetryRequest) and the client sends early data, there 824 // won't be a decryption failure but it still needs to be skipped. 825 if c.in.cipher == nil && typ == recordTypeApplicationData && c.skipEarlyData { 826 goto RestartReadRecord 827 } 828 829 if !ok { 830 return 0, nil, c.in.setErrorLocked(c.sendAlert(alertValue)) 831 } 832 b.off = off 833 c.skipEarlyData = false 834 835 if c.vers >= VersionTLS13 && c.in.cipher != nil { 836 if typ != recordTypeApplicationData { 837 return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: outer record type is not application data")) 838 } 839 typ = encTyp 840 } 841 return typ, b, nil 842} 843 844// readRecord reads the next TLS record from the connection 845// and updates the record layer state. 846// c.in.Mutex <= L; c.input == nil. 847func (c *Conn) readRecord(want recordType) error { 848 // Caller must be in sync with connection: 849 // handshake data if handshake not yet completed, 850 // else application data. 851 switch want { 852 default: 853 c.sendAlert(alertInternalError) 854 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 855 case recordTypeHandshake, recordTypeChangeCipherSpec: 856 if c.handshakeComplete { 857 c.sendAlert(alertInternalError) 858 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete")) 859 } 860 case recordTypeApplicationData: 861 if !c.handshakeComplete && !c.config.Bugs.ExpectFalseStart && len(c.config.Bugs.ExpectHalfRTTData) == 0 && len(c.config.Bugs.ExpectEarlyData) == 0 { 862 c.sendAlert(alertInternalError) 863 return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete")) 864 } 865 case recordTypeAlert: 866 // Looking for a close_notify. Note: unlike a real 867 // implementation, this is not tolerant of additional records. 868 // See the documentation for ExpectCloseNotify. 869 } 870 871Again: 872 typ, b, err := c.doReadRecord(want) 873 if err != nil { 874 return err 875 } 876 data := b.data[b.off:] 877 max := maxPlaintext 878 if c.config.Bugs.MaxReceivePlaintext != 0 { 879 max = c.config.Bugs.MaxReceivePlaintext 880 } 881 if len(data) > max { 882 err := c.sendAlert(alertRecordOverflow) 883 c.in.freeBlock(b) 884 return c.in.setErrorLocked(err) 885 } 886 887 switch typ { 888 default: 889 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 890 891 case recordTypeAlert: 892 if len(data) != 2 { 893 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 894 break 895 } 896 if alert(data[1]) == alertCloseNotify { 897 c.in.setErrorLocked(io.EOF) 898 break 899 } 900 switch data[0] { 901 case alertLevelWarning: 902 if alert(data[1]) == alertNoCertificate { 903 c.in.freeBlock(b) 904 return errNoCertificateAlert 905 } 906 if alert(data[1]) == alertEndOfEarlyData { 907 c.in.freeBlock(b) 908 return errEndOfEarlyDataAlert 909 } 910 911 // drop on the floor 912 c.in.freeBlock(b) 913 goto Again 914 case alertLevelError: 915 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 916 default: 917 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 918 } 919 920 case recordTypeChangeCipherSpec: 921 if typ != want || len(data) != 1 || data[0] != 1 { 922 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 923 break 924 } 925 err := c.in.changeCipherSpec(c.config) 926 if err != nil { 927 c.in.setErrorLocked(c.sendAlert(err.(alert))) 928 } 929 930 case recordTypeApplicationData: 931 if typ != want { 932 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 933 break 934 } 935 c.input = b 936 b = nil 937 938 case recordTypeHandshake: 939 // Allow handshake data while reading application data to 940 // trigger post-handshake messages. 941 // TODO(rsc): Should at least pick off connection close. 942 if typ != want && want != recordTypeApplicationData { 943 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 944 } 945 c.hand.Write(data) 946 } 947 948 if b != nil { 949 c.in.freeBlock(b) 950 } 951 return c.in.err 952} 953 954// sendAlert sends a TLS alert message. 955// c.out.Mutex <= L. 956func (c *Conn) sendAlertLocked(level byte, err alert) error { 957 c.tmp[0] = level 958 c.tmp[1] = byte(err) 959 if c.config.Bugs.FragmentAlert { 960 c.writeRecord(recordTypeAlert, c.tmp[0:1]) 961 c.writeRecord(recordTypeAlert, c.tmp[1:2]) 962 } else if c.config.Bugs.DoubleAlert { 963 copy(c.tmp[2:4], c.tmp[0:2]) 964 c.writeRecord(recordTypeAlert, c.tmp[0:4]) 965 } else { 966 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 967 } 968 // Error alerts are fatal to the connection. 969 if level == alertLevelError { 970 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 971 } 972 return nil 973} 974 975// sendAlert sends a TLS alert message. 976// L < c.out.Mutex. 977func (c *Conn) sendAlert(err alert) error { 978 level := byte(alertLevelError) 979 if err == alertNoRenegotiation || err == alertCloseNotify || err == alertNoCertificate || err == alertEndOfEarlyData { 980 level = alertLevelWarning 981 } 982 return c.SendAlert(level, err) 983} 984 985func (c *Conn) SendAlert(level byte, err alert) error { 986 c.out.Lock() 987 defer c.out.Unlock() 988 return c.sendAlertLocked(level, err) 989} 990 991// writeV2Record writes a record for a V2ClientHello. 992func (c *Conn) writeV2Record(data []byte) (n int, err error) { 993 record := make([]byte, 2+len(data)) 994 record[0] = uint8(len(data)>>8) | 0x80 995 record[1] = uint8(len(data)) 996 copy(record[2:], data) 997 return c.conn.Write(record) 998} 999 1000// writeRecord writes a TLS record with the given type and payload 1001// to the connection and updates the record layer state. 1002// c.out.Mutex <= L. 1003func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) { 1004 if msgType := c.config.Bugs.SendWrongMessageType; msgType != 0 { 1005 if typ == recordTypeHandshake && data[0] == msgType { 1006 newData := make([]byte, len(data)) 1007 copy(newData, data) 1008 newData[0] += 42 1009 data = newData 1010 } 1011 } 1012 1013 if msgType := c.config.Bugs.SendTrailingMessageData; msgType != 0 { 1014 if typ == recordTypeHandshake && data[0] == msgType { 1015 newData := make([]byte, len(data)) 1016 copy(newData, data) 1017 1018 // Add a 0 to the body. 1019 newData = append(newData, 0) 1020 // Fix the header. 1021 newLen := len(newData) - 4 1022 newData[1] = byte(newLen >> 16) 1023 newData[2] = byte(newLen >> 8) 1024 newData[3] = byte(newLen) 1025 1026 data = newData 1027 } 1028 } 1029 1030 if c.isDTLS { 1031 return c.dtlsWriteRecord(typ, data) 1032 } 1033 1034 if typ == recordTypeHandshake { 1035 if c.config.Bugs.SendHelloRequestBeforeEveryHandshakeMessage { 1036 newData := make([]byte, 0, 4+len(data)) 1037 newData = append(newData, typeHelloRequest, 0, 0, 0) 1038 newData = append(newData, data...) 1039 data = newData 1040 } 1041 1042 if c.config.Bugs.PackHandshakeFlight { 1043 c.pendingFlight.Write(data) 1044 return len(data), nil 1045 } 1046 } 1047 1048 return c.doWriteRecord(typ, data) 1049} 1050 1051func (c *Conn) doWriteRecord(typ recordType, data []byte) (n int, err error) { 1052 recordHeaderLen := c.out.recordHeaderLen() 1053 b := c.out.newBlock() 1054 first := true 1055 isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello 1056 for len(data) > 0 || first { 1057 m := len(data) 1058 if m > maxPlaintext && !c.config.Bugs.SendLargeRecords { 1059 m = maxPlaintext 1060 } 1061 if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength { 1062 m = c.config.Bugs.MaxHandshakeRecordLength 1063 // By default, do not fragment the client_version or 1064 // server_version, which are located in the first 6 1065 // bytes. 1066 if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 { 1067 m = 6 1068 } 1069 } 1070 explicitIVLen := 0 1071 explicitIVIsSeq := false 1072 first = false 1073 1074 var cbc cbcMode 1075 if c.out.version >= VersionTLS11 { 1076 var ok bool 1077 if cbc, ok = c.out.cipher.(cbcMode); ok { 1078 explicitIVLen = cbc.BlockSize() 1079 } 1080 } 1081 if explicitIVLen == 0 { 1082 if aead, ok := c.out.cipher.(*tlsAead); ok && aead.explicitNonce { 1083 explicitIVLen = 8 1084 // The AES-GCM construction in TLS has an 1085 // explicit nonce so that the nonce can be 1086 // random. However, the nonce is only 8 bytes 1087 // which is too small for a secure, random 1088 // nonce. Therefore we use the sequence number 1089 // as the nonce. 1090 explicitIVIsSeq = true 1091 } 1092 } 1093 b.resize(recordHeaderLen + explicitIVLen + m) 1094 b.data[0] = byte(typ) 1095 if c.vers >= VersionTLS13 && c.out.cipher != nil { 1096 b.data[0] = byte(recordTypeApplicationData) 1097 if outerType := c.config.Bugs.OuterRecordType; outerType != 0 { 1098 b.data[0] = byte(outerType) 1099 } 1100 } 1101 vers := c.vers 1102 if vers == 0 || vers >= VersionTLS13 { 1103 // Some TLS servers fail if the record version is 1104 // greater than TLS 1.0 for the initial ClientHello. 1105 // 1106 // TLS 1.3 fixes the version number in the record 1107 // layer to {3, 1}. 1108 vers = VersionTLS10 1109 } 1110 if c.config.Bugs.SendRecordVersion != 0 { 1111 vers = c.config.Bugs.SendRecordVersion 1112 } 1113 if c.vers == 0 && c.config.Bugs.SendInitialRecordVersion != 0 { 1114 vers = c.config.Bugs.SendInitialRecordVersion 1115 } 1116 b.data[1] = byte(vers >> 8) 1117 b.data[2] = byte(vers) 1118 b.data[3] = byte(m >> 8) 1119 b.data[4] = byte(m) 1120 if explicitIVLen > 0 { 1121 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 1122 if explicitIVIsSeq { 1123 copy(explicitIV, c.out.seq[:]) 1124 } else { 1125 if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil { 1126 break 1127 } 1128 } 1129 } 1130 copy(b.data[recordHeaderLen+explicitIVLen:], data) 1131 c.out.encrypt(b, explicitIVLen, typ) 1132 _, err = c.conn.Write(b.data) 1133 if err != nil { 1134 break 1135 } 1136 n += m 1137 data = data[m:] 1138 } 1139 c.out.freeBlock(b) 1140 1141 if typ == recordTypeChangeCipherSpec { 1142 err = c.out.changeCipherSpec(c.config) 1143 if err != nil { 1144 // Cannot call sendAlert directly, 1145 // because we already hold c.out.Mutex. 1146 c.tmp[0] = alertLevelError 1147 c.tmp[1] = byte(err.(alert)) 1148 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 1149 return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 1150 } 1151 } 1152 return 1153} 1154 1155func (c *Conn) flushHandshake() error { 1156 if c.isDTLS { 1157 return c.dtlsFlushHandshake() 1158 } 1159 1160 for c.pendingFlight.Len() > 0 { 1161 var buf [maxPlaintext]byte 1162 n, _ := c.pendingFlight.Read(buf[:]) 1163 if _, err := c.doWriteRecord(recordTypeHandshake, buf[:n]); err != nil { 1164 return err 1165 } 1166 } 1167 1168 c.pendingFlight.Reset() 1169 return nil 1170} 1171 1172func (c *Conn) doReadHandshake() ([]byte, error) { 1173 if c.isDTLS { 1174 return c.dtlsDoReadHandshake() 1175 } 1176 1177 for c.hand.Len() < 4 { 1178 if err := c.in.err; err != nil { 1179 return nil, err 1180 } 1181 if err := c.readRecord(recordTypeHandshake); err != nil { 1182 return nil, err 1183 } 1184 } 1185 1186 data := c.hand.Bytes() 1187 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 1188 if n > maxHandshake { 1189 return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError)) 1190 } 1191 for c.hand.Len() < 4+n { 1192 if err := c.in.err; err != nil { 1193 return nil, err 1194 } 1195 if err := c.readRecord(recordTypeHandshake); err != nil { 1196 return nil, err 1197 } 1198 } 1199 return c.hand.Next(4 + n), nil 1200} 1201 1202// readHandshake reads the next handshake message from 1203// the record layer. 1204// c.in.Mutex < L; c.out.Mutex < L. 1205func (c *Conn) readHandshake() (interface{}, error) { 1206 data, err := c.doReadHandshake() 1207 if err == errNoCertificateAlert { 1208 if c.hand.Len() != 0 { 1209 // The warning alert may not interleave with a handshake message. 1210 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1211 } 1212 return new(ssl3NoCertificateMsg), nil 1213 } 1214 if err != nil { 1215 return nil, err 1216 } 1217 1218 var m handshakeMessage 1219 switch data[0] { 1220 case typeHelloRequest: 1221 m = new(helloRequestMsg) 1222 case typeClientHello: 1223 m = &clientHelloMsg{ 1224 isDTLS: c.isDTLS, 1225 } 1226 case typeServerHello: 1227 m = &serverHelloMsg{ 1228 isDTLS: c.isDTLS, 1229 } 1230 case typeHelloRetryRequest: 1231 m = new(helloRetryRequestMsg) 1232 case typeNewSessionTicket: 1233 m = &newSessionTicketMsg{ 1234 version: c.vers, 1235 } 1236 case typeEncryptedExtensions: 1237 m = new(encryptedExtensionsMsg) 1238 case typeCertificate: 1239 m = &certificateMsg{ 1240 hasRequestContext: c.vers >= VersionTLS13, 1241 } 1242 case typeCertificateRequest: 1243 m = &certificateRequestMsg{ 1244 hasSignatureAlgorithm: c.vers >= VersionTLS12, 1245 hasRequestContext: c.vers >= VersionTLS13, 1246 } 1247 case typeCertificateStatus: 1248 m = new(certificateStatusMsg) 1249 case typeServerKeyExchange: 1250 m = new(serverKeyExchangeMsg) 1251 case typeServerHelloDone: 1252 m = new(serverHelloDoneMsg) 1253 case typeClientKeyExchange: 1254 m = new(clientKeyExchangeMsg) 1255 case typeCertificateVerify: 1256 m = &certificateVerifyMsg{ 1257 hasSignatureAlgorithm: c.vers >= VersionTLS12, 1258 } 1259 case typeNextProtocol: 1260 m = new(nextProtoMsg) 1261 case typeFinished: 1262 m = new(finishedMsg) 1263 case typeHelloVerifyRequest: 1264 m = new(helloVerifyRequestMsg) 1265 case typeChannelID: 1266 m = new(channelIDMsg) 1267 case typeKeyUpdate: 1268 m = new(keyUpdateMsg) 1269 default: 1270 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1271 } 1272 1273 // The handshake message unmarshallers 1274 // expect to be able to keep references to data, 1275 // so pass in a fresh copy that won't be overwritten. 1276 data = append([]byte(nil), data...) 1277 1278 if !m.unmarshal(data) { 1279 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 1280 } 1281 return m, nil 1282} 1283 1284// skipPacket processes all the DTLS records in packet. It updates 1285// sequence number expectations but otherwise ignores them. 1286func (c *Conn) skipPacket(packet []byte) error { 1287 for len(packet) > 0 { 1288 if len(packet) < 13 { 1289 return errors.New("tls: bad packet") 1290 } 1291 // Dropped packets are completely ignored save to update 1292 // expected sequence numbers for this and the next epoch. (We 1293 // don't assert on the contents of the packets both for 1294 // simplicity and because a previous test with one shorter 1295 // timeout schedule would have done so.) 1296 epoch := packet[3:5] 1297 seq := packet[5:11] 1298 length := uint16(packet[11])<<8 | uint16(packet[12]) 1299 if bytes.Equal(c.in.seq[:2], epoch) { 1300 if bytes.Compare(seq, c.in.seq[2:]) < 0 { 1301 return errors.New("tls: sequence mismatch") 1302 } 1303 copy(c.in.seq[2:], seq) 1304 c.in.incSeq(false) 1305 } else { 1306 if bytes.Compare(seq, c.in.nextSeq[:]) < 0 { 1307 return errors.New("tls: sequence mismatch") 1308 } 1309 copy(c.in.nextSeq[:], seq) 1310 c.in.incNextSeq() 1311 } 1312 if len(packet) < 13+int(length) { 1313 return errors.New("tls: bad packet") 1314 } 1315 packet = packet[13+length:] 1316 } 1317 return nil 1318} 1319 1320// simulatePacketLoss simulates the loss of a handshake leg from the 1321// peer based on the schedule in c.config.Bugs. If resendFunc is 1322// non-nil, it is called after each simulated timeout to retransmit 1323// handshake messages from the local end. This is used in cases where 1324// the peer retransmits on a stale Finished rather than a timeout. 1325func (c *Conn) simulatePacketLoss(resendFunc func()) error { 1326 if len(c.config.Bugs.TimeoutSchedule) == 0 { 1327 return nil 1328 } 1329 if !c.isDTLS { 1330 return errors.New("tls: TimeoutSchedule may only be set in DTLS") 1331 } 1332 if c.config.Bugs.PacketAdaptor == nil { 1333 return errors.New("tls: TimeoutSchedule set without PacketAdapter") 1334 } 1335 for _, timeout := range c.config.Bugs.TimeoutSchedule { 1336 // Simulate a timeout. 1337 packets, err := c.config.Bugs.PacketAdaptor.SendReadTimeout(timeout) 1338 if err != nil { 1339 return err 1340 } 1341 for _, packet := range packets { 1342 if err := c.skipPacket(packet); err != nil { 1343 return err 1344 } 1345 } 1346 if resendFunc != nil { 1347 resendFunc() 1348 } 1349 } 1350 return nil 1351} 1352 1353func (c *Conn) SendHalfHelloRequest() error { 1354 if err := c.Handshake(); err != nil { 1355 return err 1356 } 1357 1358 c.out.Lock() 1359 defer c.out.Unlock() 1360 1361 if _, err := c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0}); err != nil { 1362 return err 1363 } 1364 return c.flushHandshake() 1365} 1366 1367// Write writes data to the connection. 1368func (c *Conn) Write(b []byte) (int, error) { 1369 if err := c.Handshake(); err != nil { 1370 return 0, err 1371 } 1372 1373 c.out.Lock() 1374 defer c.out.Unlock() 1375 1376 // Flush any pending handshake data. PackHelloRequestWithFinished may 1377 // have been set and the handshake not followed by Renegotiate. 1378 c.flushHandshake() 1379 1380 if err := c.out.err; err != nil { 1381 return 0, err 1382 } 1383 1384 if !c.handshakeComplete { 1385 return 0, alertInternalError 1386 } 1387 1388 if c.keyUpdateRequested { 1389 if err := c.sendKeyUpdateLocked(keyUpdateNotRequested); err != nil { 1390 return 0, err 1391 } 1392 c.keyUpdateRequested = false 1393 } 1394 1395 if c.config.Bugs.SendSpuriousAlert != 0 { 1396 c.sendAlertLocked(alertLevelError, c.config.Bugs.SendSpuriousAlert) 1397 } 1398 1399 if c.config.Bugs.SendHelloRequestBeforeEveryAppDataRecord { 1400 c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0, 0, 0}) 1401 c.flushHandshake() 1402 } 1403 1404 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 1405 // attack when using block mode ciphers due to predictable IVs. 1406 // This can be prevented by splitting each Application Data 1407 // record into two records, effectively randomizing the IV. 1408 // 1409 // http://www.openssl.org/~bodo/tls-cbc.txt 1410 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 1411 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 1412 1413 var m int 1414 if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS { 1415 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 1416 n, err := c.writeRecord(recordTypeApplicationData, b[:1]) 1417 if err != nil { 1418 return n, c.out.setErrorLocked(err) 1419 } 1420 m, b = 1, b[1:] 1421 } 1422 } 1423 1424 n, err := c.writeRecord(recordTypeApplicationData, b) 1425 return n + m, c.out.setErrorLocked(err) 1426} 1427 1428func (c *Conn) processTLS13NewSessionTicket(newSessionTicket *newSessionTicketMsg, cipherSuite *cipherSuite) error { 1429 if c.config.Bugs.ExpectGREASE && !newSessionTicket.hasGREASEExtension { 1430 return errors.New("tls: no GREASE ticket extension found") 1431 } 1432 1433 if c.config.Bugs.ExpectTicketEarlyDataInfo && newSessionTicket.maxEarlyDataSize == 0 { 1434 return errors.New("tls: no ticket_early_data_info extension found") 1435 } 1436 1437 if c.config.Bugs.ExpectNoNewSessionTicket { 1438 return errors.New("tls: received unexpected NewSessionTicket") 1439 } 1440 1441 if c.config.ClientSessionCache == nil || newSessionTicket.ticketLifetime == 0 { 1442 return nil 1443 } 1444 1445 session := &ClientSessionState{ 1446 sessionTicket: newSessionTicket.ticket, 1447 vers: c.vers, 1448 cipherSuite: cipherSuite.id, 1449 masterSecret: c.resumptionSecret, 1450 serverCertificates: c.peerCertificates, 1451 sctList: c.sctList, 1452 ocspResponse: c.ocspResponse, 1453 ticketCreationTime: c.config.time(), 1454 ticketExpiration: c.config.time().Add(time.Duration(newSessionTicket.ticketLifetime) * time.Second), 1455 ticketAgeAdd: newSessionTicket.ticketAgeAdd, 1456 maxEarlyDataSize: newSessionTicket.maxEarlyDataSize, 1457 earlyALPN: c.clientProtocol, 1458 } 1459 1460 cacheKey := clientSessionCacheKey(c.conn.RemoteAddr(), c.config) 1461 c.config.ClientSessionCache.Put(cacheKey, session) 1462 return nil 1463} 1464 1465func (c *Conn) handlePostHandshakeMessage() error { 1466 msg, err := c.readHandshake() 1467 if err != nil { 1468 return err 1469 } 1470 1471 if c.vers < VersionTLS13 { 1472 if !c.isClient { 1473 c.sendAlert(alertUnexpectedMessage) 1474 return errors.New("tls: unexpected post-handshake message") 1475 } 1476 1477 _, ok := msg.(*helloRequestMsg) 1478 if !ok { 1479 c.sendAlert(alertUnexpectedMessage) 1480 return alertUnexpectedMessage 1481 } 1482 1483 c.handshakeComplete = false 1484 return c.Handshake() 1485 } 1486 1487 if c.isClient { 1488 if newSessionTicket, ok := msg.(*newSessionTicketMsg); ok { 1489 return c.processTLS13NewSessionTicket(newSessionTicket, c.cipherSuite) 1490 } 1491 } 1492 1493 if keyUpdate, ok := msg.(*keyUpdateMsg); ok { 1494 c.in.doKeyUpdate(c, false) 1495 if keyUpdate.keyUpdateRequest == keyUpdateRequested { 1496 c.keyUpdateRequested = true 1497 } 1498 return nil 1499 } 1500 1501 // TODO(davidben): Add support for KeyUpdate. 1502 c.sendAlert(alertUnexpectedMessage) 1503 return alertUnexpectedMessage 1504} 1505 1506func (c *Conn) Renegotiate() error { 1507 if !c.isClient { 1508 helloReq := new(helloRequestMsg).marshal() 1509 if c.config.Bugs.BadHelloRequest != nil { 1510 helloReq = c.config.Bugs.BadHelloRequest 1511 } 1512 c.writeRecord(recordTypeHandshake, helloReq) 1513 c.flushHandshake() 1514 } 1515 1516 c.handshakeComplete = false 1517 return c.Handshake() 1518} 1519 1520// Read can be made to time out and return a net.Error with Timeout() == true 1521// after a fixed time limit; see SetDeadline and SetReadDeadline. 1522func (c *Conn) Read(b []byte) (n int, err error) { 1523 if err = c.Handshake(); err != nil { 1524 return 1525 } 1526 1527 c.in.Lock() 1528 defer c.in.Unlock() 1529 1530 // Some OpenSSL servers send empty records in order to randomize the 1531 // CBC IV. So this loop ignores a limited number of empty records. 1532 const maxConsecutiveEmptyRecords = 100 1533 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 1534 for c.input == nil && c.in.err == nil { 1535 if err := c.readRecord(recordTypeApplicationData); err != nil { 1536 // Soft error, like EAGAIN 1537 return 0, err 1538 } 1539 if c.hand.Len() > 0 { 1540 // We received handshake bytes, indicating a 1541 // post-handshake message. 1542 if err := c.handlePostHandshakeMessage(); err != nil { 1543 return 0, err 1544 } 1545 continue 1546 } 1547 } 1548 if err := c.in.err; err != nil { 1549 return 0, err 1550 } 1551 1552 n, err = c.input.Read(b) 1553 if c.input.off >= len(c.input.data) || c.isDTLS { 1554 c.in.freeBlock(c.input) 1555 c.input = nil 1556 } 1557 1558 // If a close-notify alert is waiting, read it so that 1559 // we can return (n, EOF) instead of (n, nil), to signal 1560 // to the HTTP response reading goroutine that the 1561 // connection is now closed. This eliminates a race 1562 // where the HTTP response reading goroutine would 1563 // otherwise not observe the EOF until its next read, 1564 // by which time a client goroutine might have already 1565 // tried to reuse the HTTP connection for a new 1566 // request. 1567 // See https://codereview.appspot.com/76400046 1568 // and http://golang.org/issue/3514 1569 if ri := c.rawInput; ri != nil && 1570 n != 0 && err == nil && 1571 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 1572 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 1573 err = recErr // will be io.EOF on closeNotify 1574 } 1575 } 1576 1577 if n != 0 || err != nil { 1578 return n, err 1579 } 1580 } 1581 1582 return 0, io.ErrNoProgress 1583} 1584 1585// Close closes the connection. 1586func (c *Conn) Close() error { 1587 var alertErr error 1588 1589 c.handshakeMutex.Lock() 1590 defer c.handshakeMutex.Unlock() 1591 if c.handshakeComplete && !c.config.Bugs.NoCloseNotify { 1592 alert := alertCloseNotify 1593 if c.config.Bugs.SendAlertOnShutdown != 0 { 1594 alert = c.config.Bugs.SendAlertOnShutdown 1595 } 1596 alertErr = c.sendAlert(alert) 1597 // Clear local alerts when sending alerts so we continue to wait 1598 // for the peer rather than closing the socket early. 1599 if opErr, ok := alertErr.(*net.OpError); ok && opErr.Op == "local error" { 1600 alertErr = nil 1601 } 1602 } 1603 1604 // Consume a close_notify from the peer if one hasn't been received 1605 // already. This avoids the peer from failing |SSL_shutdown| due to a 1606 // write failing. 1607 if c.handshakeComplete && alertErr == nil && c.config.Bugs.ExpectCloseNotify { 1608 for c.in.error() == nil { 1609 c.readRecord(recordTypeAlert) 1610 } 1611 if c.in.error() != io.EOF { 1612 alertErr = c.in.error() 1613 } 1614 } 1615 1616 if err := c.conn.Close(); err != nil { 1617 return err 1618 } 1619 return alertErr 1620} 1621 1622// Handshake runs the client or server handshake 1623// protocol if it has not yet been run. 1624// Most uses of this package need not call Handshake 1625// explicitly: the first Read or Write will call it automatically. 1626func (c *Conn) Handshake() error { 1627 c.handshakeMutex.Lock() 1628 defer c.handshakeMutex.Unlock() 1629 if err := c.handshakeErr; err != nil { 1630 return err 1631 } 1632 if c.handshakeComplete { 1633 return nil 1634 } 1635 1636 if c.isDTLS && c.config.Bugs.SendSplitAlert { 1637 c.conn.Write([]byte{ 1638 byte(recordTypeAlert), // type 1639 0xfe, 0xff, // version 1640 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, // sequence 1641 0x0, 0x2, // length 1642 }) 1643 c.conn.Write([]byte{alertLevelError, byte(alertInternalError)}) 1644 } 1645 if data := c.config.Bugs.AppDataBeforeHandshake; data != nil { 1646 c.writeRecord(recordTypeApplicationData, data) 1647 } 1648 if c.isClient { 1649 c.handshakeErr = c.clientHandshake() 1650 } else { 1651 c.handshakeErr = c.serverHandshake() 1652 } 1653 if c.handshakeErr == nil && c.config.Bugs.SendInvalidRecordType { 1654 c.writeRecord(recordType(42), []byte("invalid record")) 1655 } 1656 return c.handshakeErr 1657} 1658 1659// ConnectionState returns basic TLS details about the connection. 1660func (c *Conn) ConnectionState() ConnectionState { 1661 c.handshakeMutex.Lock() 1662 defer c.handshakeMutex.Unlock() 1663 1664 var state ConnectionState 1665 state.HandshakeComplete = c.handshakeComplete 1666 if c.handshakeComplete { 1667 state.Version = c.vers 1668 state.NegotiatedProtocol = c.clientProtocol 1669 state.DidResume = c.didResume 1670 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 1671 state.NegotiatedProtocolFromALPN = c.usedALPN 1672 state.CipherSuite = c.cipherSuite.id 1673 state.PeerCertificates = c.peerCertificates 1674 state.VerifiedChains = c.verifiedChains 1675 state.ServerName = c.serverName 1676 state.ChannelID = c.channelID 1677 state.SRTPProtectionProfile = c.srtpProtectionProfile 1678 state.TLSUnique = c.firstFinished[:] 1679 state.SCTList = c.sctList 1680 state.PeerSignatureAlgorithm = c.peerSignatureAlgorithm 1681 state.CurveID = c.curveID 1682 } 1683 1684 return state 1685} 1686 1687// OCSPResponse returns the stapled OCSP response from the TLS server, if 1688// any. (Only valid for client connections.) 1689func (c *Conn) OCSPResponse() []byte { 1690 c.handshakeMutex.Lock() 1691 defer c.handshakeMutex.Unlock() 1692 1693 return c.ocspResponse 1694} 1695 1696// VerifyHostname checks that the peer certificate chain is valid for 1697// connecting to host. If so, it returns nil; if not, it returns an error 1698// describing the problem. 1699func (c *Conn) VerifyHostname(host string) error { 1700 c.handshakeMutex.Lock() 1701 defer c.handshakeMutex.Unlock() 1702 if !c.isClient { 1703 return errors.New("tls: VerifyHostname called on TLS server connection") 1704 } 1705 if !c.handshakeComplete { 1706 return errors.New("tls: handshake has not yet been performed") 1707 } 1708 return c.peerCertificates[0].VerifyHostname(host) 1709} 1710 1711// ExportKeyingMaterial exports keying material from the current connection 1712// state, as per RFC 5705. 1713func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) { 1714 c.handshakeMutex.Lock() 1715 defer c.handshakeMutex.Unlock() 1716 if !c.handshakeComplete { 1717 return nil, errors.New("tls: handshake has not yet been performed") 1718 } 1719 1720 if c.vers >= VersionTLS13 { 1721 // TODO(davidben): What should we do with useContext? See 1722 // https://github.com/tlswg/tls13-spec/issues/546 1723 return hkdfExpandLabel(c.cipherSuite.hash(), c.exporterSecret, label, context, length), nil 1724 } 1725 1726 seedLen := len(c.clientRandom) + len(c.serverRandom) 1727 if useContext { 1728 seedLen += 2 + len(context) 1729 } 1730 seed := make([]byte, 0, seedLen) 1731 seed = append(seed, c.clientRandom[:]...) 1732 seed = append(seed, c.serverRandom[:]...) 1733 if useContext { 1734 seed = append(seed, byte(len(context)>>8), byte(len(context))) 1735 seed = append(seed, context...) 1736 } 1737 result := make([]byte, length) 1738 prfForVersion(c.vers, c.cipherSuite)(result, c.exporterSecret, label, seed) 1739 return result, nil 1740} 1741 1742// noRenegotiationInfo returns true if the renegotiation info extension 1743// should be supported in the current handshake. 1744func (c *Conn) noRenegotiationInfo() bool { 1745 if c.config.Bugs.NoRenegotiationInfo { 1746 return true 1747 } 1748 if c.cipherSuite == nil && c.config.Bugs.NoRenegotiationInfoInInitial { 1749 return true 1750 } 1751 if c.cipherSuite != nil && c.config.Bugs.NoRenegotiationInfoAfterInitial { 1752 return true 1753 } 1754 return false 1755} 1756 1757func (c *Conn) SendNewSessionTicket() error { 1758 if c.isClient || c.vers < VersionTLS13 { 1759 return errors.New("tls: cannot send post-handshake NewSessionTicket") 1760 } 1761 1762 var peerCertificatesRaw [][]byte 1763 for _, cert := range c.peerCertificates { 1764 peerCertificatesRaw = append(peerCertificatesRaw, cert.Raw) 1765 } 1766 1767 addBuffer := make([]byte, 4) 1768 _, err := io.ReadFull(c.config.rand(), addBuffer) 1769 if err != nil { 1770 c.sendAlert(alertInternalError) 1771 return errors.New("tls: short read from Rand: " + err.Error()) 1772 } 1773 ticketAgeAdd := uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0]) 1774 1775 // TODO(davidben): Allow configuring these values. 1776 m := &newSessionTicketMsg{ 1777 version: c.vers, 1778 ticketLifetime: uint32(24 * time.Hour / time.Second), 1779 duplicateEarlyDataInfo: c.config.Bugs.DuplicateTicketEarlyDataInfo, 1780 customExtension: c.config.Bugs.CustomTicketExtension, 1781 ticketAgeAdd: ticketAgeAdd, 1782 maxEarlyDataSize: c.config.MaxEarlyDataSize, 1783 } 1784 1785 if c.config.Bugs.SendTicketLifetime != 0 { 1786 m.ticketLifetime = uint32(c.config.Bugs.SendTicketLifetime / time.Second) 1787 } 1788 1789 state := sessionState{ 1790 vers: c.vers, 1791 cipherSuite: c.cipherSuite.id, 1792 masterSecret: c.resumptionSecret, 1793 certificates: peerCertificatesRaw, 1794 ticketCreationTime: c.config.time(), 1795 ticketExpiration: c.config.time().Add(time.Duration(m.ticketLifetime) * time.Second), 1796 ticketAgeAdd: uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0]), 1797 earlyALPN: []byte(c.clientProtocol), 1798 } 1799 1800 if !c.config.Bugs.SendEmptySessionTicket { 1801 var err error 1802 m.ticket, err = c.encryptTicket(&state) 1803 if err != nil { 1804 return err 1805 } 1806 } 1807 c.out.Lock() 1808 defer c.out.Unlock() 1809 _, err = c.writeRecord(recordTypeHandshake, m.marshal()) 1810 return err 1811} 1812 1813func (c *Conn) SendKeyUpdate(keyUpdateRequest byte) error { 1814 c.out.Lock() 1815 defer c.out.Unlock() 1816 return c.sendKeyUpdateLocked(keyUpdateRequest) 1817} 1818 1819func (c *Conn) sendKeyUpdateLocked(keyUpdateRequest byte) error { 1820 if c.vers < VersionTLS13 { 1821 return errors.New("tls: attempted to send KeyUpdate before TLS 1.3") 1822 } 1823 1824 m := keyUpdateMsg{ 1825 keyUpdateRequest: keyUpdateRequest, 1826 } 1827 if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil { 1828 return err 1829 } 1830 if err := c.flushHandshake(); err != nil { 1831 return err 1832 } 1833 c.out.doKeyUpdate(c, true) 1834 return nil 1835} 1836 1837func (c *Conn) sendFakeEarlyData(len int) error { 1838 // Assemble a fake early data record. This does not use writeRecord 1839 // because the record layer may be using different keys at this point. 1840 payload := make([]byte, 5+len) 1841 payload[0] = byte(recordTypeApplicationData) 1842 payload[1] = 3 1843 payload[2] = 1 1844 payload[3] = byte(len >> 8) 1845 payload[4] = byte(len) 1846 _, err := c.conn.Write(payload) 1847 return err 1848} 1849