1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_GLOBALS_H_
6 #define V8_GLOBALS_H_
7 
8 #include <stddef.h>
9 #include <stdint.h>
10 
11 #include <ostream>
12 
13 #include "src/base/build_config.h"
14 #include "src/base/logging.h"
15 #include "src/base/macros.h"
16 
17 #ifdef V8_OS_WIN
18 
19 // Setup for Windows shared library export.
20 #ifdef BUILDING_V8_SHARED
21 #define V8_EXPORT_PRIVATE __declspec(dllexport)
22 #elif USING_V8_SHARED
23 #define V8_EXPORT_PRIVATE __declspec(dllimport)
24 #else
25 #define V8_EXPORT_PRIVATE
26 #endif  // BUILDING_V8_SHARED
27 
28 #else  // V8_OS_WIN
29 
30 // Setup for Linux shared library export.
31 #if V8_HAS_ATTRIBUTE_VISIBILITY
32 #ifdef BUILDING_V8_SHARED
33 #define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
34 #else
35 #define V8_EXPORT_PRIVATE
36 #endif
37 #else
38 #define V8_EXPORT_PRIVATE
39 #endif
40 
41 #endif  // V8_OS_WIN
42 
43 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
44 // warning flag and certain versions of GCC due to a bug:
45 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
46 // For now, we use the more involved template-based version from <limits>, but
47 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
48 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
49 # include <limits>  // NOLINT
50 # define V8_INFINITY std::numeric_limits<double>::infinity()
51 #elif V8_LIBC_MSVCRT
52 # define V8_INFINITY HUGE_VAL
53 #elif V8_OS_AIX
54 #define V8_INFINITY (__builtin_inff())
55 #else
56 # define V8_INFINITY INFINITY
57 #endif
58 
59 namespace v8 {
60 
61 namespace base {
62 class Mutex;
63 class RecursiveMutex;
64 class VirtualMemory;
65 }
66 
67 namespace internal {
68 
69 // Determine whether we are running in a simulated environment.
70 // Setting USE_SIMULATOR explicitly from the build script will force
71 // the use of a simulated environment.
72 #if !defined(USE_SIMULATOR)
73 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
74 #define USE_SIMULATOR 1
75 #endif
76 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
77 #define USE_SIMULATOR 1
78 #endif
79 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
80 #define USE_SIMULATOR 1
81 #endif
82 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
83 #define USE_SIMULATOR 1
84 #endif
85 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
86 #define USE_SIMULATOR 1
87 #endif
88 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
89 #define USE_SIMULATOR 1
90 #endif
91 #endif
92 
93 // Determine whether the architecture uses an embedded constant pool
94 // (contiguous constant pool embedded in code object).
95 #if V8_TARGET_ARCH_PPC
96 #define V8_EMBEDDED_CONSTANT_POOL 1
97 #else
98 #define V8_EMBEDDED_CONSTANT_POOL 0
99 #endif
100 
101 #ifdef V8_TARGET_ARCH_ARM
102 // Set stack limit lower for ARM than for other architectures because
103 // stack allocating MacroAssembler takes 120K bytes.
104 // See issue crbug.com/405338
105 #define V8_DEFAULT_STACK_SIZE_KB 864
106 #else
107 // Slightly less than 1MB, since Windows' default stack size for
108 // the main execution thread is 1MB for both 32 and 64-bit.
109 #define V8_DEFAULT_STACK_SIZE_KB 984
110 #endif
111 
112 
113 // Determine whether double field unboxing feature is enabled.
114 #if V8_TARGET_ARCH_64_BIT
115 #define V8_DOUBLE_FIELDS_UNBOXING 1
116 #else
117 #define V8_DOUBLE_FIELDS_UNBOXING 0
118 #endif
119 
120 
121 typedef uint8_t byte;
122 typedef byte* Address;
123 
124 // -----------------------------------------------------------------------------
125 // Constants
126 
127 const int KB = 1024;
128 const int MB = KB * KB;
129 const int GB = KB * KB * KB;
130 const int kMaxInt = 0x7FFFFFFF;
131 const int kMinInt = -kMaxInt - 1;
132 const int kMaxInt8 = (1 << 7) - 1;
133 const int kMinInt8 = -(1 << 7);
134 const int kMaxUInt8 = (1 << 8) - 1;
135 const int kMinUInt8 = 0;
136 const int kMaxInt16 = (1 << 15) - 1;
137 const int kMinInt16 = -(1 << 15);
138 const int kMaxUInt16 = (1 << 16) - 1;
139 const int kMinUInt16 = 0;
140 
141 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
142 const int kMinUInt32 = 0;
143 
144 const int kCharSize = sizeof(char);
145 const int kShortSize = sizeof(short);  // NOLINT
146 const int kIntSize = sizeof(int);
147 const int kInt32Size = sizeof(int32_t);
148 const int kInt64Size = sizeof(int64_t);
149 const int kSizetSize = sizeof(size_t);
150 const int kFloatSize = sizeof(float);
151 const int kDoubleSize = sizeof(double);
152 const int kIntptrSize = sizeof(intptr_t);
153 const int kPointerSize = sizeof(void*);
154 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
155 const int kRegisterSize = kPointerSize + kPointerSize;
156 #else
157 const int kRegisterSize = kPointerSize;
158 #endif
159 const int kPCOnStackSize = kRegisterSize;
160 const int kFPOnStackSize = kRegisterSize;
161 
162 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
163 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
164 #else
165 const int kElidedFrameSlots = 0;
166 #endif
167 
168 const int kDoubleSizeLog2 = 3;
169 
170 #if V8_HOST_ARCH_64_BIT
171 const int kPointerSizeLog2 = 3;
172 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
173 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
174 const bool kRequiresCodeRange = true;
175 #if V8_TARGET_ARCH_MIPS64
176 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
177 // encoded immediate, the addresses have to be in range of 256MB aligned
178 // region. Used only for large object space.
179 const size_t kMaximalCodeRangeSize = 256 * MB;
180 const size_t kCodeRangeAreaAlignment = 256 * MB;
181 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
182 const size_t kMaximalCodeRangeSize = 512 * MB;
183 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
184 #else
185 const size_t kMaximalCodeRangeSize = 512 * MB;
186 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
187 #endif
188 #if V8_OS_WIN
189 const size_t kMinimumCodeRangeSize = 4 * MB;
190 const size_t kReservedCodeRangePages = 1;
191 #else
192 const size_t kMinimumCodeRangeSize = 3 * MB;
193 const size_t kReservedCodeRangePages = 0;
194 #endif
195 #else
196 const int kPointerSizeLog2 = 2;
197 const intptr_t kIntptrSignBit = 0x80000000;
198 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
199 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
200 // x32 port also requires code range.
201 const bool kRequiresCodeRange = true;
202 const size_t kMaximalCodeRangeSize = 256 * MB;
203 const size_t kMinimumCodeRangeSize = 3 * MB;
204 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
205 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
206 const bool kRequiresCodeRange = false;
207 const size_t kMaximalCodeRangeSize = 0 * MB;
208 const size_t kMinimumCodeRangeSize = 0 * MB;
209 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
210 #else
211 const bool kRequiresCodeRange = false;
212 const size_t kMaximalCodeRangeSize = 0 * MB;
213 const size_t kMinimumCodeRangeSize = 0 * MB;
214 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
215 #endif
216 const size_t kReservedCodeRangePages = 0;
217 #endif
218 
219 // Trigger an incremental GCs once the external memory reaches this limit.
220 const int kExternalAllocationSoftLimit = 64 * MB;
221 
222 // Maximum object size that gets allocated into regular pages. Objects larger
223 // than that size are allocated in large object space and are never moved in
224 // memory. This also applies to new space allocation, since objects are never
225 // migrated from new space to large object space. Takes double alignment into
226 // account.
227 //
228 // Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack).
229 const int kMaxRegularHeapObjectSize = 507136;
230 
231 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
232 
233 const int kBitsPerByte = 8;
234 const int kBitsPerByteLog2 = 3;
235 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
236 const int kBitsPerInt = kIntSize * kBitsPerByte;
237 
238 // IEEE 754 single precision floating point number bit layout.
239 const uint32_t kBinary32SignMask = 0x80000000u;
240 const uint32_t kBinary32ExponentMask = 0x7f800000u;
241 const uint32_t kBinary32MantissaMask = 0x007fffffu;
242 const int kBinary32ExponentBias = 127;
243 const int kBinary32MaxExponent  = 0xFE;
244 const int kBinary32MinExponent  = 0x01;
245 const int kBinary32MantissaBits = 23;
246 const int kBinary32ExponentShift = 23;
247 
248 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
249 // other bits set.
250 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
251 
252 // Latin1/UTF-16 constants
253 // Code-point values in Unicode 4.0 are 21 bits wide.
254 // Code units in UTF-16 are 16 bits wide.
255 typedef uint16_t uc16;
256 typedef int32_t uc32;
257 const int kOneByteSize    = kCharSize;
258 const int kUC16Size     = sizeof(uc16);      // NOLINT
259 
260 // 128 bit SIMD value size.
261 const int kSimd128Size = 16;
262 
263 // Round up n to be a multiple of sz, where sz is a power of 2.
264 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
265 
266 
267 // FUNCTION_ADDR(f) gets the address of a C function f.
268 #define FUNCTION_ADDR(f)                                        \
269   (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
270 
271 
272 // FUNCTION_CAST<F>(addr) casts an address into a function
273 // of type F. Used to invoke generated code from within C.
274 template <typename F>
FUNCTION_CAST(Address addr)275 F FUNCTION_CAST(Address addr) {
276   return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
277 }
278 
279 
280 // Determine whether the architecture uses function descriptors
281 // which provide a level of indirection between the function pointer
282 // and the function entrypoint.
283 #if V8_HOST_ARCH_PPC && \
284     (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
285 #define USES_FUNCTION_DESCRIPTORS 1
286 #define FUNCTION_ENTRYPOINT_ADDRESS(f)       \
287   (reinterpret_cast<v8::internal::Address*>( \
288       &(reinterpret_cast<intptr_t*>(f)[0])))
289 #else
290 #define USES_FUNCTION_DESCRIPTORS 0
291 #endif
292 
293 
294 // -----------------------------------------------------------------------------
295 // Forward declarations for frequently used classes
296 // (sorted alphabetically)
297 
298 class FreeStoreAllocationPolicy;
299 template <typename T, class P = FreeStoreAllocationPolicy> class List;
300 
301 // -----------------------------------------------------------------------------
302 // Declarations for use in both the preparser and the rest of V8.
303 
304 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
305 
306 enum LanguageMode : uint32_t { SLOPPY, STRICT, LANGUAGE_END };
307 
308 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
309   switch (mode) {
310     case SLOPPY: return os << "sloppy";
311     case STRICT: return os << "strict";
312     default: UNREACHABLE();
313   }
314   return os;
315 }
316 
317 
is_sloppy(LanguageMode language_mode)318 inline bool is_sloppy(LanguageMode language_mode) {
319   return language_mode == SLOPPY;
320 }
321 
322 
is_strict(LanguageMode language_mode)323 inline bool is_strict(LanguageMode language_mode) {
324   return language_mode != SLOPPY;
325 }
326 
327 
is_valid_language_mode(int language_mode)328 inline bool is_valid_language_mode(int language_mode) {
329   return language_mode == SLOPPY || language_mode == STRICT;
330 }
331 
332 
construct_language_mode(bool strict_bit)333 inline LanguageMode construct_language_mode(bool strict_bit) {
334   return static_cast<LanguageMode>(strict_bit);
335 }
336 
337 // This constant is used as an undefined value when passing source positions.
338 const int kNoSourcePosition = -1;
339 
340 // This constant is used to indicate missing deoptimization information.
341 const int kNoDeoptimizationId = -1;
342 
343 // Mask for the sign bit in a smi.
344 const intptr_t kSmiSignMask = kIntptrSignBit;
345 
346 const int kObjectAlignmentBits = kPointerSizeLog2;
347 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
348 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
349 
350 // Desired alignment for pointers.
351 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
352 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
353 
354 // Desired alignment for double values.
355 const intptr_t kDoubleAlignment = 8;
356 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
357 
358 // Desired alignment for 128 bit SIMD values.
359 const intptr_t kSimd128Alignment = 16;
360 const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;
361 
362 // Desired alignment for generated code is 32 bytes (to improve cache line
363 // utilization).
364 const int kCodeAlignmentBits = 5;
365 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
366 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
367 
368 // The owner field of a page is tagged with the page header tag. We need that
369 // to find out if a slot is part of a large object. If we mask out the lower
370 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
371 // is tagged with the page header tag, we can just look up the owner.
372 // Otherwise, we know that we are somewhere (not within the first 1M) in a
373 // large object.
374 const int kPageHeaderTag = 3;
375 const int kPageHeaderTagSize = 2;
376 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
377 
378 
379 // Zap-value: The value used for zapping dead objects.
380 // Should be a recognizable hex value tagged as a failure.
381 #ifdef V8_HOST_ARCH_64_BIT
382 const Address kZapValue =
383     reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
384 const Address kHandleZapValue =
385     reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
386 const Address kGlobalHandleZapValue =
387     reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
388 const Address kFromSpaceZapValue =
389     reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
390 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
391 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
392 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
393 #else
394 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
395 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
396 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
397 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
398 const uint32_t kSlotsZapValue = 0xbeefdeef;
399 const uint32_t kDebugZapValue = 0xbadbaddb;
400 const uint32_t kFreeListZapValue = 0xfeed1eaf;
401 #endif
402 
403 const int kCodeZapValue = 0xbadc0de;
404 const uint32_t kPhantomReferenceZap = 0xca11bac;
405 
406 // On Intel architecture, cache line size is 64 bytes.
407 // On ARM it may be less (32 bytes), but as far this constant is
408 // used for aligning data, it doesn't hurt to align on a greater value.
409 #define PROCESSOR_CACHE_LINE_SIZE 64
410 
411 // Constants relevant to double precision floating point numbers.
412 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
413 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
414 
415 
416 // -----------------------------------------------------------------------------
417 // Forward declarations for frequently used classes
418 
419 class AccessorInfo;
420 class Allocation;
421 class Arguments;
422 class Assembler;
423 class Code;
424 class CodeGenerator;
425 class CodeStub;
426 class Context;
427 class Debug;
428 class DebugInfo;
429 class Descriptor;
430 class DescriptorArray;
431 class TransitionArray;
432 class ExternalReference;
433 class FixedArray;
434 class FunctionTemplateInfo;
435 class MemoryChunk;
436 class SeededNumberDictionary;
437 class UnseededNumberDictionary;
438 class NameDictionary;
439 class GlobalDictionary;
440 template <typename T> class MaybeHandle;
441 template <typename T> class Handle;
442 class Heap;
443 class HeapObject;
444 class IC;
445 class InterceptorInfo;
446 class Isolate;
447 class JSReceiver;
448 class JSArray;
449 class JSFunction;
450 class JSObject;
451 class LargeObjectSpace;
452 class MacroAssembler;
453 class Map;
454 class MapSpace;
455 class MarkCompactCollector;
456 class NewSpace;
457 class Object;
458 class OldSpace;
459 class ParameterCount;
460 class Foreign;
461 class Scope;
462 class DeclarationScope;
463 class ModuleScope;
464 class ScopeInfo;
465 class Script;
466 class Smi;
467 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
468 class SplayTree;
469 class String;
470 class Symbol;
471 class Name;
472 class Struct;
473 class TypeFeedbackVector;
474 class Variable;
475 class RelocInfo;
476 class Deserializer;
477 class MessageLocation;
478 
479 typedef bool (*WeakSlotCallback)(Object** pointer);
480 
481 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
482 
483 // -----------------------------------------------------------------------------
484 // Miscellaneous
485 
486 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
487 // consecutive.
488 // Keep this enum in sync with the ObjectSpace enum in v8.h
489 enum AllocationSpace {
490   NEW_SPACE,   // Semispaces collected with copying collector.
491   OLD_SPACE,   // May contain pointers to new space.
492   CODE_SPACE,  // No pointers to new space, marked executable.
493   MAP_SPACE,   // Only and all map objects.
494   LO_SPACE,    // Promoted large objects.
495 
496   FIRST_SPACE = NEW_SPACE,
497   LAST_SPACE = LO_SPACE,
498   FIRST_PAGED_SPACE = OLD_SPACE,
499   LAST_PAGED_SPACE = MAP_SPACE
500 };
501 const int kSpaceTagSize = 3;
502 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
503 
504 enum AllocationAlignment {
505   kWordAligned,
506   kDoubleAligned,
507   kDoubleUnaligned,
508   kSimd128Unaligned
509 };
510 
511 // Possible outcomes for decisions.
512 enum class Decision : uint8_t { kUnknown, kTrue, kFalse };
513 
hash_value(Decision decision)514 inline size_t hash_value(Decision decision) {
515   return static_cast<uint8_t>(decision);
516 }
517 
518 inline std::ostream& operator<<(std::ostream& os, Decision decision) {
519   switch (decision) {
520     case Decision::kUnknown:
521       return os << "Unknown";
522     case Decision::kTrue:
523       return os << "True";
524     case Decision::kFalse:
525       return os << "False";
526   }
527   UNREACHABLE();
528   return os;
529 }
530 
531 // Supported write barrier modes.
532 enum WriteBarrierKind : uint8_t {
533   kNoWriteBarrier,
534   kMapWriteBarrier,
535   kPointerWriteBarrier,
536   kFullWriteBarrier
537 };
538 
hash_value(WriteBarrierKind kind)539 inline size_t hash_value(WriteBarrierKind kind) {
540   return static_cast<uint8_t>(kind);
541 }
542 
543 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
544   switch (kind) {
545     case kNoWriteBarrier:
546       return os << "NoWriteBarrier";
547     case kMapWriteBarrier:
548       return os << "MapWriteBarrier";
549     case kPointerWriteBarrier:
550       return os << "PointerWriteBarrier";
551     case kFullWriteBarrier:
552       return os << "FullWriteBarrier";
553   }
554   UNREACHABLE();
555   return os;
556 }
557 
558 // A flag that indicates whether objects should be pretenured when
559 // allocated (allocated directly into the old generation) or not
560 // (allocated in the young generation if the object size and type
561 // allows).
562 enum PretenureFlag { NOT_TENURED, TENURED };
563 
564 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
565   switch (flag) {
566     case NOT_TENURED:
567       return os << "NotTenured";
568     case TENURED:
569       return os << "Tenured";
570   }
571   UNREACHABLE();
572   return os;
573 }
574 
575 enum MinimumCapacity {
576   USE_DEFAULT_MINIMUM_CAPACITY,
577   USE_CUSTOM_MINIMUM_CAPACITY
578 };
579 
580 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
581 
582 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
583 
584 enum VisitMode {
585   VISIT_ALL,
586   VISIT_ALL_IN_SCAVENGE,
587   VISIT_ALL_IN_SWEEP_NEWSPACE,
588   VISIT_ONLY_STRONG,
589   VISIT_ONLY_STRONG_FOR_SERIALIZATION,
590   VISIT_ONLY_STRONG_ROOT_LIST,
591 };
592 
593 // Flag indicating whether code is built into the VM (one of the natives files).
594 enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, NATIVES_CODE };
595 
596 // JavaScript defines two kinds of 'nil'.
597 enum NilValue { kNullValue, kUndefinedValue };
598 
599 // ParseRestriction is used to restrict the set of valid statements in a
600 // unit of compilation.  Restriction violations cause a syntax error.
601 enum ParseRestriction {
602   NO_PARSE_RESTRICTION,         // All expressions are allowed.
603   ONLY_SINGLE_FUNCTION_LITERAL  // Only a single FunctionLiteral expression.
604 };
605 
606 // TODO(gsathya): Move this to JSPromise once we create it.
607 // This should be in sync with the constants in promise.js
608 enum PromiseStatus {
609   kPromisePending,
610   kPromiseFulfilled,
611   kPromiseRejected,
612 };
613 
614 // A CodeDesc describes a buffer holding instructions and relocation
615 // information. The instructions start at the beginning of the buffer
616 // and grow forward, the relocation information starts at the end of
617 // the buffer and grows backward.  A constant pool may exist at the
618 // end of the instructions.
619 //
620 //  |<--------------- buffer_size ----------------------------------->|
621 //  |<------------- instr_size ---------->|        |<-- reloc_size -->|
622 //  |               |<- const_pool_size ->|                           |
623 //  +=====================================+========+==================+
624 //  |  instructions |        data         |  free  |    reloc info    |
625 //  +=====================================+========+==================+
626 //  ^
627 //  |
628 //  buffer
629 
630 struct CodeDesc {
631   byte* buffer;
632   int buffer_size;
633   int instr_size;
634   int reloc_size;
635   int constant_pool_size;
636   byte* unwinding_info;
637   int unwinding_info_size;
638   Assembler* origin;
639 };
640 
641 
642 // Callback function used for checking constraints when copying/relocating
643 // objects. Returns true if an object can be copied/relocated from its
644 // old_addr to a new_addr.
645 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
646 
647 
648 // Callback function on inline caches, used for iterating over inline caches
649 // in compiled code.
650 typedef void (*InlineCacheCallback)(Code* code, Address ic);
651 
652 
653 // State for inline cache call sites. Aliased as IC::State.
654 enum InlineCacheState {
655   // Has never been executed.
656   UNINITIALIZED,
657   // Has been executed but monomorhic state has been delayed.
658   PREMONOMORPHIC,
659   // Has been executed and only one receiver type has been seen.
660   MONOMORPHIC,
661   // Check failed due to prototype (or map deprecation).
662   RECOMPUTE_HANDLER,
663   // Multiple receiver types have been seen.
664   POLYMORPHIC,
665   // Many receiver types have been seen.
666   MEGAMORPHIC,
667   // A generic handler is installed and no extra typefeedback is recorded.
668   GENERIC,
669 };
670 
671 enum CacheHolderFlag {
672   kCacheOnPrototype,
673   kCacheOnPrototypeReceiverIsDictionary,
674   kCacheOnPrototypeReceiverIsPrimitive,
675   kCacheOnReceiver
676 };
677 
678 enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
679 
680 // The Store Buffer (GC).
681 typedef enum {
682   kStoreBufferFullEvent,
683   kStoreBufferStartScanningPagesEvent,
684   kStoreBufferScanningPageEvent
685 } StoreBufferEvent;
686 
687 
688 typedef void (*StoreBufferCallback)(Heap* heap,
689                                     MemoryChunk* page,
690                                     StoreBufferEvent event);
691 
692 // Union used for customized checking of the IEEE double types
693 // inlined within v8 runtime, rather than going to the underlying
694 // platform headers and libraries
695 union IeeeDoubleLittleEndianArchType {
696   double d;
697   struct {
698     unsigned int man_low  :32;
699     unsigned int man_high :20;
700     unsigned int exp      :11;
701     unsigned int sign     :1;
702   } bits;
703 };
704 
705 
706 union IeeeDoubleBigEndianArchType {
707   double d;
708   struct {
709     unsigned int sign     :1;
710     unsigned int exp      :11;
711     unsigned int man_high :20;
712     unsigned int man_low  :32;
713   } bits;
714 };
715 
716 #if V8_TARGET_LITTLE_ENDIAN
717 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
718 const int kIeeeDoubleMantissaWordOffset = 0;
719 const int kIeeeDoubleExponentWordOffset = 4;
720 #else
721 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
722 const int kIeeeDoubleMantissaWordOffset = 4;
723 const int kIeeeDoubleExponentWordOffset = 0;
724 #endif
725 
726 // AccessorCallback
727 struct AccessorDescriptor {
728   Object* (*getter)(Isolate* isolate, Object* object, void* data);
729   Object* (*setter)(
730       Isolate* isolate, JSObject* object, Object* value, void* data);
731   void* data;
732 };
733 
734 
735 // -----------------------------------------------------------------------------
736 // Macros
737 
738 // Testers for test.
739 
740 #define HAS_SMI_TAG(value) \
741   ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
742 
743 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
744 #define OBJECT_POINTER_ALIGN(value)                             \
745   (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
746 
747 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
748 #define POINTER_SIZE_ALIGN(value)                               \
749   (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
750 
751 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
752 #define CODE_POINTER_ALIGN(value)                               \
753   (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
754 
755 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
756 #define DOUBLE_POINTER_ALIGN(value) \
757   (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
758 
759 
760 // CPU feature flags.
761 enum CpuFeature {
762   // x86
763   SSE4_1,
764   SSSE3,
765   SSE3,
766   SAHF,
767   AVX,
768   FMA3,
769   BMI1,
770   BMI2,
771   LZCNT,
772   POPCNT,
773   ATOM,
774   // ARM
775   // - Standard configurations. The baseline is ARMv6+VFPv2.
776   ARMv7,        // ARMv7-A + VFPv3-D32 + NEON
777   ARMv7_SUDIV,  // ARMv7-A + VFPv4-D32 + NEON + SUDIV
778   ARMv8,        // ARMv8-A (+ all of the above)
779   // MIPS, MIPS64
780   FPU,
781   FP64FPU,
782   MIPSr1,
783   MIPSr2,
784   MIPSr6,
785   // ARM64
786   ALWAYS_ALIGN_CSP,
787   // PPC
788   FPR_GPR_MOV,
789   LWSYNC,
790   ISELECT,
791   // S390
792   DISTINCT_OPS,
793   GENERAL_INSTR_EXT,
794   FLOATING_POINT_EXT,
795 
796   NUMBER_OF_CPU_FEATURES,
797 
798   // ARM feature aliases (based on the standard configurations above).
799   VFPv3 = ARMv7,
800   NEON = ARMv7,
801   VFP32DREGS = ARMv7,
802   SUDIV = ARMv7_SUDIV
803 };
804 
805 // Defines hints about receiver values based on structural knowledge.
806 enum class ConvertReceiverMode : unsigned {
807   kNullOrUndefined,     // Guaranteed to be null or undefined.
808   kNotNullOrUndefined,  // Guaranteed to never be null or undefined.
809   kAny                  // No specific knowledge about receiver.
810 };
811 
hash_value(ConvertReceiverMode mode)812 inline size_t hash_value(ConvertReceiverMode mode) {
813   return bit_cast<unsigned>(mode);
814 }
815 
816 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
817   switch (mode) {
818     case ConvertReceiverMode::kNullOrUndefined:
819       return os << "NULL_OR_UNDEFINED";
820     case ConvertReceiverMode::kNotNullOrUndefined:
821       return os << "NOT_NULL_OR_UNDEFINED";
822     case ConvertReceiverMode::kAny:
823       return os << "ANY";
824   }
825   UNREACHABLE();
826   return os;
827 }
828 
829 // Defines whether tail call optimization is allowed.
830 enum class TailCallMode : unsigned { kAllow, kDisallow };
831 
hash_value(TailCallMode mode)832 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); }
833 
834 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) {
835   switch (mode) {
836     case TailCallMode::kAllow:
837       return os << "ALLOW_TAIL_CALLS";
838     case TailCallMode::kDisallow:
839       return os << "DISALLOW_TAIL_CALLS";
840   }
841   UNREACHABLE();
842   return os;
843 }
844 
845 // Valid hints for the abstract operation OrdinaryToPrimitive,
846 // implemented according to ES6, section 7.1.1.
847 enum class OrdinaryToPrimitiveHint { kNumber, kString };
848 
849 // Valid hints for the abstract operation ToPrimitive,
850 // implemented according to ES6, section 7.1.1.
851 enum class ToPrimitiveHint { kDefault, kNumber, kString };
852 
853 // Defines specifics about arguments object or rest parameter creation.
854 enum class CreateArgumentsType : uint8_t {
855   kMappedArguments,
856   kUnmappedArguments,
857   kRestParameter
858 };
859 
hash_value(CreateArgumentsType type)860 inline size_t hash_value(CreateArgumentsType type) {
861   return bit_cast<uint8_t>(type);
862 }
863 
864 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
865   switch (type) {
866     case CreateArgumentsType::kMappedArguments:
867       return os << "MAPPED_ARGUMENTS";
868     case CreateArgumentsType::kUnmappedArguments:
869       return os << "UNMAPPED_ARGUMENTS";
870     case CreateArgumentsType::kRestParameter:
871       return os << "REST_PARAMETER";
872   }
873   UNREACHABLE();
874   return os;
875 }
876 
877 // Used to specify if a macro instruction must perform a smi check on tagged
878 // values.
879 enum SmiCheckType {
880   DONT_DO_SMI_CHECK,
881   DO_SMI_CHECK
882 };
883 
884 enum ScopeType : uint8_t {
885   EVAL_SCOPE,      // The top-level scope for an eval source.
886   FUNCTION_SCOPE,  // The top-level scope for a function.
887   MODULE_SCOPE,    // The scope introduced by a module literal
888   SCRIPT_SCOPE,    // The top-level scope for a script or a top-level eval.
889   CATCH_SCOPE,     // The scope introduced by catch.
890   BLOCK_SCOPE,     // The scope introduced by a new block.
891   WITH_SCOPE       // The scope introduced by with.
892 };
893 
894 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
895 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
896 // memmory.
897 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
898 // issue
899 // for some test cases.
900 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) &&           \
901      (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
902     (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) &&         \
903      (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
904     (V8_TARGET_ARCH_X87)
905 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
906 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
907 #else
908 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
909 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
910 #endif
911 
912 const uint64_t kHoleNanInt64 =
913     (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
914 
915 
916 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
917 const double kMaxSafeInteger = 9007199254740991.0;  // 2^53-1
918 
919 
920 // The order of this enum has to be kept in sync with the predicates below.
921 enum VariableMode : uint8_t {
922   // User declared variables:
923   VAR,  // declared via 'var', and 'function' declarations
924 
925   LET,  // declared via 'let' declarations (first lexical)
926 
927   CONST,  // declared via 'const' declarations (last lexical)
928 
929   // Variables introduced by the compiler:
930   TEMPORARY,  // temporary variables (not user-visible), stack-allocated
931               // unless the scope as a whole has forced context allocation
932 
933   DYNAMIC,  // always require dynamic lookup (we don't know
934             // the declaration)
935 
936   DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
937                    // variable is global unless it has been shadowed
938                    // by an eval-introduced variable
939 
940   DYNAMIC_LOCAL,  // requires dynamic lookup, but we know that the
941                   // variable is local and where it is unless it
942                   // has been shadowed by an eval-introduced
943                   // variable
944 
945   kLastVariableMode = DYNAMIC_LOCAL
946 };
947 
948 // Printing support
949 #ifdef DEBUG
VariableMode2String(VariableMode mode)950 inline const char* VariableMode2String(VariableMode mode) {
951   switch (mode) {
952     case VAR:
953       return "VAR";
954     case LET:
955       return "LET";
956     case CONST:
957       return "CONST";
958     case DYNAMIC:
959       return "DYNAMIC";
960     case DYNAMIC_GLOBAL:
961       return "DYNAMIC_GLOBAL";
962     case DYNAMIC_LOCAL:
963       return "DYNAMIC_LOCAL";
964     case TEMPORARY:
965       return "TEMPORARY";
966   }
967   UNREACHABLE();
968   return NULL;
969 }
970 #endif
971 
972 enum VariableKind : uint8_t {
973   NORMAL_VARIABLE,
974   FUNCTION_VARIABLE,
975   THIS_VARIABLE,
976   SLOPPY_FUNCTION_NAME_VARIABLE,
977   kLastKind = SLOPPY_FUNCTION_NAME_VARIABLE
978 };
979 
IsDynamicVariableMode(VariableMode mode)980 inline bool IsDynamicVariableMode(VariableMode mode) {
981   return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
982 }
983 
984 
IsDeclaredVariableMode(VariableMode mode)985 inline bool IsDeclaredVariableMode(VariableMode mode) {
986   STATIC_ASSERT(VAR == 0);  // Implies that mode >= VAR.
987   return mode <= CONST;
988 }
989 
990 
IsLexicalVariableMode(VariableMode mode)991 inline bool IsLexicalVariableMode(VariableMode mode) {
992   return mode >= LET && mode <= CONST;
993 }
994 
995 enum VariableLocation : uint8_t {
996   // Before and during variable allocation, a variable whose location is
997   // not yet determined.  After allocation, a variable looked up as a
998   // property on the global object (and possibly absent).  name() is the
999   // variable name, index() is invalid.
1000   UNALLOCATED,
1001 
1002   // A slot in the parameter section on the stack.  index() is the
1003   // parameter index, counting left-to-right.  The receiver is index -1;
1004   // the first parameter is index 0.
1005   PARAMETER,
1006 
1007   // A slot in the local section on the stack.  index() is the variable
1008   // index in the stack frame, starting at 0.
1009   LOCAL,
1010 
1011   // An indexed slot in a heap context.  index() is the variable index in
1012   // the context object on the heap, starting at 0.  scope() is the
1013   // corresponding scope.
1014   CONTEXT,
1015 
1016   // A named slot in a heap context.  name() is the variable name in the
1017   // context object on the heap, with lookup starting at the current
1018   // context.  index() is invalid.
1019   LOOKUP,
1020 
1021   // A named slot in a module's export table.
1022   MODULE,
1023 
1024   kLastVariableLocation = MODULE
1025 };
1026 
1027 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
1028 // and immutable bindings that can be in two states: initialized and
1029 // uninitialized. In ES5 only immutable bindings have these two states. When
1030 // accessing a binding, it needs to be checked for initialization. However in
1031 // the following cases the binding is initialized immediately after creation
1032 // so the initialization check can always be skipped:
1033 // 1. Var declared local variables.
1034 //      var foo;
1035 // 2. A local variable introduced by a function declaration.
1036 //      function foo() {}
1037 // 3. Parameters
1038 //      function x(foo) {}
1039 // 4. Catch bound variables.
1040 //      try {} catch (foo) {}
1041 // 6. Function variables of named function expressions.
1042 //      var x = function foo() {}
1043 // 7. Implicit binding of 'this'.
1044 // 8. Implicit binding of 'arguments' in functions.
1045 //
1046 // ES5 specified object environment records which are introduced by ES elements
1047 // such as Program and WithStatement that associate identifier bindings with the
1048 // properties of some object. In the specification only mutable bindings exist
1049 // (which may be non-writable) and have no distinct initialization step. However
1050 // V8 allows const declarations in global code with distinct creation and
1051 // initialization steps which are represented by non-writable properties in the
1052 // global object. As a result also these bindings need to be checked for
1053 // initialization.
1054 //
1055 // The following enum specifies a flag that indicates if the binding needs a
1056 // distinct initialization step (kNeedsInitialization) or if the binding is
1057 // immediately initialized upon creation (kCreatedInitialized).
1058 enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
1059 
1060 enum class HoleCheckMode { kRequired, kElided };
1061 
1062 enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
1063 
1064 // Serialized in PreparseData, so numeric values should not be changed.
1065 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
1066 
1067 
1068 enum MinusZeroMode {
1069   TREAT_MINUS_ZERO_AS_ZERO,
1070   FAIL_ON_MINUS_ZERO
1071 };
1072 
1073 
1074 enum Signedness { kSigned, kUnsigned };
1075 
1076 enum FunctionKind : uint16_t {
1077   kNormalFunction = 0,
1078   kArrowFunction = 1 << 0,
1079   kGeneratorFunction = 1 << 1,
1080   kConciseMethod = 1 << 2,
1081   kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
1082   kDefaultConstructor = 1 << 3,
1083   kSubclassConstructor = 1 << 4,
1084   kBaseConstructor = 1 << 5,
1085   kGetterFunction = 1 << 6,
1086   kSetterFunction = 1 << 7,
1087   kAsyncFunction = 1 << 8,
1088   kModule = 1 << 9,
1089   kAccessorFunction = kGetterFunction | kSetterFunction,
1090   kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
1091   kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
1092   kClassConstructor =
1093       kBaseConstructor | kSubclassConstructor | kDefaultConstructor,
1094   kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
1095   kAsyncConciseMethod = kAsyncFunction | kConciseMethod
1096 };
1097 
IsValidFunctionKind(FunctionKind kind)1098 inline bool IsValidFunctionKind(FunctionKind kind) {
1099   return kind == FunctionKind::kNormalFunction ||
1100          kind == FunctionKind::kArrowFunction ||
1101          kind == FunctionKind::kGeneratorFunction ||
1102          kind == FunctionKind::kModule ||
1103          kind == FunctionKind::kConciseMethod ||
1104          kind == FunctionKind::kConciseGeneratorMethod ||
1105          kind == FunctionKind::kGetterFunction ||
1106          kind == FunctionKind::kSetterFunction ||
1107          kind == FunctionKind::kAccessorFunction ||
1108          kind == FunctionKind::kDefaultBaseConstructor ||
1109          kind == FunctionKind::kDefaultSubclassConstructor ||
1110          kind == FunctionKind::kBaseConstructor ||
1111          kind == FunctionKind::kSubclassConstructor ||
1112          kind == FunctionKind::kAsyncFunction ||
1113          kind == FunctionKind::kAsyncArrowFunction ||
1114          kind == FunctionKind::kAsyncConciseMethod;
1115 }
1116 
1117 
IsArrowFunction(FunctionKind kind)1118 inline bool IsArrowFunction(FunctionKind kind) {
1119   DCHECK(IsValidFunctionKind(kind));
1120   return kind & FunctionKind::kArrowFunction;
1121 }
1122 
1123 
IsGeneratorFunction(FunctionKind kind)1124 inline bool IsGeneratorFunction(FunctionKind kind) {
1125   DCHECK(IsValidFunctionKind(kind));
1126   return kind & FunctionKind::kGeneratorFunction;
1127 }
1128 
IsModule(FunctionKind kind)1129 inline bool IsModule(FunctionKind kind) {
1130   DCHECK(IsValidFunctionKind(kind));
1131   return kind & FunctionKind::kModule;
1132 }
1133 
IsAsyncFunction(FunctionKind kind)1134 inline bool IsAsyncFunction(FunctionKind kind) {
1135   DCHECK(IsValidFunctionKind(kind));
1136   return kind & FunctionKind::kAsyncFunction;
1137 }
1138 
IsResumableFunction(FunctionKind kind)1139 inline bool IsResumableFunction(FunctionKind kind) {
1140   return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind);
1141 }
1142 
IsConciseMethod(FunctionKind kind)1143 inline bool IsConciseMethod(FunctionKind kind) {
1144   DCHECK(IsValidFunctionKind(kind));
1145   return kind & FunctionKind::kConciseMethod;
1146 }
1147 
IsGetterFunction(FunctionKind kind)1148 inline bool IsGetterFunction(FunctionKind kind) {
1149   DCHECK(IsValidFunctionKind(kind));
1150   return kind & FunctionKind::kGetterFunction;
1151 }
1152 
IsSetterFunction(FunctionKind kind)1153 inline bool IsSetterFunction(FunctionKind kind) {
1154   DCHECK(IsValidFunctionKind(kind));
1155   return kind & FunctionKind::kSetterFunction;
1156 }
1157 
IsAccessorFunction(FunctionKind kind)1158 inline bool IsAccessorFunction(FunctionKind kind) {
1159   DCHECK(IsValidFunctionKind(kind));
1160   return kind & FunctionKind::kAccessorFunction;
1161 }
1162 
1163 
IsDefaultConstructor(FunctionKind kind)1164 inline bool IsDefaultConstructor(FunctionKind kind) {
1165   DCHECK(IsValidFunctionKind(kind));
1166   return kind & FunctionKind::kDefaultConstructor;
1167 }
1168 
1169 
IsBaseConstructor(FunctionKind kind)1170 inline bool IsBaseConstructor(FunctionKind kind) {
1171   DCHECK(IsValidFunctionKind(kind));
1172   return kind & FunctionKind::kBaseConstructor;
1173 }
1174 
1175 
IsSubclassConstructor(FunctionKind kind)1176 inline bool IsSubclassConstructor(FunctionKind kind) {
1177   DCHECK(IsValidFunctionKind(kind));
1178   return kind & FunctionKind::kSubclassConstructor;
1179 }
1180 
1181 
IsClassConstructor(FunctionKind kind)1182 inline bool IsClassConstructor(FunctionKind kind) {
1183   DCHECK(IsValidFunctionKind(kind));
1184   return kind & FunctionKind::kClassConstructor;
1185 }
1186 
1187 
IsConstructable(FunctionKind kind,LanguageMode mode)1188 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) {
1189   if (IsAccessorFunction(kind)) return false;
1190   if (IsConciseMethod(kind)) return false;
1191   if (IsArrowFunction(kind)) return false;
1192   if (IsGeneratorFunction(kind)) return false;
1193   if (IsAsyncFunction(kind)) return false;
1194   return true;
1195 }
1196 
1197 enum class CallableType : unsigned { kJSFunction, kAny };
1198 
hash_value(CallableType type)1199 inline size_t hash_value(CallableType type) { return bit_cast<unsigned>(type); }
1200 
1201 inline std::ostream& operator<<(std::ostream& os, CallableType function_type) {
1202   switch (function_type) {
1203     case CallableType::kJSFunction:
1204       return os << "JSFunction";
1205     case CallableType::kAny:
1206       return os << "Any";
1207   }
1208   UNREACHABLE();
1209   return os;
1210 }
1211 
ObjectHash(Address address)1212 inline uint32_t ObjectHash(Address address) {
1213   // All objects are at least pointer aligned, so we can remove the trailing
1214   // zeros.
1215   return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
1216                                kPointerSizeLog2);
1217 }
1218 
1219 // Type feedback is encoded in such a way that, we can combine the feedback
1220 // at different points by performing an 'OR' operation. Type feedback moves
1221 // to a more generic type when we combine feedback.
1222 // kSignedSmall -> kNumber  -> kNumberOrOddball -> kAny
1223 //                             kString          -> kAny
1224 // TODO(mythria): Remove kNumber type when crankshaft can handle Oddballs
1225 // similar to Numbers. We don't need kNumber feedback for Turbofan. Extra
1226 // information about Number might reduce few instructions but causes more
1227 // deopts. We collect Number only because crankshaft does not handle all
1228 // cases of oddballs.
1229 class BinaryOperationFeedback {
1230  public:
1231   enum {
1232     kNone = 0x0,
1233     kSignedSmall = 0x1,
1234     kNumber = 0x3,
1235     kNumberOrOddball = 0x7,
1236     kString = 0x8,
1237     kAny = 0x1F
1238   };
1239 };
1240 
1241 // TODO(epertoso): consider unifying this with BinaryOperationFeedback.
1242 class CompareOperationFeedback {
1243  public:
1244   enum { kNone = 0x00, kSignedSmall = 0x01, kNumber = 0x3, kAny = 0x7 };
1245 };
1246 
1247 // Describes how exactly a frame has been dropped from stack.
1248 enum LiveEditFrameDropMode {
1249   // No frame has been dropped.
1250   LIVE_EDIT_FRAMES_UNTOUCHED,
1251   // The top JS frame had been calling debug break slot stub. Patch the
1252   // address this stub jumps to in the end.
1253   LIVE_EDIT_FRAME_DROPPED_IN_DEBUG_SLOT_CALL,
1254   // The top JS frame had been calling some C++ function. The return address
1255   // gets patched automatically.
1256   LIVE_EDIT_FRAME_DROPPED_IN_DIRECT_CALL,
1257   LIVE_EDIT_FRAME_DROPPED_IN_RETURN_CALL,
1258   LIVE_EDIT_CURRENTLY_SET_MODE
1259 };
1260 
1261 enum class UnicodeEncoding : uint8_t {
1262   // Different unicode encodings in a |word32|:
1263   UTF16,  // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
1264   UTF32,  // full UTF32 code unit / Unicode codepoint
1265 };
1266 
hash_value(UnicodeEncoding encoding)1267 inline size_t hash_value(UnicodeEncoding encoding) {
1268   return static_cast<uint8_t>(encoding);
1269 }
1270 
1271 inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
1272   switch (encoding) {
1273     case UnicodeEncoding::UTF16:
1274       return os << "UTF16";
1275     case UnicodeEncoding::UTF32:
1276       return os << "UTF32";
1277   }
1278   UNREACHABLE();
1279   return os;
1280 }
1281 
1282 enum class IterationKind { kKeys, kValues, kEntries };
1283 
1284 inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
1285   switch (kind) {
1286     case IterationKind::kKeys:
1287       return os << "IterationKind::kKeys";
1288     case IterationKind::kValues:
1289       return os << "IterationKind::kValues";
1290     case IterationKind::kEntries:
1291       return os << "IterationKind::kEntries";
1292   }
1293   UNREACHABLE();
1294   return os;
1295 }
1296 
1297 }  // namespace internal
1298 }  // namespace v8
1299 
1300 // Used by js-builtin-reducer to identify whether ReduceArrayIterator() is
1301 // reducing a JSArray method, or a JSTypedArray method.
1302 enum class ArrayIteratorKind { kArray, kTypedArray };
1303 
1304 namespace i = v8::internal;
1305 
1306 #endif  // V8_GLOBALS_H_
1307