1 /* $Id: tif_getimage.c,v 1.90 2015-06-17 01:34:08 bfriesen Exp $ */
2 
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include "tiffiop.h"
33 #include <stdio.h>
34 #include <limits.h>
35 
36 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
40 static int PickContigCase(TIFFRGBAImage*);
41 static int PickSeparateCase(TIFFRGBAImage*);
42 
43 static int BuildMapUaToAa(TIFFRGBAImage* img);
44 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
45 
46 static const char photoTag[] = "PhotometricInterpretation";
47 
48 /*
49  * Helper constants used in Orientation tag handling
50  */
51 #define FLIP_VERTICALLY 0x01
52 #define FLIP_HORIZONTALLY 0x02
53 
54 /*
55  * Color conversion constants. We will define display types here.
56  */
57 
58 static const TIFFDisplay display_sRGB = {
59 	{			/* XYZ -> luminance matrix */
60 		{  3.2410F, -1.5374F, -0.4986F },
61 		{  -0.9692F, 1.8760F, 0.0416F },
62 		{  0.0556F, -0.2040F, 1.0570F }
63 	},
64 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
65 	255, 255, 255,		/* Pixel values for ref. white */
66 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
67 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
68 };
69 
70 /*
71  * Check the image to see if TIFFReadRGBAImage can deal with it.
72  * 1/0 is returned according to whether or not the image can
73  * be handled.  If 0 is returned, emsg contains the reason
74  * why it is being rejected.
75  */
76 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])77 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
78 {
79 	TIFFDirectory* td = &tif->tif_dir;
80 	uint16 photometric;
81 	int colorchannels;
82 
83 	if (!tif->tif_decodestatus) {
84 		sprintf(emsg, "Sorry, requested compression method is not configured");
85 		return (0);
86 	}
87 	switch (td->td_bitspersample) {
88 		case 1:
89 		case 2:
90 		case 4:
91 		case 8:
92 		case 16:
93 			break;
94 		default:
95 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
96 			    td->td_bitspersample);
97 			return (0);
98 	}
99 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
100 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
101 		switch (colorchannels) {
102 			case 1:
103 				photometric = PHOTOMETRIC_MINISBLACK;
104 				break;
105 			case 3:
106 				photometric = PHOTOMETRIC_RGB;
107 				break;
108 			default:
109 				sprintf(emsg, "Missing needed %s tag", photoTag);
110 				return (0);
111 		}
112 	}
113 	switch (photometric) {
114 		case PHOTOMETRIC_MINISWHITE:
115 		case PHOTOMETRIC_MINISBLACK:
116 		case PHOTOMETRIC_PALETTE:
117 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
118 			    && td->td_samplesperpixel != 1
119 			    && td->td_bitspersample < 8 ) {
120 				sprintf(emsg,
121 				    "Sorry, can not handle contiguous data with %s=%d, "
122 				    "and %s=%d and Bits/Sample=%d",
123 				    photoTag, photometric,
124 				    "Samples/pixel", td->td_samplesperpixel,
125 				    td->td_bitspersample);
126 				return (0);
127 			}
128 			/*
129 			 * We should likely validate that any extra samples are either
130 			 * to be ignored, or are alpha, and if alpha we should try to use
131 			 * them.  But for now we won't bother with this.
132 			*/
133 			break;
134 		case PHOTOMETRIC_YCBCR:
135 			/*
136 			 * TODO: if at all meaningful and useful, make more complete
137 			 * support check here, or better still, refactor to let supporting
138 			 * code decide whether there is support and what meaningfull
139 			 * error to return
140 			 */
141 			break;
142 		case PHOTOMETRIC_RGB:
143 			if (colorchannels < 3) {
144 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
145 				    "Color channels", colorchannels);
146 				return (0);
147 			}
148 			break;
149 		case PHOTOMETRIC_SEPARATED:
150 			{
151 				uint16 inkset;
152 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
153 				if (inkset != INKSET_CMYK) {
154 					sprintf(emsg,
155 					    "Sorry, can not handle separated image with %s=%d",
156 					    "InkSet", inkset);
157 					return 0;
158 				}
159 				if (td->td_samplesperpixel < 4) {
160 					sprintf(emsg,
161 					    "Sorry, can not handle separated image with %s=%d",
162 					    "Samples/pixel", td->td_samplesperpixel);
163 					return 0;
164 				}
165 				break;
166 			}
167 		case PHOTOMETRIC_LOGL:
168 			if (td->td_compression != COMPRESSION_SGILOG) {
169 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
170 				    "Compression", COMPRESSION_SGILOG);
171 				return (0);
172 			}
173 			break;
174 		case PHOTOMETRIC_LOGLUV:
175 			if (td->td_compression != COMPRESSION_SGILOG &&
176 			    td->td_compression != COMPRESSION_SGILOG24) {
177 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
178 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
179 				return (0);
180 			}
181 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
182 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
183 				    "Planarconfiguration", td->td_planarconfig);
184 				return (0);
185 			}
186 			if( td->td_samplesperpixel != 3 || colorchannels != 3 )
187             {
188                 sprintf(emsg,
189                         "Sorry, can not handle image with %s=%d, %s=%d",
190                         "Samples/pixel", td->td_samplesperpixel,
191                         "colorchannels", colorchannels);
192                 return 0;
193             }
194 			break;
195 		case PHOTOMETRIC_CIELAB:
196             if( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 )
197             {
198                 sprintf(emsg,
199                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
200                         "Samples/pixel", td->td_samplesperpixel,
201                         "colorchannels", colorchannels,
202                         "Bits/sample", td->td_bitspersample);
203                 return 0;
204             }
205 			break;
206 		default:
207 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
208 			    photoTag, photometric);
209 			return (0);
210 	}
211 	return (1);
212 }
213 
214 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)215 TIFFRGBAImageEnd(TIFFRGBAImage* img)
216 {
217 	if (img->Map)
218 		_TIFFfree(img->Map), img->Map = NULL;
219 	if (img->BWmap)
220 		_TIFFfree(img->BWmap), img->BWmap = NULL;
221 	if (img->PALmap)
222 		_TIFFfree(img->PALmap), img->PALmap = NULL;
223 	if (img->ycbcr)
224 		_TIFFfree(img->ycbcr), img->ycbcr = NULL;
225 	if (img->cielab)
226 		_TIFFfree(img->cielab), img->cielab = NULL;
227 	if (img->UaToAa)
228 		_TIFFfree(img->UaToAa), img->UaToAa = NULL;
229 	if (img->Bitdepth16To8)
230 		_TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL;
231 
232 	if( img->redcmap ) {
233 		_TIFFfree( img->redcmap );
234 		_TIFFfree( img->greencmap );
235 		_TIFFfree( img->bluecmap );
236                 img->redcmap = img->greencmap = img->bluecmap = NULL;
237 	}
238 }
239 
240 static int
isCCITTCompression(TIFF * tif)241 isCCITTCompression(TIFF* tif)
242 {
243     uint16 compress;
244     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
245     return (compress == COMPRESSION_CCITTFAX3 ||
246 	    compress == COMPRESSION_CCITTFAX4 ||
247 	    compress == COMPRESSION_CCITTRLE ||
248 	    compress == COMPRESSION_CCITTRLEW);
249 }
250 
251 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])252 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
253 {
254 	uint16* sampleinfo;
255 	uint16 extrasamples;
256 	uint16 planarconfig;
257 	uint16 compress;
258 	int colorchannels;
259 	uint16 *red_orig, *green_orig, *blue_orig;
260 	int n_color;
261 
262 	if( !TIFFRGBAImageOK(tif, emsg) )
263 		return 0;
264 
265 	/* Initialize to normal values */
266 	img->row_offset = 0;
267 	img->col_offset = 0;
268 	img->redcmap = NULL;
269 	img->greencmap = NULL;
270 	img->bluecmap = NULL;
271 	img->Map = NULL;
272 	img->BWmap = NULL;
273 	img->PALmap = NULL;
274 	img->ycbcr = NULL;
275 	img->cielab = NULL;
276 	img->UaToAa = NULL;
277 	img->Bitdepth16To8 = NULL;
278 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
279 
280 	img->tif = tif;
281 	img->stoponerr = stop;
282 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
283 	switch (img->bitspersample) {
284 		case 1:
285 		case 2:
286 		case 4:
287 		case 8:
288 		case 16:
289 			break;
290 		default:
291 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
292 			    img->bitspersample);
293 			goto fail_return;
294 	}
295 	img->alpha = 0;
296 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
297 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
298 	    &extrasamples, &sampleinfo);
299 	if (extrasamples >= 1)
300 	{
301 		switch (sampleinfo[0]) {
302 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
303 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
304 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
305 				break;
306 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
307 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
308 				img->alpha = sampleinfo[0];
309 				break;
310 		}
311 	}
312 
313 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
314 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
315 		img->photometric = PHOTOMETRIC_MINISWHITE;
316 
317 	if( extrasamples == 0
318 	    && img->samplesperpixel == 4
319 	    && img->photometric == PHOTOMETRIC_RGB )
320 	{
321 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
322 		extrasamples = 1;
323 	}
324 #endif
325 
326 	colorchannels = img->samplesperpixel - extrasamples;
327 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
328 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
329 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
330 		switch (colorchannels) {
331 			case 1:
332 				if (isCCITTCompression(tif))
333 					img->photometric = PHOTOMETRIC_MINISWHITE;
334 				else
335 					img->photometric = PHOTOMETRIC_MINISBLACK;
336 				break;
337 			case 3:
338 				img->photometric = PHOTOMETRIC_RGB;
339 				break;
340 			default:
341 				sprintf(emsg, "Missing needed %s tag", photoTag);
342                                 goto fail_return;
343 		}
344 	}
345 	switch (img->photometric) {
346 		case PHOTOMETRIC_PALETTE:
347 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
348 			    &red_orig, &green_orig, &blue_orig)) {
349 				sprintf(emsg, "Missing required \"Colormap\" tag");
350                                 goto fail_return;
351 			}
352 
353 			/* copy the colormaps so we can modify them */
354 			n_color = (1L << img->bitspersample);
355 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
356 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
357 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
358 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
359 				sprintf(emsg, "Out of memory for colormap copy");
360                                 goto fail_return;
361 			}
362 
363 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
364 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
365 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
366 
367 			/* fall thru... */
368 		case PHOTOMETRIC_MINISWHITE:
369 		case PHOTOMETRIC_MINISBLACK:
370 			if (planarconfig == PLANARCONFIG_CONTIG
371 			    && img->samplesperpixel != 1
372 			    && img->bitspersample < 8 ) {
373 				sprintf(emsg,
374 				    "Sorry, can not handle contiguous data with %s=%d, "
375 				    "and %s=%d and Bits/Sample=%d",
376 				    photoTag, img->photometric,
377 				    "Samples/pixel", img->samplesperpixel,
378 				    img->bitspersample);
379                                 goto fail_return;
380 			}
381 			break;
382 		case PHOTOMETRIC_YCBCR:
383 			/* It would probably be nice to have a reality check here. */
384 			if (planarconfig == PLANARCONFIG_CONTIG)
385 				/* can rely on libjpeg to convert to RGB */
386 				/* XXX should restore current state on exit */
387 				switch (compress) {
388 					case COMPRESSION_JPEG:
389 						/*
390 						 * TODO: when complete tests verify complete desubsampling
391 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
392 						 * favor of tif_getimage.c native handling
393 						 */
394 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
395 						img->photometric = PHOTOMETRIC_RGB;
396 						break;
397 					default:
398 						/* do nothing */;
399 						break;
400 				}
401 			/*
402 			 * TODO: if at all meaningful and useful, make more complete
403 			 * support check here, or better still, refactor to let supporting
404 			 * code decide whether there is support and what meaningfull
405 			 * error to return
406 			 */
407 			break;
408 		case PHOTOMETRIC_RGB:
409 			if (colorchannels < 3) {
410 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
411 				    "Color channels", colorchannels);
412                                 goto fail_return;
413 			}
414 			break;
415 		case PHOTOMETRIC_SEPARATED:
416 			{
417 				uint16 inkset;
418 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
419 				if (inkset != INKSET_CMYK) {
420 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
421 					    "InkSet", inkset);
422                                         goto fail_return;
423 				}
424 				if (img->samplesperpixel < 4) {
425 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
426 					    "Samples/pixel", img->samplesperpixel);
427                                         goto fail_return;
428 				}
429 			}
430 			break;
431 		case PHOTOMETRIC_LOGL:
432 			if (compress != COMPRESSION_SGILOG) {
433 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
434 				    "Compression", COMPRESSION_SGILOG);
435                                 goto fail_return;
436 			}
437 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
438 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
439 			img->bitspersample = 8;
440 			break;
441 		case PHOTOMETRIC_LOGLUV:
442 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
443 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
444 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
445                                 goto fail_return;
446 			}
447 			if (planarconfig != PLANARCONFIG_CONTIG) {
448 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
449 				    "Planarconfiguration", planarconfig);
450 				return (0);
451 			}
452 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
453 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
454 			img->bitspersample = 8;
455 			break;
456 		case PHOTOMETRIC_CIELAB:
457 			break;
458 		default:
459 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
460 			    photoTag, img->photometric);
461                         goto fail_return;
462 	}
463 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
464 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
465 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
466 	img->isContig =
467 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
468 	if (img->isContig) {
469 		if (!PickContigCase(img)) {
470 			sprintf(emsg, "Sorry, can not handle image");
471 			goto fail_return;
472 		}
473 	} else {
474 		if (!PickSeparateCase(img)) {
475 			sprintf(emsg, "Sorry, can not handle image");
476 			goto fail_return;
477 		}
478 	}
479 	return 1;
480 
481   fail_return:
482         TIFFRGBAImageEnd( img );
483         return 0;
484 }
485 
486 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)487 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
488 {
489     if (img->get == NULL) {
490 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
491 		return (0);
492 	}
493 	if (img->put.any == NULL) {
494 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
495 		"No \"put\" routine setupl; probably can not handle image format");
496 		return (0);
497     }
498     return (*img->get)(img, raster, w, h);
499 }
500 
501 /*
502  * Read the specified image into an ABGR-format rastertaking in account
503  * specified orientation.
504  */
505 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)506 TIFFReadRGBAImageOriented(TIFF* tif,
507 			  uint32 rwidth, uint32 rheight, uint32* raster,
508 			  int orientation, int stop)
509 {
510     char emsg[1024] = "";
511     TIFFRGBAImage img;
512     int ok;
513 
514 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
515 		img.req_orientation = orientation;
516 		/* XXX verify rwidth and rheight against width and height */
517 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
518 			rwidth, img.height);
519 		TIFFRGBAImageEnd(&img);
520 	} else {
521 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
522 		ok = 0;
523     }
524     return (ok);
525 }
526 
527 /*
528  * Read the specified image into an ABGR-format raster. Use bottom left
529  * origin for raster by default.
530  */
531 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)532 TIFFReadRGBAImage(TIFF* tif,
533 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
534 {
535 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
536 					 ORIENTATION_BOTLEFT, stop);
537 }
538 
539 static int
setorientation(TIFFRGBAImage * img)540 setorientation(TIFFRGBAImage* img)
541 {
542 	switch (img->orientation) {
543 		case ORIENTATION_TOPLEFT:
544 		case ORIENTATION_LEFTTOP:
545 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
546 			    img->req_orientation == ORIENTATION_RIGHTTOP)
547 				return FLIP_HORIZONTALLY;
548 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
549 			    img->req_orientation == ORIENTATION_RIGHTBOT)
550 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
551 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
552 			    img->req_orientation == ORIENTATION_LEFTBOT)
553 				return FLIP_VERTICALLY;
554 			else
555 				return 0;
556 		case ORIENTATION_TOPRIGHT:
557 		case ORIENTATION_RIGHTTOP:
558 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
559 			    img->req_orientation == ORIENTATION_LEFTTOP)
560 				return FLIP_HORIZONTALLY;
561 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
562 			    img->req_orientation == ORIENTATION_RIGHTBOT)
563 				return FLIP_VERTICALLY;
564 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
565 			    img->req_orientation == ORIENTATION_LEFTBOT)
566 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
567 			else
568 				return 0;
569 		case ORIENTATION_BOTRIGHT:
570 		case ORIENTATION_RIGHTBOT:
571 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
572 			    img->req_orientation == ORIENTATION_LEFTTOP)
573 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
574 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
575 			    img->req_orientation == ORIENTATION_RIGHTTOP)
576 				return FLIP_VERTICALLY;
577 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
578 			    img->req_orientation == ORIENTATION_LEFTBOT)
579 				return FLIP_HORIZONTALLY;
580 			else
581 				return 0;
582 		case ORIENTATION_BOTLEFT:
583 		case ORIENTATION_LEFTBOT:
584 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
585 			    img->req_orientation == ORIENTATION_LEFTTOP)
586 				return FLIP_VERTICALLY;
587 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
588 			    img->req_orientation == ORIENTATION_RIGHTTOP)
589 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
590 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
591 			    img->req_orientation == ORIENTATION_RIGHTBOT)
592 				return FLIP_HORIZONTALLY;
593 			else
594 				return 0;
595 		default:	/* NOTREACHED */
596 			return 0;
597 	}
598 }
599 
600 /*
601  * Get an tile-organized image that has
602  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
603  * or
604  *	SamplesPerPixel == 1
605  */
606 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)607 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
608 {
609     TIFF* tif = img->tif;
610     tileContigRoutine put = img->put.contig;
611     uint32 col, row, y, rowstoread;
612     tmsize_t pos;
613     uint32 tw, th;
614     unsigned char* buf;
615     int32 fromskew, toskew;
616     int64 safeskew;
617     uint32 nrow;
618     int ret = 1, flip;
619     uint32 this_tw, tocol;
620     int32 this_toskew, leftmost_toskew;
621     int32 leftmost_fromskew;
622     uint32 leftmost_tw;
623 
624     buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif));
625     if (buf == 0) {
626 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
627 		return (0);
628     }
629     _TIFFmemset(buf, 0, TIFFTileSize(tif));
630     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
631     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
632 
633     flip = setorientation(img);
634     if (flip & FLIP_VERTICALLY) {
635 	    y = h - 1;
636 	    safeskew = 0;
637 	    safeskew -= tw;
638 	    safeskew -= w;
639     }
640     else {
641 	    y = 0;
642 	    safeskew = 0;
643 	    safeskew -= tw;
644 	    safeskew +=w;
645     }
646     if(safeskew > INT_MAX || safeskew < INT_MIN){
647     	_TIFFfree(buf);
648     	TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
649     	return (0);
650     }
651     toskew = safeskew;
652 
653 
654     /*
655      *	Leftmost tile is clipped on left side if col_offset > 0.
656      */
657     leftmost_fromskew = img->col_offset % tw;
658     leftmost_tw = tw - leftmost_fromskew;
659     safeskew = toskew;
660     safeskew += leftmost_fromskew;
661     if(safeskew > INT_MAX || safeskew < INT_MIN){
662     	_TIFFfree(buf);
663     	TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
664     	return (0);
665     }
666     leftmost_toskew = safeskew;
667     for (row = 0; row < h; row += nrow)
668     {
669         rowstoread = th - (row + img->row_offset) % th;
670     	nrow = (row + rowstoread > h ? h - row : rowstoread);
671 	fromskew = leftmost_fromskew;
672 	this_tw = leftmost_tw;
673 	this_toskew = leftmost_toskew;
674 	tocol = 0;
675 	col = img->col_offset;
676 	while (tocol < w)
677         {
678 	    if (TIFFReadTile(tif, buf, col,
679 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr)
680             {
681                 ret = 0;
682                 break;
683             }
684             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
685 		   ((tmsize_t) fromskew * img->samplesperpixel);
686 	    if (tocol + this_tw > w)
687 	    {
688 		/*
689 		 * Rightmost tile is clipped on right side.
690 		 */
691 		safeskew = tw;
692 		safeskew -= w;
693 		safeskew += tocol;
694 		if(safeskew > INT_MAX || safeskew < INT_MIN){
695 			_TIFFfree(buf);
696 			TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
697 			return (0);
698 		}
699 		fromskew = safeskew;
700 		this_tw = tw - fromskew;
701 		safeskew = toskew;
702 		safeskew += fromskew;
703 		if(safeskew > INT_MAX || safeskew < INT_MIN){
704 			_TIFFfree(buf);
705 			TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
706 			return (0);
707 		}
708 		this_toskew = safeskew;
709 	    }
710 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
711 	    tocol += this_tw;
712 	    col += this_tw;
713 	    /*
714 	     * After the leftmost tile, tiles are no longer clipped on left side.
715 	     */
716 	    fromskew = 0;
717 	    this_tw = tw;
718 	    this_toskew = toskew;
719 	}
720 
721         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
722     }
723     _TIFFfree(buf);
724 
725     if (flip & FLIP_HORIZONTALLY) {
726 	    uint32 line;
727 
728 	    for (line = 0; line < h; line++) {
729 		    uint32 *left = raster + (line * w);
730 		    uint32 *right = left + w - 1;
731 
732 		    while ( left < right ) {
733 			    uint32 temp = *left;
734 			    *left = *right;
735 			    *right = temp;
736 			    left++, right--;
737 		    }
738 	    }
739     }
740 
741     return (ret);
742 }
743 
744 /*
745  * Get an tile-organized image that has
746  *	 SamplesPerPixel > 1
747  *	 PlanarConfiguration separated
748  * We assume that all such images are RGB.
749  */
750 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)751 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
752 {
753 	TIFF* tif = img->tif;
754 	tileSeparateRoutine put = img->put.separate;
755 	uint32 col, row, y, rowstoread;
756 	tmsize_t pos;
757 	uint32 tw, th;
758 	unsigned char* buf;
759 	unsigned char* p0;
760 	unsigned char* p1;
761 	unsigned char* p2;
762 	unsigned char* pa;
763 	tmsize_t tilesize;
764 	tmsize_t bufsize;
765 	int32 fromskew, toskew;
766 	int alpha = img->alpha;
767 	uint32 nrow;
768 	int ret = 1, flip;
769         int colorchannels;
770 	uint32 this_tw, tocol;
771 	int32 this_toskew, leftmost_toskew;
772 	int32 leftmost_fromskew;
773 	uint32 leftmost_tw;
774 
775 	tilesize = TIFFTileSize(tif);
776 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
777 	if (bufsize == 0) {
778 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
779 		return (0);
780 	}
781 	buf = (unsigned char*) _TIFFmalloc(bufsize);
782 	if (buf == 0) {
783 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
784 		return (0);
785 	}
786 	_TIFFmemset(buf, 0, bufsize);
787 	p0 = buf;
788 	p1 = p0 + tilesize;
789 	p2 = p1 + tilesize;
790 	pa = (alpha?(p2+tilesize):NULL);
791 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
792 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
793 
794 	flip = setorientation(img);
795 	if (flip & FLIP_VERTICALLY) {
796 		y = h - 1;
797 		toskew = -(int32)(tw + w);
798 	}
799 	else {
800 		y = 0;
801 		toskew = -(int32)(tw - w);
802 	}
803 
804         switch( img->photometric )
805         {
806           case PHOTOMETRIC_MINISWHITE:
807           case PHOTOMETRIC_MINISBLACK:
808           case PHOTOMETRIC_PALETTE:
809             colorchannels = 1;
810             p2 = p1 = p0;
811             break;
812 
813           default:
814             colorchannels = 3;
815             break;
816         }
817 
818 	/*
819 	 *	Leftmost tile is clipped on left side if col_offset > 0.
820 	 */
821 	leftmost_fromskew = img->col_offset % tw;
822 	leftmost_tw = tw - leftmost_fromskew;
823 	leftmost_toskew = toskew + leftmost_fromskew;
824 	for (row = 0; row < h; row += nrow)
825 	{
826 		rowstoread = th - (row + img->row_offset) % th;
827 		nrow = (row + rowstoread > h ? h - row : rowstoread);
828 		fromskew = leftmost_fromskew;
829 		this_tw = leftmost_tw;
830 		this_toskew = leftmost_toskew;
831 		tocol = 0;
832 		col = img->col_offset;
833 		while (tocol < w)
834 		{
835 			if (TIFFReadTile(tif, p0, col,
836 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
837 			{
838 				ret = 0;
839 				break;
840 			}
841 			if (colorchannels > 1
842                             && TIFFReadTile(tif, p1, col,
843                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
844                             && img->stoponerr)
845 			{
846 				ret = 0;
847 				break;
848 			}
849 			if (colorchannels > 1
850                             && TIFFReadTile(tif, p2, col,
851                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
852                             && img->stoponerr)
853 			{
854 				ret = 0;
855 				break;
856 			}
857 			if (alpha
858                             && TIFFReadTile(tif,pa,col,
859                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
860                             && img->stoponerr)
861                         {
862                             ret = 0;
863                             break;
864 			}
865 
866 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
867 			   ((tmsize_t) fromskew * img->samplesperpixel);
868 			if (tocol + this_tw > w)
869 			{
870 				/*
871 				 * Rightmost tile is clipped on right side.
872 				 */
873 				fromskew = tw - (w - tocol);
874 				this_tw = tw - fromskew;
875 				this_toskew = toskew + fromskew;
876 			}
877 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
878 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
879 			tocol += this_tw;
880 			col += this_tw;
881 			/*
882 			* After the leftmost tile, tiles are no longer clipped on left side.
883 			*/
884 			fromskew = 0;
885 			this_tw = tw;
886 			this_toskew = toskew;
887 		}
888 
889 		y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow);
890 	}
891 
892 	if (flip & FLIP_HORIZONTALLY) {
893 		uint32 line;
894 
895 		for (line = 0; line < h; line++) {
896 			uint32 *left = raster + (line * w);
897 			uint32 *right = left + w - 1;
898 
899 			while ( left < right ) {
900 				uint32 temp = *left;
901 				*left = *right;
902 				*right = temp;
903 				left++, right--;
904 			}
905 		}
906 	}
907 
908 	_TIFFfree(buf);
909 	return (ret);
910 }
911 
912 /*
913  * Get a strip-organized image that has
914  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
915  * or
916  *	SamplesPerPixel == 1
917  */
918 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)919 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
920 {
921 	TIFF* tif = img->tif;
922 	tileContigRoutine put = img->put.contig;
923 	uint32 row, y, nrow, nrowsub, rowstoread;
924 	tmsize_t pos;
925 	unsigned char* buf;
926 	uint32 rowsperstrip;
927 	uint16 subsamplinghor,subsamplingver;
928 	uint32 imagewidth = img->width;
929 	tmsize_t scanline;
930 	int32 fromskew, toskew;
931 	int ret = 1, flip;
932 
933 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
934 	if( subsamplingver == 0 ) {
935 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
936 		return (0);
937 	}
938 
939 	buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif));
940 	if (buf == 0) {
941 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer");
942 		return (0);
943 	}
944 	_TIFFmemset(buf, 0, TIFFStripSize(tif));
945 
946 	flip = setorientation(img);
947 	if (flip & FLIP_VERTICALLY) {
948 		y = h - 1;
949 		toskew = -(int32)(w + w);
950 	} else {
951 		y = 0;
952 		toskew = -(int32)(w - w);
953 	}
954 
955 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
956 
957 	scanline = TIFFScanlineSize(tif);
958 	fromskew = (w < imagewidth ? imagewidth - w : 0);
959 	for (row = 0; row < h; row += nrow)
960 	{
961 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
962 		nrow = (row + rowstoread > h ? h - row : rowstoread);
963 		nrowsub = nrow;
964 		if ((nrowsub%subsamplingver)!=0)
965 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
966 		if (TIFFReadEncodedStrip(tif,
967 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
968 		    buf,
969 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
970 		    && img->stoponerr)
971 		{
972 			ret = 0;
973 			break;
974 		}
975 
976 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
977 			((tmsize_t) img->col_offset * img->samplesperpixel);
978 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
979 		y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
980 	}
981 
982 	if (flip & FLIP_HORIZONTALLY) {
983 		uint32 line;
984 
985 		for (line = 0; line < h; line++) {
986 			uint32 *left = raster + (line * w);
987 			uint32 *right = left + w - 1;
988 
989 			while ( left < right ) {
990 				uint32 temp = *left;
991 				*left = *right;
992 				*right = temp;
993 				left++, right--;
994 			}
995 		}
996 	}
997 
998 	_TIFFfree(buf);
999 	return (ret);
1000 }
1001 
1002 /*
1003  * Get a strip-organized image with
1004  *	 SamplesPerPixel > 1
1005  *	 PlanarConfiguration separated
1006  * We assume that all such images are RGB.
1007  */
1008 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)1009 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1010 {
1011 	TIFF* tif = img->tif;
1012 	tileSeparateRoutine put = img->put.separate;
1013 	unsigned char *buf;
1014 	unsigned char *p0, *p1, *p2, *pa;
1015 	uint32 row, y, nrow, rowstoread;
1016 	tmsize_t pos;
1017 	tmsize_t scanline;
1018 	uint32 rowsperstrip, offset_row;
1019 	uint32 imagewidth = img->width;
1020 	tmsize_t stripsize;
1021 	tmsize_t bufsize;
1022 	int32 fromskew, toskew;
1023 	int alpha = img->alpha;
1024 	int ret = 1, flip, colorchannels;
1025 
1026 	stripsize = TIFFStripSize(tif);
1027 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
1028 	if (bufsize == 0) {
1029 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
1030 		return (0);
1031 	}
1032 	p0 = buf = (unsigned char *)_TIFFmalloc(bufsize);
1033 	if (buf == 0) {
1034 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer");
1035 		return (0);
1036 	}
1037 	_TIFFmemset(buf, 0, bufsize);
1038 	p1 = p0 + stripsize;
1039 	p2 = p1 + stripsize;
1040 	pa = (alpha?(p2+stripsize):NULL);
1041 
1042 	flip = setorientation(img);
1043 	if (flip & FLIP_VERTICALLY) {
1044 		y = h - 1;
1045 		toskew = -(int32)(w + w);
1046 	}
1047 	else {
1048 		y = 0;
1049 		toskew = -(int32)(w - w);
1050 	}
1051 
1052         switch( img->photometric )
1053         {
1054           case PHOTOMETRIC_MINISWHITE:
1055           case PHOTOMETRIC_MINISBLACK:
1056           case PHOTOMETRIC_PALETTE:
1057             colorchannels = 1;
1058             p2 = p1 = p0;
1059             break;
1060 
1061           default:
1062             colorchannels = 3;
1063             break;
1064         }
1065 
1066 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1067 	scanline = TIFFScanlineSize(tif);
1068 	fromskew = (w < imagewidth ? imagewidth - w : 0);
1069 	for (row = 0; row < h; row += nrow)
1070 	{
1071 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1072 		nrow = (row + rowstoread > h ? h - row : rowstoread);
1073 		offset_row = row + img->row_offset;
1074 		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1075 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1076 		    && img->stoponerr)
1077 		{
1078 			ret = 0;
1079 			break;
1080 		}
1081 		if (colorchannels > 1
1082                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1083                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1084 		    && img->stoponerr)
1085 		{
1086 			ret = 0;
1087 			break;
1088 		}
1089 		if (colorchannels > 1
1090                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1091                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1092 		    && img->stoponerr)
1093 		{
1094 			ret = 0;
1095 			break;
1096 		}
1097 		if (alpha)
1098 		{
1099 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1100 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1101 			    && img->stoponerr)
1102 			{
1103 				ret = 0;
1104 				break;
1105 			}
1106 		}
1107 
1108 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1109 			((tmsize_t) img->col_offset * img->samplesperpixel);
1110 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1111 		    p2 + pos, (alpha?(pa+pos):NULL));
1112 		y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
1113 	}
1114 
1115 	if (flip & FLIP_HORIZONTALLY) {
1116 		uint32 line;
1117 
1118 		for (line = 0; line < h; line++) {
1119 			uint32 *left = raster + (line * w);
1120 			uint32 *right = left + w - 1;
1121 
1122 			while ( left < right ) {
1123 				uint32 temp = *left;
1124 				*left = *right;
1125 				*right = temp;
1126 				left++, right--;
1127 			}
1128 		}
1129 	}
1130 
1131 	_TIFFfree(buf);
1132 	return (ret);
1133 }
1134 
1135 /*
1136  * The following routines move decoded data returned
1137  * from the TIFF library into rasters filled with packed
1138  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1139  *
1140  * The routines have been created according to the most
1141  * important cases and optimized.  PickContigCase and
1142  * PickSeparateCase analyze the parameters and select
1143  * the appropriate "get" and "put" routine to use.
1144  */
1145 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1146 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1147 #define	REPEAT2(op)	op; op
1148 #define	CASE8(x,op)			\
1149     switch (x) {			\
1150     case 7: op; case 6: op; case 5: op;	\
1151     case 4: op; case 3: op; case 2: op;	\
1152     case 1: op;				\
1153     }
1154 #define	CASE4(x,op)	switch (x) { case 3: op; case 2: op; case 1: op; }
1155 #define	NOP
1156 
1157 #define	UNROLL8(w, op1, op2) {		\
1158     uint32 _x;				\
1159     for (_x = w; _x >= 8; _x -= 8) {	\
1160 	op1;				\
1161 	REPEAT8(op2);			\
1162     }					\
1163     if (_x > 0) {			\
1164 	op1;				\
1165 	CASE8(_x,op2);			\
1166     }					\
1167 }
1168 #define	UNROLL4(w, op1, op2) {		\
1169     uint32 _x;				\
1170     for (_x = w; _x >= 4; _x -= 4) {	\
1171 	op1;				\
1172 	REPEAT4(op2);			\
1173     }					\
1174     if (_x > 0) {			\
1175 	op1;				\
1176 	CASE4(_x,op2);			\
1177     }					\
1178 }
1179 #define	UNROLL2(w, op1, op2) {		\
1180     uint32 _x;				\
1181     for (_x = w; _x >= 2; _x -= 2) {	\
1182 	op1;				\
1183 	REPEAT2(op2);			\
1184     }					\
1185     if (_x) {				\
1186 	op1;				\
1187 	op2;				\
1188     }					\
1189 }
1190 
1191 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1192 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1193 
1194 #define A1 (((uint32)0xffL)<<24)
1195 #define	PACK(r,g,b)	\
1196 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1197 #define	PACK4(r,g,b,a)	\
1198 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1199 #define W2B(v) (((v)>>8)&0xff)
1200 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1201 #define	PACKW(r,g,b)	\
1202 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1203 #define	PACKW4(r,g,b,a)	\
1204 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1205 
1206 #define	DECLAREContigPutFunc(name) \
1207 static void name(\
1208     TIFFRGBAImage* img, \
1209     uint32* cp, \
1210     uint32 x, uint32 y, \
1211     uint32 w, uint32 h, \
1212     int32 fromskew, int32 toskew, \
1213     unsigned char* pp \
1214 )
1215 
1216 /*
1217  * 8-bit palette => colormap/RGB
1218  */
DECLAREContigPutFunc(put8bitcmaptile)1219 DECLAREContigPutFunc(put8bitcmaptile)
1220 {
1221     uint32** PALmap = img->PALmap;
1222     int samplesperpixel = img->samplesperpixel;
1223 
1224     (void) y;
1225     while (h-- > 0) {
1226 	for (x = w; x-- > 0;)
1227         {
1228 	    *cp++ = PALmap[*pp][0];
1229             pp += samplesperpixel;
1230         }
1231 	cp += toskew;
1232 	pp += fromskew;
1233     }
1234 }
1235 
1236 /*
1237  * 4-bit palette => colormap/RGB
1238  */
DECLAREContigPutFunc(put4bitcmaptile)1239 DECLAREContigPutFunc(put4bitcmaptile)
1240 {
1241     uint32** PALmap = img->PALmap;
1242 
1243     (void) x; (void) y;
1244     fromskew /= 2;
1245     while (h-- > 0) {
1246 	uint32* bw;
1247 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1248 	cp += toskew;
1249 	pp += fromskew;
1250     }
1251 }
1252 
1253 /*
1254  * 2-bit palette => colormap/RGB
1255  */
DECLAREContigPutFunc(put2bitcmaptile)1256 DECLAREContigPutFunc(put2bitcmaptile)
1257 {
1258     uint32** PALmap = img->PALmap;
1259 
1260     (void) x; (void) y;
1261     fromskew /= 4;
1262     while (h-- > 0) {
1263 	uint32* bw;
1264 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1265 	cp += toskew;
1266 	pp += fromskew;
1267     }
1268 }
1269 
1270 /*
1271  * 1-bit palette => colormap/RGB
1272  */
DECLAREContigPutFunc(put1bitcmaptile)1273 DECLAREContigPutFunc(put1bitcmaptile)
1274 {
1275     uint32** PALmap = img->PALmap;
1276 
1277     (void) x; (void) y;
1278     fromskew /= 8;
1279     while (h-- > 0) {
1280 	uint32* bw;
1281 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1282 	cp += toskew;
1283 	pp += fromskew;
1284     }
1285 }
1286 
1287 /*
1288  * 8-bit greyscale => colormap/RGB
1289  */
DECLAREContigPutFunc(putgreytile)1290 DECLAREContigPutFunc(putgreytile)
1291 {
1292     int samplesperpixel = img->samplesperpixel;
1293     uint32** BWmap = img->BWmap;
1294 
1295     (void) y;
1296     while (h-- > 0) {
1297 	for (x = w; x-- > 0;)
1298         {
1299 	    *cp++ = BWmap[*pp][0];
1300             pp += samplesperpixel;
1301         }
1302 	cp += toskew;
1303 	pp += fromskew;
1304     }
1305 }
1306 
1307 /*
1308  * 8-bit greyscale with associated alpha => colormap/RGBA
1309  */
DECLAREContigPutFunc(putagreytile)1310 DECLAREContigPutFunc(putagreytile)
1311 {
1312     int samplesperpixel = img->samplesperpixel;
1313     uint32** BWmap = img->BWmap;
1314 
1315     (void) y;
1316     while (h-- > 0) {
1317 	for (x = w; x-- > 0;)
1318         {
1319             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1320             pp += samplesperpixel;
1321         }
1322 	cp += toskew;
1323 	pp += fromskew;
1324     }
1325 }
1326 
1327 /*
1328  * 16-bit greyscale => colormap/RGB
1329  */
DECLAREContigPutFunc(put16bitbwtile)1330 DECLAREContigPutFunc(put16bitbwtile)
1331 {
1332     int samplesperpixel = img->samplesperpixel;
1333     uint32** BWmap = img->BWmap;
1334 
1335     (void) y;
1336     while (h-- > 0) {
1337         uint16 *wp = (uint16 *) pp;
1338 
1339 	for (x = w; x-- > 0;)
1340         {
1341             /* use high order byte of 16bit value */
1342 
1343 	    *cp++ = BWmap[*wp >> 8][0];
1344             pp += 2 * samplesperpixel;
1345             wp += samplesperpixel;
1346         }
1347 	cp += toskew;
1348 	pp += fromskew;
1349     }
1350 }
1351 
1352 /*
1353  * 1-bit bilevel => colormap/RGB
1354  */
DECLAREContigPutFunc(put1bitbwtile)1355 DECLAREContigPutFunc(put1bitbwtile)
1356 {
1357     uint32** BWmap = img->BWmap;
1358 
1359     (void) x; (void) y;
1360     fromskew /= 8;
1361     while (h-- > 0) {
1362 	uint32* bw;
1363 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1364 	cp += toskew;
1365 	pp += fromskew;
1366     }
1367 }
1368 
1369 /*
1370  * 2-bit greyscale => colormap/RGB
1371  */
DECLAREContigPutFunc(put2bitbwtile)1372 DECLAREContigPutFunc(put2bitbwtile)
1373 {
1374     uint32** BWmap = img->BWmap;
1375 
1376     (void) x; (void) y;
1377     fromskew /= 4;
1378     while (h-- > 0) {
1379 	uint32* bw;
1380 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1381 	cp += toskew;
1382 	pp += fromskew;
1383     }
1384 }
1385 
1386 /*
1387  * 4-bit greyscale => colormap/RGB
1388  */
DECLAREContigPutFunc(put4bitbwtile)1389 DECLAREContigPutFunc(put4bitbwtile)
1390 {
1391     uint32** BWmap = img->BWmap;
1392 
1393     (void) x; (void) y;
1394     fromskew /= 2;
1395     while (h-- > 0) {
1396 	uint32* bw;
1397 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1398 	cp += toskew;
1399 	pp += fromskew;
1400     }
1401 }
1402 
1403 /*
1404  * 8-bit packed samples, no Map => RGB
1405  */
DECLAREContigPutFunc(putRGBcontig8bittile)1406 DECLAREContigPutFunc(putRGBcontig8bittile)
1407 {
1408     int samplesperpixel = img->samplesperpixel;
1409 
1410     (void) x; (void) y;
1411     fromskew *= samplesperpixel;
1412     while (h-- > 0) {
1413 	UNROLL8(w, NOP,
1414 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1415 	    pp += samplesperpixel);
1416 	cp += toskew;
1417 	pp += fromskew;
1418     }
1419 }
1420 
1421 /*
1422  * 8-bit packed samples => RGBA w/ associated alpha
1423  * (known to have Map == NULL)
1424  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1425 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1426 {
1427     int samplesperpixel = img->samplesperpixel;
1428 
1429     (void) x; (void) y;
1430     fromskew *= samplesperpixel;
1431     while (h-- > 0) {
1432 	UNROLL8(w, NOP,
1433 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1434 	    pp += samplesperpixel);
1435 	cp += toskew;
1436 	pp += fromskew;
1437     }
1438 }
1439 
1440 /*
1441  * 8-bit packed samples => RGBA w/ unassociated alpha
1442  * (known to have Map == NULL)
1443  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1444 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1445 {
1446 	int samplesperpixel = img->samplesperpixel;
1447 	(void) y;
1448 	fromskew *= samplesperpixel;
1449 	while (h-- > 0) {
1450 		uint32 r, g, b, a;
1451 		uint8* m;
1452 		for (x = w; x-- > 0;) {
1453 			a = pp[3];
1454 			m = img->UaToAa+(a<<8);
1455 			r = m[pp[0]];
1456 			g = m[pp[1]];
1457 			b = m[pp[2]];
1458 			*cp++ = PACK4(r,g,b,a);
1459 			pp += samplesperpixel;
1460 		}
1461 		cp += toskew;
1462 		pp += fromskew;
1463 	}
1464 }
1465 
1466 /*
1467  * 16-bit packed samples => RGB
1468  */
DECLAREContigPutFunc(putRGBcontig16bittile)1469 DECLAREContigPutFunc(putRGBcontig16bittile)
1470 {
1471 	int samplesperpixel = img->samplesperpixel;
1472 	uint16 *wp = (uint16 *)pp;
1473 	(void) y;
1474 	fromskew *= samplesperpixel;
1475 	while (h-- > 0) {
1476 		for (x = w; x-- > 0;) {
1477 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1478 			    img->Bitdepth16To8[wp[1]],
1479 			    img->Bitdepth16To8[wp[2]]);
1480 			wp += samplesperpixel;
1481 		}
1482 		cp += toskew;
1483 		wp += fromskew;
1484 	}
1485 }
1486 
1487 /*
1488  * 16-bit packed samples => RGBA w/ associated alpha
1489  * (known to have Map == NULL)
1490  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1491 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1492 {
1493 	int samplesperpixel = img->samplesperpixel;
1494 	uint16 *wp = (uint16 *)pp;
1495 	(void) y;
1496 	fromskew *= samplesperpixel;
1497 	while (h-- > 0) {
1498 		for (x = w; x-- > 0;) {
1499 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1500 			    img->Bitdepth16To8[wp[1]],
1501 			    img->Bitdepth16To8[wp[2]],
1502 			    img->Bitdepth16To8[wp[3]]);
1503 			wp += samplesperpixel;
1504 		}
1505 		cp += toskew;
1506 		wp += fromskew;
1507 	}
1508 }
1509 
1510 /*
1511  * 16-bit packed samples => RGBA w/ unassociated alpha
1512  * (known to have Map == NULL)
1513  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1514 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1515 {
1516 	int samplesperpixel = img->samplesperpixel;
1517 	uint16 *wp = (uint16 *)pp;
1518 	(void) y;
1519 	fromskew *= samplesperpixel;
1520 	while (h-- > 0) {
1521 		uint32 r,g,b,a;
1522 		uint8* m;
1523 		for (x = w; x-- > 0;) {
1524 			a = img->Bitdepth16To8[wp[3]];
1525 			m = img->UaToAa+(a<<8);
1526 			r = m[img->Bitdepth16To8[wp[0]]];
1527 			g = m[img->Bitdepth16To8[wp[1]]];
1528 			b = m[img->Bitdepth16To8[wp[2]]];
1529 			*cp++ = PACK4(r,g,b,a);
1530 			wp += samplesperpixel;
1531 		}
1532 		cp += toskew;
1533 		wp += fromskew;
1534 	}
1535 }
1536 
1537 /*
1538  * 8-bit packed CMYK samples w/o Map => RGB
1539  *
1540  * NB: The conversion of CMYK->RGB is *very* crude.
1541  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1542 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1543 {
1544     int samplesperpixel = img->samplesperpixel;
1545     uint16 r, g, b, k;
1546 
1547     (void) x; (void) y;
1548     fromskew *= samplesperpixel;
1549     while (h-- > 0) {
1550 	UNROLL8(w, NOP,
1551 	    k = 255 - pp[3];
1552 	    r = (k*(255-pp[0]))/255;
1553 	    g = (k*(255-pp[1]))/255;
1554 	    b = (k*(255-pp[2]))/255;
1555 	    *cp++ = PACK(r, g, b);
1556 	    pp += samplesperpixel);
1557 	cp += toskew;
1558 	pp += fromskew;
1559     }
1560 }
1561 
1562 /*
1563  * 8-bit packed CMYK samples w/Map => RGB
1564  *
1565  * NB: The conversion of CMYK->RGB is *very* crude.
1566  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1567 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1568 {
1569     int samplesperpixel = img->samplesperpixel;
1570     TIFFRGBValue* Map = img->Map;
1571     uint16 r, g, b, k;
1572 
1573     (void) y;
1574     fromskew *= samplesperpixel;
1575     while (h-- > 0) {
1576 	for (x = w; x-- > 0;) {
1577 	    k = 255 - pp[3];
1578 	    r = (k*(255-pp[0]))/255;
1579 	    g = (k*(255-pp[1]))/255;
1580 	    b = (k*(255-pp[2]))/255;
1581 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1582 	    pp += samplesperpixel;
1583 	}
1584 	pp += fromskew;
1585 	cp += toskew;
1586     }
1587 }
1588 
1589 #define	DECLARESepPutFunc(name) \
1590 static void name(\
1591     TIFFRGBAImage* img,\
1592     uint32* cp,\
1593     uint32 x, uint32 y, \
1594     uint32 w, uint32 h,\
1595     int32 fromskew, int32 toskew,\
1596     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1597 )
1598 
1599 /*
1600  * 8-bit unpacked samples => RGB
1601  */
DECLARESepPutFunc(putRGBseparate8bittile)1602 DECLARESepPutFunc(putRGBseparate8bittile)
1603 {
1604     (void) img; (void) x; (void) y; (void) a;
1605     while (h-- > 0) {
1606 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1607 	SKEW(r, g, b, fromskew);
1608 	cp += toskew;
1609     }
1610 }
1611 
1612 /*
1613  * 8-bit unpacked samples => RGBA w/ associated alpha
1614  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1615 DECLARESepPutFunc(putRGBAAseparate8bittile)
1616 {
1617 	(void) img; (void) x; (void) y;
1618 	while (h-- > 0) {
1619 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1620 		SKEW4(r, g, b, a, fromskew);
1621 		cp += toskew;
1622 	}
1623 }
1624 
1625 /*
1626  * 8-bit unpacked CMYK samples => RGBA
1627  */
DECLARESepPutFunc(putCMYKseparate8bittile)1628 DECLARESepPutFunc(putCMYKseparate8bittile)
1629 {
1630 	(void) img; (void) y;
1631 	while (h-- > 0) {
1632 		uint32 rv, gv, bv, kv;
1633 		for (x = w; x-- > 0;) {
1634 			kv = 255 - *a++;
1635 			rv = (kv*(255-*r++))/255;
1636 			gv = (kv*(255-*g++))/255;
1637 			bv = (kv*(255-*b++))/255;
1638 			*cp++ = PACK4(rv,gv,bv,255);
1639 		}
1640 		SKEW4(r, g, b, a, fromskew);
1641 		cp += toskew;
1642 	}
1643 }
1644 
1645 /*
1646  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1647  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1648 DECLARESepPutFunc(putRGBUAseparate8bittile)
1649 {
1650 	(void) img; (void) y;
1651 	while (h-- > 0) {
1652 		uint32 rv, gv, bv, av;
1653 		uint8* m;
1654 		for (x = w; x-- > 0;) {
1655 			av = *a++;
1656 			m = img->UaToAa+(av<<8);
1657 			rv = m[*r++];
1658 			gv = m[*g++];
1659 			bv = m[*b++];
1660 			*cp++ = PACK4(rv,gv,bv,av);
1661 		}
1662 		SKEW4(r, g, b, a, fromskew);
1663 		cp += toskew;
1664 	}
1665 }
1666 
1667 /*
1668  * 16-bit unpacked samples => RGB
1669  */
DECLARESepPutFunc(putRGBseparate16bittile)1670 DECLARESepPutFunc(putRGBseparate16bittile)
1671 {
1672 	uint16 *wr = (uint16*) r;
1673 	uint16 *wg = (uint16*) g;
1674 	uint16 *wb = (uint16*) b;
1675 	(void) img; (void) y; (void) a;
1676 	while (h-- > 0) {
1677 		for (x = 0; x < w; x++)
1678 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1679 			    img->Bitdepth16To8[*wg++],
1680 			    img->Bitdepth16To8[*wb++]);
1681 		SKEW(wr, wg, wb, fromskew);
1682 		cp += toskew;
1683 	}
1684 }
1685 
1686 /*
1687  * 16-bit unpacked samples => RGBA w/ associated alpha
1688  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1689 DECLARESepPutFunc(putRGBAAseparate16bittile)
1690 {
1691 	uint16 *wr = (uint16*) r;
1692 	uint16 *wg = (uint16*) g;
1693 	uint16 *wb = (uint16*) b;
1694 	uint16 *wa = (uint16*) a;
1695 	(void) img; (void) y;
1696 	while (h-- > 0) {
1697 		for (x = 0; x < w; x++)
1698 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1699 			    img->Bitdepth16To8[*wg++],
1700 			    img->Bitdepth16To8[*wb++],
1701 			    img->Bitdepth16To8[*wa++]);
1702 		SKEW4(wr, wg, wb, wa, fromskew);
1703 		cp += toskew;
1704 	}
1705 }
1706 
1707 /*
1708  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1709  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1710 DECLARESepPutFunc(putRGBUAseparate16bittile)
1711 {
1712 	uint16 *wr = (uint16*) r;
1713 	uint16 *wg = (uint16*) g;
1714 	uint16 *wb = (uint16*) b;
1715 	uint16 *wa = (uint16*) a;
1716 	(void) img; (void) y;
1717 	while (h-- > 0) {
1718 		uint32 r,g,b,a;
1719 		uint8* m;
1720 		for (x = w; x-- > 0;) {
1721 			a = img->Bitdepth16To8[*wa++];
1722 			m = img->UaToAa+(a<<8);
1723 			r = m[img->Bitdepth16To8[*wr++]];
1724 			g = m[img->Bitdepth16To8[*wg++]];
1725 			b = m[img->Bitdepth16To8[*wb++]];
1726 			*cp++ = PACK4(r,g,b,a);
1727 		}
1728 		SKEW4(wr, wg, wb, wa, fromskew);
1729 		cp += toskew;
1730 	}
1731 }
1732 
1733 /*
1734  * 8-bit packed CIE L*a*b 1976 samples => RGB
1735  */
DECLAREContigPutFunc(putcontig8bitCIELab)1736 DECLAREContigPutFunc(putcontig8bitCIELab)
1737 {
1738 	float X, Y, Z;
1739 	uint32 r, g, b;
1740 	(void) y;
1741 	fromskew *= 3;
1742 	while (h-- > 0) {
1743 		for (x = w; x-- > 0;) {
1744 			TIFFCIELabToXYZ(img->cielab,
1745 					(unsigned char)pp[0],
1746 					(signed char)pp[1],
1747 					(signed char)pp[2],
1748 					&X, &Y, &Z);
1749 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1750 			*cp++ = PACK(r, g, b);
1751 			pp += 3;
1752 		}
1753 		cp += toskew;
1754 		pp += fromskew;
1755 	}
1756 }
1757 
1758 /*
1759  * YCbCr -> RGB conversion and packing routines.
1760  */
1761 
1762 #define	YCbCrtoRGB(dst, Y) {						\
1763 	uint32 r, g, b;							\
1764 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1765 	dst = PACK(r, g, b);						\
1766 }
1767 
1768 /*
1769  * 8-bit packed YCbCr samples => RGB
1770  * This function is generic for different sampling sizes,
1771  * and can handle blocks sizes that aren't multiples of the
1772  * sampling size.  However, it is substantially less optimized
1773  * than the specific sampling cases.  It is used as a fallback
1774  * for difficult blocks.
1775  */
1776 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,unsigned char * pp,int h_group,int v_group)1777 static void putcontig8bitYCbCrGenericTile(
1778     TIFFRGBAImage* img,
1779     uint32* cp,
1780     uint32 x, uint32 y,
1781     uint32 w, uint32 h,
1782     int32 fromskew, int32 toskew,
1783     unsigned char* pp,
1784     int h_group,
1785     int v_group )
1786 
1787 {
1788     uint32* cp1 = cp+w+toskew;
1789     uint32* cp2 = cp1+w+toskew;
1790     uint32* cp3 = cp2+w+toskew;
1791     int32 incr = 3*w+4*toskew;
1792     int32   Cb, Cr;
1793     int     group_size = v_group * h_group + 2;
1794 
1795     (void) y;
1796     fromskew = (fromskew * group_size) / h_group;
1797 
1798     for( yy = 0; yy < h; yy++ )
1799     {
1800         unsigned char *pp_line;
1801         int     y_line_group = yy / v_group;
1802         int     y_remainder = yy - y_line_group * v_group;
1803 
1804         pp_line = pp + v_line_group *
1805 
1806 
1807         for( xx = 0; xx < w; xx++ )
1808         {
1809             Cb = pp
1810         }
1811     }
1812     for (; h >= 4; h -= 4) {
1813 	x = w>>2;
1814 	do {
1815 	    Cb = pp[16];
1816 	    Cr = pp[17];
1817 
1818 	    YCbCrtoRGB(cp [0], pp[ 0]);
1819 	    YCbCrtoRGB(cp [1], pp[ 1]);
1820 	    YCbCrtoRGB(cp [2], pp[ 2]);
1821 	    YCbCrtoRGB(cp [3], pp[ 3]);
1822 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1823 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1824 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1825 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1826 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1827 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1828 	    YCbCrtoRGB(cp2[2], pp[10]);
1829 	    YCbCrtoRGB(cp2[3], pp[11]);
1830 	    YCbCrtoRGB(cp3[0], pp[12]);
1831 	    YCbCrtoRGB(cp3[1], pp[13]);
1832 	    YCbCrtoRGB(cp3[2], pp[14]);
1833 	    YCbCrtoRGB(cp3[3], pp[15]);
1834 
1835 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1836 	    pp += 18;
1837 	} while (--x);
1838 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1839 	pp += fromskew;
1840     }
1841 }
1842 #endif
1843 
1844 /*
1845  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1846  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1847 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1848 {
1849     uint32* cp1 = cp+w+toskew;
1850     uint32* cp2 = cp1+w+toskew;
1851     uint32* cp3 = cp2+w+toskew;
1852     int32 incr = 3*w+4*toskew;
1853 
1854     (void) y;
1855     /* adjust fromskew */
1856     fromskew = (fromskew * 18) / 4;
1857     if ((h & 3) == 0 && (w & 3) == 0) {
1858         for (; h >= 4; h -= 4) {
1859             x = w>>2;
1860             do {
1861                 int32 Cb = pp[16];
1862                 int32 Cr = pp[17];
1863 
1864                 YCbCrtoRGB(cp [0], pp[ 0]);
1865                 YCbCrtoRGB(cp [1], pp[ 1]);
1866                 YCbCrtoRGB(cp [2], pp[ 2]);
1867                 YCbCrtoRGB(cp [3], pp[ 3]);
1868                 YCbCrtoRGB(cp1[0], pp[ 4]);
1869                 YCbCrtoRGB(cp1[1], pp[ 5]);
1870                 YCbCrtoRGB(cp1[2], pp[ 6]);
1871                 YCbCrtoRGB(cp1[3], pp[ 7]);
1872                 YCbCrtoRGB(cp2[0], pp[ 8]);
1873                 YCbCrtoRGB(cp2[1], pp[ 9]);
1874                 YCbCrtoRGB(cp2[2], pp[10]);
1875                 YCbCrtoRGB(cp2[3], pp[11]);
1876                 YCbCrtoRGB(cp3[0], pp[12]);
1877                 YCbCrtoRGB(cp3[1], pp[13]);
1878                 YCbCrtoRGB(cp3[2], pp[14]);
1879                 YCbCrtoRGB(cp3[3], pp[15]);
1880 
1881                 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1882                 pp += 18;
1883             } while (--x);
1884             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1885             pp += fromskew;
1886         }
1887     } else {
1888         while (h > 0) {
1889             for (x = w; x > 0;) {
1890                 int32 Cb = pp[16];
1891                 int32 Cr = pp[17];
1892                 switch (x) {
1893                 default:
1894                     switch (h) {
1895                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1896                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1897                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1898                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1899                     }                                    /* FALLTHROUGH */
1900                 case 3:
1901                     switch (h) {
1902                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1903                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1904                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1905                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1906                     }                                    /* FALLTHROUGH */
1907                 case 2:
1908                     switch (h) {
1909                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1910                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1911                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1912                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1913                     }                                    /* FALLTHROUGH */
1914                 case 1:
1915                     switch (h) {
1916                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1917                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1918                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1919                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1920                     }                                    /* FALLTHROUGH */
1921                 }
1922                 if (x < 4) {
1923                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1924                     x = 0;
1925                 }
1926                 else {
1927                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1928                     x -= 4;
1929                 }
1930                 pp += 18;
1931             }
1932             if (h <= 4)
1933                 break;
1934             h -= 4;
1935             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1936             pp += fromskew;
1937         }
1938     }
1939 }
1940 
1941 /*
1942  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1943  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)1944 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1945 {
1946     uint32* cp1 = cp+w+toskew;
1947     int32 incr = 2*toskew+w;
1948 
1949     (void) y;
1950     fromskew = (fromskew * 10) / 4;
1951     if ((w & 3) == 0 && (h & 1) == 0) {
1952         for (; h >= 2; h -= 2) {
1953             x = w>>2;
1954             do {
1955                 int32 Cb = pp[8];
1956                 int32 Cr = pp[9];
1957 
1958                 YCbCrtoRGB(cp [0], pp[0]);
1959                 YCbCrtoRGB(cp [1], pp[1]);
1960                 YCbCrtoRGB(cp [2], pp[2]);
1961                 YCbCrtoRGB(cp [3], pp[3]);
1962                 YCbCrtoRGB(cp1[0], pp[4]);
1963                 YCbCrtoRGB(cp1[1], pp[5]);
1964                 YCbCrtoRGB(cp1[2], pp[6]);
1965                 YCbCrtoRGB(cp1[3], pp[7]);
1966 
1967                 cp += 4, cp1 += 4;
1968                 pp += 10;
1969             } while (--x);
1970             cp += incr, cp1 += incr;
1971             pp += fromskew;
1972         }
1973     } else {
1974         while (h > 0) {
1975             for (x = w; x > 0;) {
1976                 int32 Cb = pp[8];
1977                 int32 Cr = pp[9];
1978                 switch (x) {
1979                 default:
1980                     switch (h) {
1981                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1982                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1983                     }                                    /* FALLTHROUGH */
1984                 case 3:
1985                     switch (h) {
1986                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1987                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1988                     }                                    /* FALLTHROUGH */
1989                 case 2:
1990                     switch (h) {
1991                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1992                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1993                     }                                    /* FALLTHROUGH */
1994                 case 1:
1995                     switch (h) {
1996                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1997                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1998                     }                                    /* FALLTHROUGH */
1999                 }
2000                 if (x < 4) {
2001                     cp += x; cp1 += x;
2002                     x = 0;
2003                 }
2004                 else {
2005                     cp += 4; cp1 += 4;
2006                     x -= 4;
2007                 }
2008                 pp += 10;
2009             }
2010             if (h <= 2)
2011                 break;
2012             h -= 2;
2013             cp += incr, cp1 += incr;
2014             pp += fromskew;
2015         }
2016     }
2017 }
2018 
2019 /*
2020  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2021  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)2022 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2023 {
2024     (void) y;
2025     /* XXX adjust fromskew */
2026     do {
2027 	x = w>>2;
2028 	while(x>0) {
2029 	    int32 Cb = pp[4];
2030 	    int32 Cr = pp[5];
2031 
2032 	    YCbCrtoRGB(cp [0], pp[0]);
2033 	    YCbCrtoRGB(cp [1], pp[1]);
2034 	    YCbCrtoRGB(cp [2], pp[2]);
2035 	    YCbCrtoRGB(cp [3], pp[3]);
2036 
2037 	    cp += 4;
2038 	    pp += 6;
2039 		x--;
2040 	}
2041 
2042         if( (w&3) != 0 )
2043         {
2044 	    int32 Cb = pp[4];
2045 	    int32 Cr = pp[5];
2046 
2047             switch( (w&3) ) {
2048               case 3: YCbCrtoRGB(cp [2], pp[2]);
2049               case 2: YCbCrtoRGB(cp [1], pp[1]);
2050               case 1: YCbCrtoRGB(cp [0], pp[0]);
2051               case 0: break;
2052             }
2053 
2054             cp += (w&3);
2055             pp += 6;
2056         }
2057 
2058 	cp += toskew;
2059 	pp += fromskew;
2060     } while (--h);
2061 
2062 }
2063 
2064 /*
2065  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2066  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)2067 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2068 {
2069 	uint32* cp2;
2070 	int32 incr = 2*toskew+w;
2071 	(void) y;
2072 	fromskew = (fromskew / 2) * 6;
2073 	cp2 = cp+w+toskew;
2074 	while (h>=2) {
2075 		x = w;
2076 		while (x>=2) {
2077 			uint32 Cb = pp[4];
2078 			uint32 Cr = pp[5];
2079 			YCbCrtoRGB(cp[0], pp[0]);
2080 			YCbCrtoRGB(cp[1], pp[1]);
2081 			YCbCrtoRGB(cp2[0], pp[2]);
2082 			YCbCrtoRGB(cp2[1], pp[3]);
2083 			cp += 2;
2084 			cp2 += 2;
2085 			pp += 6;
2086 			x -= 2;
2087 		}
2088 		if (x==1) {
2089 			uint32 Cb = pp[4];
2090 			uint32 Cr = pp[5];
2091 			YCbCrtoRGB(cp[0], pp[0]);
2092 			YCbCrtoRGB(cp2[0], pp[2]);
2093 			cp ++ ;
2094 			cp2 ++ ;
2095 			pp += 6;
2096 		}
2097 		cp += incr;
2098 		cp2 += incr;
2099 		pp += fromskew;
2100 		h-=2;
2101 	}
2102 	if (h==1) {
2103 		x = w;
2104 		while (x>=2) {
2105 			uint32 Cb = pp[4];
2106 			uint32 Cr = pp[5];
2107 			YCbCrtoRGB(cp[0], pp[0]);
2108 			YCbCrtoRGB(cp[1], pp[1]);
2109 			cp += 2;
2110 			cp2 += 2;
2111 			pp += 6;
2112 			x -= 2;
2113 		}
2114 		if (x==1) {
2115 			uint32 Cb = pp[4];
2116 			uint32 Cr = pp[5];
2117 			YCbCrtoRGB(cp[0], pp[0]);
2118 		}
2119 	}
2120 }
2121 
2122 /*
2123  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2124  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)2125 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2126 {
2127 	(void) y;
2128 	fromskew = (fromskew * 4) / 2;
2129 	do {
2130 		x = w>>1;
2131 		while(x>0) {
2132 			int32 Cb = pp[2];
2133 			int32 Cr = pp[3];
2134 
2135 			YCbCrtoRGB(cp[0], pp[0]);
2136 			YCbCrtoRGB(cp[1], pp[1]);
2137 
2138 			cp += 2;
2139 			pp += 4;
2140 			x --;
2141 		}
2142 
2143 		if( (w&1) != 0 )
2144 		{
2145 			int32 Cb = pp[2];
2146 			int32 Cr = pp[3];
2147 
2148 			YCbCrtoRGB(cp[0], pp[0]);
2149 
2150 			cp += 1;
2151 			pp += 4;
2152 		}
2153 
2154 		cp += toskew;
2155 		pp += fromskew;
2156 	} while (--h);
2157 }
2158 
2159 /*
2160  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2161  */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)2162 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2163 {
2164 	uint32* cp2;
2165 	int32 incr = 2*toskew+w;
2166 	(void) y;
2167 	fromskew = (fromskew / 2) * 4;
2168 	cp2 = cp+w+toskew;
2169 	while (h>=2) {
2170 		x = w;
2171 		do {
2172 			uint32 Cb = pp[2];
2173 			uint32 Cr = pp[3];
2174 			YCbCrtoRGB(cp[0], pp[0]);
2175 			YCbCrtoRGB(cp2[0], pp[1]);
2176 			cp ++;
2177 			cp2 ++;
2178 			pp += 4;
2179 		} while (--x);
2180 		cp += incr;
2181 		cp2 += incr;
2182 		pp += fromskew;
2183 		h-=2;
2184 	}
2185 	if (h==1) {
2186 		x = w;
2187 		do {
2188 			uint32 Cb = pp[2];
2189 			uint32 Cr = pp[3];
2190 			YCbCrtoRGB(cp[0], pp[0]);
2191 			cp ++;
2192 			pp += 4;
2193 		} while (--x);
2194 	}
2195 }
2196 
2197 /*
2198  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2199  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)2200 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2201 {
2202 	(void) y;
2203 	fromskew *= 3;
2204 	do {
2205 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2206 		do {
2207 			int32 Cb = pp[1];
2208 			int32 Cr = pp[2];
2209 
2210 			YCbCrtoRGB(*cp++, pp[0]);
2211 
2212 			pp += 3;
2213 		} while (--x);
2214 		cp += toskew;
2215 		pp += fromskew;
2216 	} while (--h);
2217 }
2218 
2219 /*
2220  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2221  */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)2222 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2223 {
2224 	(void) y;
2225 	(void) a;
2226 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2227 	while (h-- > 0) {
2228 		x = w;
2229 		do {
2230 			uint32 dr, dg, db;
2231 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2232 			*cp++ = PACK(dr,dg,db);
2233 		} while (--x);
2234 		SKEW(r, g, b, fromskew);
2235 		cp += toskew;
2236 	}
2237 }
2238 #undef YCbCrtoRGB
2239 
2240 static int
initYCbCrConversion(TIFFRGBAImage * img)2241 initYCbCrConversion(TIFFRGBAImage* img)
2242 {
2243 	static const char module[] = "initYCbCrConversion";
2244 
2245 	float *luma, *refBlackWhite;
2246 
2247 	if (img->ycbcr == NULL) {
2248 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2249 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2250 		    + 4*256*sizeof (TIFFRGBValue)
2251 		    + 2*256*sizeof (int)
2252 		    + 3*256*sizeof (int32)
2253 		    );
2254 		if (img->ycbcr == NULL) {
2255 			TIFFErrorExt(img->tif->tif_clientdata, module,
2256 			    "No space for YCbCr->RGB conversion state");
2257 			return (0);
2258 		}
2259 	}
2260 
2261 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2262 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2263 	    &refBlackWhite);
2264 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2265 		return(0);
2266 	return (1);
2267 }
2268 
2269 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2270 initCIELabConversion(TIFFRGBAImage* img)
2271 {
2272 	static const char module[] = "initCIELabConversion";
2273 
2274 	float   *whitePoint;
2275 	float   refWhite[3];
2276 
2277 	if (!img->cielab) {
2278 		img->cielab = (TIFFCIELabToRGB *)
2279 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2280 		if (!img->cielab) {
2281 			TIFFErrorExt(img->tif->tif_clientdata, module,
2282 			    "No space for CIE L*a*b*->RGB conversion state.");
2283 			return NULL;
2284 		}
2285 	}
2286 
2287 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2288 	refWhite[1] = 100.0F;
2289 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2290 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2291 		      / whitePoint[1] * refWhite[1];
2292 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2293 		TIFFErrorExt(img->tif->tif_clientdata, module,
2294 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2295 		_TIFFfree(img->cielab);
2296 		return NULL;
2297 	}
2298 
2299 	return putcontig8bitCIELab;
2300 }
2301 
2302 /*
2303  * Greyscale images with less than 8 bits/sample are handled
2304  * with a table to avoid lots of shifts and masks.  The table
2305  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2306  * pixel values simply by indexing into the table with one
2307  * number.
2308  */
2309 static int
makebwmap(TIFFRGBAImage * img)2310 makebwmap(TIFFRGBAImage* img)
2311 {
2312     TIFFRGBValue* Map = img->Map;
2313     int bitspersample = img->bitspersample;
2314     int nsamples = 8 / bitspersample;
2315     int i;
2316     uint32* p;
2317 
2318     if( nsamples == 0 )
2319         nsamples = 1;
2320 
2321     img->BWmap = (uint32**) _TIFFmalloc(
2322 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2323     if (img->BWmap == NULL) {
2324 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2325 		return (0);
2326     }
2327     p = (uint32*)(img->BWmap + 256);
2328     for (i = 0; i < 256; i++) {
2329 	TIFFRGBValue c;
2330 	img->BWmap[i] = p;
2331 	switch (bitspersample) {
2332 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2333 	case 1:
2334 	    GREY(i>>7);
2335 	    GREY((i>>6)&1);
2336 	    GREY((i>>5)&1);
2337 	    GREY((i>>4)&1);
2338 	    GREY((i>>3)&1);
2339 	    GREY((i>>2)&1);
2340 	    GREY((i>>1)&1);
2341 	    GREY(i&1);
2342 	    break;
2343 	case 2:
2344 	    GREY(i>>6);
2345 	    GREY((i>>4)&3);
2346 	    GREY((i>>2)&3);
2347 	    GREY(i&3);
2348 	    break;
2349 	case 4:
2350 	    GREY(i>>4);
2351 	    GREY(i&0xf);
2352 	    break;
2353 	case 8:
2354         case 16:
2355 	    GREY(i);
2356 	    break;
2357 	}
2358 #undef	GREY
2359     }
2360     return (1);
2361 }
2362 
2363 /*
2364  * Construct a mapping table to convert from the range
2365  * of the data samples to [0,255] --for display.  This
2366  * process also handles inverting B&W images when needed.
2367  */
2368 static int
setupMap(TIFFRGBAImage * img)2369 setupMap(TIFFRGBAImage* img)
2370 {
2371     int32 x, range;
2372 
2373     range = (int32)((1L<<img->bitspersample)-1);
2374 
2375     /* treat 16 bit the same as eight bit */
2376     if( img->bitspersample == 16 )
2377         range = (int32) 255;
2378 
2379     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2380     if (img->Map == NULL) {
2381 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2382 			"No space for photometric conversion table");
2383 		return (0);
2384     }
2385     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2386 	for (x = 0; x <= range; x++)
2387 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2388     } else {
2389 	for (x = 0; x <= range; x++)
2390 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2391     }
2392     if (img->bitspersample <= 16 &&
2393 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2394 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2395 	/*
2396 	 * Use photometric mapping table to construct
2397 	 * unpacking tables for samples <= 8 bits.
2398 	 */
2399 	if (!makebwmap(img))
2400 	    return (0);
2401 	/* no longer need Map, free it */
2402 	_TIFFfree(img->Map), img->Map = NULL;
2403     }
2404     return (1);
2405 }
2406 
2407 static int
checkcmap(TIFFRGBAImage * img)2408 checkcmap(TIFFRGBAImage* img)
2409 {
2410     uint16* r = img->redcmap;
2411     uint16* g = img->greencmap;
2412     uint16* b = img->bluecmap;
2413     long n = 1L<<img->bitspersample;
2414 
2415     while (n-- > 0)
2416 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2417 	    return (16);
2418     return (8);
2419 }
2420 
2421 static void
cvtcmap(TIFFRGBAImage * img)2422 cvtcmap(TIFFRGBAImage* img)
2423 {
2424     uint16* r = img->redcmap;
2425     uint16* g = img->greencmap;
2426     uint16* b = img->bluecmap;
2427     long i;
2428 
2429     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2430 #define	CVT(x)		((uint16)((x)>>8))
2431 	r[i] = CVT(r[i]);
2432 	g[i] = CVT(g[i]);
2433 	b[i] = CVT(b[i]);
2434 #undef	CVT
2435     }
2436 }
2437 
2438 /*
2439  * Palette images with <= 8 bits/sample are handled
2440  * with a table to avoid lots of shifts and masks.  The table
2441  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2442  * pixel values simply by indexing into the table with one
2443  * number.
2444  */
2445 static int
makecmap(TIFFRGBAImage * img)2446 makecmap(TIFFRGBAImage* img)
2447 {
2448     int bitspersample = img->bitspersample;
2449     int nsamples = 8 / bitspersample;
2450     uint16* r = img->redcmap;
2451     uint16* g = img->greencmap;
2452     uint16* b = img->bluecmap;
2453     uint32 *p;
2454     int i;
2455 
2456     img->PALmap = (uint32**) _TIFFmalloc(
2457 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2458     if (img->PALmap == NULL) {
2459 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2460 		return (0);
2461 	}
2462     p = (uint32*)(img->PALmap + 256);
2463     for (i = 0; i < 256; i++) {
2464 	TIFFRGBValue c;
2465 	img->PALmap[i] = p;
2466 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2467 	switch (bitspersample) {
2468 	case 1:
2469 	    CMAP(i>>7);
2470 	    CMAP((i>>6)&1);
2471 	    CMAP((i>>5)&1);
2472 	    CMAP((i>>4)&1);
2473 	    CMAP((i>>3)&1);
2474 	    CMAP((i>>2)&1);
2475 	    CMAP((i>>1)&1);
2476 	    CMAP(i&1);
2477 	    break;
2478 	case 2:
2479 	    CMAP(i>>6);
2480 	    CMAP((i>>4)&3);
2481 	    CMAP((i>>2)&3);
2482 	    CMAP(i&3);
2483 	    break;
2484 	case 4:
2485 	    CMAP(i>>4);
2486 	    CMAP(i&0xf);
2487 	    break;
2488 	case 8:
2489 	    CMAP(i);
2490 	    break;
2491 	}
2492 #undef CMAP
2493     }
2494     return (1);
2495 }
2496 
2497 /*
2498  * Construct any mapping table used
2499  * by the associated put routine.
2500  */
2501 static int
buildMap(TIFFRGBAImage * img)2502 buildMap(TIFFRGBAImage* img)
2503 {
2504     switch (img->photometric) {
2505     case PHOTOMETRIC_RGB:
2506     case PHOTOMETRIC_YCBCR:
2507     case PHOTOMETRIC_SEPARATED:
2508 	if (img->bitspersample == 8)
2509 	    break;
2510 	/* fall thru... */
2511     case PHOTOMETRIC_MINISBLACK:
2512     case PHOTOMETRIC_MINISWHITE:
2513 	if (!setupMap(img))
2514 	    return (0);
2515 	break;
2516     case PHOTOMETRIC_PALETTE:
2517 	/*
2518 	 * Convert 16-bit colormap to 8-bit (unless it looks
2519 	 * like an old-style 8-bit colormap).
2520 	 */
2521 	if (checkcmap(img) == 16)
2522 	    cvtcmap(img);
2523 	else
2524 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2525 	/*
2526 	 * Use mapping table and colormap to construct
2527 	 * unpacking tables for samples < 8 bits.
2528 	 */
2529 	if (img->bitspersample <= 8 && !makecmap(img))
2530 	    return (0);
2531 	break;
2532     }
2533     return (1);
2534 }
2535 
2536 /*
2537  * Select the appropriate conversion routine for packed data.
2538  */
2539 static int
PickContigCase(TIFFRGBAImage * img)2540 PickContigCase(TIFFRGBAImage* img)
2541 {
2542 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2543 	img->put.contig = NULL;
2544 	switch (img->photometric) {
2545 		case PHOTOMETRIC_RGB:
2546 			switch (img->bitspersample) {
2547 				case 8:
2548 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2549 						img->samplesperpixel >= 4)
2550 						img->put.contig = putRGBAAcontig8bittile;
2551 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2552 							 img->samplesperpixel >= 4)
2553 					{
2554 						if (BuildMapUaToAa(img))
2555 							img->put.contig = putRGBUAcontig8bittile;
2556 					}
2557 					else if( img->samplesperpixel >= 3 )
2558 						img->put.contig = putRGBcontig8bittile;
2559 					break;
2560 				case 16:
2561 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2562 						img->samplesperpixel >=4 )
2563 					{
2564 						if (BuildMapBitdepth16To8(img))
2565 							img->put.contig = putRGBAAcontig16bittile;
2566 					}
2567 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2568 							 img->samplesperpixel >=4 )
2569 					{
2570 						if (BuildMapBitdepth16To8(img) &&
2571 						    BuildMapUaToAa(img))
2572 							img->put.contig = putRGBUAcontig16bittile;
2573 					}
2574 					else if( img->samplesperpixel >=3 )
2575 					{
2576 						if (BuildMapBitdepth16To8(img))
2577 							img->put.contig = putRGBcontig16bittile;
2578 					}
2579 					break;
2580 			}
2581 			break;
2582 		case PHOTOMETRIC_SEPARATED:
2583 			if (img->samplesperpixel >=4 && buildMap(img)) {
2584 				if (img->bitspersample == 8) {
2585 					if (!img->Map)
2586 						img->put.contig = putRGBcontig8bitCMYKtile;
2587 					else
2588 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2589 				}
2590 			}
2591 			break;
2592 		case PHOTOMETRIC_PALETTE:
2593 			if (buildMap(img)) {
2594 				switch (img->bitspersample) {
2595 					case 8:
2596 						img->put.contig = put8bitcmaptile;
2597 						break;
2598 					case 4:
2599 						img->put.contig = put4bitcmaptile;
2600 						break;
2601 					case 2:
2602 						img->put.contig = put2bitcmaptile;
2603 						break;
2604 					case 1:
2605 						img->put.contig = put1bitcmaptile;
2606 						break;
2607 				}
2608 			}
2609 			break;
2610 		case PHOTOMETRIC_MINISWHITE:
2611 		case PHOTOMETRIC_MINISBLACK:
2612 			if (buildMap(img)) {
2613 				switch (img->bitspersample) {
2614 					case 16:
2615 						img->put.contig = put16bitbwtile;
2616 						break;
2617 					case 8:
2618 						if (img->alpha && img->samplesperpixel == 2)
2619 							img->put.contig = putagreytile;
2620 						else
2621 							img->put.contig = putgreytile;
2622 						break;
2623 					case 4:
2624 						img->put.contig = put4bitbwtile;
2625 						break;
2626 					case 2:
2627 						img->put.contig = put2bitbwtile;
2628 						break;
2629 					case 1:
2630 						img->put.contig = put1bitbwtile;
2631 						break;
2632 				}
2633 			}
2634 			break;
2635 		case PHOTOMETRIC_YCBCR:
2636 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2637 			{
2638 				if (initYCbCrConversion(img)!=0)
2639 				{
2640 					/*
2641 					 * The 6.0 spec says that subsampling must be
2642 					 * one of 1, 2, or 4, and that vertical subsampling
2643 					 * must always be <= horizontal subsampling; so
2644 					 * there are only a few possibilities and we just
2645 					 * enumerate the cases.
2646 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2647 					 * some OJPEG files
2648 					 */
2649 					uint16 SubsamplingHor;
2650 					uint16 SubsamplingVer;
2651 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2652 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2653 						case 0x44:
2654 							img->put.contig = putcontig8bitYCbCr44tile;
2655 							break;
2656 						case 0x42:
2657 							img->put.contig = putcontig8bitYCbCr42tile;
2658 							break;
2659 						case 0x41:
2660 							img->put.contig = putcontig8bitYCbCr41tile;
2661 							break;
2662 						case 0x22:
2663 							img->put.contig = putcontig8bitYCbCr22tile;
2664 							break;
2665 						case 0x21:
2666 							img->put.contig = putcontig8bitYCbCr21tile;
2667 							break;
2668 						case 0x12:
2669 							img->put.contig = putcontig8bitYCbCr12tile;
2670 							break;
2671 						case 0x11:
2672 							img->put.contig = putcontig8bitYCbCr11tile;
2673 							break;
2674 					}
2675 				}
2676 			}
2677 			break;
2678 		case PHOTOMETRIC_CIELAB:
2679 			if (img->samplesperpixel == 3 && buildMap(img)) {
2680 				if (img->bitspersample == 8)
2681 					img->put.contig = initCIELabConversion(img);
2682 				break;
2683 			}
2684 	}
2685 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2686 }
2687 
2688 /*
2689  * Select the appropriate conversion routine for unpacked data.
2690  *
2691  * NB: we assume that unpacked single channel data is directed
2692  *	 to the "packed routines.
2693  */
2694 static int
PickSeparateCase(TIFFRGBAImage * img)2695 PickSeparateCase(TIFFRGBAImage* img)
2696 {
2697 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2698 	img->put.separate = NULL;
2699 	switch (img->photometric) {
2700 	case PHOTOMETRIC_MINISWHITE:
2701 	case PHOTOMETRIC_MINISBLACK:
2702 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2703 	case PHOTOMETRIC_RGB:
2704 		switch (img->bitspersample) {
2705 		case 8:
2706 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2707 				img->put.separate = putRGBAAseparate8bittile;
2708 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2709 			{
2710 				if (BuildMapUaToAa(img))
2711 					img->put.separate = putRGBUAseparate8bittile;
2712 			}
2713 			else
2714 				img->put.separate = putRGBseparate8bittile;
2715 			break;
2716 		case 16:
2717 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2718 			{
2719 				if (BuildMapBitdepth16To8(img))
2720 					img->put.separate = putRGBAAseparate16bittile;
2721 			}
2722 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2723 			{
2724 				if (BuildMapBitdepth16To8(img) &&
2725 				    BuildMapUaToAa(img))
2726 					img->put.separate = putRGBUAseparate16bittile;
2727 			}
2728 			else
2729 			{
2730 				if (BuildMapBitdepth16To8(img))
2731 					img->put.separate = putRGBseparate16bittile;
2732 			}
2733 			break;
2734 		}
2735 		break;
2736 	case PHOTOMETRIC_SEPARATED:
2737 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2738 		{
2739 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2740 			img->put.separate = putCMYKseparate8bittile;
2741 		}
2742 		break;
2743 	case PHOTOMETRIC_YCBCR:
2744 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2745 		{
2746 			if (initYCbCrConversion(img)!=0)
2747 			{
2748 				uint16 hs, vs;
2749 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2750 				switch ((hs<<4)|vs) {
2751 				case 0x11:
2752 					img->put.separate = putseparate8bitYCbCr11tile;
2753 					break;
2754 					/* TODO: add other cases here */
2755 				}
2756 			}
2757 		}
2758 		break;
2759 	}
2760 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2761 }
2762 
2763 static int
BuildMapUaToAa(TIFFRGBAImage * img)2764 BuildMapUaToAa(TIFFRGBAImage* img)
2765 {
2766 	static const char module[]="BuildMapUaToAa";
2767 	uint8* m;
2768 	uint16 na,nv;
2769 	assert(img->UaToAa==NULL);
2770 	img->UaToAa=_TIFFmalloc(65536);
2771 	if (img->UaToAa==NULL)
2772 	{
2773 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2774 		return(0);
2775 	}
2776 	m=img->UaToAa;
2777 	for (na=0; na<256; na++)
2778 	{
2779 		for (nv=0; nv<256; nv++)
2780 			*m++=(nv*na+127)/255;
2781 	}
2782 	return(1);
2783 }
2784 
2785 static int
BuildMapBitdepth16To8(TIFFRGBAImage * img)2786 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2787 {
2788 	static const char module[]="BuildMapBitdepth16To8";
2789 	uint8* m;
2790 	uint32 n;
2791 	assert(img->Bitdepth16To8==NULL);
2792 	img->Bitdepth16To8=_TIFFmalloc(65536);
2793 	if (img->Bitdepth16To8==NULL)
2794 	{
2795 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2796 		return(0);
2797 	}
2798 	m=img->Bitdepth16To8;
2799 	for (n=0; n<65536; n++)
2800 		*m++=(n+128)/257;
2801 	return(1);
2802 }
2803 
2804 
2805 /*
2806  * Read a whole strip off data from the file, and convert to RGBA form.
2807  * If this is the last strip, then it will only contain the portion of
2808  * the strip that is actually within the image space.  The result is
2809  * organized in bottom to top form.
2810  */
2811 
2812 
2813 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2814 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2815 
2816 {
2817     char 	emsg[1024] = "";
2818     TIFFRGBAImage img;
2819     int 	ok;
2820     uint32	rowsperstrip, rows_to_read;
2821 
2822     if( TIFFIsTiled( tif ) )
2823     {
2824 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2825                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2826 	return (0);
2827     }
2828 
2829     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2830     if( (row % rowsperstrip) != 0 )
2831     {
2832 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2833 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2834 		return (0);
2835     }
2836 
2837     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2838 
2839         img.row_offset = row;
2840         img.col_offset = 0;
2841 
2842         if( row + rowsperstrip > img.height )
2843             rows_to_read = img.height - row;
2844         else
2845             rows_to_read = rowsperstrip;
2846 
2847 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2848 
2849 	TIFFRGBAImageEnd(&img);
2850     } else {
2851 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2852 		ok = 0;
2853     }
2854 
2855     return (ok);
2856 }
2857 
2858 /*
2859  * Read a whole tile off data from the file, and convert to RGBA form.
2860  * The returned RGBA data is organized from bottom to top of tile,
2861  * and may include zeroed areas if the tile extends off the image.
2862  */
2863 
2864 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2865 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2866 
2867 {
2868     char 	emsg[1024] = "";
2869     TIFFRGBAImage img;
2870     int 	ok;
2871     uint32	tile_xsize, tile_ysize;
2872     uint32	read_xsize, read_ysize;
2873     uint32	i_row;
2874 
2875     /*
2876      * Verify that our request is legal - on a tile file, and on a
2877      * tile boundary.
2878      */
2879 
2880     if( !TIFFIsTiled( tif ) )
2881     {
2882 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2883 				  "Can't use TIFFReadRGBATile() with stripped file.");
2884 		return (0);
2885     }
2886 
2887     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2888     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2889     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2890     {
2891 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2892                   "Row/col passed to TIFFReadRGBATile() must be top"
2893                   "left corner of a tile.");
2894 	return (0);
2895     }
2896 
2897     /*
2898      * Setup the RGBA reader.
2899      */
2900 
2901     if (!TIFFRGBAImageOK(tif, emsg)
2902 	|| !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2903 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2904 	    return( 0 );
2905     }
2906 
2907     /*
2908      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2909      * edge of the image, even to fill an otherwise valid tile.  So we
2910      * figure out how much we can read, and fix up the tile buffer to
2911      * a full tile configuration afterwards.
2912      */
2913 
2914     if( row + tile_ysize > img.height )
2915         read_ysize = img.height - row;
2916     else
2917         read_ysize = tile_ysize;
2918 
2919     if( col + tile_xsize > img.width )
2920         read_xsize = img.width - col;
2921     else
2922         read_xsize = tile_xsize;
2923 
2924     /*
2925      * Read the chunk of imagery.
2926      */
2927 
2928     img.row_offset = row;
2929     img.col_offset = col;
2930 
2931     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
2932 
2933     TIFFRGBAImageEnd(&img);
2934 
2935     /*
2936      * If our read was incomplete we will need to fix up the tile by
2937      * shifting the data around as if a full tile of data is being returned.
2938      *
2939      * This is all the more complicated because the image is organized in
2940      * bottom to top format.
2941      */
2942 
2943     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
2944         return( ok );
2945 
2946     for( i_row = 0; i_row < read_ysize; i_row++ ) {
2947         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
2948                  raster + (read_ysize - i_row - 1) * read_xsize,
2949                  read_xsize * sizeof(uint32) );
2950         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
2951                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
2952     }
2953 
2954     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
2955         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
2956                      0, sizeof(uint32) * tile_xsize );
2957     }
2958 
2959     return (ok);
2960 }
2961 
2962 /* vim: set ts=8 sts=8 sw=8 noet: */
2963 /*
2964  * Local Variables:
2965  * mode: c
2966  * c-basic-offset: 8
2967  * fill-column: 78
2968  * End:
2969  */
2970