1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/heap/store-buffer.h"
6 
7 #include <algorithm>
8 
9 #include "src/counters.h"
10 #include "src/heap/incremental-marking.h"
11 #include "src/isolate.h"
12 #include "src/objects-inl.h"
13 #include "src/v8.h"
14 
15 namespace v8 {
16 namespace internal {
17 
StoreBuffer(Heap * heap)18 StoreBuffer::StoreBuffer(Heap* heap)
19     : heap_(heap), top_(nullptr), current_(0), virtual_memory_(nullptr) {
20   for (int i = 0; i < kStoreBuffers; i++) {
21     start_[i] = nullptr;
22     limit_[i] = nullptr;
23     lazy_top_[i] = nullptr;
24   }
25   task_running_ = false;
26 }
27 
SetUp()28 void StoreBuffer::SetUp() {
29   // Allocate 3x the buffer size, so that we can start the new store buffer
30   // aligned to 2x the size.  This lets us use a bit test to detect the end of
31   // the area.
32   virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
33   uintptr_t start_as_int =
34       reinterpret_cast<uintptr_t>(virtual_memory_->address());
35   start_[0] =
36       reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize));
37   limit_[0] = start_[0] + (kStoreBufferSize / kPointerSize);
38   start_[1] = limit_[0];
39   limit_[1] = start_[1] + (kStoreBufferSize / kPointerSize);
40 
41   Address* vm_limit = reinterpret_cast<Address*>(
42       reinterpret_cast<char*>(virtual_memory_->address()) +
43       virtual_memory_->size());
44 
45   USE(vm_limit);
46   for (int i = 0; i < kStoreBuffers; i++) {
47     DCHECK(reinterpret_cast<Address>(start_[i]) >= virtual_memory_->address());
48     DCHECK(reinterpret_cast<Address>(limit_[i]) >= virtual_memory_->address());
49     DCHECK(start_[i] <= vm_limit);
50     DCHECK(limit_[i] <= vm_limit);
51     DCHECK((reinterpret_cast<uintptr_t>(limit_[i]) & kStoreBufferMask) == 0);
52   }
53 
54   if (!virtual_memory_->Commit(reinterpret_cast<Address>(start_[0]),
55                                kStoreBufferSize * kStoreBuffers,
56                                false)) {  // Not executable.
57     V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
58   }
59   current_ = 0;
60   top_ = start_[current_];
61 }
62 
63 
TearDown()64 void StoreBuffer::TearDown() {
65   delete virtual_memory_;
66   top_ = nullptr;
67   for (int i = 0; i < kStoreBuffers; i++) {
68     start_[i] = nullptr;
69     limit_[i] = nullptr;
70     lazy_top_[i] = nullptr;
71   }
72 }
73 
74 
StoreBufferOverflow(Isolate * isolate)75 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
76   isolate->heap()->store_buffer()->FlipStoreBuffers();
77   isolate->counters()->store_buffer_overflows()->Increment();
78 }
79 
FlipStoreBuffers()80 void StoreBuffer::FlipStoreBuffers() {
81   base::LockGuard<base::Mutex> guard(&mutex_);
82   int other = (current_ + 1) % kStoreBuffers;
83   MoveEntriesToRememberedSet(other);
84   lazy_top_[current_] = top_;
85   current_ = other;
86   top_ = start_[current_];
87 
88   if (!task_running_) {
89     task_running_ = true;
90     Task* task = new Task(heap_->isolate(), this);
91     V8::GetCurrentPlatform()->CallOnBackgroundThread(
92         task, v8::Platform::kShortRunningTask);
93   }
94 }
95 
MoveEntriesToRememberedSet(int index)96 void StoreBuffer::MoveEntriesToRememberedSet(int index) {
97   if (!lazy_top_[index]) return;
98   DCHECK_GE(index, 0);
99   DCHECK_LT(index, kStoreBuffers);
100   for (Address* current = start_[index]; current < lazy_top_[index];
101        current++) {
102     DCHECK(!heap_->code_space()->Contains(*current));
103     Address addr = *current;
104     Page* page = Page::FromAnyPointerAddress(heap_, addr);
105     if (IsDeletionAddress(addr)) {
106       current++;
107       Address end = *current;
108       DCHECK(!IsDeletionAddress(end));
109       addr = UnmarkDeletionAddress(addr);
110       if (end) {
111         RememberedSet<OLD_TO_NEW>::RemoveRange(page, addr, end,
112                                                SlotSet::PREFREE_EMPTY_BUCKETS);
113       } else {
114         RememberedSet<OLD_TO_NEW>::Remove(page, addr);
115       }
116     } else {
117       DCHECK(!IsDeletionAddress(addr));
118       RememberedSet<OLD_TO_NEW>::Insert(page, addr);
119     }
120   }
121   lazy_top_[index] = nullptr;
122 }
123 
MoveAllEntriesToRememberedSet()124 void StoreBuffer::MoveAllEntriesToRememberedSet() {
125   base::LockGuard<base::Mutex> guard(&mutex_);
126   int other = (current_ + 1) % kStoreBuffers;
127   MoveEntriesToRememberedSet(other);
128   lazy_top_[current_] = top_;
129   MoveEntriesToRememberedSet(current_);
130   top_ = start_[current_];
131 }
132 
ConcurrentlyProcessStoreBuffer()133 void StoreBuffer::ConcurrentlyProcessStoreBuffer() {
134   base::LockGuard<base::Mutex> guard(&mutex_);
135   int other = (current_ + 1) % kStoreBuffers;
136   MoveEntriesToRememberedSet(other);
137   task_running_ = false;
138 }
139 
DeleteEntry(Address start,Address end)140 void StoreBuffer::DeleteEntry(Address start, Address end) {
141   // Deletions coming from the GC are directly deleted from the remembered
142   // set. Deletions coming from the runtime are added to the store buffer
143   // to allow concurrent processing.
144   if (heap_->gc_state() == Heap::NOT_IN_GC) {
145     if (top_ + sizeof(Address) * 2 > limit_[current_]) {
146       StoreBufferOverflow(heap_->isolate());
147     }
148     *top_ = MarkDeletionAddress(start);
149     top_++;
150     *top_ = end;
151     top_++;
152   } else {
153     // In GC the store buffer has to be empty at any time.
154     DCHECK(Empty());
155     Page* page = Page::FromAddress(start);
156     if (end) {
157       RememberedSet<OLD_TO_NEW>::RemoveRange(page, start, end,
158                                              SlotSet::PREFREE_EMPTY_BUCKETS);
159     } else {
160       RememberedSet<OLD_TO_NEW>::Remove(page, start);
161     }
162   }
163 }
164 }  // namespace internal
165 }  // namespace v8
166