1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkScalar_DEFINED
9 #define SkScalar_DEFINED
10 
11 #include "../private/SkFloatingPoint.h"
12 
13 #undef SK_SCALAR_IS_FLOAT
14 #define SK_SCALAR_IS_FLOAT  1
15 
16 typedef float SkScalar;
17 
18 #define SK_Scalar1                  1.0f
19 #define SK_ScalarHalf               0.5f
20 #define SK_ScalarSqrt2              1.41421356f
21 #define SK_ScalarPI                 3.14159265f
22 #define SK_ScalarTanPIOver8         0.414213562f
23 #define SK_ScalarRoot2Over2         0.707106781f
24 #define SK_ScalarMax                3.402823466e+38f
25 #define SK_ScalarInfinity           SK_FloatInfinity
26 #define SK_ScalarNegativeInfinity   SK_FloatNegativeInfinity
27 #define SK_ScalarNaN                SK_FloatNaN
28 
29 #define SkScalarFloorToScalar(x)    sk_float_floor(x)
30 #define SkScalarCeilToScalar(x)     sk_float_ceil(x)
31 #define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)
32 #define SkScalarTruncToScalar(x)    sk_float_trunc(x)
33 
34 #define SkScalarFloorToInt(x)       sk_float_floor2int(x)
35 #define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
36 #define SkScalarRoundToInt(x)       sk_float_round2int(x)
37 
38 #define SkScalarAbs(x)              sk_float_abs(x)
39 #define SkScalarCopySign(x, y)      sk_float_copysign(x, y)
40 #define SkScalarMod(x, y)           sk_float_mod(x,y)
41 #define SkScalarSqrt(x)             sk_float_sqrt(x)
42 #define SkScalarPow(b, e)           sk_float_pow(b, e)
43 
44 #define SkScalarSin(radians)        (float)sk_float_sin(radians)
45 #define SkScalarCos(radians)        (float)sk_float_cos(radians)
46 #define SkScalarTan(radians)        (float)sk_float_tan(radians)
47 #define SkScalarASin(val)           (float)sk_float_asin(val)
48 #define SkScalarACos(val)           (float)sk_float_acos(val)
49 #define SkScalarATan2(y, x)         (float)sk_float_atan2(y,x)
50 #define SkScalarExp(x)              (float)sk_float_exp(x)
51 #define SkScalarLog(x)              (float)sk_float_log(x)
52 #define SkScalarLog2(x)             (float)sk_float_log2(x)
53 
54 //////////////////////////////////////////////////////////////////////////////////////////////////
55 
56 #define SkIntToScalar(x)        static_cast<SkScalar>(x)
57 #define SkIntToFloat(x)         static_cast<float>(x)
58 #define SkScalarTruncToInt(x)   static_cast<int>(x)
59 
60 #define SkScalarToFloat(x)      static_cast<float>(x)
61 #define SkFloatToScalar(x)      static_cast<SkScalar>(x)
62 #define SkScalarToDouble(x)     static_cast<double>(x)
63 #define SkDoubleToScalar(x)     static_cast<SkScalar>(x)
64 
65 #define SK_ScalarMin            (-SK_ScalarMax)
66 
SkScalarIsNaN(SkScalar x)67 static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
68 
69 /** Returns true if x is not NaN and not infinite
70  */
SkScalarIsFinite(SkScalar x)71 static inline bool SkScalarIsFinite(SkScalar x) {
72     // We rely on the following behavior of infinities and nans
73     // 0 * finite --> 0
74     // 0 * infinity --> NaN
75     // 0 * NaN --> NaN
76     SkScalar prod = x * 0;
77     // At this point, prod will either be NaN or 0
78     return !SkScalarIsNaN(prod);
79 }
80 
SkScalarsAreFinite(SkScalar a,SkScalar b)81 static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) {
82     SkScalar prod = 0;
83     prod *= a;
84     prod *= b;
85     // At this point, prod will either be NaN or 0
86     return !SkScalarIsNaN(prod);
87 }
88 
SkScalarsAreFinite(const SkScalar array[],int count)89 static inline bool SkScalarsAreFinite(const SkScalar array[], int count) {
90     SkScalar prod = 0;
91     for (int i = 0; i < count; ++i) {
92         prod *= array[i];
93     }
94     // At this point, prod will either be NaN or 0
95     return !SkScalarIsNaN(prod);
96 }
97 
98 /**
99  *  Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
100  *  double, to avoid possibly losing the low bit(s) of the answer before calling floor().
101  *
102  *  This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
103  *  extra precision is known to be valuable.
104  *
105  *  In particular, this catches the following case:
106  *      SkScalar x = 0.49999997;
107  *      int ix = SkScalarRoundToInt(x);
108  *      SkASSERT(0 == ix);    // <--- fails
109  *      ix = SkDScalarRoundToInt(x);
110  *      SkASSERT(0 == ix);    // <--- succeeds
111  */
SkDScalarRoundToInt(SkScalar x)112 static inline int SkDScalarRoundToInt(SkScalar x) {
113     double xx = x;
114     xx += 0.5;
115     return (int)floor(xx);
116 }
117 
118 /** Returns the fractional part of the scalar. */
SkScalarFraction(SkScalar x)119 static inline SkScalar SkScalarFraction(SkScalar x) {
120     return x - SkScalarTruncToScalar(x);
121 }
122 
SkScalarClampMax(SkScalar x,SkScalar max)123 static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
124     x = SkTMin(x, max);
125     x = SkTMax<SkScalar>(x, 0);
126     return x;
127 }
128 
SkScalarPin(SkScalar x,SkScalar min,SkScalar max)129 static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
130     return SkTPin(x, min, max);
131 }
132 
133 SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
134 
SkScalarSquare(SkScalar x)135 static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
136 
137 #define SkScalarInvert(x)       (SK_Scalar1 / (x))
138 #define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
139 #define SkScalarAve(a, b)       (((a) + (b)) * SK_ScalarHalf)
140 #define SkScalarHalf(a)         ((a) * SK_ScalarHalf)
141 
142 #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
143 #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
144 
SkMaxScalar(SkScalar a,SkScalar b)145 static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
SkMinScalar(SkScalar a,SkScalar b)146 static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
147 
SkScalarIsInt(SkScalar x)148 static inline bool SkScalarIsInt(SkScalar x) {
149     return x == (SkScalar)(int)x;
150 }
151 
152 /**
153  *  Returns -1 || 0 || 1 depending on the sign of value:
154  *  -1 if x < 0
155  *   0 if x == 0
156  *   1 if x > 0
157  */
SkScalarSignAsInt(SkScalar x)158 static inline int SkScalarSignAsInt(SkScalar x) {
159     return x < 0 ? -1 : (x > 0);
160 }
161 
162 // Scalar result version of above
SkScalarSignAsScalar(SkScalar x)163 static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
164     return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
165 }
166 
167 #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))
168 
169 static inline bool SkScalarNearlyZero(SkScalar x,
170                                       SkScalar tolerance = SK_ScalarNearlyZero) {
171     SkASSERT(tolerance >= 0);
172     return SkScalarAbs(x) <= tolerance;
173 }
174 
175 static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
176                                        SkScalar tolerance = SK_ScalarNearlyZero) {
177     SkASSERT(tolerance >= 0);
178     return SkScalarAbs(x-y) <= tolerance;
179 }
180 
181 /** Linearly interpolate between A and B, based on t.
182     If t is 0, return A
183     If t is 1, return B
184     else interpolate.
185     t must be [0..SK_Scalar1]
186 */
SkScalarInterp(SkScalar A,SkScalar B,SkScalar t)187 static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
188     SkASSERT(t >= 0 && t <= SK_Scalar1);
189     return A + (B - A) * t;
190 }
191 
192 /** Interpolate along the function described by (keys[length], values[length])
193     for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
194     clamp to the min or max value.  This function was inspired by a desire
195     to change the multiplier for thickness in fakeBold; therefore it assumes
196     the number of pairs (length) will be small, and a linear search is used.
197     Repeated keys are allowed for discontinuous functions (so long as keys is
198     monotonically increasing), and if key is the value of a repeated scalar in
199     keys, the first one will be used.  However, that may change if a binary
200     search is used.
201 */
202 SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
203                             const SkScalar values[], int length);
204 
205 /*
206  *  Helper to compare an array of scalars.
207  */
SkScalarsEqual(const SkScalar a[],const SkScalar b[],int n)208 static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
209     SkASSERT(n >= 0);
210     for (int i = 0; i < n; ++i) {
211         if (a[i] != b[i]) {
212             return false;
213         }
214     }
215     return true;
216 }
217 
218 #ifdef SK_SUPPORT_LEGACY_SCALARMUL
219     #define SkScalarMul(a, b)       ((SkScalar)(a) * (b))
220     #define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c))
221     #define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c))
222 #endif
223 
224 #endif
225