1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_OPERATOR_H_
6 #define V8_COMPILER_OPERATOR_H_
7 
8 #include <ostream>  // NOLINT(readability/streams)
9 
10 #include "src/base/compiler-specific.h"
11 #include "src/base/flags.h"
12 #include "src/base/functional.h"
13 #include "src/globals.h"
14 #include "src/handles.h"
15 #include "src/zone/zone.h"
16 
17 namespace v8 {
18 namespace internal {
19 namespace compiler {
20 
21 // An operator represents description of the "computation" of a node in the
22 // compiler IR. A computation takes values (i.e. data) as input and produces
23 // zero or more values as output. The side-effects of a computation must be
24 // captured by additional control and data dependencies which are part of the
25 // IR graph.
26 // Operators are immutable and describe the statically-known parts of a
27 // computation. Thus they can be safely shared by many different nodes in the
28 // IR graph, or even globally between graphs. Operators can have "static
29 // parameters" which are compile-time constant parameters to the operator, such
30 // as the name for a named field access, the ID of a runtime function, etc.
31 // Static parameters are private to the operator and only semantically
32 // meaningful to the operator itself.
NON_EXPORTED_BASE(ZoneObject)33 class V8_EXPORT_PRIVATE Operator : public NON_EXPORTED_BASE(ZoneObject) {
34  public:
35   typedef uint16_t Opcode;
36 
37   // Properties inform the operator-independent optimizer about legal
38   // transformations for nodes that have this operator.
39   enum Property {
40     kNoProperties = 0,
41     kCommutative = 1 << 0,  // OP(a, b) == OP(b, a) for all inputs.
42     kAssociative = 1 << 1,  // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs.
43     kIdempotent = 1 << 2,   // OP(a); OP(a) == OP(a).
44     kNoRead = 1 << 3,       // Has no scheduling dependency on Effects
45     kNoWrite = 1 << 4,      // Does not modify any Effects and thereby
46                             // create new scheduling dependencies.
47     kNoThrow = 1 << 5,      // Can never generate an exception.
48     kNoDeopt = 1 << 6,      // Can never generate an eager deoptimization exit.
49     kFoldable = kNoRead | kNoWrite,
50     kKontrol = kNoDeopt | kFoldable | kNoThrow,
51     kEliminatable = kNoDeopt | kNoWrite | kNoThrow,
52     kPure = kNoDeopt | kNoRead | kNoWrite | kNoThrow | kIdempotent
53   };
54 
55 // List of all bits, for the visualizer.
56 #define OPERATOR_PROPERTY_LIST(V) \
57   V(Commutative)                  \
58   V(Associative) V(Idempotent) V(NoRead) V(NoWrite) V(NoThrow) V(NoDeopt)
59 
60   typedef base::Flags<Property, uint8_t> Properties;
61   enum class PrintVerbosity { kVerbose, kSilent };
62 
63   // Constructor.
64   Operator(Opcode opcode, Properties properties, const char* mnemonic,
65            size_t value_in, size_t effect_in, size_t control_in,
66            size_t value_out, size_t effect_out, size_t control_out);
67 
68   virtual ~Operator() {}
69 
70   // A small integer unique to all instances of a particular kind of operator,
71   // useful for quick matching for specific kinds of operators. For fast access
72   // the opcode is stored directly in the operator object.
73   Opcode opcode() const { return opcode_; }
74 
75   // Returns a constant string representing the mnemonic of the operator,
76   // without the static parameters. Useful for debugging.
77   const char* mnemonic() const { return mnemonic_; }
78 
79   // Check if this operator equals another operator. Equivalent operators can
80   // be merged, and nodes with equivalent operators and equivalent inputs
81   // can be merged.
82   virtual bool Equals(const Operator* that) const {
83     return this->opcode() == that->opcode();
84   }
85 
86   // Compute a hashcode to speed up equivalence-set checking.
87   // Equal operators should always have equal hashcodes, and unequal operators
88   // should have unequal hashcodes with high probability.
89   virtual size_t HashCode() const { return base::hash<Opcode>()(opcode()); }
90 
91   // Check whether this operator has the given property.
92   bool HasProperty(Property property) const {
93     return (properties() & property) == property;
94   }
95 
96   Properties properties() const { return properties_; }
97 
98   // TODO(bmeurer): Use bit fields below?
99   static const size_t kMaxControlOutputCount = (1u << 16) - 1;
100 
101   // TODO(titzer): convert return values here to size_t.
102   int ValueInputCount() const { return value_in_; }
103   int EffectInputCount() const { return effect_in_; }
104   int ControlInputCount() const { return control_in_; }
105 
106   int ValueOutputCount() const { return value_out_; }
107   int EffectOutputCount() const { return effect_out_; }
108   int ControlOutputCount() const { return control_out_; }
109 
110   static size_t ZeroIfEliminatable(Properties properties) {
111     return (properties & kEliminatable) == kEliminatable ? 0 : 1;
112   }
113 
114   static size_t ZeroIfNoThrow(Properties properties) {
115     return (properties & kNoThrow) == kNoThrow ? 0 : 2;
116   }
117 
118   static size_t ZeroIfPure(Properties properties) {
119     return (properties & kPure) == kPure ? 0 : 1;
120   }
121 
122   // TODO(titzer): API for input and output types, for typechecking graph.
123 
124   // Print the full operator into the given stream, including any
125   // static parameters. Useful for debugging and visualizing the IR.
126   void PrintTo(std::ostream& os,
127                PrintVerbosity verbose = PrintVerbosity::kVerbose) const {
128     // We cannot make PrintTo virtual, because default arguments to virtual
129     // methods are banned in the style guide.
130     return PrintToImpl(os, verbose);
131   }
132 
133   void PrintPropsTo(std::ostream& os) const;
134 
135  protected:
136   virtual void PrintToImpl(std::ostream& os, PrintVerbosity verbose) const;
137 
138  private:
139   Opcode opcode_;
140   Properties properties_;
141   const char* mnemonic_;
142   uint32_t value_in_;
143   uint16_t effect_in_;
144   uint16_t control_in_;
145   uint16_t value_out_;
146   uint8_t effect_out_;
147   uint32_t control_out_;
148 
149   DISALLOW_COPY_AND_ASSIGN(Operator);
150 };
151 
152 DEFINE_OPERATORS_FOR_FLAGS(Operator::Properties)
153 
154 std::ostream& operator<<(std::ostream& os, const Operator& op);
155 
156 
157 // Default equality function for below Operator1<*> class.
158 template <typename T>
159 struct OpEqualTo : public std::equal_to<T> {};
160 
161 
162 // Default hashing function for below Operator1<*> class.
163 template <typename T>
164 struct OpHash : public base::hash<T> {};
165 
166 
167 // A templatized implementation of Operator that has one static parameter of
168 // type {T} with the proper default equality and hashing functions.
169 template <typename T, typename Pred = OpEqualTo<T>, typename Hash = OpHash<T>>
170 class Operator1 : public Operator {
171  public:
172   Operator1(Opcode opcode, Properties properties, const char* mnemonic,
173             size_t value_in, size_t effect_in, size_t control_in,
174             size_t value_out, size_t effect_out, size_t control_out,
175             T parameter, Pred const& pred = Pred(), Hash const& hash = Hash())
Operator(opcode,properties,mnemonic,value_in,effect_in,control_in,value_out,effect_out,control_out)176       : Operator(opcode, properties, mnemonic, value_in, effect_in, control_in,
177                  value_out, effect_out, control_out),
178         parameter_(parameter),
179         pred_(pred),
180         hash_(hash) {}
181 
parameter()182   T const& parameter() const { return parameter_; }
183 
Equals(const Operator * other)184   bool Equals(const Operator* other) const final {
185     if (opcode() != other->opcode()) return false;
186     const Operator1<T, Pred, Hash>* that =
187         reinterpret_cast<const Operator1<T, Pred, Hash>*>(other);
188     return this->pred_(this->parameter(), that->parameter());
189   }
HashCode()190   size_t HashCode() const final {
191     return base::hash_combine(this->opcode(), this->hash_(this->parameter()));
192   }
193   // For most parameter types, we have only a verbose way to print them, namely
194   // ostream << parameter. But for some types it is particularly useful to have
195   // a shorter way to print them for the node labels in Turbolizer. The
196   // following method can be overridden to provide a concise and a verbose
197   // printing of a parameter.
198 
PrintParameter(std::ostream & os,PrintVerbosity verbose)199   virtual void PrintParameter(std::ostream& os, PrintVerbosity verbose) const {
200     os << "[" << parameter() << "]";
201   }
202 
PrintToImpl(std::ostream & os,PrintVerbosity verbose)203   virtual void PrintToImpl(std::ostream& os, PrintVerbosity verbose) const {
204     os << mnemonic();
205     PrintParameter(os, verbose);
206   }
207 
208  private:
209   T const parameter_;
210   Pred const pred_;
211   Hash const hash_;
212 };
213 
214 
215 // Helper to extract parameters from Operator1<*> operator.
216 template <typename T>
OpParameter(const Operator * op)217 inline T const& OpParameter(const Operator* op) {
218   return reinterpret_cast<const Operator1<T, OpEqualTo<T>, OpHash<T>>*>(op)
219       ->parameter();
220 }
221 
222 
223 // NOTE: We have to be careful to use the right equal/hash functions below, for
224 // float/double we always use the ones operating on the bit level, for Handle<>
225 // we always use the ones operating on the location level.
226 template <>
227 struct OpEqualTo<float> : public base::bit_equal_to<float> {};
228 template <>
229 struct OpHash<float> : public base::bit_hash<float> {};
230 
231 template <>
232 struct OpEqualTo<double> : public base::bit_equal_to<double> {};
233 template <>
234 struct OpHash<double> : public base::bit_hash<double> {};
235 
236 template <>
237 struct OpEqualTo<Handle<HeapObject>> : public Handle<HeapObject>::equal_to {};
238 template <>
239 struct OpHash<Handle<HeapObject>> : public Handle<HeapObject>::hash {};
240 
241 template <>
242 struct OpEqualTo<Handle<String>> : public Handle<String>::equal_to {};
243 template <>
244 struct OpHash<Handle<String>> : public Handle<String>::hash {};
245 
246 template <>
247 struct OpEqualTo<Handle<ScopeInfo>> : public Handle<ScopeInfo>::equal_to {};
248 template <>
249 struct OpHash<Handle<ScopeInfo>> : public Handle<ScopeInfo>::hash {};
250 
251 }  // namespace compiler
252 }  // namespace internal
253 }  // namespace v8
254 
255 #endif  // V8_COMPILER_OPERATOR_H_
256