1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef CRYPTO_P224_SPAKE_H_
6 #define CRYPTO_P224_SPAKE_H_
7 
8 #include <crypto/p224.h>
9 #include <crypto/sha2.h>
10 #include <stdint.h>
11 
12 #include "base/gtest_prod_util.h"
13 #include "base/strings/string_piece.h"
14 
15 namespace crypto {
16 
17 // P224EncryptedKeyExchange implements SPAKE2, a variant of Encrypted
18 // Key Exchange. It allows two parties that have a secret common
19 // password to establish a common secure key by exchanging messages
20 // over an insecure channel without disclosing the password.
21 //
22 // The password can be low entropy as authenticating with an attacker only
23 // gives the attacker a one-shot password oracle. No other information about
24 // the password is leaked. (However, you must be sure to limit the number of
25 // permitted authentication attempts otherwise they get many one-shot oracles.)
26 //
27 // The protocol requires several RTTs (actually two, but you shouldn't assume
28 // that.) To use the object, call GetNextMessage() and pass that message to the
29 // peer. Get a message from the peer and feed it into ProcessMessage. Then
30 // examine the return value of ProcessMessage:
31 //   kResultPending: Another round is required. Call GetNextMessage and repeat.
32 //   kResultFailed: The authentication has failed. You can get a human readable
33 //       error message by calling error().
34 //   kResultSuccess: The authentication was successful.
35 //
36 // In each exchange, each peer always sends a message.
37 class CRYPTO_EXPORT P224EncryptedKeyExchange {
38  public:
39   enum Result {
40     kResultPending,
41     kResultFailed,
42     kResultSuccess,
43   };
44 
45   // PeerType's values are named client and server due to convention. But
46   // they could be called "A" and "B" as far as the protocol is concerned so
47   // long as the two parties don't both get the same label.
48   enum PeerType {
49     kPeerTypeClient,
50     kPeerTypeServer,
51   };
52 
53   // peer_type: the type of the local authentication party.
54   // password: secret session password. Both parties to the
55   //     authentication must pass the same value. For the case of a
56   //     TLS connection, see RFC 5705.
57   P224EncryptedKeyExchange(PeerType peer_type,
58                            const base::StringPiece& password);
59 
60   // GetNextMessage returns a byte string which must be passed to the other
61   // party in the authentication.
62   const std::string& GetNextMessage();
63 
64   // ProcessMessage processes a message which must have been generated by a
65   // call to GetNextMessage() by the other party.
66   Result ProcessMessage(const base::StringPiece& message);
67 
68   // In the event that ProcessMessage() returns kResultFailed, error will
69   // return a human readable error message.
70   const std::string& error() const;
71 
72   // The key established as result of the key exchange. Must be called
73   // at then end after ProcessMessage() returns kResultSuccess.
74   const std::string& GetKey() const;
75 
76   // The key established as result of the key exchange. Can be called after
77   // the first ProcessMessage()
78   const std::string& GetUnverifiedKey() const;
79 
80  private:
81   // The authentication state machine is very simple and each party proceeds
82   // through each of these states, in order.
83   enum State {
84     kStateInitial,
85     kStateRecvDH,
86     kStateSendHash,
87     kStateRecvHash,
88     kStateDone,
89   };
90 
91   FRIEND_TEST_ALL_PREFIXES(MutualAuth, ExpectedValues);
92 
93   void Init();
94 
95   // Sets internal random scalar. Should be used by tests only.
96   void SetXForTesting(const std::string& x);
97 
98   State state_;
99   const bool is_server_;
100   // next_message_ contains a value for GetNextMessage() to return.
101   std::string next_message_;
102   std::string error_;
103 
104   // CalculateHash computes the verification hash for the given peer and writes
105   // |kSHA256Length| bytes at |out_digest|.
106   void CalculateHash(PeerType peer_type,
107                      const std::string& client_masked_dh,
108                      const std::string& server_masked_dh,
109                      const std::string& k,
110                      uint8_t* out_digest);
111 
112   // x_ is the secret Diffie-Hellman exponent (see paper referenced in .cc
113   // file).
114   uint8_t x_[p224::kScalarBytes];
115   // pw_ is SHA256(P(password), P(session))[:28] where P() prepends a uint32_t,
116   // big-endian length prefix (see paper referenced in .cc file).
117   uint8_t pw_[p224::kScalarBytes];
118   // expected_authenticator_ is used to store the hash value expected from the
119   // other party.
120   uint8_t expected_authenticator_[kSHA256Length];
121 
122   std::string key_;
123 };
124 
125 }  // namespace crypto
126 
127 #endif  // CRYPTO_P224_SPAKE_H_
128