1 //===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsTargetLowering specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsTargetMachine.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "mips-isel"
28 
29 static cl::opt<bool>
30 EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
31                     cl::desc("MIPS: Enable tail calls."), cl::init(false));
32 
33 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
34                                    cl::desc("Expand double precision loads and "
35                                             "stores to their single precision "
36                                             "counterparts"));
37 
MipsSETargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)38 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
39                                            const MipsSubtarget &STI)
40     : MipsTargetLowering(TM, STI) {
41   // Set up the register classes
42   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
43 
44   if (Subtarget.isGP64bit())
45     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
46 
47   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
48     // Expand all truncating stores and extending loads.
49     for (MVT VT0 : MVT::vector_valuetypes()) {
50       for (MVT VT1 : MVT::vector_valuetypes()) {
51         setTruncStoreAction(VT0, VT1, Expand);
52         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
53         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
54         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
55       }
56     }
57   }
58 
59   if (Subtarget.hasDSP()) {
60     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
61 
62     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
63       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
64 
65       // Expand all builtin opcodes.
66       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
67         setOperationAction(Opc, VecTys[i], Expand);
68 
69       setOperationAction(ISD::ADD, VecTys[i], Legal);
70       setOperationAction(ISD::SUB, VecTys[i], Legal);
71       setOperationAction(ISD::LOAD, VecTys[i], Legal);
72       setOperationAction(ISD::STORE, VecTys[i], Legal);
73       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
74     }
75 
76     setTargetDAGCombine(ISD::SHL);
77     setTargetDAGCombine(ISD::SRA);
78     setTargetDAGCombine(ISD::SRL);
79     setTargetDAGCombine(ISD::SETCC);
80     setTargetDAGCombine(ISD::VSELECT);
81   }
82 
83   if (Subtarget.hasDSPR2())
84     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
85 
86   if (Subtarget.hasMSA()) {
87     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
88     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
89     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
90     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
91     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
92     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
93     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
94 
95     setTargetDAGCombine(ISD::AND);
96     setTargetDAGCombine(ISD::OR);
97     setTargetDAGCombine(ISD::SRA);
98     setTargetDAGCombine(ISD::VSELECT);
99     setTargetDAGCombine(ISD::XOR);
100   }
101 
102   if (!Subtarget.useSoftFloat()) {
103     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
104 
105     // When dealing with single precision only, use libcalls
106     if (!Subtarget.isSingleFloat()) {
107       if (Subtarget.isFP64bit())
108         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
109       else
110         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
111     }
112   }
113 
114   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
115   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
116   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
117   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
118 
119   if (Subtarget.hasCnMips())
120     setOperationAction(ISD::MUL,              MVT::i64, Legal);
121   else if (Subtarget.isGP64bit())
122     setOperationAction(ISD::MUL,              MVT::i64, Custom);
123 
124   if (Subtarget.isGP64bit()) {
125     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
126     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
127     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
128     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
129     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
130     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
131   }
132 
133   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
134   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
135 
136   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
137   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
138   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
139   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
140   setOperationAction(ISD::STORE,              MVT::i32, Custom);
141 
142   setTargetDAGCombine(ISD::ADDE);
143   setTargetDAGCombine(ISD::SUBE);
144   setTargetDAGCombine(ISD::MUL);
145 
146   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
147   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
148   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
149 
150   if (NoDPLoadStore) {
151     setOperationAction(ISD::LOAD, MVT::f64, Custom);
152     setOperationAction(ISD::STORE, MVT::f64, Custom);
153   }
154 
155   if (Subtarget.hasMips32r6()) {
156     // MIPS32r6 replaces the accumulator-based multiplies with a three register
157     // instruction
158     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
159     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
160     setOperationAction(ISD::MUL, MVT::i32, Legal);
161     setOperationAction(ISD::MULHS, MVT::i32, Legal);
162     setOperationAction(ISD::MULHU, MVT::i32, Legal);
163 
164     // MIPS32r6 replaces the accumulator-based division/remainder with separate
165     // three register division and remainder instructions.
166     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
167     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168     setOperationAction(ISD::SDIV, MVT::i32, Legal);
169     setOperationAction(ISD::UDIV, MVT::i32, Legal);
170     setOperationAction(ISD::SREM, MVT::i32, Legal);
171     setOperationAction(ISD::UREM, MVT::i32, Legal);
172 
173     // MIPS32r6 replaces conditional moves with an equivalent that removes the
174     // need for three GPR read ports.
175     setOperationAction(ISD::SETCC, MVT::i32, Legal);
176     setOperationAction(ISD::SELECT, MVT::i32, Legal);
177     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
178 
179     setOperationAction(ISD::SETCC, MVT::f32, Legal);
180     setOperationAction(ISD::SELECT, MVT::f32, Legal);
181     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
182 
183     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
184     setOperationAction(ISD::SETCC, MVT::f64, Legal);
185     setOperationAction(ISD::SELECT, MVT::f64, Legal);
186     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
187 
188     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
189 
190     // Floating point > and >= are supported via < and <=
191     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
192     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
193     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
194     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
195 
196     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
197     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
198     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
199     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
200   }
201 
202   if (Subtarget.hasMips64r6()) {
203     // MIPS64r6 replaces the accumulator-based multiplies with a three register
204     // instruction
205     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
206     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
207     setOperationAction(ISD::MUL, MVT::i64, Legal);
208     setOperationAction(ISD::MULHS, MVT::i64, Legal);
209     setOperationAction(ISD::MULHU, MVT::i64, Legal);
210 
211     // MIPS32r6 replaces the accumulator-based division/remainder with separate
212     // three register division and remainder instructions.
213     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
214     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
215     setOperationAction(ISD::SDIV, MVT::i64, Legal);
216     setOperationAction(ISD::UDIV, MVT::i64, Legal);
217     setOperationAction(ISD::SREM, MVT::i64, Legal);
218     setOperationAction(ISD::UREM, MVT::i64, Legal);
219 
220     // MIPS64r6 replaces conditional moves with an equivalent that removes the
221     // need for three GPR read ports.
222     setOperationAction(ISD::SETCC, MVT::i64, Legal);
223     setOperationAction(ISD::SELECT, MVT::i64, Legal);
224     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
225   }
226 
227   computeRegisterProperties(Subtarget.getRegisterInfo());
228 }
229 
230 const MipsTargetLowering *
createMipsSETargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)231 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
232                                  const MipsSubtarget &STI) {
233   return new MipsSETargetLowering(TM, STI);
234 }
235 
236 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const237 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
238   if (VT == MVT::Untyped)
239     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
240 
241   return TargetLowering::getRepRegClassFor(VT);
242 }
243 
244 // Enable MSA support for the given integer type and Register class.
245 void MipsSETargetLowering::
addMSAIntType(MVT::SimpleValueType Ty,const TargetRegisterClass * RC)246 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
247   addRegisterClass(Ty, RC);
248 
249   // Expand all builtin opcodes.
250   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
251     setOperationAction(Opc, Ty, Expand);
252 
253   setOperationAction(ISD::BITCAST, Ty, Legal);
254   setOperationAction(ISD::LOAD, Ty, Legal);
255   setOperationAction(ISD::STORE, Ty, Legal);
256   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
257   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
258   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
259 
260   setOperationAction(ISD::ADD, Ty, Legal);
261   setOperationAction(ISD::AND, Ty, Legal);
262   setOperationAction(ISD::CTLZ, Ty, Legal);
263   setOperationAction(ISD::CTPOP, Ty, Legal);
264   setOperationAction(ISD::MUL, Ty, Legal);
265   setOperationAction(ISD::OR, Ty, Legal);
266   setOperationAction(ISD::SDIV, Ty, Legal);
267   setOperationAction(ISD::SREM, Ty, Legal);
268   setOperationAction(ISD::SHL, Ty, Legal);
269   setOperationAction(ISD::SRA, Ty, Legal);
270   setOperationAction(ISD::SRL, Ty, Legal);
271   setOperationAction(ISD::SUB, Ty, Legal);
272   setOperationAction(ISD::UDIV, Ty, Legal);
273   setOperationAction(ISD::UREM, Ty, Legal);
274   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
275   setOperationAction(ISD::VSELECT, Ty, Legal);
276   setOperationAction(ISD::XOR, Ty, Legal);
277 
278   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
279     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
280     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
281     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
282     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
283   }
284 
285   setOperationAction(ISD::SETCC, Ty, Legal);
286   setCondCodeAction(ISD::SETNE, Ty, Expand);
287   setCondCodeAction(ISD::SETGE, Ty, Expand);
288   setCondCodeAction(ISD::SETGT, Ty, Expand);
289   setCondCodeAction(ISD::SETUGE, Ty, Expand);
290   setCondCodeAction(ISD::SETUGT, Ty, Expand);
291 }
292 
293 // Enable MSA support for the given floating-point type and Register class.
294 void MipsSETargetLowering::
addMSAFloatType(MVT::SimpleValueType Ty,const TargetRegisterClass * RC)295 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
296   addRegisterClass(Ty, RC);
297 
298   // Expand all builtin opcodes.
299   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
300     setOperationAction(Opc, Ty, Expand);
301 
302   setOperationAction(ISD::LOAD, Ty, Legal);
303   setOperationAction(ISD::STORE, Ty, Legal);
304   setOperationAction(ISD::BITCAST, Ty, Legal);
305   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
306   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
307   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
308 
309   if (Ty != MVT::v8f16) {
310     setOperationAction(ISD::FABS,  Ty, Legal);
311     setOperationAction(ISD::FADD,  Ty, Legal);
312     setOperationAction(ISD::FDIV,  Ty, Legal);
313     setOperationAction(ISD::FEXP2, Ty, Legal);
314     setOperationAction(ISD::FLOG2, Ty, Legal);
315     setOperationAction(ISD::FMA,   Ty, Legal);
316     setOperationAction(ISD::FMUL,  Ty, Legal);
317     setOperationAction(ISD::FRINT, Ty, Legal);
318     setOperationAction(ISD::FSQRT, Ty, Legal);
319     setOperationAction(ISD::FSUB,  Ty, Legal);
320     setOperationAction(ISD::VSELECT, Ty, Legal);
321 
322     setOperationAction(ISD::SETCC, Ty, Legal);
323     setCondCodeAction(ISD::SETOGE, Ty, Expand);
324     setCondCodeAction(ISD::SETOGT, Ty, Expand);
325     setCondCodeAction(ISD::SETUGE, Ty, Expand);
326     setCondCodeAction(ISD::SETUGT, Ty, Expand);
327     setCondCodeAction(ISD::SETGE,  Ty, Expand);
328     setCondCodeAction(ISD::SETGT,  Ty, Expand);
329   }
330 }
331 
332 bool
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const333 MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
334                                                      unsigned,
335                                                      unsigned,
336                                                      bool *Fast) const {
337   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
338 
339   if (Subtarget.systemSupportsUnalignedAccess()) {
340     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
341     // implementation defined whether this is handled by hardware, software, or
342     // a hybrid of the two but it's expected that most implementations will
343     // handle the majority of cases in hardware.
344     if (Fast)
345       *Fast = true;
346     return true;
347   }
348 
349   switch (SVT) {
350   case MVT::i64:
351   case MVT::i32:
352     if (Fast)
353       *Fast = true;
354     return true;
355   default:
356     return false;
357   }
358 }
359 
LowerOperation(SDValue Op,SelectionDAG & DAG) const360 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
361                                              SelectionDAG &DAG) const {
362   switch(Op.getOpcode()) {
363   case ISD::LOAD:  return lowerLOAD(Op, DAG);
364   case ISD::STORE: return lowerSTORE(Op, DAG);
365   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
366   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
367   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
368   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
369   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
370   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
371   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
372                                           DAG);
373   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
374   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
375   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
376   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
377   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
378   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
379   }
380 
381   return MipsTargetLowering::LowerOperation(Op, DAG);
382 }
383 
384 // selectMADD -
385 // Transforms a subgraph in CurDAG if the following pattern is found:
386 //  (addc multLo, Lo0), (adde multHi, Hi0),
387 // where,
388 //  multHi/Lo: product of multiplication
389 //  Lo0: initial value of Lo register
390 //  Hi0: initial value of Hi register
391 // Return true if pattern matching was successful.
selectMADD(SDNode * ADDENode,SelectionDAG * CurDAG)392 static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
393   // ADDENode's second operand must be a flag output of an ADDC node in order
394   // for the matching to be successful.
395   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
396 
397   if (ADDCNode->getOpcode() != ISD::ADDC)
398     return false;
399 
400   SDValue MultHi = ADDENode->getOperand(0);
401   SDValue MultLo = ADDCNode->getOperand(0);
402   SDNode *MultNode = MultHi.getNode();
403   unsigned MultOpc = MultHi.getOpcode();
404 
405   // MultHi and MultLo must be generated by the same node,
406   if (MultLo.getNode() != MultNode)
407     return false;
408 
409   // and it must be a multiplication.
410   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
411     return false;
412 
413   // MultLo amd MultHi must be the first and second output of MultNode
414   // respectively.
415   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
416     return false;
417 
418   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
419   // of the values of MultNode, in which case MultNode will be removed in later
420   // phases.
421   // If there exist users other than ADDENode or ADDCNode, this function returns
422   // here, which will result in MultNode being mapped to a single MULT
423   // instruction node rather than a pair of MULT and MADD instructions being
424   // produced.
425   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
426     return false;
427 
428   SDLoc DL(ADDENode);
429 
430   // Initialize accumulator.
431   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
432                                   ADDCNode->getOperand(1),
433                                   ADDENode->getOperand(1));
434 
435   // create MipsMAdd(u) node
436   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
437 
438   SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
439                                  MultNode->getOperand(0),// Factor 0
440                                  MultNode->getOperand(1),// Factor 1
441                                  ACCIn);
442 
443   // replace uses of adde and addc here
444   if (!SDValue(ADDCNode, 0).use_empty()) {
445     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
446     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
447   }
448   if (!SDValue(ADDENode, 0).use_empty()) {
449     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
450     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
451   }
452 
453   return true;
454 }
455 
456 // selectMSUB -
457 // Transforms a subgraph in CurDAG if the following pattern is found:
458 //  (addc Lo0, multLo), (sube Hi0, multHi),
459 // where,
460 //  multHi/Lo: product of multiplication
461 //  Lo0: initial value of Lo register
462 //  Hi0: initial value of Hi register
463 // Return true if pattern matching was successful.
selectMSUB(SDNode * SUBENode,SelectionDAG * CurDAG)464 static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
465   // SUBENode's second operand must be a flag output of an SUBC node in order
466   // for the matching to be successful.
467   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
468 
469   if (SUBCNode->getOpcode() != ISD::SUBC)
470     return false;
471 
472   SDValue MultHi = SUBENode->getOperand(1);
473   SDValue MultLo = SUBCNode->getOperand(1);
474   SDNode *MultNode = MultHi.getNode();
475   unsigned MultOpc = MultHi.getOpcode();
476 
477   // MultHi and MultLo must be generated by the same node,
478   if (MultLo.getNode() != MultNode)
479     return false;
480 
481   // and it must be a multiplication.
482   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
483     return false;
484 
485   // MultLo amd MultHi must be the first and second output of MultNode
486   // respectively.
487   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
488     return false;
489 
490   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
491   // of the values of MultNode, in which case MultNode will be removed in later
492   // phases.
493   // If there exist users other than SUBENode or SUBCNode, this function returns
494   // here, which will result in MultNode being mapped to a single MULT
495   // instruction node rather than a pair of MULT and MSUB instructions being
496   // produced.
497   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
498     return false;
499 
500   SDLoc DL(SUBENode);
501 
502   // Initialize accumulator.
503   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
504                                   SUBCNode->getOperand(0),
505                                   SUBENode->getOperand(0));
506 
507   // create MipsSub(u) node
508   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
509 
510   SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
511                                  MultNode->getOperand(0),// Factor 0
512                                  MultNode->getOperand(1),// Factor 1
513                                  ACCIn);
514 
515   // replace uses of sube and subc here
516   if (!SDValue(SUBCNode, 0).use_empty()) {
517     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
518     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
519   }
520   if (!SDValue(SUBENode, 0).use_empty()) {
521     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
522     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
523   }
524 
525   return true;
526 }
527 
performADDECombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)528 static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
529                                   TargetLowering::DAGCombinerInfo &DCI,
530                                   const MipsSubtarget &Subtarget) {
531   if (DCI.isBeforeLegalize())
532     return SDValue();
533 
534   if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
535       N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
536     return SDValue(N, 0);
537 
538   return SDValue();
539 }
540 
541 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
542 //
543 // Performs the following transformations:
544 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
545 //   sign/zero-extension is completely overwritten by the new one performed by
546 //   the ISD::AND.
547 // - Removes redundant zero extensions performed by an ISD::AND.
performANDCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)548 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
549                                  TargetLowering::DAGCombinerInfo &DCI,
550                                  const MipsSubtarget &Subtarget) {
551   if (!Subtarget.hasMSA())
552     return SDValue();
553 
554   SDValue Op0 = N->getOperand(0);
555   SDValue Op1 = N->getOperand(1);
556   unsigned Op0Opcode = Op0->getOpcode();
557 
558   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
559   // where $d + 1 == 2^n and n == 32
560   // or    $d + 1 == 2^n and n <= 32 and ZExt
561   // -> (MipsVExtractZExt $a, $b, $c)
562   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
563       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
564     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
565 
566     if (!Mask)
567       return SDValue();
568 
569     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
570 
571     if (Log2IfPositive <= 0)
572       return SDValue(); // Mask+1 is not a power of 2
573 
574     SDValue Op0Op2 = Op0->getOperand(2);
575     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
576     unsigned ExtendTySize = ExtendTy.getSizeInBits();
577     unsigned Log2 = Log2IfPositive;
578 
579     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
580         Log2 == ExtendTySize) {
581       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
582       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
583                          Op0->getVTList(),
584                          makeArrayRef(Ops, Op0->getNumOperands()));
585     }
586   }
587 
588   return SDValue();
589 }
590 
591 // Determine if the specified node is a constant vector splat.
592 //
593 // Returns true and sets Imm if:
594 // * N is a ISD::BUILD_VECTOR representing a constant splat
595 //
596 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
597 // differences are that it assumes the MSA has already been checked and the
598 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
599 // must not be in order for binsri.d to be selectable).
isVSplat(SDValue N,APInt & Imm,bool IsLittleEndian)600 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
601   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
602 
603   if (!Node)
604     return false;
605 
606   APInt SplatValue, SplatUndef;
607   unsigned SplatBitSize;
608   bool HasAnyUndefs;
609 
610   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
611                              8, !IsLittleEndian))
612     return false;
613 
614   Imm = SplatValue;
615 
616   return true;
617 }
618 
619 // Test whether the given node is an all-ones build_vector.
isVectorAllOnes(SDValue N)620 static bool isVectorAllOnes(SDValue N) {
621   // Look through bitcasts. Endianness doesn't matter because we are looking
622   // for an all-ones value.
623   if (N->getOpcode() == ISD::BITCAST)
624     N = N->getOperand(0);
625 
626   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
627 
628   if (!BVN)
629     return false;
630 
631   APInt SplatValue, SplatUndef;
632   unsigned SplatBitSize;
633   bool HasAnyUndefs;
634 
635   // Endianness doesn't matter in this context because we are looking for
636   // an all-ones value.
637   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
638     return SplatValue.isAllOnesValue();
639 
640   return false;
641 }
642 
643 // Test whether N is the bitwise inverse of OfNode.
isBitwiseInverse(SDValue N,SDValue OfNode)644 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
645   if (N->getOpcode() != ISD::XOR)
646     return false;
647 
648   if (isVectorAllOnes(N->getOperand(0)))
649     return N->getOperand(1) == OfNode;
650 
651   if (isVectorAllOnes(N->getOperand(1)))
652     return N->getOperand(0) == OfNode;
653 
654   return false;
655 }
656 
657 // Perform combines where ISD::OR is the root node.
658 //
659 // Performs the following transformations:
660 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
661 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
662 //   vector type.
performORCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)663 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
664                                 TargetLowering::DAGCombinerInfo &DCI,
665                                 const MipsSubtarget &Subtarget) {
666   if (!Subtarget.hasMSA())
667     return SDValue();
668 
669   EVT Ty = N->getValueType(0);
670 
671   if (!Ty.is128BitVector())
672     return SDValue();
673 
674   SDValue Op0 = N->getOperand(0);
675   SDValue Op1 = N->getOperand(1);
676 
677   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
678     SDValue Op0Op0 = Op0->getOperand(0);
679     SDValue Op0Op1 = Op0->getOperand(1);
680     SDValue Op1Op0 = Op1->getOperand(0);
681     SDValue Op1Op1 = Op1->getOperand(1);
682     bool IsLittleEndian = !Subtarget.isLittle();
683 
684     SDValue IfSet, IfClr, Cond;
685     bool IsConstantMask = false;
686     APInt Mask, InvMask;
687 
688     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
689     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
690     // looking.
691     // IfClr will be set if we find a valid match.
692     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
693       Cond = Op0Op0;
694       IfSet = Op0Op1;
695 
696       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
697           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
698         IfClr = Op1Op1;
699       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
700                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
701         IfClr = Op1Op0;
702 
703       IsConstantMask = true;
704     }
705 
706     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
707     // thing again using this mask.
708     // IfClr will be set if we find a valid match.
709     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
710       Cond = Op0Op1;
711       IfSet = Op0Op0;
712 
713       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
714           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
715         IfClr = Op1Op1;
716       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
717                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
718         IfClr = Op1Op0;
719 
720       IsConstantMask = true;
721     }
722 
723     // If IfClr is not yet set, try looking for a non-constant match.
724     // IfClr will be set if we find a valid match amongst the eight
725     // possibilities.
726     if (!IfClr.getNode()) {
727       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
728         Cond = Op1Op0;
729         IfSet = Op1Op1;
730         IfClr = Op0Op1;
731       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
732         Cond = Op1Op0;
733         IfSet = Op1Op1;
734         IfClr = Op0Op0;
735       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
736         Cond = Op1Op1;
737         IfSet = Op1Op0;
738         IfClr = Op0Op1;
739       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
740         Cond = Op1Op1;
741         IfSet = Op1Op0;
742         IfClr = Op0Op0;
743       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
744         Cond = Op0Op0;
745         IfSet = Op0Op1;
746         IfClr = Op1Op1;
747       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
748         Cond = Op0Op0;
749         IfSet = Op0Op1;
750         IfClr = Op1Op0;
751       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
752         Cond = Op0Op1;
753         IfSet = Op0Op0;
754         IfClr = Op1Op1;
755       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
756         Cond = Op0Op1;
757         IfSet = Op0Op0;
758         IfClr = Op1Op0;
759       }
760     }
761 
762     // At this point, IfClr will be set if we have a valid match.
763     if (!IfClr.getNode())
764       return SDValue();
765 
766     assert(Cond.getNode() && IfSet.getNode());
767 
768     // Fold degenerate cases.
769     if (IsConstantMask) {
770       if (Mask.isAllOnesValue())
771         return IfSet;
772       else if (Mask == 0)
773         return IfClr;
774     }
775 
776     // Transform the DAG into an equivalent VSELECT.
777     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
778   }
779 
780   return SDValue();
781 }
782 
performSUBECombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)783 static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
784                                   TargetLowering::DAGCombinerInfo &DCI,
785                                   const MipsSubtarget &Subtarget) {
786   if (DCI.isBeforeLegalize())
787     return SDValue();
788 
789   if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
790       selectMSUB(N, &DAG))
791     return SDValue(N, 0);
792 
793   return SDValue();
794 }
795 
genConstMult(SDValue X,uint64_t C,const SDLoc & DL,EVT VT,EVT ShiftTy,SelectionDAG & DAG)796 static SDValue genConstMult(SDValue X, uint64_t C, const SDLoc &DL, EVT VT,
797                             EVT ShiftTy, SelectionDAG &DAG) {
798   // Clear the upper (64 - VT.sizeInBits) bits.
799   C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
800 
801   // Return 0.
802   if (C == 0)
803     return DAG.getConstant(0, DL, VT);
804 
805   // Return x.
806   if (C == 1)
807     return X;
808 
809   // If c is power of 2, return (shl x, log2(c)).
810   if (isPowerOf2_64(C))
811     return DAG.getNode(ISD::SHL, DL, VT, X,
812                        DAG.getConstant(Log2_64(C), DL, ShiftTy));
813 
814   unsigned Log2Ceil = Log2_64_Ceil(C);
815   uint64_t Floor = 1LL << Log2_64(C);
816   uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
817 
818   // If |c - floor_c| <= |c - ceil_c|,
819   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
820   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
821   if (C - Floor <= Ceil - C) {
822     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
823     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
824     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
825   }
826 
827   // If |c - floor_c| > |c - ceil_c|,
828   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
829   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
830   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
831   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
832 }
833 
performMULCombine(SDNode * N,SelectionDAG & DAG,const TargetLowering::DAGCombinerInfo & DCI,const MipsSETargetLowering * TL)834 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
835                                  const TargetLowering::DAGCombinerInfo &DCI,
836                                  const MipsSETargetLowering *TL) {
837   EVT VT = N->getValueType(0);
838 
839   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
840     if (!VT.isVector())
841       return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N), VT,
842                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
843                           DAG);
844 
845   return SDValue(N, 0);
846 }
847 
performDSPShiftCombine(unsigned Opc,SDNode * N,EVT Ty,SelectionDAG & DAG,const MipsSubtarget & Subtarget)848 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
849                                       SelectionDAG &DAG,
850                                       const MipsSubtarget &Subtarget) {
851   // See if this is a vector splat immediate node.
852   APInt SplatValue, SplatUndef;
853   unsigned SplatBitSize;
854   bool HasAnyUndefs;
855   unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
856   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
857 
858   if (!Subtarget.hasDSP())
859     return SDValue();
860 
861   if (!BV ||
862       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
863                            EltSize, !Subtarget.isLittle()) ||
864       (SplatBitSize != EltSize) ||
865       (SplatValue.getZExtValue() >= EltSize))
866     return SDValue();
867 
868   SDLoc DL(N);
869   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
870                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
871 }
872 
performSHLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)873 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
874                                  TargetLowering::DAGCombinerInfo &DCI,
875                                  const MipsSubtarget &Subtarget) {
876   EVT Ty = N->getValueType(0);
877 
878   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
879     return SDValue();
880 
881   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
882 }
883 
884 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
885 // constant splats into MipsISD::SHRA_DSP for DSPr2.
886 //
887 // Performs the following transformations:
888 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
889 //   sign/zero-extension is completely overwritten by the new one performed by
890 //   the ISD::SRA and ISD::SHL nodes.
891 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
892 //   sequence.
893 //
894 // See performDSPShiftCombine for more information about the transformation
895 // used for DSPr2.
performSRACombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)896 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
897                                  TargetLowering::DAGCombinerInfo &DCI,
898                                  const MipsSubtarget &Subtarget) {
899   EVT Ty = N->getValueType(0);
900 
901   if (Subtarget.hasMSA()) {
902     SDValue Op0 = N->getOperand(0);
903     SDValue Op1 = N->getOperand(1);
904 
905     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
906     // where $d + sizeof($c) == 32
907     // or    $d + sizeof($c) <= 32 and SExt
908     // -> (MipsVExtractSExt $a, $b, $c)
909     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
910       SDValue Op0Op0 = Op0->getOperand(0);
911       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
912 
913       if (!ShAmount)
914         return SDValue();
915 
916       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
917           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
918         return SDValue();
919 
920       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
921       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
922 
923       if (TotalBits == 32 ||
924           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
925            TotalBits <= 32)) {
926         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
927                           Op0Op0->getOperand(2) };
928         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
929                            Op0Op0->getVTList(),
930                            makeArrayRef(Ops, Op0Op0->getNumOperands()));
931       }
932     }
933   }
934 
935   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
936     return SDValue();
937 
938   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
939 }
940 
941 
performSRLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)942 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
943                                  TargetLowering::DAGCombinerInfo &DCI,
944                                  const MipsSubtarget &Subtarget) {
945   EVT Ty = N->getValueType(0);
946 
947   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
948     return SDValue();
949 
950   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
951 }
952 
isLegalDSPCondCode(EVT Ty,ISD::CondCode CC)953 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
954   bool IsV216 = (Ty == MVT::v2i16);
955 
956   switch (CC) {
957   case ISD::SETEQ:
958   case ISD::SETNE:  return true;
959   case ISD::SETLT:
960   case ISD::SETLE:
961   case ISD::SETGT:
962   case ISD::SETGE:  return IsV216;
963   case ISD::SETULT:
964   case ISD::SETULE:
965   case ISD::SETUGT:
966   case ISD::SETUGE: return !IsV216;
967   default:          return false;
968   }
969 }
970 
performSETCCCombine(SDNode * N,SelectionDAG & DAG)971 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
972   EVT Ty = N->getValueType(0);
973 
974   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
975     return SDValue();
976 
977   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
978     return SDValue();
979 
980   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
981                      N->getOperand(1), N->getOperand(2));
982 }
983 
performVSELECTCombine(SDNode * N,SelectionDAG & DAG)984 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
985   EVT Ty = N->getValueType(0);
986 
987   if (Ty.is128BitVector() && Ty.isInteger()) {
988     // Try the following combines:
989     //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
990     //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
991     //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
992     //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
993     //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
994     //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
995     //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
996     //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
997     // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
998     // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
999     // legalizer.
1000     SDValue Op0 = N->getOperand(0);
1001 
1002     if (Op0->getOpcode() != ISD::SETCC)
1003       return SDValue();
1004 
1005     ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
1006     bool Signed;
1007 
1008     if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
1009       Signed = true;
1010     else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
1011       Signed = false;
1012     else
1013       return SDValue();
1014 
1015     SDValue Op1 = N->getOperand(1);
1016     SDValue Op2 = N->getOperand(2);
1017     SDValue Op0Op0 = Op0->getOperand(0);
1018     SDValue Op0Op1 = Op0->getOperand(1);
1019 
1020     if (Op1 == Op0Op0 && Op2 == Op0Op1)
1021       return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
1022                          Ty, Op1, Op2);
1023     else if (Op1 == Op0Op1 && Op2 == Op0Op0)
1024       return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
1025                          Ty, Op1, Op2);
1026   } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
1027     SDValue SetCC = N->getOperand(0);
1028 
1029     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
1030       return SDValue();
1031 
1032     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
1033                        SetCC.getOperand(0), SetCC.getOperand(1),
1034                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
1035   }
1036 
1037   return SDValue();
1038 }
1039 
performXORCombine(SDNode * N,SelectionDAG & DAG,const MipsSubtarget & Subtarget)1040 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
1041                                  const MipsSubtarget &Subtarget) {
1042   EVT Ty = N->getValueType(0);
1043 
1044   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1045     // Try the following combines:
1046     //   (xor (or $a, $b), (build_vector allones))
1047     //   (xor (or $a, $b), (bitcast (build_vector allones)))
1048     SDValue Op0 = N->getOperand(0);
1049     SDValue Op1 = N->getOperand(1);
1050     SDValue NotOp;
1051 
1052     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1053       NotOp = Op1;
1054     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1055       NotOp = Op0;
1056     else
1057       return SDValue();
1058 
1059     if (NotOp->getOpcode() == ISD::OR)
1060       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1061                          NotOp->getOperand(1));
1062   }
1063 
1064   return SDValue();
1065 }
1066 
1067 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1068 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1069   SelectionDAG &DAG = DCI.DAG;
1070   SDValue Val;
1071 
1072   switch (N->getOpcode()) {
1073   case ISD::ADDE:
1074     return performADDECombine(N, DAG, DCI, Subtarget);
1075   case ISD::AND:
1076     Val = performANDCombine(N, DAG, DCI, Subtarget);
1077     break;
1078   case ISD::OR:
1079     Val = performORCombine(N, DAG, DCI, Subtarget);
1080     break;
1081   case ISD::SUBE:
1082     return performSUBECombine(N, DAG, DCI, Subtarget);
1083   case ISD::MUL:
1084     return performMULCombine(N, DAG, DCI, this);
1085   case ISD::SHL:
1086     return performSHLCombine(N, DAG, DCI, Subtarget);
1087   case ISD::SRA:
1088     return performSRACombine(N, DAG, DCI, Subtarget);
1089   case ISD::SRL:
1090     return performSRLCombine(N, DAG, DCI, Subtarget);
1091   case ISD::VSELECT:
1092     return performVSELECTCombine(N, DAG);
1093   case ISD::XOR:
1094     Val = performXORCombine(N, DAG, Subtarget);
1095     break;
1096   case ISD::SETCC:
1097     Val = performSETCCCombine(N, DAG);
1098     break;
1099   }
1100 
1101   if (Val.getNode()) {
1102     DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1103           N->printrWithDepth(dbgs(), &DAG);
1104           dbgs() << "\n=> \n";
1105           Val.getNode()->printrWithDepth(dbgs(), &DAG);
1106           dbgs() << "\n");
1107     return Val;
1108   }
1109 
1110   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1111 }
1112 
1113 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1114 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1115                                                   MachineBasicBlock *BB) const {
1116   switch (MI.getOpcode()) {
1117   default:
1118     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1119   case Mips::BPOSGE32_PSEUDO:
1120     return emitBPOSGE32(MI, BB);
1121   case Mips::SNZ_B_PSEUDO:
1122     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1123   case Mips::SNZ_H_PSEUDO:
1124     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1125   case Mips::SNZ_W_PSEUDO:
1126     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1127   case Mips::SNZ_D_PSEUDO:
1128     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1129   case Mips::SNZ_V_PSEUDO:
1130     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1131   case Mips::SZ_B_PSEUDO:
1132     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1133   case Mips::SZ_H_PSEUDO:
1134     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1135   case Mips::SZ_W_PSEUDO:
1136     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1137   case Mips::SZ_D_PSEUDO:
1138     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1139   case Mips::SZ_V_PSEUDO:
1140     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1141   case Mips::COPY_FW_PSEUDO:
1142     return emitCOPY_FW(MI, BB);
1143   case Mips::COPY_FD_PSEUDO:
1144     return emitCOPY_FD(MI, BB);
1145   case Mips::INSERT_FW_PSEUDO:
1146     return emitINSERT_FW(MI, BB);
1147   case Mips::INSERT_FD_PSEUDO:
1148     return emitINSERT_FD(MI, BB);
1149   case Mips::INSERT_B_VIDX_PSEUDO:
1150   case Mips::INSERT_B_VIDX64_PSEUDO:
1151     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1152   case Mips::INSERT_H_VIDX_PSEUDO:
1153   case Mips::INSERT_H_VIDX64_PSEUDO:
1154     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1155   case Mips::INSERT_W_VIDX_PSEUDO:
1156   case Mips::INSERT_W_VIDX64_PSEUDO:
1157     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1158   case Mips::INSERT_D_VIDX_PSEUDO:
1159   case Mips::INSERT_D_VIDX64_PSEUDO:
1160     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1161   case Mips::INSERT_FW_VIDX_PSEUDO:
1162   case Mips::INSERT_FW_VIDX64_PSEUDO:
1163     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1164   case Mips::INSERT_FD_VIDX_PSEUDO:
1165   case Mips::INSERT_FD_VIDX64_PSEUDO:
1166     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1167   case Mips::FILL_FW_PSEUDO:
1168     return emitFILL_FW(MI, BB);
1169   case Mips::FILL_FD_PSEUDO:
1170     return emitFILL_FD(MI, BB);
1171   case Mips::FEXP2_W_1_PSEUDO:
1172     return emitFEXP2_W_1(MI, BB);
1173   case Mips::FEXP2_D_1_PSEUDO:
1174     return emitFEXP2_D_1(MI, BB);
1175   }
1176 }
1177 
isEligibleForTailCallOptimization(const CCState & CCInfo,unsigned NextStackOffset,const MipsFunctionInfo & FI) const1178 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1179     const CCState &CCInfo, unsigned NextStackOffset,
1180     const MipsFunctionInfo &FI) const {
1181   if (!EnableMipsTailCalls)
1182     return false;
1183 
1184   // Exception has to be cleared with eret.
1185   if (FI.isISR())
1186     return false;
1187 
1188   // Return false if either the callee or caller has a byval argument.
1189   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1190     return false;
1191 
1192   // Return true if the callee's argument area is no larger than the
1193   // caller's.
1194   return NextStackOffset <= FI.getIncomingArgSize();
1195 }
1196 
1197 void MipsSETargetLowering::
getOpndList(SmallVectorImpl<SDValue> & Ops,std::deque<std::pair<unsigned,SDValue>> & RegsToPass,bool IsPICCall,bool GlobalOrExternal,bool InternalLinkage,bool IsCallReloc,CallLoweringInfo & CLI,SDValue Callee,SDValue Chain) const1198 getOpndList(SmallVectorImpl<SDValue> &Ops,
1199             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1200             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1201             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1202             SDValue Chain) const {
1203   Ops.push_back(Callee);
1204   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1205                                   InternalLinkage, IsCallReloc, CLI, Callee,
1206                                   Chain);
1207 }
1208 
lowerLOAD(SDValue Op,SelectionDAG & DAG) const1209 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1210   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1211 
1212   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1213     return MipsTargetLowering::lowerLOAD(Op, DAG);
1214 
1215   // Replace a double precision load with two i32 loads and a buildpair64.
1216   SDLoc DL(Op);
1217   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1218   EVT PtrVT = Ptr.getValueType();
1219 
1220   // i32 load from lower address.
1221   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1222                            MachinePointerInfo(), Nd.isVolatile(),
1223                            Nd.isNonTemporal(), Nd.isInvariant(),
1224                            Nd.getAlignment());
1225 
1226   // i32 load from higher address.
1227   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1228   SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1229                            MachinePointerInfo(), Nd.isVolatile(),
1230                            Nd.isNonTemporal(), Nd.isInvariant(),
1231                            std::min(Nd.getAlignment(), 4U));
1232 
1233   if (!Subtarget.isLittle())
1234     std::swap(Lo, Hi);
1235 
1236   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1237   SDValue Ops[2] = {BP, Hi.getValue(1)};
1238   return DAG.getMergeValues(Ops, DL);
1239 }
1240 
lowerSTORE(SDValue Op,SelectionDAG & DAG) const1241 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1242   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1243 
1244   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1245     return MipsTargetLowering::lowerSTORE(Op, DAG);
1246 
1247   // Replace a double precision store with two extractelement64s and i32 stores.
1248   SDLoc DL(Op);
1249   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1250   EVT PtrVT = Ptr.getValueType();
1251   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1252                            Val, DAG.getConstant(0, DL, MVT::i32));
1253   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1254                            Val, DAG.getConstant(1, DL, MVT::i32));
1255 
1256   if (!Subtarget.isLittle())
1257     std::swap(Lo, Hi);
1258 
1259   // i32 store to lower address.
1260   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1261                        Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1262                        Nd.getAAInfo());
1263 
1264   // i32 store to higher address.
1265   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1266   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1267                       Nd.isVolatile(), Nd.isNonTemporal(),
1268                       std::min(Nd.getAlignment(), 4U), Nd.getAAInfo());
1269 }
1270 
lowerMulDiv(SDValue Op,unsigned NewOpc,bool HasLo,bool HasHi,SelectionDAG & DAG) const1271 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1272                                           bool HasLo, bool HasHi,
1273                                           SelectionDAG &DAG) const {
1274   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1275   assert(!Subtarget.hasMips32r6());
1276 
1277   EVT Ty = Op.getOperand(0).getValueType();
1278   SDLoc DL(Op);
1279   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1280                              Op.getOperand(0), Op.getOperand(1));
1281   SDValue Lo, Hi;
1282 
1283   if (HasLo)
1284     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1285   if (HasHi)
1286     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1287 
1288   if (!HasLo || !HasHi)
1289     return HasLo ? Lo : Hi;
1290 
1291   SDValue Vals[] = { Lo, Hi };
1292   return DAG.getMergeValues(Vals, DL);
1293 }
1294 
initAccumulator(SDValue In,const SDLoc & DL,SelectionDAG & DAG)1295 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1296   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1297                              DAG.getConstant(0, DL, MVT::i32));
1298   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1299                              DAG.getConstant(1, DL, MVT::i32));
1300   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1301 }
1302 
extractLOHI(SDValue Op,const SDLoc & DL,SelectionDAG & DAG)1303 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1304   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1305   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1306   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1307 }
1308 
1309 // This function expands mips intrinsic nodes which have 64-bit input operands
1310 // or output values.
1311 //
1312 // out64 = intrinsic-node in64
1313 // =>
1314 // lo = copy (extract-element (in64, 0))
1315 // hi = copy (extract-element (in64, 1))
1316 // mips-specific-node
1317 // v0 = copy lo
1318 // v1 = copy hi
1319 // out64 = merge-values (v0, v1)
1320 //
lowerDSPIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc)1321 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1322   SDLoc DL(Op);
1323   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1324   SmallVector<SDValue, 3> Ops;
1325   unsigned OpNo = 0;
1326 
1327   // See if Op has a chain input.
1328   if (HasChainIn)
1329     Ops.push_back(Op->getOperand(OpNo++));
1330 
1331   // The next operand is the intrinsic opcode.
1332   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1333 
1334   // See if the next operand has type i64.
1335   SDValue Opnd = Op->getOperand(++OpNo), In64;
1336 
1337   if (Opnd.getValueType() == MVT::i64)
1338     In64 = initAccumulator(Opnd, DL, DAG);
1339   else
1340     Ops.push_back(Opnd);
1341 
1342   // Push the remaining operands.
1343   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1344     Ops.push_back(Op->getOperand(OpNo));
1345 
1346   // Add In64 to the end of the list.
1347   if (In64.getNode())
1348     Ops.push_back(In64);
1349 
1350   // Scan output.
1351   SmallVector<EVT, 2> ResTys;
1352 
1353   for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1354        I != E; ++I)
1355     ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1356 
1357   // Create node.
1358   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1359   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1360 
1361   if (!HasChainIn)
1362     return Out;
1363 
1364   assert(Val->getValueType(1) == MVT::Other);
1365   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1366   return DAG.getMergeValues(Vals, DL);
1367 }
1368 
1369 // Lower an MSA copy intrinsic into the specified SelectionDAG node
lowerMSACopyIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc)1370 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1371   SDLoc DL(Op);
1372   SDValue Vec = Op->getOperand(1);
1373   SDValue Idx = Op->getOperand(2);
1374   EVT ResTy = Op->getValueType(0);
1375   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1376 
1377   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1378                                DAG.getValueType(EltTy));
1379 
1380   return Result;
1381 }
1382 
lowerMSASplatZExt(SDValue Op,unsigned OpNr,SelectionDAG & DAG)1383 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1384   EVT ResVecTy = Op->getValueType(0);
1385   EVT ViaVecTy = ResVecTy;
1386   SDLoc DL(Op);
1387 
1388   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1389   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1390   // lanes.
1391   SDValue LaneA;
1392   SDValue LaneB = Op->getOperand(2);
1393 
1394   if (ResVecTy == MVT::v2i64) {
1395     LaneA = DAG.getConstant(0, DL, MVT::i32);
1396     ViaVecTy = MVT::v4i32;
1397   } else
1398     LaneA = LaneB;
1399 
1400   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1401                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1402 
1403   SDValue Result = DAG.getBuildVector(
1404       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1405 
1406   if (ViaVecTy != ResVecTy)
1407     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
1408 
1409   return Result;
1410 }
1411 
lowerMSASplatImm(SDValue Op,unsigned ImmOp,SelectionDAG & DAG)1412 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1413   return DAG.getConstant(Op->getConstantOperandVal(ImmOp), SDLoc(Op),
1414                          Op->getValueType(0));
1415 }
1416 
getBuildVectorSplat(EVT VecTy,SDValue SplatValue,bool BigEndian,SelectionDAG & DAG)1417 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1418                                    bool BigEndian, SelectionDAG &DAG) {
1419   EVT ViaVecTy = VecTy;
1420   SDValue SplatValueA = SplatValue;
1421   SDValue SplatValueB = SplatValue;
1422   SDLoc DL(SplatValue);
1423 
1424   if (VecTy == MVT::v2i64) {
1425     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1426     ViaVecTy = MVT::v4i32;
1427 
1428     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1429     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1430                               DAG.getConstant(32, DL, MVT::i32));
1431     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1432   }
1433 
1434   // We currently hold the parts in little endian order. Swap them if
1435   // necessary.
1436   if (BigEndian)
1437     std::swap(SplatValueA, SplatValueB);
1438 
1439   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1440                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1441                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1442                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1443 
1444   SDValue Result = DAG.getBuildVector(
1445       ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1446 
1447   if (VecTy != ViaVecTy)
1448     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1449 
1450   return Result;
1451 }
1452 
lowerMSABinaryBitImmIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc,SDValue Imm,bool BigEndian)1453 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1454                                         unsigned Opc, SDValue Imm,
1455                                         bool BigEndian) {
1456   EVT VecTy = Op->getValueType(0);
1457   SDValue Exp2Imm;
1458   SDLoc DL(Op);
1459 
1460   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1461   // here for now.
1462   if (VecTy == MVT::v2i64) {
1463     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1464       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1465 
1466       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1467                                            MVT::i32);
1468       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1469 
1470       if (BigEndian)
1471         std::swap(BitImmLoOp, BitImmHiOp);
1472 
1473       Exp2Imm = DAG.getNode(
1474           ISD::BITCAST, DL, MVT::v2i64,
1475           DAG.getBuildVector(MVT::v4i32, DL,
1476                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1477     }
1478   }
1479 
1480   if (!Exp2Imm.getNode()) {
1481     // We couldnt constant fold, do a vector shift instead
1482 
1483     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1484     // only values 0-63 are valid.
1485     if (VecTy == MVT::v2i64)
1486       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1487 
1488     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1489 
1490     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1491                           Exp2Imm);
1492   }
1493 
1494   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1495 }
1496 
lowerMSABitClear(SDValue Op,SelectionDAG & DAG)1497 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1498   EVT ResTy = Op->getValueType(0);
1499   SDLoc DL(Op);
1500   SDValue One = DAG.getConstant(1, DL, ResTy);
1501   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
1502 
1503   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1504                      DAG.getNOT(DL, Bit, ResTy));
1505 }
1506 
lowerMSABitClearImm(SDValue Op,SelectionDAG & DAG)1507 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1508   SDLoc DL(Op);
1509   EVT ResTy = Op->getValueType(0);
1510   APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
1511                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1512   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1513 
1514   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1515 }
1516 
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const1517 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1518                                                       SelectionDAG &DAG) const {
1519   SDLoc DL(Op);
1520 
1521   switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1522   default:
1523     return SDValue();
1524   case Intrinsic::mips_shilo:
1525     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1526   case Intrinsic::mips_dpau_h_qbl:
1527     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1528   case Intrinsic::mips_dpau_h_qbr:
1529     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1530   case Intrinsic::mips_dpsu_h_qbl:
1531     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1532   case Intrinsic::mips_dpsu_h_qbr:
1533     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1534   case Intrinsic::mips_dpa_w_ph:
1535     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1536   case Intrinsic::mips_dps_w_ph:
1537     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1538   case Intrinsic::mips_dpax_w_ph:
1539     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1540   case Intrinsic::mips_dpsx_w_ph:
1541     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1542   case Intrinsic::mips_mulsa_w_ph:
1543     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1544   case Intrinsic::mips_mult:
1545     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1546   case Intrinsic::mips_multu:
1547     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1548   case Intrinsic::mips_madd:
1549     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1550   case Intrinsic::mips_maddu:
1551     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1552   case Intrinsic::mips_msub:
1553     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1554   case Intrinsic::mips_msubu:
1555     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1556   case Intrinsic::mips_addv_b:
1557   case Intrinsic::mips_addv_h:
1558   case Intrinsic::mips_addv_w:
1559   case Intrinsic::mips_addv_d:
1560     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1561                        Op->getOperand(2));
1562   case Intrinsic::mips_addvi_b:
1563   case Intrinsic::mips_addvi_h:
1564   case Intrinsic::mips_addvi_w:
1565   case Intrinsic::mips_addvi_d:
1566     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1567                        lowerMSASplatImm(Op, 2, DAG));
1568   case Intrinsic::mips_and_v:
1569     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1570                        Op->getOperand(2));
1571   case Intrinsic::mips_andi_b:
1572     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1573                        lowerMSASplatImm(Op, 2, DAG));
1574   case Intrinsic::mips_bclr_b:
1575   case Intrinsic::mips_bclr_h:
1576   case Intrinsic::mips_bclr_w:
1577   case Intrinsic::mips_bclr_d:
1578     return lowerMSABitClear(Op, DAG);
1579   case Intrinsic::mips_bclri_b:
1580   case Intrinsic::mips_bclri_h:
1581   case Intrinsic::mips_bclri_w:
1582   case Intrinsic::mips_bclri_d:
1583     return lowerMSABitClearImm(Op, DAG);
1584   case Intrinsic::mips_binsli_b:
1585   case Intrinsic::mips_binsli_h:
1586   case Intrinsic::mips_binsli_w:
1587   case Intrinsic::mips_binsli_d: {
1588     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1589     EVT VecTy = Op->getValueType(0);
1590     EVT EltTy = VecTy.getVectorElementType();
1591     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1592                                        Op->getConstantOperandVal(3));
1593     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1594                        DAG.getConstant(Mask, DL, VecTy, true),
1595                        Op->getOperand(2), Op->getOperand(1));
1596   }
1597   case Intrinsic::mips_binsri_b:
1598   case Intrinsic::mips_binsri_h:
1599   case Intrinsic::mips_binsri_w:
1600   case Intrinsic::mips_binsri_d: {
1601     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1602     EVT VecTy = Op->getValueType(0);
1603     EVT EltTy = VecTy.getVectorElementType();
1604     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1605                                       Op->getConstantOperandVal(3));
1606     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1607                        DAG.getConstant(Mask, DL, VecTy, true),
1608                        Op->getOperand(2), Op->getOperand(1));
1609   }
1610   case Intrinsic::mips_bmnz_v:
1611     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1612                        Op->getOperand(2), Op->getOperand(1));
1613   case Intrinsic::mips_bmnzi_b:
1614     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1615                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1616                        Op->getOperand(1));
1617   case Intrinsic::mips_bmz_v:
1618     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1619                        Op->getOperand(1), Op->getOperand(2));
1620   case Intrinsic::mips_bmzi_b:
1621     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1622                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1623                        Op->getOperand(2));
1624   case Intrinsic::mips_bneg_b:
1625   case Intrinsic::mips_bneg_h:
1626   case Intrinsic::mips_bneg_w:
1627   case Intrinsic::mips_bneg_d: {
1628     EVT VecTy = Op->getValueType(0);
1629     SDValue One = DAG.getConstant(1, DL, VecTy);
1630 
1631     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1632                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1633                                    Op->getOperand(2)));
1634   }
1635   case Intrinsic::mips_bnegi_b:
1636   case Intrinsic::mips_bnegi_h:
1637   case Intrinsic::mips_bnegi_w:
1638   case Intrinsic::mips_bnegi_d:
1639     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1640                                     !Subtarget.isLittle());
1641   case Intrinsic::mips_bnz_b:
1642   case Intrinsic::mips_bnz_h:
1643   case Intrinsic::mips_bnz_w:
1644   case Intrinsic::mips_bnz_d:
1645     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1646                        Op->getOperand(1));
1647   case Intrinsic::mips_bnz_v:
1648     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1649                        Op->getOperand(1));
1650   case Intrinsic::mips_bsel_v:
1651     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1652     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1653                        Op->getOperand(1), Op->getOperand(3),
1654                        Op->getOperand(2));
1655   case Intrinsic::mips_bseli_b:
1656     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1657     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1658                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1659                        Op->getOperand(2));
1660   case Intrinsic::mips_bset_b:
1661   case Intrinsic::mips_bset_h:
1662   case Intrinsic::mips_bset_w:
1663   case Intrinsic::mips_bset_d: {
1664     EVT VecTy = Op->getValueType(0);
1665     SDValue One = DAG.getConstant(1, DL, VecTy);
1666 
1667     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1668                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1669                                    Op->getOperand(2)));
1670   }
1671   case Intrinsic::mips_bseti_b:
1672   case Intrinsic::mips_bseti_h:
1673   case Intrinsic::mips_bseti_w:
1674   case Intrinsic::mips_bseti_d:
1675     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1676                                     !Subtarget.isLittle());
1677   case Intrinsic::mips_bz_b:
1678   case Intrinsic::mips_bz_h:
1679   case Intrinsic::mips_bz_w:
1680   case Intrinsic::mips_bz_d:
1681     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1682                        Op->getOperand(1));
1683   case Intrinsic::mips_bz_v:
1684     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1685                        Op->getOperand(1));
1686   case Intrinsic::mips_ceq_b:
1687   case Intrinsic::mips_ceq_h:
1688   case Intrinsic::mips_ceq_w:
1689   case Intrinsic::mips_ceq_d:
1690     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1691                         Op->getOperand(2), ISD::SETEQ);
1692   case Intrinsic::mips_ceqi_b:
1693   case Intrinsic::mips_ceqi_h:
1694   case Intrinsic::mips_ceqi_w:
1695   case Intrinsic::mips_ceqi_d:
1696     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1697                         lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1698   case Intrinsic::mips_cle_s_b:
1699   case Intrinsic::mips_cle_s_h:
1700   case Intrinsic::mips_cle_s_w:
1701   case Intrinsic::mips_cle_s_d:
1702     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1703                         Op->getOperand(2), ISD::SETLE);
1704   case Intrinsic::mips_clei_s_b:
1705   case Intrinsic::mips_clei_s_h:
1706   case Intrinsic::mips_clei_s_w:
1707   case Intrinsic::mips_clei_s_d:
1708     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1709                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1710   case Intrinsic::mips_cle_u_b:
1711   case Intrinsic::mips_cle_u_h:
1712   case Intrinsic::mips_cle_u_w:
1713   case Intrinsic::mips_cle_u_d:
1714     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1715                         Op->getOperand(2), ISD::SETULE);
1716   case Intrinsic::mips_clei_u_b:
1717   case Intrinsic::mips_clei_u_h:
1718   case Intrinsic::mips_clei_u_w:
1719   case Intrinsic::mips_clei_u_d:
1720     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1721                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1722   case Intrinsic::mips_clt_s_b:
1723   case Intrinsic::mips_clt_s_h:
1724   case Intrinsic::mips_clt_s_w:
1725   case Intrinsic::mips_clt_s_d:
1726     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1727                         Op->getOperand(2), ISD::SETLT);
1728   case Intrinsic::mips_clti_s_b:
1729   case Intrinsic::mips_clti_s_h:
1730   case Intrinsic::mips_clti_s_w:
1731   case Intrinsic::mips_clti_s_d:
1732     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1733                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1734   case Intrinsic::mips_clt_u_b:
1735   case Intrinsic::mips_clt_u_h:
1736   case Intrinsic::mips_clt_u_w:
1737   case Intrinsic::mips_clt_u_d:
1738     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1739                         Op->getOperand(2), ISD::SETULT);
1740   case Intrinsic::mips_clti_u_b:
1741   case Intrinsic::mips_clti_u_h:
1742   case Intrinsic::mips_clti_u_w:
1743   case Intrinsic::mips_clti_u_d:
1744     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1745                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1746   case Intrinsic::mips_copy_s_b:
1747   case Intrinsic::mips_copy_s_h:
1748   case Intrinsic::mips_copy_s_w:
1749     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1750   case Intrinsic::mips_copy_s_d:
1751     if (Subtarget.hasMips64())
1752       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1753       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1754     else {
1755       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1756       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1757       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1758                          Op->getValueType(0), Op->getOperand(1),
1759                          Op->getOperand(2));
1760     }
1761   case Intrinsic::mips_copy_u_b:
1762   case Intrinsic::mips_copy_u_h:
1763   case Intrinsic::mips_copy_u_w:
1764     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1765   case Intrinsic::mips_copy_u_d:
1766     if (Subtarget.hasMips64())
1767       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1768       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1769     else {
1770       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1771       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1772       // Note: When i64 is illegal, this results in copy_s.w instructions
1773       // instead of copy_u.w instructions. This makes no difference to the
1774       // behaviour since i64 is only illegal when the register file is 32-bit.
1775       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1776                          Op->getValueType(0), Op->getOperand(1),
1777                          Op->getOperand(2));
1778     }
1779   case Intrinsic::mips_div_s_b:
1780   case Intrinsic::mips_div_s_h:
1781   case Intrinsic::mips_div_s_w:
1782   case Intrinsic::mips_div_s_d:
1783     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1784                        Op->getOperand(2));
1785   case Intrinsic::mips_div_u_b:
1786   case Intrinsic::mips_div_u_h:
1787   case Intrinsic::mips_div_u_w:
1788   case Intrinsic::mips_div_u_d:
1789     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1790                        Op->getOperand(2));
1791   case Intrinsic::mips_fadd_w:
1792   case Intrinsic::mips_fadd_d: {
1793     // TODO: If intrinsics have fast-math-flags, propagate them.
1794     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1795                        Op->getOperand(2));
1796   }
1797   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1798   case Intrinsic::mips_fceq_w:
1799   case Intrinsic::mips_fceq_d:
1800     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1801                         Op->getOperand(2), ISD::SETOEQ);
1802   case Intrinsic::mips_fcle_w:
1803   case Intrinsic::mips_fcle_d:
1804     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1805                         Op->getOperand(2), ISD::SETOLE);
1806   case Intrinsic::mips_fclt_w:
1807   case Intrinsic::mips_fclt_d:
1808     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1809                         Op->getOperand(2), ISD::SETOLT);
1810   case Intrinsic::mips_fcne_w:
1811   case Intrinsic::mips_fcne_d:
1812     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1813                         Op->getOperand(2), ISD::SETONE);
1814   case Intrinsic::mips_fcor_w:
1815   case Intrinsic::mips_fcor_d:
1816     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1817                         Op->getOperand(2), ISD::SETO);
1818   case Intrinsic::mips_fcueq_w:
1819   case Intrinsic::mips_fcueq_d:
1820     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1821                         Op->getOperand(2), ISD::SETUEQ);
1822   case Intrinsic::mips_fcule_w:
1823   case Intrinsic::mips_fcule_d:
1824     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1825                         Op->getOperand(2), ISD::SETULE);
1826   case Intrinsic::mips_fcult_w:
1827   case Intrinsic::mips_fcult_d:
1828     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1829                         Op->getOperand(2), ISD::SETULT);
1830   case Intrinsic::mips_fcun_w:
1831   case Intrinsic::mips_fcun_d:
1832     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1833                         Op->getOperand(2), ISD::SETUO);
1834   case Intrinsic::mips_fcune_w:
1835   case Intrinsic::mips_fcune_d:
1836     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1837                         Op->getOperand(2), ISD::SETUNE);
1838   case Intrinsic::mips_fdiv_w:
1839   case Intrinsic::mips_fdiv_d: {
1840     // TODO: If intrinsics have fast-math-flags, propagate them.
1841     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1842                        Op->getOperand(2));
1843   }
1844   case Intrinsic::mips_ffint_u_w:
1845   case Intrinsic::mips_ffint_u_d:
1846     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1847                        Op->getOperand(1));
1848   case Intrinsic::mips_ffint_s_w:
1849   case Intrinsic::mips_ffint_s_d:
1850     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1851                        Op->getOperand(1));
1852   case Intrinsic::mips_fill_b:
1853   case Intrinsic::mips_fill_h:
1854   case Intrinsic::mips_fill_w:
1855   case Intrinsic::mips_fill_d: {
1856     EVT ResTy = Op->getValueType(0);
1857     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1858                                  Op->getOperand(1));
1859 
1860     // If ResTy is v2i64 then the type legalizer will break this node down into
1861     // an equivalent v4i32.
1862     return DAG.getBuildVector(ResTy, DL, Ops);
1863   }
1864   case Intrinsic::mips_fexp2_w:
1865   case Intrinsic::mips_fexp2_d: {
1866     // TODO: If intrinsics have fast-math-flags, propagate them.
1867     EVT ResTy = Op->getValueType(0);
1868     return DAG.getNode(
1869         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1870         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1871   }
1872   case Intrinsic::mips_flog2_w:
1873   case Intrinsic::mips_flog2_d:
1874     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1875   case Intrinsic::mips_fmadd_w:
1876   case Intrinsic::mips_fmadd_d:
1877     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1878                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1879   case Intrinsic::mips_fmul_w:
1880   case Intrinsic::mips_fmul_d: {
1881     // TODO: If intrinsics have fast-math-flags, propagate them.
1882     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1883                        Op->getOperand(2));
1884   }
1885   case Intrinsic::mips_fmsub_w:
1886   case Intrinsic::mips_fmsub_d: {
1887     // TODO: If intrinsics have fast-math-flags, propagate them.
1888     EVT ResTy = Op->getValueType(0);
1889     return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1890                        DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1891                                    Op->getOperand(2), Op->getOperand(3)));
1892   }
1893   case Intrinsic::mips_frint_w:
1894   case Intrinsic::mips_frint_d:
1895     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1896   case Intrinsic::mips_fsqrt_w:
1897   case Intrinsic::mips_fsqrt_d:
1898     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1899   case Intrinsic::mips_fsub_w:
1900   case Intrinsic::mips_fsub_d: {
1901     // TODO: If intrinsics have fast-math-flags, propagate them.
1902     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1903                        Op->getOperand(2));
1904   }
1905   case Intrinsic::mips_ftrunc_u_w:
1906   case Intrinsic::mips_ftrunc_u_d:
1907     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1908                        Op->getOperand(1));
1909   case Intrinsic::mips_ftrunc_s_w:
1910   case Intrinsic::mips_ftrunc_s_d:
1911     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1912                        Op->getOperand(1));
1913   case Intrinsic::mips_ilvev_b:
1914   case Intrinsic::mips_ilvev_h:
1915   case Intrinsic::mips_ilvev_w:
1916   case Intrinsic::mips_ilvev_d:
1917     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1918                        Op->getOperand(1), Op->getOperand(2));
1919   case Intrinsic::mips_ilvl_b:
1920   case Intrinsic::mips_ilvl_h:
1921   case Intrinsic::mips_ilvl_w:
1922   case Intrinsic::mips_ilvl_d:
1923     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1924                        Op->getOperand(1), Op->getOperand(2));
1925   case Intrinsic::mips_ilvod_b:
1926   case Intrinsic::mips_ilvod_h:
1927   case Intrinsic::mips_ilvod_w:
1928   case Intrinsic::mips_ilvod_d:
1929     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1930                        Op->getOperand(1), Op->getOperand(2));
1931   case Intrinsic::mips_ilvr_b:
1932   case Intrinsic::mips_ilvr_h:
1933   case Intrinsic::mips_ilvr_w:
1934   case Intrinsic::mips_ilvr_d:
1935     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1936                        Op->getOperand(1), Op->getOperand(2));
1937   case Intrinsic::mips_insert_b:
1938   case Intrinsic::mips_insert_h:
1939   case Intrinsic::mips_insert_w:
1940   case Intrinsic::mips_insert_d:
1941     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1942                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1943   case Intrinsic::mips_insve_b:
1944   case Intrinsic::mips_insve_h:
1945   case Intrinsic::mips_insve_w:
1946   case Intrinsic::mips_insve_d:
1947     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1948                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1949                        DAG.getConstant(0, DL, MVT::i32));
1950   case Intrinsic::mips_ldi_b:
1951   case Intrinsic::mips_ldi_h:
1952   case Intrinsic::mips_ldi_w:
1953   case Intrinsic::mips_ldi_d:
1954     return lowerMSASplatImm(Op, 1, DAG);
1955   case Intrinsic::mips_lsa:
1956   case Intrinsic::mips_dlsa: {
1957     EVT ResTy = Op->getValueType(0);
1958     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1959                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1960                                    Op->getOperand(2), Op->getOperand(3)));
1961   }
1962   case Intrinsic::mips_maddv_b:
1963   case Intrinsic::mips_maddv_h:
1964   case Intrinsic::mips_maddv_w:
1965   case Intrinsic::mips_maddv_d: {
1966     EVT ResTy = Op->getValueType(0);
1967     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1968                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1969                                    Op->getOperand(2), Op->getOperand(3)));
1970   }
1971   case Intrinsic::mips_max_s_b:
1972   case Intrinsic::mips_max_s_h:
1973   case Intrinsic::mips_max_s_w:
1974   case Intrinsic::mips_max_s_d:
1975     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1976                        Op->getOperand(1), Op->getOperand(2));
1977   case Intrinsic::mips_max_u_b:
1978   case Intrinsic::mips_max_u_h:
1979   case Intrinsic::mips_max_u_w:
1980   case Intrinsic::mips_max_u_d:
1981     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1982                        Op->getOperand(1), Op->getOperand(2));
1983   case Intrinsic::mips_maxi_s_b:
1984   case Intrinsic::mips_maxi_s_h:
1985   case Intrinsic::mips_maxi_s_w:
1986   case Intrinsic::mips_maxi_s_d:
1987     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1988                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1989   case Intrinsic::mips_maxi_u_b:
1990   case Intrinsic::mips_maxi_u_h:
1991   case Intrinsic::mips_maxi_u_w:
1992   case Intrinsic::mips_maxi_u_d:
1993     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1994                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1995   case Intrinsic::mips_min_s_b:
1996   case Intrinsic::mips_min_s_h:
1997   case Intrinsic::mips_min_s_w:
1998   case Intrinsic::mips_min_s_d:
1999     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
2000                        Op->getOperand(1), Op->getOperand(2));
2001   case Intrinsic::mips_min_u_b:
2002   case Intrinsic::mips_min_u_h:
2003   case Intrinsic::mips_min_u_w:
2004   case Intrinsic::mips_min_u_d:
2005     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
2006                        Op->getOperand(1), Op->getOperand(2));
2007   case Intrinsic::mips_mini_s_b:
2008   case Intrinsic::mips_mini_s_h:
2009   case Intrinsic::mips_mini_s_w:
2010   case Intrinsic::mips_mini_s_d:
2011     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
2012                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2013   case Intrinsic::mips_mini_u_b:
2014   case Intrinsic::mips_mini_u_h:
2015   case Intrinsic::mips_mini_u_w:
2016   case Intrinsic::mips_mini_u_d:
2017     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
2018                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2019   case Intrinsic::mips_mod_s_b:
2020   case Intrinsic::mips_mod_s_h:
2021   case Intrinsic::mips_mod_s_w:
2022   case Intrinsic::mips_mod_s_d:
2023     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2024                        Op->getOperand(2));
2025   case Intrinsic::mips_mod_u_b:
2026   case Intrinsic::mips_mod_u_h:
2027   case Intrinsic::mips_mod_u_w:
2028   case Intrinsic::mips_mod_u_d:
2029     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2030                        Op->getOperand(2));
2031   case Intrinsic::mips_mulv_b:
2032   case Intrinsic::mips_mulv_h:
2033   case Intrinsic::mips_mulv_w:
2034   case Intrinsic::mips_mulv_d:
2035     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2036                        Op->getOperand(2));
2037   case Intrinsic::mips_msubv_b:
2038   case Intrinsic::mips_msubv_h:
2039   case Intrinsic::mips_msubv_w:
2040   case Intrinsic::mips_msubv_d: {
2041     EVT ResTy = Op->getValueType(0);
2042     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2043                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2044                                    Op->getOperand(2), Op->getOperand(3)));
2045   }
2046   case Intrinsic::mips_nlzc_b:
2047   case Intrinsic::mips_nlzc_h:
2048   case Intrinsic::mips_nlzc_w:
2049   case Intrinsic::mips_nlzc_d:
2050     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2051   case Intrinsic::mips_nor_v: {
2052     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2053                               Op->getOperand(1), Op->getOperand(2));
2054     return DAG.getNOT(DL, Res, Res->getValueType(0));
2055   }
2056   case Intrinsic::mips_nori_b: {
2057     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2058                                Op->getOperand(1),
2059                                lowerMSASplatImm(Op, 2, DAG));
2060     return DAG.getNOT(DL, Res, Res->getValueType(0));
2061   }
2062   case Intrinsic::mips_or_v:
2063     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2064                        Op->getOperand(2));
2065   case Intrinsic::mips_ori_b:
2066     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2067                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2068   case Intrinsic::mips_pckev_b:
2069   case Intrinsic::mips_pckev_h:
2070   case Intrinsic::mips_pckev_w:
2071   case Intrinsic::mips_pckev_d:
2072     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2073                        Op->getOperand(1), Op->getOperand(2));
2074   case Intrinsic::mips_pckod_b:
2075   case Intrinsic::mips_pckod_h:
2076   case Intrinsic::mips_pckod_w:
2077   case Intrinsic::mips_pckod_d:
2078     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2079                        Op->getOperand(1), Op->getOperand(2));
2080   case Intrinsic::mips_pcnt_b:
2081   case Intrinsic::mips_pcnt_h:
2082   case Intrinsic::mips_pcnt_w:
2083   case Intrinsic::mips_pcnt_d:
2084     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2085   case Intrinsic::mips_shf_b:
2086   case Intrinsic::mips_shf_h:
2087   case Intrinsic::mips_shf_w:
2088     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2089                        Op->getOperand(2), Op->getOperand(1));
2090   case Intrinsic::mips_sll_b:
2091   case Intrinsic::mips_sll_h:
2092   case Intrinsic::mips_sll_w:
2093   case Intrinsic::mips_sll_d:
2094     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2095                        Op->getOperand(2));
2096   case Intrinsic::mips_slli_b:
2097   case Intrinsic::mips_slli_h:
2098   case Intrinsic::mips_slli_w:
2099   case Intrinsic::mips_slli_d:
2100     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2101                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2102   case Intrinsic::mips_splat_b:
2103   case Intrinsic::mips_splat_h:
2104   case Intrinsic::mips_splat_w:
2105   case Intrinsic::mips_splat_d:
2106     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2107     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2108     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2109     // Instead we lower to MipsISD::VSHF and match from there.
2110     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2111                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2112                        Op->getOperand(1));
2113   case Intrinsic::mips_splati_b:
2114   case Intrinsic::mips_splati_h:
2115   case Intrinsic::mips_splati_w:
2116   case Intrinsic::mips_splati_d:
2117     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2118                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2119                        Op->getOperand(1));
2120   case Intrinsic::mips_sra_b:
2121   case Intrinsic::mips_sra_h:
2122   case Intrinsic::mips_sra_w:
2123   case Intrinsic::mips_sra_d:
2124     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2125                        Op->getOperand(2));
2126   case Intrinsic::mips_srai_b:
2127   case Intrinsic::mips_srai_h:
2128   case Intrinsic::mips_srai_w:
2129   case Intrinsic::mips_srai_d:
2130     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2131                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2132   case Intrinsic::mips_srl_b:
2133   case Intrinsic::mips_srl_h:
2134   case Intrinsic::mips_srl_w:
2135   case Intrinsic::mips_srl_d:
2136     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2137                        Op->getOperand(2));
2138   case Intrinsic::mips_srli_b:
2139   case Intrinsic::mips_srli_h:
2140   case Intrinsic::mips_srli_w:
2141   case Intrinsic::mips_srli_d:
2142     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2143                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2144   case Intrinsic::mips_subv_b:
2145   case Intrinsic::mips_subv_h:
2146   case Intrinsic::mips_subv_w:
2147   case Intrinsic::mips_subv_d:
2148     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2149                        Op->getOperand(2));
2150   case Intrinsic::mips_subvi_b:
2151   case Intrinsic::mips_subvi_h:
2152   case Intrinsic::mips_subvi_w:
2153   case Intrinsic::mips_subvi_d:
2154     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2155                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2156   case Intrinsic::mips_vshf_b:
2157   case Intrinsic::mips_vshf_h:
2158   case Intrinsic::mips_vshf_w:
2159   case Intrinsic::mips_vshf_d:
2160     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2161                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2162   case Intrinsic::mips_xor_v:
2163     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2164                        Op->getOperand(2));
2165   case Intrinsic::mips_xori_b:
2166     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2167                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2168   case Intrinsic::thread_pointer: {
2169     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2170     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2171   }
2172   }
2173 }
2174 
lowerMSALoadIntr(SDValue Op,SelectionDAG & DAG,unsigned Intr)2175 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2176   SDLoc DL(Op);
2177   SDValue ChainIn = Op->getOperand(0);
2178   SDValue Address = Op->getOperand(2);
2179   SDValue Offset  = Op->getOperand(3);
2180   EVT ResTy = Op->getValueType(0);
2181   EVT PtrTy = Address->getValueType(0);
2182 
2183   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2184 
2185   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
2186                      false, false, 16);
2187 }
2188 
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const2189 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2190                                                      SelectionDAG &DAG) const {
2191   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2192   switch (Intr) {
2193   default:
2194     return SDValue();
2195   case Intrinsic::mips_extp:
2196     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2197   case Intrinsic::mips_extpdp:
2198     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2199   case Intrinsic::mips_extr_w:
2200     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2201   case Intrinsic::mips_extr_r_w:
2202     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2203   case Intrinsic::mips_extr_rs_w:
2204     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2205   case Intrinsic::mips_extr_s_h:
2206     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2207   case Intrinsic::mips_mthlip:
2208     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2209   case Intrinsic::mips_mulsaq_s_w_ph:
2210     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2211   case Intrinsic::mips_maq_s_w_phl:
2212     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2213   case Intrinsic::mips_maq_s_w_phr:
2214     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2215   case Intrinsic::mips_maq_sa_w_phl:
2216     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2217   case Intrinsic::mips_maq_sa_w_phr:
2218     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2219   case Intrinsic::mips_dpaq_s_w_ph:
2220     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2221   case Intrinsic::mips_dpsq_s_w_ph:
2222     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2223   case Intrinsic::mips_dpaq_sa_l_w:
2224     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2225   case Intrinsic::mips_dpsq_sa_l_w:
2226     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2227   case Intrinsic::mips_dpaqx_s_w_ph:
2228     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2229   case Intrinsic::mips_dpaqx_sa_w_ph:
2230     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2231   case Intrinsic::mips_dpsqx_s_w_ph:
2232     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2233   case Intrinsic::mips_dpsqx_sa_w_ph:
2234     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2235   case Intrinsic::mips_ld_b:
2236   case Intrinsic::mips_ld_h:
2237   case Intrinsic::mips_ld_w:
2238   case Intrinsic::mips_ld_d:
2239    return lowerMSALoadIntr(Op, DAG, Intr);
2240   }
2241 }
2242 
lowerMSAStoreIntr(SDValue Op,SelectionDAG & DAG,unsigned Intr)2243 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2244   SDLoc DL(Op);
2245   SDValue ChainIn = Op->getOperand(0);
2246   SDValue Value   = Op->getOperand(2);
2247   SDValue Address = Op->getOperand(3);
2248   SDValue Offset  = Op->getOperand(4);
2249   EVT PtrTy = Address->getValueType(0);
2250 
2251   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2252 
2253   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
2254                       false, 16);
2255 }
2256 
lowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const2257 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2258                                                   SelectionDAG &DAG) const {
2259   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2260   switch (Intr) {
2261   default:
2262     return SDValue();
2263   case Intrinsic::mips_st_b:
2264   case Intrinsic::mips_st_h:
2265   case Intrinsic::mips_st_w:
2266   case Intrinsic::mips_st_d:
2267     return lowerMSAStoreIntr(Op, DAG, Intr);
2268   }
2269 }
2270 
2271 /// \brief Check if the given BuildVectorSDNode is a splat.
2272 /// This method currently relies on DAG nodes being reused when equivalent,
2273 /// so it's possible for this to return false even when isConstantSplat returns
2274 /// true.
isSplatVector(const BuildVectorSDNode * N)2275 static bool isSplatVector(const BuildVectorSDNode *N) {
2276   unsigned int nOps = N->getNumOperands();
2277   assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2278 
2279   SDValue Operand0 = N->getOperand(0);
2280 
2281   for (unsigned int i = 1; i < nOps; ++i) {
2282     if (N->getOperand(i) != Operand0)
2283       return false;
2284   }
2285 
2286   return true;
2287 }
2288 
2289 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2290 //
2291 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2292 // choose to sign-extend but we could have equally chosen zero-extend. The
2293 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2294 // result into this node later (possibly changing it to a zero-extend in the
2295 // process).
2296 SDValue MipsSETargetLowering::
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2297 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2298   SDLoc DL(Op);
2299   EVT ResTy = Op->getValueType(0);
2300   SDValue Op0 = Op->getOperand(0);
2301   EVT VecTy = Op0->getValueType(0);
2302 
2303   if (!VecTy.is128BitVector())
2304     return SDValue();
2305 
2306   if (ResTy.isInteger()) {
2307     SDValue Op1 = Op->getOperand(1);
2308     EVT EltTy = VecTy.getVectorElementType();
2309     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2310                        DAG.getValueType(EltTy));
2311   }
2312 
2313   return Op;
2314 }
2315 
isConstantOrUndef(const SDValue Op)2316 static bool isConstantOrUndef(const SDValue Op) {
2317   if (Op->isUndef())
2318     return true;
2319   if (isa<ConstantSDNode>(Op))
2320     return true;
2321   if (isa<ConstantFPSDNode>(Op))
2322     return true;
2323   return false;
2324 }
2325 
isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode * Op)2326 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2327   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2328     if (isConstantOrUndef(Op->getOperand(i)))
2329       return true;
2330   return false;
2331 }
2332 
2333 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2334 // backend.
2335 //
2336 // Lowers according to the following rules:
2337 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2338 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2339 //   immediate
2340 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2341 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2342 //   signed 10-bit immediate
2343 // - Non-constant splats are legal as-is.
2344 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2345 // - All others are illegal and must be expanded.
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2346 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2347                                                 SelectionDAG &DAG) const {
2348   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2349   EVT ResTy = Op->getValueType(0);
2350   SDLoc DL(Op);
2351   APInt SplatValue, SplatUndef;
2352   unsigned SplatBitSize;
2353   bool HasAnyUndefs;
2354 
2355   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2356     return SDValue();
2357 
2358   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2359                             HasAnyUndefs, 8,
2360                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2361     // We can only cope with 8, 16, 32, or 64-bit elements
2362     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2363         SplatBitSize != 64)
2364       return SDValue();
2365 
2366     // If the value fits into a simm10 then we can use ldi.[bhwd]
2367     // However, if it isn't an integer type we will have to bitcast from an
2368     // integer type first. Also, if there are any undefs, we must lower them
2369     // to defined values first.
2370     if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
2371       return Op;
2372 
2373     EVT ViaVecTy;
2374 
2375     switch (SplatBitSize) {
2376     default:
2377       return SDValue();
2378     case 8:
2379       ViaVecTy = MVT::v16i8;
2380       break;
2381     case 16:
2382       ViaVecTy = MVT::v8i16;
2383       break;
2384     case 32:
2385       ViaVecTy = MVT::v4i32;
2386       break;
2387     case 64:
2388       // There's no fill.d to fall back on for 64-bit values
2389       return SDValue();
2390     }
2391 
2392     // SelectionDAG::getConstant will promote SplatValue appropriately.
2393     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2394 
2395     // Bitcast to the type we originally wanted
2396     if (ViaVecTy != ResTy)
2397       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2398 
2399     return Result;
2400   } else if (isSplatVector(Node))
2401     return Op;
2402   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2403     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2404     // The resulting code is the same length as the expansion, but it doesn't
2405     // use memory operations
2406     EVT ResTy = Node->getValueType(0);
2407 
2408     assert(ResTy.isVector());
2409 
2410     unsigned NumElts = ResTy.getVectorNumElements();
2411     SDValue Vector = DAG.getUNDEF(ResTy);
2412     for (unsigned i = 0; i < NumElts; ++i) {
2413       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2414                            Node->getOperand(i),
2415                            DAG.getConstant(i, DL, MVT::i32));
2416     }
2417     return Vector;
2418   }
2419 
2420   return SDValue();
2421 }
2422 
2423 // Lower VECTOR_SHUFFLE into SHF (if possible).
2424 //
2425 // SHF splits the vector into blocks of four elements, then shuffles these
2426 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2427 //
2428 // It is therefore possible to lower into SHF when the mask takes the form:
2429 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2430 // When undef's appear they are treated as if they were whatever value is
2431 // necessary in order to fit the above forms.
2432 //
2433 // For example:
2434 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2435 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2436 //                                 i32 7, i32 6, i32 5, i32 4>
2437 // is lowered to:
2438 //   (SHF_H $w0, $w1, 27)
2439 // where the 27 comes from:
2440 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
lowerVECTOR_SHUFFLE_SHF(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2441 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2442                                        SmallVector<int, 16> Indices,
2443                                        SelectionDAG &DAG) {
2444   int SHFIndices[4] = { -1, -1, -1, -1 };
2445 
2446   if (Indices.size() < 4)
2447     return SDValue();
2448 
2449   for (unsigned i = 0; i < 4; ++i) {
2450     for (unsigned j = i; j < Indices.size(); j += 4) {
2451       int Idx = Indices[j];
2452 
2453       // Convert from vector index to 4-element subvector index
2454       // If an index refers to an element outside of the subvector then give up
2455       if (Idx != -1) {
2456         Idx -= 4 * (j / 4);
2457         if (Idx < 0 || Idx >= 4)
2458           return SDValue();
2459       }
2460 
2461       // If the mask has an undef, replace it with the current index.
2462       // Note that it might still be undef if the current index is also undef
2463       if (SHFIndices[i] == -1)
2464         SHFIndices[i] = Idx;
2465 
2466       // Check that non-undef values are the same as in the mask. If they
2467       // aren't then give up
2468       if (!(Idx == -1 || Idx == SHFIndices[i]))
2469         return SDValue();
2470     }
2471   }
2472 
2473   // Calculate the immediate. Replace any remaining undefs with zero
2474   APInt Imm(32, 0);
2475   for (int i = 3; i >= 0; --i) {
2476     int Idx = SHFIndices[i];
2477 
2478     if (Idx == -1)
2479       Idx = 0;
2480 
2481     Imm <<= 2;
2482     Imm |= Idx & 0x3;
2483   }
2484 
2485   SDLoc DL(Op);
2486   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2487                      DAG.getConstant(Imm, DL, MVT::i32), Op->getOperand(0));
2488 }
2489 
2490 /// Determine whether a range fits a regular pattern of values.
2491 /// This function accounts for the possibility of jumping over the End iterator.
2492 template <typename ValType>
2493 static bool
fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,unsigned CheckStride,typename SmallVectorImpl<ValType>::const_iterator End,ValType ExpectedIndex,unsigned ExpectedIndexStride)2494 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2495                    unsigned CheckStride,
2496                    typename SmallVectorImpl<ValType>::const_iterator End,
2497                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2498   auto &I = Begin;
2499 
2500   while (I != End) {
2501     if (*I != -1 && *I != ExpectedIndex)
2502       return false;
2503     ExpectedIndex += ExpectedIndexStride;
2504 
2505     // Incrementing past End is undefined behaviour so we must increment one
2506     // step at a time and check for End at each step.
2507     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2508       ; // Empty loop body.
2509   }
2510   return true;
2511 }
2512 
2513 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2514 //
2515 // It is a SPLATI when the mask is:
2516 //   <x, x, x, ...>
2517 // where x is any valid index.
2518 //
2519 // When undef's appear in the mask they are treated as if they were whatever
2520 // value is necessary in order to fit the above form.
isVECTOR_SHUFFLE_SPLATI(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2521 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2522                                     SmallVector<int, 16> Indices,
2523                                     SelectionDAG &DAG) {
2524   assert((Indices.size() % 2) == 0);
2525 
2526   int SplatIndex = -1;
2527   for (const auto &V : Indices) {
2528     if (V != -1) {
2529       SplatIndex = V;
2530       break;
2531     }
2532   }
2533 
2534   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2535                                  0);
2536 }
2537 
2538 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2539 //
2540 // ILVEV interleaves the even elements from each vector.
2541 //
2542 // It is possible to lower into ILVEV when the mask consists of two of the
2543 // following forms interleaved:
2544 //   <0, 2, 4, ...>
2545 //   <n, n+2, n+4, ...>
2546 // where n is the number of elements in the vector.
2547 // For example:
2548 //   <0, 0, 2, 2, 4, 4, ...>
2549 //   <0, n, 2, n+2, 4, n+4, ...>
2550 //
2551 // When undef's appear in the mask they are treated as if they were whatever
2552 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVEV(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2553 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2554                                          SmallVector<int, 16> Indices,
2555                                          SelectionDAG &DAG) {
2556   assert((Indices.size() % 2) == 0);
2557 
2558   SDValue Wt;
2559   SDValue Ws;
2560   const auto &Begin = Indices.begin();
2561   const auto &End = Indices.end();
2562 
2563   // Check even elements are taken from the even elements of one half or the
2564   // other and pick an operand accordingly.
2565   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2566     Wt = Op->getOperand(0);
2567   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2568     Wt = Op->getOperand(1);
2569   else
2570     return SDValue();
2571 
2572   // Check odd elements are taken from the even elements of one half or the
2573   // other and pick an operand accordingly.
2574   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2575     Ws = Op->getOperand(0);
2576   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2577     Ws = Op->getOperand(1);
2578   else
2579     return SDValue();
2580 
2581   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2582 }
2583 
2584 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2585 //
2586 // ILVOD interleaves the odd elements from each vector.
2587 //
2588 // It is possible to lower into ILVOD when the mask consists of two of the
2589 // following forms interleaved:
2590 //   <1, 3, 5, ...>
2591 //   <n+1, n+3, n+5, ...>
2592 // where n is the number of elements in the vector.
2593 // For example:
2594 //   <1, 1, 3, 3, 5, 5, ...>
2595 //   <1, n+1, 3, n+3, 5, n+5, ...>
2596 //
2597 // When undef's appear in the mask they are treated as if they were whatever
2598 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVOD(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2599 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2600                                          SmallVector<int, 16> Indices,
2601                                          SelectionDAG &DAG) {
2602   assert((Indices.size() % 2) == 0);
2603 
2604   SDValue Wt;
2605   SDValue Ws;
2606   const auto &Begin = Indices.begin();
2607   const auto &End = Indices.end();
2608 
2609   // Check even elements are taken from the odd elements of one half or the
2610   // other and pick an operand accordingly.
2611   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2612     Wt = Op->getOperand(0);
2613   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2614     Wt = Op->getOperand(1);
2615   else
2616     return SDValue();
2617 
2618   // Check odd elements are taken from the odd elements of one half or the
2619   // other and pick an operand accordingly.
2620   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2621     Ws = Op->getOperand(0);
2622   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2623     Ws = Op->getOperand(1);
2624   else
2625     return SDValue();
2626 
2627   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2628 }
2629 
2630 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2631 //
2632 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2633 // each vector.
2634 //
2635 // It is possible to lower into ILVR when the mask consists of two of the
2636 // following forms interleaved:
2637 //   <0, 1, 2, ...>
2638 //   <n, n+1, n+2, ...>
2639 // where n is the number of elements in the vector.
2640 // For example:
2641 //   <0, 0, 1, 1, 2, 2, ...>
2642 //   <0, n, 1, n+1, 2, n+2, ...>
2643 //
2644 // When undef's appear in the mask they are treated as if they were whatever
2645 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVR(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2646 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2647                                         SmallVector<int, 16> Indices,
2648                                         SelectionDAG &DAG) {
2649   assert((Indices.size() % 2) == 0);
2650 
2651   SDValue Wt;
2652   SDValue Ws;
2653   const auto &Begin = Indices.begin();
2654   const auto &End = Indices.end();
2655 
2656   // Check even elements are taken from the right (lowest-indexed) elements of
2657   // one half or the other and pick an operand accordingly.
2658   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2659     Wt = Op->getOperand(0);
2660   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2661     Wt = Op->getOperand(1);
2662   else
2663     return SDValue();
2664 
2665   // Check odd elements are taken from the right (lowest-indexed) elements of
2666   // one half or the other and pick an operand accordingly.
2667   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2668     Ws = Op->getOperand(0);
2669   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2670     Ws = Op->getOperand(1);
2671   else
2672     return SDValue();
2673 
2674   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2675 }
2676 
2677 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2678 //
2679 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2680 // of each vector.
2681 //
2682 // It is possible to lower into ILVL when the mask consists of two of the
2683 // following forms interleaved:
2684 //   <x, x+1, x+2, ...>
2685 //   <n+x, n+x+1, n+x+2, ...>
2686 // where n is the number of elements in the vector and x is half n.
2687 // For example:
2688 //   <x, x, x+1, x+1, x+2, x+2, ...>
2689 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2690 //
2691 // When undef's appear in the mask they are treated as if they were whatever
2692 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVL(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2693 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2694                                         SmallVector<int, 16> Indices,
2695                                         SelectionDAG &DAG) {
2696   assert((Indices.size() % 2) == 0);
2697 
2698   unsigned HalfSize = Indices.size() / 2;
2699   SDValue Wt;
2700   SDValue Ws;
2701   const auto &Begin = Indices.begin();
2702   const auto &End = Indices.end();
2703 
2704   // Check even elements are taken from the left (highest-indexed) elements of
2705   // one half or the other and pick an operand accordingly.
2706   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2707     Wt = Op->getOperand(0);
2708   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2709     Wt = Op->getOperand(1);
2710   else
2711     return SDValue();
2712 
2713   // Check odd elements are taken from the left (highest-indexed) elements of
2714   // one half or the other and pick an operand accordingly.
2715   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2716     Ws = Op->getOperand(0);
2717   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2718                                    1))
2719     Ws = Op->getOperand(1);
2720   else
2721     return SDValue();
2722 
2723   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2724 }
2725 
2726 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2727 //
2728 // PCKEV copies the even elements of each vector into the result vector.
2729 //
2730 // It is possible to lower into PCKEV when the mask consists of two of the
2731 // following forms concatenated:
2732 //   <0, 2, 4, ...>
2733 //   <n, n+2, n+4, ...>
2734 // where n is the number of elements in the vector.
2735 // For example:
2736 //   <0, 2, 4, ..., 0, 2, 4, ...>
2737 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2738 //
2739 // When undef's appear in the mask they are treated as if they were whatever
2740 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_PCKEV(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2741 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2742                                          SmallVector<int, 16> Indices,
2743                                          SelectionDAG &DAG) {
2744   assert((Indices.size() % 2) == 0);
2745 
2746   SDValue Wt;
2747   SDValue Ws;
2748   const auto &Begin = Indices.begin();
2749   const auto &Mid = Indices.begin() + Indices.size() / 2;
2750   const auto &End = Indices.end();
2751 
2752   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2753     Wt = Op->getOperand(0);
2754   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2755     Wt = Op->getOperand(1);
2756   else
2757     return SDValue();
2758 
2759   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2760     Ws = Op->getOperand(0);
2761   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2762     Ws = Op->getOperand(1);
2763   else
2764     return SDValue();
2765 
2766   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2767 }
2768 
2769 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2770 //
2771 // PCKOD copies the odd elements of each vector into the result vector.
2772 //
2773 // It is possible to lower into PCKOD when the mask consists of two of the
2774 // following forms concatenated:
2775 //   <1, 3, 5, ...>
2776 //   <n+1, n+3, n+5, ...>
2777 // where n is the number of elements in the vector.
2778 // For example:
2779 //   <1, 3, 5, ..., 1, 3, 5, ...>
2780 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2781 //
2782 // When undef's appear in the mask they are treated as if they were whatever
2783 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_PCKOD(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2784 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2785                                          SmallVector<int, 16> Indices,
2786                                          SelectionDAG &DAG) {
2787   assert((Indices.size() % 2) == 0);
2788 
2789   SDValue Wt;
2790   SDValue Ws;
2791   const auto &Begin = Indices.begin();
2792   const auto &Mid = Indices.begin() + Indices.size() / 2;
2793   const auto &End = Indices.end();
2794 
2795   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2796     Wt = Op->getOperand(0);
2797   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2798     Wt = Op->getOperand(1);
2799   else
2800     return SDValue();
2801 
2802   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2803     Ws = Op->getOperand(0);
2804   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2805     Ws = Op->getOperand(1);
2806   else
2807     return SDValue();
2808 
2809   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2810 }
2811 
2812 // Lower VECTOR_SHUFFLE into VSHF.
2813 //
2814 // This mostly consists of converting the shuffle indices in Indices into a
2815 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2816 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2817 // if the type is v8i16 and all the indices are less than 8 then the second
2818 // operand is unused and can be replaced with anything. We choose to replace it
2819 // with the used operand since this reduces the number of instructions overall.
lowerVECTOR_SHUFFLE_VSHF(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2820 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2821                                         SmallVector<int, 16> Indices,
2822                                         SelectionDAG &DAG) {
2823   SmallVector<SDValue, 16> Ops;
2824   SDValue Op0;
2825   SDValue Op1;
2826   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2827   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2828   bool Using1stVec = false;
2829   bool Using2ndVec = false;
2830   SDLoc DL(Op);
2831   int ResTyNumElts = ResTy.getVectorNumElements();
2832 
2833   for (int i = 0; i < ResTyNumElts; ++i) {
2834     // Idx == -1 means UNDEF
2835     int Idx = Indices[i];
2836 
2837     if (0 <= Idx && Idx < ResTyNumElts)
2838       Using1stVec = true;
2839     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2840       Using2ndVec = true;
2841   }
2842 
2843   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2844        ++I)
2845     Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy));
2846 
2847   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2848 
2849   if (Using1stVec && Using2ndVec) {
2850     Op0 = Op->getOperand(0);
2851     Op1 = Op->getOperand(1);
2852   } else if (Using1stVec)
2853     Op0 = Op1 = Op->getOperand(0);
2854   else if (Using2ndVec)
2855     Op0 = Op1 = Op->getOperand(1);
2856   else
2857     llvm_unreachable("shuffle vector mask references neither vector operand?");
2858 
2859   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2860   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2861   // VSHF concatenates the vectors in a bitwise fashion:
2862   // <0b00, 0b01> + <0b10, 0b11> ->
2863   // 0b0100       + 0b1110       -> 0b01001110
2864   //                                <0b10, 0b11, 0b00, 0b01>
2865   // We must therefore swap the operands to get the correct result.
2866   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2867 }
2868 
2869 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2870 // indices in the shuffle.
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2871 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2872                                                   SelectionDAG &DAG) const {
2873   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2874   EVT ResTy = Op->getValueType(0);
2875 
2876   if (!ResTy.is128BitVector())
2877     return SDValue();
2878 
2879   int ResTyNumElts = ResTy.getVectorNumElements();
2880   SmallVector<int, 16> Indices;
2881 
2882   for (int i = 0; i < ResTyNumElts; ++i)
2883     Indices.push_back(Node->getMaskElt(i));
2884 
2885   // splati.[bhwd] is preferable to the others but is matched from
2886   // MipsISD::VSHF.
2887   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2888     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2889   SDValue Result;
2890   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2891     return Result;
2892   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
2893     return Result;
2894   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
2895     return Result;
2896   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
2897     return Result;
2898   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
2899     return Result;
2900   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
2901     return Result;
2902   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
2903     return Result;
2904   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2905 }
2906 
2907 MachineBasicBlock *
emitBPOSGE32(MachineInstr & MI,MachineBasicBlock * BB) const2908 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
2909                                    MachineBasicBlock *BB) const {
2910   // $bb:
2911   //  bposge32_pseudo $vr0
2912   //  =>
2913   // $bb:
2914   //  bposge32 $tbb
2915   // $fbb:
2916   //  li $vr2, 0
2917   //  b $sink
2918   // $tbb:
2919   //  li $vr1, 1
2920   // $sink:
2921   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2922 
2923   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2924   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2925   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2926   DebugLoc DL = MI.getDebugLoc();
2927   const BasicBlock *LLVM_BB = BB->getBasicBlock();
2928   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2929   MachineFunction *F = BB->getParent();
2930   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2931   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2932   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2933   F->insert(It, FBB);
2934   F->insert(It, TBB);
2935   F->insert(It, Sink);
2936 
2937   // Transfer the remainder of BB and its successor edges to Sink.
2938   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2939                BB->end());
2940   Sink->transferSuccessorsAndUpdatePHIs(BB);
2941 
2942   // Add successors.
2943   BB->addSuccessor(FBB);
2944   BB->addSuccessor(TBB);
2945   FBB->addSuccessor(Sink);
2946   TBB->addSuccessor(Sink);
2947 
2948   // Insert the real bposge32 instruction to $BB.
2949   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2950   // Insert the real bposge32c instruction to $BB.
2951   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
2952 
2953   // Fill $FBB.
2954   unsigned VR2 = RegInfo.createVirtualRegister(RC);
2955   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2956     .addReg(Mips::ZERO).addImm(0);
2957   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2958 
2959   // Fill $TBB.
2960   unsigned VR1 = RegInfo.createVirtualRegister(RC);
2961   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2962     .addReg(Mips::ZERO).addImm(1);
2963 
2964   // Insert phi function to $Sink.
2965   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2966           MI.getOperand(0).getReg())
2967       .addReg(VR2)
2968       .addMBB(FBB)
2969       .addReg(VR1)
2970       .addMBB(TBB);
2971 
2972   MI.eraseFromParent(); // The pseudo instruction is gone now.
2973   return Sink;
2974 }
2975 
emitMSACBranchPseudo(MachineInstr & MI,MachineBasicBlock * BB,unsigned BranchOp) const2976 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
2977     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
2978   // $bb:
2979   //  vany_nonzero $rd, $ws
2980   //  =>
2981   // $bb:
2982   //  bnz.b $ws, $tbb
2983   //  b $fbb
2984   // $fbb:
2985   //  li $rd1, 0
2986   //  b $sink
2987   // $tbb:
2988   //  li $rd2, 1
2989   // $sink:
2990   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2991 
2992   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2993   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2994   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2995   DebugLoc DL = MI.getDebugLoc();
2996   const BasicBlock *LLVM_BB = BB->getBasicBlock();
2997   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2998   MachineFunction *F = BB->getParent();
2999   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3000   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3001   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3002   F->insert(It, FBB);
3003   F->insert(It, TBB);
3004   F->insert(It, Sink);
3005 
3006   // Transfer the remainder of BB and its successor edges to Sink.
3007   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3008                BB->end());
3009   Sink->transferSuccessorsAndUpdatePHIs(BB);
3010 
3011   // Add successors.
3012   BB->addSuccessor(FBB);
3013   BB->addSuccessor(TBB);
3014   FBB->addSuccessor(Sink);
3015   TBB->addSuccessor(Sink);
3016 
3017   // Insert the real bnz.b instruction to $BB.
3018   BuildMI(BB, DL, TII->get(BranchOp))
3019       .addReg(MI.getOperand(1).getReg())
3020       .addMBB(TBB);
3021 
3022   // Fill $FBB.
3023   unsigned RD1 = RegInfo.createVirtualRegister(RC);
3024   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3025     .addReg(Mips::ZERO).addImm(0);
3026   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3027 
3028   // Fill $TBB.
3029   unsigned RD2 = RegInfo.createVirtualRegister(RC);
3030   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3031     .addReg(Mips::ZERO).addImm(1);
3032 
3033   // Insert phi function to $Sink.
3034   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3035           MI.getOperand(0).getReg())
3036       .addReg(RD1)
3037       .addMBB(FBB)
3038       .addReg(RD2)
3039       .addMBB(TBB);
3040 
3041   MI.eraseFromParent(); // The pseudo instruction is gone now.
3042   return Sink;
3043 }
3044 
3045 // Emit the COPY_FW pseudo instruction.
3046 //
3047 // copy_fw_pseudo $fd, $ws, n
3048 // =>
3049 // copy_u_w $rt, $ws, $n
3050 // mtc1     $rt, $fd
3051 //
3052 // When n is zero, the equivalent operation can be performed with (potentially)
3053 // zero instructions due to register overlaps. This optimization is never valid
3054 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3055 MachineBasicBlock *
emitCOPY_FW(MachineInstr & MI,MachineBasicBlock * BB) const3056 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3057                                   MachineBasicBlock *BB) const {
3058   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3059   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3060   DebugLoc DL = MI.getDebugLoc();
3061   unsigned Fd = MI.getOperand(0).getReg();
3062   unsigned Ws = MI.getOperand(1).getReg();
3063   unsigned Lane = MI.getOperand(2).getImm();
3064 
3065   if (Lane == 0) {
3066     unsigned Wt = Ws;
3067     if (!Subtarget.useOddSPReg()) {
3068       // We must copy to an even-numbered MSA register so that the
3069       // single-precision sub-register is also guaranteed to be even-numbered.
3070       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3071 
3072       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3073     }
3074 
3075     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3076   } else {
3077     unsigned Wt = RegInfo.createVirtualRegister(
3078         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3079                                   &Mips::MSA128WEvensRegClass);
3080 
3081     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3082     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3083   }
3084 
3085   MI.eraseFromParent(); // The pseudo instruction is gone now.
3086   return BB;
3087 }
3088 
3089 // Emit the COPY_FD pseudo instruction.
3090 //
3091 // copy_fd_pseudo $fd, $ws, n
3092 // =>
3093 // splati.d $wt, $ws, $n
3094 // copy $fd, $wt:sub_64
3095 //
3096 // When n is zero, the equivalent operation can be performed with (potentially)
3097 // zero instructions due to register overlaps. This optimization is always
3098 // valid because FR=1 mode which is the only supported mode in MSA.
3099 MachineBasicBlock *
emitCOPY_FD(MachineInstr & MI,MachineBasicBlock * BB) const3100 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3101                                   MachineBasicBlock *BB) const {
3102   assert(Subtarget.isFP64bit());
3103 
3104   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3105   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3106   unsigned Fd = MI.getOperand(0).getReg();
3107   unsigned Ws = MI.getOperand(1).getReg();
3108   unsigned Lane = MI.getOperand(2).getImm() * 2;
3109   DebugLoc DL = MI.getDebugLoc();
3110 
3111   if (Lane == 0)
3112     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3113   else {
3114     unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3115 
3116     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3117     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3118   }
3119 
3120   MI.eraseFromParent(); // The pseudo instruction is gone now.
3121   return BB;
3122 }
3123 
3124 // Emit the INSERT_FW pseudo instruction.
3125 //
3126 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3127 // =>
3128 // subreg_to_reg $wt:sub_lo, $fs
3129 // insve_w $wd[$n], $wd_in, $wt[0]
3130 MachineBasicBlock *
emitINSERT_FW(MachineInstr & MI,MachineBasicBlock * BB) const3131 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3132                                     MachineBasicBlock *BB) const {
3133   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3134   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3135   DebugLoc DL = MI.getDebugLoc();
3136   unsigned Wd = MI.getOperand(0).getReg();
3137   unsigned Wd_in = MI.getOperand(1).getReg();
3138   unsigned Lane = MI.getOperand(2).getImm();
3139   unsigned Fs = MI.getOperand(3).getReg();
3140   unsigned Wt = RegInfo.createVirtualRegister(
3141       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
3142                                 &Mips::MSA128WEvensRegClass);
3143 
3144   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3145       .addImm(0)
3146       .addReg(Fs)
3147       .addImm(Mips::sub_lo);
3148   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3149       .addReg(Wd_in)
3150       .addImm(Lane)
3151       .addReg(Wt)
3152       .addImm(0);
3153 
3154   MI.eraseFromParent(); // The pseudo instruction is gone now.
3155   return BB;
3156 }
3157 
3158 // Emit the INSERT_FD pseudo instruction.
3159 //
3160 // insert_fd_pseudo $wd, $fs, n
3161 // =>
3162 // subreg_to_reg $wt:sub_64, $fs
3163 // insve_d $wd[$n], $wd_in, $wt[0]
3164 MachineBasicBlock *
emitINSERT_FD(MachineInstr & MI,MachineBasicBlock * BB) const3165 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3166                                     MachineBasicBlock *BB) const {
3167   assert(Subtarget.isFP64bit());
3168 
3169   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3170   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3171   DebugLoc DL = MI.getDebugLoc();
3172   unsigned Wd = MI.getOperand(0).getReg();
3173   unsigned Wd_in = MI.getOperand(1).getReg();
3174   unsigned Lane = MI.getOperand(2).getImm();
3175   unsigned Fs = MI.getOperand(3).getReg();
3176   unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3177 
3178   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3179       .addImm(0)
3180       .addReg(Fs)
3181       .addImm(Mips::sub_64);
3182   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3183       .addReg(Wd_in)
3184       .addImm(Lane)
3185       .addReg(Wt)
3186       .addImm(0);
3187 
3188   MI.eraseFromParent(); // The pseudo instruction is gone now.
3189   return BB;
3190 }
3191 
3192 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3193 //
3194 // For integer:
3195 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3196 // =>
3197 // (SLL $lanetmp1, $lane, <log2size)
3198 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3199 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3200 // (NEG $lanetmp2, $lanetmp1)
3201 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3202 //
3203 // For floating point:
3204 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3205 // =>
3206 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3207 // (SLL $lanetmp1, $lane, <log2size)
3208 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3209 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3210 // (NEG $lanetmp2, $lanetmp1)
3211 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
emitINSERT_DF_VIDX(MachineInstr & MI,MachineBasicBlock * BB,unsigned EltSizeInBytes,bool IsFP) const3212 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3213     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3214     bool IsFP) const {
3215   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3216   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3217   DebugLoc DL = MI.getDebugLoc();
3218   unsigned Wd = MI.getOperand(0).getReg();
3219   unsigned SrcVecReg = MI.getOperand(1).getReg();
3220   unsigned LaneReg = MI.getOperand(2).getReg();
3221   unsigned SrcValReg = MI.getOperand(3).getReg();
3222 
3223   const TargetRegisterClass *VecRC = nullptr;
3224   // FIXME: This should be true for N32 too.
3225   const TargetRegisterClass *GPRRC =
3226       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3227   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3228   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3229   unsigned EltLog2Size;
3230   unsigned InsertOp = 0;
3231   unsigned InsveOp = 0;
3232   switch (EltSizeInBytes) {
3233   default:
3234     llvm_unreachable("Unexpected size");
3235   case 1:
3236     EltLog2Size = 0;
3237     InsertOp = Mips::INSERT_B;
3238     InsveOp = Mips::INSVE_B;
3239     VecRC = &Mips::MSA128BRegClass;
3240     break;
3241   case 2:
3242     EltLog2Size = 1;
3243     InsertOp = Mips::INSERT_H;
3244     InsveOp = Mips::INSVE_H;
3245     VecRC = &Mips::MSA128HRegClass;
3246     break;
3247   case 4:
3248     EltLog2Size = 2;
3249     InsertOp = Mips::INSERT_W;
3250     InsveOp = Mips::INSVE_W;
3251     VecRC = &Mips::MSA128WRegClass;
3252     break;
3253   case 8:
3254     EltLog2Size = 3;
3255     InsertOp = Mips::INSERT_D;
3256     InsveOp = Mips::INSVE_D;
3257     VecRC = &Mips::MSA128DRegClass;
3258     break;
3259   }
3260 
3261   if (IsFP) {
3262     unsigned Wt = RegInfo.createVirtualRegister(VecRC);
3263     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3264         .addImm(0)
3265         .addReg(SrcValReg)
3266         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3267     SrcValReg = Wt;
3268   }
3269 
3270   // Convert the lane index into a byte index
3271   if (EltSizeInBytes != 1) {
3272     unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3273     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3274         .addReg(LaneReg)
3275         .addImm(EltLog2Size);
3276     LaneReg = LaneTmp1;
3277   }
3278 
3279   // Rotate bytes around so that the desired lane is element zero
3280   unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3281   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3282       .addReg(SrcVecReg)
3283       .addReg(SrcVecReg)
3284       .addReg(LaneReg, 0, SubRegIdx);
3285 
3286   unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3287   if (IsFP) {
3288     // Use insve.df to insert to element zero
3289     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3290         .addReg(WdTmp1)
3291         .addImm(0)
3292         .addReg(SrcValReg)
3293         .addImm(0);
3294   } else {
3295     // Use insert.df to insert to element zero
3296     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3297         .addReg(WdTmp1)
3298         .addReg(SrcValReg)
3299         .addImm(0);
3300   }
3301 
3302   // Rotate elements the rest of the way for a full rotation.
3303   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3304   // the lane index to do this.
3305   unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3306   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3307           LaneTmp2)
3308       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3309       .addReg(LaneReg);
3310   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3311       .addReg(WdTmp2)
3312       .addReg(WdTmp2)
3313       .addReg(LaneTmp2, 0, SubRegIdx);
3314 
3315   MI.eraseFromParent(); // The pseudo instruction is gone now.
3316   return BB;
3317 }
3318 
3319 // Emit the FILL_FW pseudo instruction.
3320 //
3321 // fill_fw_pseudo $wd, $fs
3322 // =>
3323 // implicit_def $wt1
3324 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3325 // splati.w $wd, $wt2[0]
3326 MachineBasicBlock *
emitFILL_FW(MachineInstr & MI,MachineBasicBlock * BB) const3327 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3328                                   MachineBasicBlock *BB) const {
3329   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3330   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3331   DebugLoc DL = MI.getDebugLoc();
3332   unsigned Wd = MI.getOperand(0).getReg();
3333   unsigned Fs = MI.getOperand(1).getReg();
3334   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3335   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3336 
3337   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3338   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3339       .addReg(Wt1)
3340       .addReg(Fs)
3341       .addImm(Mips::sub_lo);
3342   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3343 
3344   MI.eraseFromParent(); // The pseudo instruction is gone now.
3345   return BB;
3346 }
3347 
3348 // Emit the FILL_FD pseudo instruction.
3349 //
3350 // fill_fd_pseudo $wd, $fs
3351 // =>
3352 // implicit_def $wt1
3353 // insert_subreg $wt2:subreg_64, $wt1, $fs
3354 // splati.d $wd, $wt2[0]
3355 MachineBasicBlock *
emitFILL_FD(MachineInstr & MI,MachineBasicBlock * BB) const3356 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3357                                   MachineBasicBlock *BB) const {
3358   assert(Subtarget.isFP64bit());
3359 
3360   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3361   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3362   DebugLoc DL = MI.getDebugLoc();
3363   unsigned Wd = MI.getOperand(0).getReg();
3364   unsigned Fs = MI.getOperand(1).getReg();
3365   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3366   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3367 
3368   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3369   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3370       .addReg(Wt1)
3371       .addReg(Fs)
3372       .addImm(Mips::sub_64);
3373   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3374 
3375   MI.eraseFromParent(); // The pseudo instruction is gone now.
3376   return BB;
3377 }
3378 
3379 // Emit the FEXP2_W_1 pseudo instructions.
3380 //
3381 // fexp2_w_1_pseudo $wd, $wt
3382 // =>
3383 // ldi.w $ws, 1
3384 // fexp2.w $wd, $ws, $wt
3385 MachineBasicBlock *
emitFEXP2_W_1(MachineInstr & MI,MachineBasicBlock * BB) const3386 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3387                                     MachineBasicBlock *BB) const {
3388   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3389   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3390   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3391   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3392   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3393   DebugLoc DL = MI.getDebugLoc();
3394 
3395   // Splat 1.0 into a vector
3396   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3397   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3398 
3399   // Emit 1.0 * fexp2(Wt)
3400   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3401       .addReg(Ws2)
3402       .addReg(MI.getOperand(1).getReg());
3403 
3404   MI.eraseFromParent(); // The pseudo instruction is gone now.
3405   return BB;
3406 }
3407 
3408 // Emit the FEXP2_D_1 pseudo instructions.
3409 //
3410 // fexp2_d_1_pseudo $wd, $wt
3411 // =>
3412 // ldi.d $ws, 1
3413 // fexp2.d $wd, $ws, $wt
3414 MachineBasicBlock *
emitFEXP2_D_1(MachineInstr & MI,MachineBasicBlock * BB) const3415 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3416                                     MachineBasicBlock *BB) const {
3417   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3418   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3419   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3420   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3421   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3422   DebugLoc DL = MI.getDebugLoc();
3423 
3424   // Splat 1.0 into a vector
3425   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3426   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3427 
3428   // Emit 1.0 * fexp2(Wt)
3429   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3430       .addReg(Ws2)
3431       .addReg(MI.getOperand(1).getReg());
3432 
3433   MI.eraseFromParent(); // The pseudo instruction is gone now.
3434   return BB;
3435 }
3436