Name |
Date |
Size |
#Lines |
LOC |
||
---|---|---|---|---|---|---|
.. | - | - | ||||
cmake/ | 22-Nov-2023 | - | 187 | 163 | ||
include/benchmark/ | 22-Nov-2023 | - | 1,174 | 527 | ||
src/ | 22-Nov-2023 | - | 4,387 | 3,065 | ||
test/ | 22-Nov-2023 | - | 1,987 | 1,548 | ||
tools/ | 22-Nov-2023 | - | 404 | 357 | ||
.gitignore | D | 22-Nov-2023 | 469 | 47 | 38 | |
AUTHORS | D | 22-Nov-2023 | 1.2 KiB | 36 | 34 | |
CMakeLists.txt | D | 22-Nov-2023 | 6.8 KiB | 180 | 158 | |
CONTRIBUTING.md | D | 22-Nov-2023 | 2.4 KiB | 59 | 41 | |
CONTRIBUTORS | D | 22-Nov-2023 | 2.1 KiB | 54 | 52 | |
LICENSE | D | 22-Nov-2023 | 11.1 KiB | 203 | 169 | |
README.LLVM | D | 22-Nov-2023 | 184 | 7 | 5 | |
README.md | D | 22-Nov-2023 | 19.9 KiB | 598 | 496 |
README.LLVM
1LLVM notes 2---------- 3 4This directory contains the Google Benchmark source code with some unnecessary 5files removed. Note that this directory is under a different license than 6libc++. 7
README.md
1# benchmark 2[](https://travis-ci.org/google/benchmark) 3[](https://ci.appveyor.com/project/google/benchmark/branch/master) 4[](https://coveralls.io/r/google/benchmark) 5 6A library to support the benchmarking of functions, similar to unit-tests. 7 8Discussion group: https://groups.google.com/d/forum/benchmark-discuss 9 10IRC channel: https://freenode.net #googlebenchmark 11 12[Known issues and common problems](#known-issues) 13 14## Example usage 15### Basic usage 16Define a function that executes the code to be measured. 17 18```c++ 19static void BM_StringCreation(benchmark::State& state) { 20 while (state.KeepRunning()) 21 std::string empty_string; 22} 23// Register the function as a benchmark 24BENCHMARK(BM_StringCreation); 25 26// Define another benchmark 27static void BM_StringCopy(benchmark::State& state) { 28 std::string x = "hello"; 29 while (state.KeepRunning()) 30 std::string copy(x); 31} 32BENCHMARK(BM_StringCopy); 33 34BENCHMARK_MAIN(); 35``` 36 37### Passing arguments 38Sometimes a family of benchmarks can be implemented with just one routine that 39takes an extra argument to specify which one of the family of benchmarks to 40run. For example, the following code defines a family of benchmarks for 41measuring the speed of `memcpy()` calls of different lengths: 42 43```c++ 44static void BM_memcpy(benchmark::State& state) { 45 char* src = new char[state.range(0)]; 46 char* dst = new char[state.range(0)]; 47 memset(src, 'x', state.range(0)); 48 while (state.KeepRunning()) 49 memcpy(dst, src, state.range(0)); 50 state.SetBytesProcessed(int64_t(state.iterations()) * 51 int64_t(state.range(0))); 52 delete[] src; 53 delete[] dst; 54} 55BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 56``` 57 58The preceding code is quite repetitive, and can be replaced with the following 59short-hand. The following invocation will pick a few appropriate arguments in 60the specified range and will generate a benchmark for each such argument. 61 62```c++ 63BENCHMARK(BM_memcpy)->Range(8, 8<<10); 64``` 65 66By default the arguments in the range are generated in multiples of eight and 67the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the 68range multiplier is changed to multiples of two. 69 70```c++ 71BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10); 72``` 73Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ]. 74 75You might have a benchmark that depends on two or more inputs. For example, the 76following code defines a family of benchmarks for measuring the speed of set 77insertion. 78 79```c++ 80static void BM_SetInsert(benchmark::State& state) { 81 while (state.KeepRunning()) { 82 state.PauseTiming(); 83 std::set<int> data = ConstructRandomSet(state.range(0)); 84 state.ResumeTiming(); 85 for (int j = 0; j < state.range(1); ++j) 86 data.insert(RandomNumber()); 87 } 88} 89BENCHMARK(BM_SetInsert) 90 ->Args({1<<10, 1}) 91 ->Args({1<<10, 8}) 92 ->Args({1<<10, 64}) 93 ->Args({1<<10, 512}) 94 ->Args({8<<10, 1}) 95 ->Args({8<<10, 8}) 96 ->Args({8<<10, 64}) 97 ->Args({8<<10, 512}); 98``` 99 100The preceding code is quite repetitive, and can be replaced with the following 101short-hand. The following macro will pick a few appropriate arguments in the 102product of the two specified ranges and will generate a benchmark for each such 103pair. 104 105```c++ 106BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}}); 107``` 108 109For more complex patterns of inputs, passing a custom function to `Apply` allows 110programmatic specification of an arbitrary set of arguments on which to run the 111benchmark. The following example enumerates a dense range on one parameter, 112and a sparse range on the second. 113 114```c++ 115static void CustomArguments(benchmark::internal::Benchmark* b) { 116 for (int i = 0; i <= 10; ++i) 117 for (int j = 32; j <= 1024*1024; j *= 8) 118 b->Args({i, j}); 119} 120BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 121``` 122 123### Calculate asymptotic complexity (Big O) 124Asymptotic complexity might be calculated for a family of benchmarks. The 125following code will calculate the coefficient for the high-order term in the 126running time and the normalized root-mean square error of string comparison. 127 128```c++ 129static void BM_StringCompare(benchmark::State& state) { 130 std::string s1(state.range(0), '-'); 131 std::string s2(state.range(0), '-'); 132 while (state.KeepRunning()) { 133 benchmark::DoNotOptimize(s1.compare(s2)); 134 } 135 state.SetComplexityN(state.range(0)); 136} 137BENCHMARK(BM_StringCompare) 138 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN); 139``` 140 141As shown in the following invocation, asymptotic complexity might also be 142calculated automatically. 143 144```c++ 145BENCHMARK(BM_StringCompare) 146 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(); 147``` 148 149The following code will specify asymptotic complexity with a lambda function, 150that might be used to customize high-order term calculation. 151 152```c++ 153BENCHMARK(BM_StringCompare)->RangeMultiplier(2) 154 ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; }); 155``` 156 157### Templated benchmarks 158Templated benchmarks work the same way: This example produces and consumes 159messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the 160absence of multiprogramming. 161 162```c++ 163template <class Q> int BM_Sequential(benchmark::State& state) { 164 Q q; 165 typename Q::value_type v; 166 while (state.KeepRunning()) { 167 for (int i = state.range(0); i--; ) 168 q.push(v); 169 for (int e = state.range(0); e--; ) 170 q.Wait(&v); 171 } 172 // actually messages, not bytes: 173 state.SetBytesProcessed( 174 static_cast<int64_t>(state.iterations())*state.range(0)); 175} 176BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 177``` 178 179Three macros are provided for adding benchmark templates. 180 181```c++ 182#if __cplusplus >= 201103L // C++11 and greater. 183#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. 184#else // C++ < C++11 185#define BENCHMARK_TEMPLATE(func, arg1) 186#endif 187#define BENCHMARK_TEMPLATE1(func, arg1) 188#define BENCHMARK_TEMPLATE2(func, arg1, arg2) 189``` 190 191## Passing arbitrary arguments to a benchmark 192In C++11 it is possible to define a benchmark that takes an arbitrary number 193of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)` 194macro creates a benchmark that invokes `func` with the `benchmark::State` as 195the first argument followed by the specified `args...`. 196The `test_case_name` is appended to the name of the benchmark and 197should describe the values passed. 198 199```c++ 200template <class ...ExtraArgs>` 201void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) { 202 [...] 203} 204// Registers a benchmark named "BM_takes_args/int_string_test` that passes 205// the specified values to `extra_args`. 206BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc")); 207``` 208Note that elements of `...args` may refer to global variables. Users should 209avoid modifying global state inside of a benchmark. 210 211## Using RegisterBenchmark(name, fn, args...) 212 213The `RegisterBenchmark(name, func, args...)` function provides an alternative 214way to create and register benchmarks. 215`RegisterBenchmark(name, func, args...)` creates, registers, and returns a 216pointer to a new benchmark with the specified `name` that invokes 217`func(st, args...)` where `st` is a `benchmark::State` object. 218 219Unlike the `BENCHMARK` registration macros, which can only be used at the global 220scope, the `RegisterBenchmark` can be called anywhere. This allows for 221benchmark tests to be registered programmatically. 222 223Additionally `RegisterBenchmark` allows any callable object to be registered 224as a benchmark. Including capturing lambdas and function objects. This 225allows the creation 226 227For Example: 228```c++ 229auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ }; 230 231int main(int argc, char** argv) { 232 for (auto& test_input : { /* ... */ }) 233 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input); 234 benchmark::Initialize(&argc, argv); 235 benchmark::RunSpecifiedBenchmarks(); 236} 237``` 238 239### Multithreaded benchmarks 240In a multithreaded test (benchmark invoked by multiple threads simultaneously), 241it is guaranteed that none of the threads will start until all have called 242`KeepRunning`, and all will have finished before KeepRunning returns false. As 243such, any global setup or teardown can be wrapped in a check against the thread 244index: 245 246```c++ 247static void BM_MultiThreaded(benchmark::State& state) { 248 if (state.thread_index == 0) { 249 // Setup code here. 250 } 251 while (state.KeepRunning()) { 252 // Run the test as normal. 253 } 254 if (state.thread_index == 0) { 255 // Teardown code here. 256 } 257} 258BENCHMARK(BM_MultiThreaded)->Threads(2); 259``` 260 261If the benchmarked code itself uses threads and you want to compare it to 262single-threaded code, you may want to use real-time ("wallclock") measurements 263for latency comparisons: 264 265```c++ 266BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime(); 267``` 268 269Without `UseRealTime`, CPU time is used by default. 270 271 272## Manual timing 273For benchmarking something for which neither CPU time nor real-time are 274correct or accurate enough, completely manual timing is supported using 275the `UseManualTime` function. 276 277When `UseManualTime` is used, the benchmarked code must call 278`SetIterationTime` once per iteration of the `KeepRunning` loop to 279report the manually measured time. 280 281An example use case for this is benchmarking GPU execution (e.g. OpenCL 282or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot 283be accurately measured using CPU time or real-time. Instead, they can be 284measured accurately using a dedicated API, and these measurement results 285can be reported back with `SetIterationTime`. 286 287```c++ 288static void BM_ManualTiming(benchmark::State& state) { 289 int microseconds = state.range(0); 290 std::chrono::duration<double, std::micro> sleep_duration { 291 static_cast<double>(microseconds) 292 }; 293 294 while (state.KeepRunning()) { 295 auto start = std::chrono::high_resolution_clock::now(); 296 // Simulate some useful workload with a sleep 297 std::this_thread::sleep_for(sleep_duration); 298 auto end = std::chrono::high_resolution_clock::now(); 299 300 auto elapsed_seconds = 301 std::chrono::duration_cast<std::chrono::duration<double>>( 302 end - start); 303 304 state.SetIterationTime(elapsed_seconds.count()); 305 } 306} 307BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime(); 308``` 309 310### Preventing optimisation 311To prevent a value or expression from being optimized away by the compiler 312the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()` 313functions can be used. 314 315```c++ 316static void BM_test(benchmark::State& state) { 317 while (state.KeepRunning()) { 318 int x = 0; 319 for (int i=0; i < 64; ++i) { 320 benchmark::DoNotOptimize(x += i); 321 } 322 } 323} 324``` 325 326`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either 327memory or a register. For GNU based compilers it acts as read/write barrier 328for global memory. More specifically it forces the compiler to flush pending 329writes to memory and reload any other values as necessary. 330 331Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>` 332in any way. `<expr>` may even be removed entirely when the result is already 333known. For example: 334 335```c++ 336 /* Example 1: `<expr>` is removed entirely. */ 337 int foo(int x) { return x + 42; } 338 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42); 339 340 /* Example 2: Result of '<expr>' is only reused */ 341 int bar(int) __attribute__((const)); 342 while (...) DoNotOptimize(bar(0)); // Optimized to: 343 // int __result__ = bar(0); 344 // while (...) DoNotOptimize(__result__); 345``` 346 347The second tool for preventing optimizations is `ClobberMemory()`. In essence 348`ClobberMemory()` forces the compiler to perform all pending writes to global 349memory. Memory managed by block scope objects must be "escaped" using 350`DoNotOptimize(...)` before it can be clobbered. In the below example 351`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized 352away. 353 354```c++ 355static void BM_vector_push_back(benchmark::State& state) { 356 while (state.KeepRunning()) { 357 std::vector<int> v; 358 v.reserve(1); 359 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered. 360 v.push_back(42); 361 benchmark::ClobberMemory(); // Force 42 to be written to memory. 362 } 363} 364``` 365 366Note that `ClobberMemory()` is only available for GNU based compilers. 367 368### Set time unit manually 369If a benchmark runs a few milliseconds it may be hard to visually compare the 370measured times, since the output data is given in nanoseconds per default. In 371order to manually set the time unit, you can specify it manually: 372 373```c++ 374BENCHMARK(BM_test)->Unit(benchmark::kMillisecond); 375``` 376 377## Controlling number of iterations 378In all cases, the number of iterations for which the benchmark is run is 379governed by the amount of time the benchmark takes. Concretely, the number of 380iterations is at least one, not more than 1e9, until CPU time is greater than 381the minimum time, or the wallclock time is 5x minimum time. The minimum time is 382set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on 383the registered benchmark object. 384 385## Reporting the mean and standard devation by repeated benchmarks 386By default each benchmark is run once and that single result is reported. 387However benchmarks are often noisy and a single result may not be representative 388of the overall behavior. For this reason it's possible to repeatedly rerun the 389benchmark. 390 391The number of runs of each benchmark is specified globally by the 392`--benchmark_repetitions` flag or on a per benchmark basis by calling 393`Repetitions` on the registered benchmark object. When a benchmark is run 394more than once the mean and standard deviation of the runs will be reported. 395 396Additionally the `--benchmark_report_aggregates_only={true|false}` flag or 397`ReportAggregatesOnly(bool)` function can be used to change how repeated tests 398are reported. By default the result of each repeated run is reported. When this 399option is 'true' only the mean and standard deviation of the runs is reported. 400Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides 401the value of the flag for that benchmark. 402 403## Fixtures 404Fixture tests are created by 405first defining a type that derives from ::benchmark::Fixture and then 406creating/registering the tests using the following macros: 407 408* `BENCHMARK_F(ClassName, Method)` 409* `BENCHMARK_DEFINE_F(ClassName, Method)` 410* `BENCHMARK_REGISTER_F(ClassName, Method)` 411 412For Example: 413 414```c++ 415class MyFixture : public benchmark::Fixture {}; 416 417BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { 418 while (st.KeepRunning()) { 419 ... 420 } 421} 422 423BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { 424 while (st.KeepRunning()) { 425 ... 426 } 427} 428/* BarTest is NOT registered */ 429BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); 430/* BarTest is now registered */ 431``` 432 433## Exiting Benchmarks in Error 434 435When errors caused by external influences, such as file I/O and network 436communication, occur within a benchmark the 437`State::SkipWithError(const char* msg)` function can be used to skip that run 438of benchmark and report the error. Note that only future iterations of the 439`KeepRunning()` are skipped. Users may explicitly return to exit the 440benchmark immediately. 441 442The `SkipWithError(...)` function may be used at any point within the benchmark, 443including before and after the `KeepRunning()` loop. 444 445For example: 446 447```c++ 448static void BM_test(benchmark::State& state) { 449 auto resource = GetResource(); 450 if (!resource.good()) { 451 state.SkipWithError("Resource is not good!"); 452 // KeepRunning() loop will not be entered. 453 } 454 while (state.KeepRunning()) { 455 auto data = resource.read_data(); 456 if (!resource.good()) { 457 state.SkipWithError("Failed to read data!"); 458 break; // Needed to skip the rest of the iteration. 459 } 460 do_stuff(data); 461 } 462} 463``` 464 465## Running a subset of the benchmarks 466 467The `--benchmark_filter=<regex>` option can be used to only run the benchmarks 468which match the specified `<regex>`. For example: 469 470```bash 471$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32 472Run on (1 X 2300 MHz CPU ) 4732016-06-25 19:34:24 474Benchmark Time CPU Iterations 475---------------------------------------------------- 476BM_memcpy/32 11 ns 11 ns 79545455 477BM_memcpy/32k 2181 ns 2185 ns 324074 478BM_memcpy/32 12 ns 12 ns 54687500 479BM_memcpy/32k 1834 ns 1837 ns 357143 480``` 481 482 483## Output Formats 484The library supports multiple output formats. Use the 485`--benchmark_format=<console|json|csv>` flag to set the format type. `console` 486is the default format. 487 488The Console format is intended to be a human readable format. By default 489the format generates color output. Context is output on stderr and the 490tabular data on stdout. Example tabular output looks like: 491``` 492Benchmark Time(ns) CPU(ns) Iterations 493---------------------------------------------------------------------- 494BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s 495BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s 496BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s 497``` 498 499The JSON format outputs human readable json split into two top level attributes. 500The `context` attribute contains information about the run in general, including 501information about the CPU and the date. 502The `benchmarks` attribute contains a list of ever benchmark run. Example json 503output looks like: 504``` json 505{ 506 "context": { 507 "date": "2015/03/17-18:40:25", 508 "num_cpus": 40, 509 "mhz_per_cpu": 2801, 510 "cpu_scaling_enabled": false, 511 "build_type": "debug" 512 }, 513 "benchmarks": [ 514 { 515 "name": "BM_SetInsert/1024/1", 516 "iterations": 94877, 517 "real_time": 29275, 518 "cpu_time": 29836, 519 "bytes_per_second": 134066, 520 "items_per_second": 33516 521 }, 522 { 523 "name": "BM_SetInsert/1024/8", 524 "iterations": 21609, 525 "real_time": 32317, 526 "cpu_time": 32429, 527 "bytes_per_second": 986770, 528 "items_per_second": 246693 529 }, 530 { 531 "name": "BM_SetInsert/1024/10", 532 "iterations": 21393, 533 "real_time": 32724, 534 "cpu_time": 33355, 535 "bytes_per_second": 1199226, 536 "items_per_second": 299807 537 } 538 ] 539} 540``` 541 542The CSV format outputs comma-separated values. The `context` is output on stderr 543and the CSV itself on stdout. Example CSV output looks like: 544``` 545name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label 546"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, 547"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, 548"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06, 549``` 550 551## Output Files 552The library supports writing the output of the benchmark to a file specified 553by `--benchmark_out=<filename>`. The format of the output can be specified 554using `--benchmark_out_format={json|console|csv}`. Specifying 555`--benchmark_out` does not suppress the console output. 556 557## Debug vs Release 558By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use: 559 560``` 561cmake -DCMAKE_BUILD_TYPE=Release 562``` 563 564To enable link-time optimisation, use 565 566``` 567cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true 568``` 569 570## Linking against the library 571When using gcc, it is necessary to link against pthread to avoid runtime exceptions. 572This is due to how gcc implements std::thread. 573See [issue #67](https://github.com/google/benchmark/issues/67) for more details. 574 575## Compiler Support 576 577Google Benchmark uses C++11 when building the library. As such we require 578a modern C++ toolchain, both compiler and standard library. 579 580The following minimum versions are strongly recommended build the library: 581 582* GCC 4.8 583* Clang 3.4 584* Visual Studio 2013 585 586Anything older *may* work. 587 588Note: Using the library and its headers in C++03 is supported. C++11 is only 589required to build the library. 590 591# Known Issues 592 593### Windows 594 595* Users must manually link `shlwapi.lib`. Failure to do so may result 596in unresolved symbols. 597 598