/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "jni_compiler.h" #include #include #include #include #include #include "art_method.h" #include "base/arena_allocator.h" #include "base/enums.h" #include "base/logging.h" // For VLOG. #include "base/macros.h" #include "base/utils.h" #include "calling_convention.h" #include "class_linker.h" #include "debug/dwarf/debug_frame_opcode_writer.h" #include "dex/dex_file-inl.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "entrypoints/quick/quick_entrypoints.h" #include "jni_env_ext.h" #include "memory_region.h" #include "thread.h" #include "utils/arm/managed_register_arm.h" #include "utils/arm64/managed_register_arm64.h" #include "utils/assembler.h" #include "utils/jni_macro_assembler.h" #include "utils/managed_register.h" #include "utils/mips/managed_register_mips.h" #include "utils/mips64/managed_register_mips64.h" #include "utils/x86/managed_register_x86.h" #define __ jni_asm-> namespace art { template static void CopyParameter(JNIMacroAssembler* jni_asm, ManagedRuntimeCallingConvention* mr_conv, JniCallingConvention* jni_conv, size_t frame_size, size_t out_arg_size); template static void SetNativeParameter(JNIMacroAssembler* jni_asm, JniCallingConvention* jni_conv, ManagedRegister in_reg); template static std::unique_ptr> GetMacroAssembler( ArenaAllocator* allocator, InstructionSet isa, const InstructionSetFeatures* features) { return JNIMacroAssembler::Create(allocator, isa, features); } enum class JniEntrypoint { kStart, kEnd }; template static ThreadOffset GetJniEntrypointThreadOffset(JniEntrypoint which, bool reference_return, bool is_synchronized, bool is_fast_native) { if (which == JniEntrypoint::kStart) { // JniMethodStart ThreadOffset jni_start = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodStartSynchronized) : (is_fast_native ? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastStart) : QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodStart)); return jni_start; } else { // JniMethodEnd ThreadOffset jni_end(-1); if (reference_return) { // Pass result. jni_end = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndWithReferenceSynchronized) : (is_fast_native ? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastEndWithReference) : QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndWithReference)); } else { jni_end = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndSynchronized) : (is_fast_native ? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastEnd) : QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEnd)); } return jni_end; } } // Generate the JNI bridge for the given method, general contract: // - Arguments are in the managed runtime format, either on stack or in // registers, a reference to the method object is supplied as part of this // convention. // template static JniCompiledMethod ArtJniCompileMethodInternal(CompilerDriver* driver, uint32_t access_flags, uint32_t method_idx, const DexFile& dex_file) { const bool is_native = (access_flags & kAccNative) != 0; CHECK(is_native); const bool is_static = (access_flags & kAccStatic) != 0; const bool is_synchronized = (access_flags & kAccSynchronized) != 0; const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx)); InstructionSet instruction_set = driver->GetInstructionSet(); const InstructionSetFeatures* instruction_set_features = driver->GetInstructionSetFeatures(); // i.e. if the method was annotated with @FastNative const bool is_fast_native = (access_flags & kAccFastNative) != 0u; // i.e. if the method was annotated with @CriticalNative bool is_critical_native = (access_flags & kAccCriticalNative) != 0u; VLOG(jni) << "JniCompile: Method :: " << dex_file.PrettyMethod(method_idx, /* with signature */ true) << " :: access_flags = " << std::hex << access_flags << std::dec; if (UNLIKELY(is_fast_native)) { VLOG(jni) << "JniCompile: Fast native method detected :: " << dex_file.PrettyMethod(method_idx, /* with signature */ true); } if (UNLIKELY(is_critical_native)) { VLOG(jni) << "JniCompile: Critical native method detected :: " << dex_file.PrettyMethod(method_idx, /* with signature */ true); } if (kIsDebugBuild) { // Don't allow both @FastNative and @CriticalNative. They are mutually exclusive. if (UNLIKELY(is_fast_native && is_critical_native)) { LOG(FATAL) << "JniCompile: Method cannot be both @CriticalNative and @FastNative" << dex_file.PrettyMethod(method_idx, /* with_signature */ true); } // @CriticalNative - extra checks: // -- Don't allow virtual criticals // -- Don't allow synchronized criticals // -- Don't allow any objects as parameter or return value if (UNLIKELY(is_critical_native)) { CHECK(is_static) << "@CriticalNative functions cannot be virtual since that would" << "require passing a reference parameter (this), which is illegal " << dex_file.PrettyMethod(method_idx, /* with_signature */ true); CHECK(!is_synchronized) << "@CriticalNative functions cannot be synchronized since that would" << "require passing a (class and/or this) reference parameter, which is illegal " << dex_file.PrettyMethod(method_idx, /* with_signature */ true); for (size_t i = 0; i < strlen(shorty); ++i) { CHECK_NE(Primitive::kPrimNot, Primitive::GetType(shorty[i])) << "@CriticalNative methods' shorty types must not have illegal references " << dex_file.PrettyMethod(method_idx, /* with_signature */ true); } } } ArenaPool pool; ArenaAllocator allocator(&pool); // Calling conventions used to iterate over parameters to method std::unique_ptr main_jni_conv = JniCallingConvention::Create(&allocator, is_static, is_synchronized, is_critical_native, shorty, instruction_set); bool reference_return = main_jni_conv->IsReturnAReference(); std::unique_ptr mr_conv( ManagedRuntimeCallingConvention::Create( &allocator, is_static, is_synchronized, shorty, instruction_set)); // Calling conventions to call into JNI method "end" possibly passing a returned reference, the // method and the current thread. const char* jni_end_shorty; if (reference_return && is_synchronized) { jni_end_shorty = "ILL"; } else if (reference_return) { jni_end_shorty = "IL"; } else if (is_synchronized) { jni_end_shorty = "VL"; } else { jni_end_shorty = "V"; } std::unique_ptr end_jni_conv( JniCallingConvention::Create(&allocator, is_static, is_synchronized, is_critical_native, jni_end_shorty, instruction_set)); // Assembler that holds generated instructions std::unique_ptr> jni_asm = GetMacroAssembler(&allocator, instruction_set, instruction_set_features); const CompilerOptions& compiler_options = driver->GetCompilerOptions(); jni_asm->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo()); jni_asm->SetEmitRunTimeChecksInDebugMode(compiler_options.EmitRunTimeChecksInDebugMode()); // Offsets into data structures // TODO: if cross compiling these offsets are for the host not the target const Offset functions(OFFSETOF_MEMBER(JNIEnvExt, functions)); const Offset monitor_enter(OFFSETOF_MEMBER(JNINativeInterface, MonitorEnter)); const Offset monitor_exit(OFFSETOF_MEMBER(JNINativeInterface, MonitorExit)); // 1. Build the frame saving all callee saves, Method*, and PC return address. const size_t frame_size(main_jni_conv->FrameSize()); // Excludes outgoing args. ArrayRef callee_save_regs = main_jni_conv->CalleeSaveRegisters(); __ BuildFrame(frame_size, mr_conv->MethodRegister(), callee_save_regs, mr_conv->EntrySpills()); DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast(frame_size)); if (LIKELY(!is_critical_native)) { // NOTE: @CriticalNative methods don't have a HandleScope // because they can't have any reference parameters or return values. // 2. Set up the HandleScope mr_conv->ResetIterator(FrameOffset(frame_size)); main_jni_conv->ResetIterator(FrameOffset(0)); __ StoreImmediateToFrame(main_jni_conv->HandleScopeNumRefsOffset(), main_jni_conv->ReferenceCount(), mr_conv->InterproceduralScratchRegister()); __ CopyRawPtrFromThread(main_jni_conv->HandleScopeLinkOffset(), Thread::TopHandleScopeOffset(), mr_conv->InterproceduralScratchRegister()); __ StoreStackOffsetToThread(Thread::TopHandleScopeOffset(), main_jni_conv->HandleScopeOffset(), mr_conv->InterproceduralScratchRegister()); // 3. Place incoming reference arguments into handle scope main_jni_conv->Next(); // Skip JNIEnv* // 3.5. Create Class argument for static methods out of passed method if (is_static) { FrameOffset handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset(); // Check handle scope offset is within frame CHECK_LT(handle_scope_offset.Uint32Value(), frame_size); // Note this LoadRef() doesn't need heap unpoisoning since it's from the ArtMethod. // Note this LoadRef() does not include read barrier. It will be handled below. // // scratchRegister = *method[DeclaringClassOffset()]; __ LoadRef(main_jni_conv->InterproceduralScratchRegister(), mr_conv->MethodRegister(), ArtMethod::DeclaringClassOffset(), false); __ VerifyObject(main_jni_conv->InterproceduralScratchRegister(), false); // *handleScopeOffset = scratchRegister __ StoreRef(handle_scope_offset, main_jni_conv->InterproceduralScratchRegister()); main_jni_conv->Next(); // in handle scope so move to next argument } // Place every reference into the handle scope (ignore other parameters). while (mr_conv->HasNext()) { CHECK(main_jni_conv->HasNext()); bool ref_param = main_jni_conv->IsCurrentParamAReference(); CHECK(!ref_param || mr_conv->IsCurrentParamAReference()); // References need placing in handle scope and the entry value passing if (ref_param) { // Compute handle scope entry, note null is placed in the handle scope but its boxed value // must be null. FrameOffset handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset(); // Check handle scope offset is within frame and doesn't run into the saved segment state. CHECK_LT(handle_scope_offset.Uint32Value(), frame_size); CHECK_NE(handle_scope_offset.Uint32Value(), main_jni_conv->SavedLocalReferenceCookieOffset().Uint32Value()); bool input_in_reg = mr_conv->IsCurrentParamInRegister(); bool input_on_stack = mr_conv->IsCurrentParamOnStack(); CHECK(input_in_reg || input_on_stack); if (input_in_reg) { ManagedRegister in_reg = mr_conv->CurrentParamRegister(); __ VerifyObject(in_reg, mr_conv->IsCurrentArgPossiblyNull()); __ StoreRef(handle_scope_offset, in_reg); } else if (input_on_stack) { FrameOffset in_off = mr_conv->CurrentParamStackOffset(); __ VerifyObject(in_off, mr_conv->IsCurrentArgPossiblyNull()); __ CopyRef(handle_scope_offset, in_off, mr_conv->InterproceduralScratchRegister()); } } mr_conv->Next(); main_jni_conv->Next(); } // 4. Write out the end of the quick frames. __ StoreStackPointerToThread(Thread::TopOfManagedStackOffset()); // NOTE: @CriticalNative does not need to store the stack pointer to the thread // because garbage collections are disabled within the execution of a // @CriticalNative method. // (TODO: We could probably disable it for @FastNative too). } // if (!is_critical_native) // 5. Move frame down to allow space for out going args. const size_t main_out_arg_size = main_jni_conv->OutArgSize(); size_t current_out_arg_size = main_out_arg_size; __ IncreaseFrameSize(main_out_arg_size); // Call the read barrier for the declaring class loaded from the method for a static call. // Skip this for @CriticalNative because we didn't build a HandleScope to begin with. // Note that we always have outgoing param space available for at least two params. if (kUseReadBarrier && is_static && !is_critical_native) { const bool kReadBarrierFastPath = (instruction_set != InstructionSet::kMips) && (instruction_set != InstructionSet::kMips64); std::unique_ptr skip_cold_path_label; if (kReadBarrierFastPath) { skip_cold_path_label = __ CreateLabel(); // Fast path for supported targets. // // Check if gc_is_marking is set -- if it's not, we don't need // a read barrier so skip it. __ LoadFromThread(main_jni_conv->InterproceduralScratchRegister(), Thread::IsGcMarkingOffset(), Thread::IsGcMarkingSize()); // Jump over the slow path if gc is marking is false. __ Jump(skip_cold_path_label.get(), JNIMacroUnaryCondition::kZero, main_jni_conv->InterproceduralScratchRegister()); } // Construct slow path for read barrier: // // Call into the runtime's ReadBarrierJni and have it fix up // the object address if it was moved. ThreadOffset read_barrier = QUICK_ENTRYPOINT_OFFSET(kPointerSize, pReadBarrierJni); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); main_jni_conv->Next(); // Skip JNIEnv. FrameOffset class_handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset(); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); // Pass the handle for the class as the first argument. if (main_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = main_jni_conv->CurrentParamStackOffset(); __ CreateHandleScopeEntry(out_off, class_handle_scope_offset, mr_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = main_jni_conv->CurrentParamRegister(); __ CreateHandleScopeEntry(out_reg, class_handle_scope_offset, ManagedRegister::NoRegister(), false); } main_jni_conv->Next(); // Pass the current thread as the second argument and call. if (main_jni_conv->IsCurrentParamInRegister()) { __ GetCurrentThread(main_jni_conv->CurrentParamRegister()); __ Call(main_jni_conv->CurrentParamRegister(), Offset(read_barrier), main_jni_conv->InterproceduralScratchRegister()); } else { __ GetCurrentThread(main_jni_conv->CurrentParamStackOffset(), main_jni_conv->InterproceduralScratchRegister()); __ CallFromThread(read_barrier, main_jni_conv->InterproceduralScratchRegister()); } main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); // Reset. if (kReadBarrierFastPath) { __ Bind(skip_cold_path_label.get()); } } // 6. Call into appropriate JniMethodStart passing Thread* so that transition out of Runnable // can occur. The result is the saved JNI local state that is restored by the exit call. We // abuse the JNI calling convention here, that is guaranteed to support passing 2 pointer // arguments. FrameOffset locked_object_handle_scope_offset(0xBEEFDEAD); if (LIKELY(!is_critical_native)) { // Skip this for @CriticalNative methods. They do not call JniMethodStart. ThreadOffset jni_start( GetJniEntrypointThreadOffset(JniEntrypoint::kStart, reference_return, is_synchronized, is_fast_native).SizeValue()); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); locked_object_handle_scope_offset = FrameOffset(0); if (is_synchronized) { // Pass object for locking. main_jni_conv->Next(); // Skip JNIEnv. locked_object_handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset(); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); if (main_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = main_jni_conv->CurrentParamStackOffset(); __ CreateHandleScopeEntry(out_off, locked_object_handle_scope_offset, mr_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = main_jni_conv->CurrentParamRegister(); __ CreateHandleScopeEntry(out_reg, locked_object_handle_scope_offset, ManagedRegister::NoRegister(), false); } main_jni_conv->Next(); } if (main_jni_conv->IsCurrentParamInRegister()) { __ GetCurrentThread(main_jni_conv->CurrentParamRegister()); __ Call(main_jni_conv->CurrentParamRegister(), Offset(jni_start), main_jni_conv->InterproceduralScratchRegister()); } else { __ GetCurrentThread(main_jni_conv->CurrentParamStackOffset(), main_jni_conv->InterproceduralScratchRegister()); __ CallFromThread(jni_start, main_jni_conv->InterproceduralScratchRegister()); } if (is_synchronized) { // Check for exceptions from monitor enter. __ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), main_out_arg_size); } } // Store into stack_frame[saved_cookie_offset] the return value of JniMethodStart. FrameOffset saved_cookie_offset( FrameOffset(0xDEADBEEFu)); // @CriticalNative - use obviously bad value for debugging if (LIKELY(!is_critical_native)) { saved_cookie_offset = main_jni_conv->SavedLocalReferenceCookieOffset(); __ Store(saved_cookie_offset, main_jni_conv->IntReturnRegister(), 4 /* sizeof cookie */); } // 7. Iterate over arguments placing values from managed calling convention in // to the convention required for a native call (shuffling). For references // place an index/pointer to the reference after checking whether it is // null (which must be encoded as null). // Note: we do this prior to materializing the JNIEnv* and static's jclass to // give as many free registers for the shuffle as possible. mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size)); uint32_t args_count = 0; while (mr_conv->HasNext()) { args_count++; mr_conv->Next(); } // Do a backward pass over arguments, so that the generated code will be "mov // R2, R3; mov R1, R2" instead of "mov R1, R2; mov R2, R3." // TODO: A reverse iterator to improve readability. for (uint32_t i = 0; i < args_count; ++i) { mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size)); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); // Skip the extra JNI parameters for now. if (LIKELY(!is_critical_native)) { main_jni_conv->Next(); // Skip JNIEnv*. if (is_static) { main_jni_conv->Next(); // Skip Class for now. } } // Skip to the argument we're interested in. for (uint32_t j = 0; j < args_count - i - 1; ++j) { mr_conv->Next(); main_jni_conv->Next(); } CopyParameter(jni_asm.get(), mr_conv.get(), main_jni_conv.get(), frame_size, main_out_arg_size); } if (is_static && !is_critical_native) { // Create argument for Class mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size)); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); main_jni_conv->Next(); // Skip JNIEnv* FrameOffset handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset(); if (main_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = main_jni_conv->CurrentParamStackOffset(); __ CreateHandleScopeEntry(out_off, handle_scope_offset, mr_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = main_jni_conv->CurrentParamRegister(); __ CreateHandleScopeEntry(out_reg, handle_scope_offset, ManagedRegister::NoRegister(), false); } } // Set the iterator back to the incoming Method*. main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); if (LIKELY(!is_critical_native)) { // 8. Create 1st argument, the JNI environment ptr. // Register that will hold local indirect reference table if (main_jni_conv->IsCurrentParamInRegister()) { ManagedRegister jni_env = main_jni_conv->CurrentParamRegister(); DCHECK(!jni_env.Equals(main_jni_conv->InterproceduralScratchRegister())); __ LoadRawPtrFromThread(jni_env, Thread::JniEnvOffset()); } else { FrameOffset jni_env = main_jni_conv->CurrentParamStackOffset(); __ CopyRawPtrFromThread(jni_env, Thread::JniEnvOffset(), main_jni_conv->InterproceduralScratchRegister()); } } // 9. Plant call to native code associated with method. MemberOffset jni_entrypoint_offset = ArtMethod::EntryPointFromJniOffset(InstructionSetPointerSize(instruction_set)); // FIXME: Not sure if MethodStackOffset will work here. What does it even do? __ Call(main_jni_conv->MethodStackOffset(), jni_entrypoint_offset, // XX: Why not the jni conv scratch register? mr_conv->InterproceduralScratchRegister()); // 10. Fix differences in result widths. if (main_jni_conv->RequiresSmallResultTypeExtension()) { if (main_jni_conv->GetReturnType() == Primitive::kPrimByte || main_jni_conv->GetReturnType() == Primitive::kPrimShort) { __ SignExtend(main_jni_conv->ReturnRegister(), Primitive::ComponentSize(main_jni_conv->GetReturnType())); } else if (main_jni_conv->GetReturnType() == Primitive::kPrimBoolean || main_jni_conv->GetReturnType() == Primitive::kPrimChar) { __ ZeroExtend(main_jni_conv->ReturnRegister(), Primitive::ComponentSize(main_jni_conv->GetReturnType())); } } // 11. Process return value FrameOffset return_save_location = main_jni_conv->ReturnValueSaveLocation(); if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) { if (LIKELY(!is_critical_native)) { // For normal JNI, store the return value on the stack because the call to // JniMethodEnd will clobber the return value. It will be restored in (13). if ((instruction_set == InstructionSet::kMips || instruction_set == InstructionSet::kMips64) && main_jni_conv->GetReturnType() == Primitive::kPrimDouble && return_save_location.Uint32Value() % 8 != 0) { // Ensure doubles are 8-byte aligned for MIPS return_save_location = FrameOffset(return_save_location.Uint32Value() + static_cast(kMipsPointerSize)); // TODO: refactor this into the JniCallingConvention code // as a return value alignment requirement. } CHECK_LT(return_save_location.Uint32Value(), frame_size + main_out_arg_size); __ Store(return_save_location, main_jni_conv->ReturnRegister(), main_jni_conv->SizeOfReturnValue()); } else { // For @CriticalNative only, // move the JNI return register into the managed return register (if they don't match). ManagedRegister jni_return_reg = main_jni_conv->ReturnRegister(); ManagedRegister mr_return_reg = mr_conv->ReturnRegister(); // Check if the JNI return register matches the managed return register. // If they differ, only then do we have to do anything about it. // Otherwise the return value is already in the right place when we return. if (!jni_return_reg.Equals(mr_return_reg)) { // This is typically only necessary on ARM32 due to native being softfloat // while managed is hardfloat. // -- For example VMOV {r0, r1} -> D0; VMOV r0 -> S0. __ Move(mr_return_reg, jni_return_reg, main_jni_conv->SizeOfReturnValue()); } else if (jni_return_reg.IsNoRegister() && mr_return_reg.IsNoRegister()) { // Sanity check: If the return value is passed on the stack for some reason, // then make sure the size matches. CHECK_EQ(main_jni_conv->SizeOfReturnValue(), mr_conv->SizeOfReturnValue()); } } } // Increase frame size for out args if needed by the end_jni_conv. const size_t end_out_arg_size = end_jni_conv->OutArgSize(); if (end_out_arg_size > current_out_arg_size) { size_t out_arg_size_diff = end_out_arg_size - current_out_arg_size; current_out_arg_size = end_out_arg_size; // TODO: This is redundant for @CriticalNative but we need to // conditionally do __DecreaseFrameSize below. __ IncreaseFrameSize(out_arg_size_diff); saved_cookie_offset = FrameOffset(saved_cookie_offset.SizeValue() + out_arg_size_diff); locked_object_handle_scope_offset = FrameOffset(locked_object_handle_scope_offset.SizeValue() + out_arg_size_diff); return_save_location = FrameOffset(return_save_location.SizeValue() + out_arg_size_diff); } // thread. end_jni_conv->ResetIterator(FrameOffset(end_out_arg_size)); if (LIKELY(!is_critical_native)) { // 12. Call JniMethodEnd ThreadOffset jni_end( GetJniEntrypointThreadOffset(JniEntrypoint::kEnd, reference_return, is_synchronized, is_fast_native).SizeValue()); if (reference_return) { // Pass result. SetNativeParameter(jni_asm.get(), end_jni_conv.get(), end_jni_conv->ReturnRegister()); end_jni_conv->Next(); } // Pass saved local reference state. if (end_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = end_jni_conv->CurrentParamStackOffset(); __ Copy(out_off, saved_cookie_offset, end_jni_conv->InterproceduralScratchRegister(), 4); } else { ManagedRegister out_reg = end_jni_conv->CurrentParamRegister(); __ Load(out_reg, saved_cookie_offset, 4); } end_jni_conv->Next(); if (is_synchronized) { // Pass object for unlocking. if (end_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = end_jni_conv->CurrentParamStackOffset(); __ CreateHandleScopeEntry(out_off, locked_object_handle_scope_offset, end_jni_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = end_jni_conv->CurrentParamRegister(); __ CreateHandleScopeEntry(out_reg, locked_object_handle_scope_offset, ManagedRegister::NoRegister(), false); } end_jni_conv->Next(); } if (end_jni_conv->IsCurrentParamInRegister()) { __ GetCurrentThread(end_jni_conv->CurrentParamRegister()); __ Call(end_jni_conv->CurrentParamRegister(), Offset(jni_end), end_jni_conv->InterproceduralScratchRegister()); } else { __ GetCurrentThread(end_jni_conv->CurrentParamStackOffset(), end_jni_conv->InterproceduralScratchRegister()); __ CallFromThread(jni_end, end_jni_conv->InterproceduralScratchRegister()); } // 13. Reload return value if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) { __ Load(mr_conv->ReturnRegister(), return_save_location, mr_conv->SizeOfReturnValue()); // NIT: If it's @CriticalNative then we actually only need to do this IF // the calling convention's native return register doesn't match the managed convention's // return register. } } // if (!is_critical_native) // 14. Move frame up now we're done with the out arg space. __ DecreaseFrameSize(current_out_arg_size); // 15. Process pending exceptions from JNI call or monitor exit. __ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), 0 /* stack_adjust */); // 16. Remove activation - need to restore callee save registers since the GC may have changed // them. DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast(frame_size)); // We expect the compiled method to possibly be suspended during its // execution, except in the case of a CriticalNative method. bool may_suspend = !is_critical_native; __ RemoveFrame(frame_size, callee_save_regs, may_suspend); DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast(frame_size)); // 17. Finalize code generation __ FinalizeCode(); size_t cs = __ CodeSize(); std::vector managed_code(cs); MemoryRegion code(&managed_code[0], managed_code.size()); __ FinalizeInstructions(code); return JniCompiledMethod(instruction_set, std::move(managed_code), frame_size, main_jni_conv->CoreSpillMask(), main_jni_conv->FpSpillMask(), ArrayRef(*jni_asm->cfi().data())); } // Copy a single parameter from the managed to the JNI calling convention. template static void CopyParameter(JNIMacroAssembler* jni_asm, ManagedRuntimeCallingConvention* mr_conv, JniCallingConvention* jni_conv, size_t frame_size, size_t out_arg_size) { bool input_in_reg = mr_conv->IsCurrentParamInRegister(); bool output_in_reg = jni_conv->IsCurrentParamInRegister(); FrameOffset handle_scope_offset(0); bool null_allowed = false; bool ref_param = jni_conv->IsCurrentParamAReference(); CHECK(!ref_param || mr_conv->IsCurrentParamAReference()); // input may be in register, on stack or both - but not none! CHECK(input_in_reg || mr_conv->IsCurrentParamOnStack()); if (output_in_reg) { // output shouldn't straddle registers and stack CHECK(!jni_conv->IsCurrentParamOnStack()); } else { CHECK(jni_conv->IsCurrentParamOnStack()); } // References need placing in handle scope and the entry address passing. if (ref_param) { null_allowed = mr_conv->IsCurrentArgPossiblyNull(); // Compute handle scope offset. Note null is placed in the handle scope but the jobject // passed to the native code must be null (not a pointer into the handle scope // as with regular references). handle_scope_offset = jni_conv->CurrentParamHandleScopeEntryOffset(); // Check handle scope offset is within frame. CHECK_LT(handle_scope_offset.Uint32Value(), (frame_size + out_arg_size)); } if (input_in_reg && output_in_reg) { ManagedRegister in_reg = mr_conv->CurrentParamRegister(); ManagedRegister out_reg = jni_conv->CurrentParamRegister(); if (ref_param) { __ CreateHandleScopeEntry(out_reg, handle_scope_offset, in_reg, null_allowed); } else { if (!mr_conv->IsCurrentParamOnStack()) { // regular non-straddling move __ Move(out_reg, in_reg, mr_conv->CurrentParamSize()); } else { UNIMPLEMENTED(FATAL); // we currently don't expect to see this case } } } else if (!input_in_reg && !output_in_reg) { FrameOffset out_off = jni_conv->CurrentParamStackOffset(); if (ref_param) { __ CreateHandleScopeEntry(out_off, handle_scope_offset, mr_conv->InterproceduralScratchRegister(), null_allowed); } else { FrameOffset in_off = mr_conv->CurrentParamStackOffset(); size_t param_size = mr_conv->CurrentParamSize(); CHECK_EQ(param_size, jni_conv->CurrentParamSize()); __ Copy(out_off, in_off, mr_conv->InterproceduralScratchRegister(), param_size); } } else if (!input_in_reg && output_in_reg) { FrameOffset in_off = mr_conv->CurrentParamStackOffset(); ManagedRegister out_reg = jni_conv->CurrentParamRegister(); // Check that incoming stack arguments are above the current stack frame. CHECK_GT(in_off.Uint32Value(), frame_size); if (ref_param) { __ CreateHandleScopeEntry(out_reg, handle_scope_offset, ManagedRegister::NoRegister(), null_allowed); } else { size_t param_size = mr_conv->CurrentParamSize(); CHECK_EQ(param_size, jni_conv->CurrentParamSize()); __ Load(out_reg, in_off, param_size); } } else { CHECK(input_in_reg && !output_in_reg); ManagedRegister in_reg = mr_conv->CurrentParamRegister(); FrameOffset out_off = jni_conv->CurrentParamStackOffset(); // Check outgoing argument is within frame CHECK_LT(out_off.Uint32Value(), frame_size); if (ref_param) { // TODO: recycle value in in_reg rather than reload from handle scope __ CreateHandleScopeEntry(out_off, handle_scope_offset, mr_conv->InterproceduralScratchRegister(), null_allowed); } else { size_t param_size = mr_conv->CurrentParamSize(); CHECK_EQ(param_size, jni_conv->CurrentParamSize()); if (!mr_conv->IsCurrentParamOnStack()) { // regular non-straddling store __ Store(out_off, in_reg, param_size); } else { // store where input straddles registers and stack CHECK_EQ(param_size, 8u); FrameOffset in_off = mr_conv->CurrentParamStackOffset(); __ StoreSpanning(out_off, in_reg, in_off, mr_conv->InterproceduralScratchRegister()); } } } } template static void SetNativeParameter(JNIMacroAssembler* jni_asm, JniCallingConvention* jni_conv, ManagedRegister in_reg) { if (jni_conv->IsCurrentParamOnStack()) { FrameOffset dest = jni_conv->CurrentParamStackOffset(); __ StoreRawPtr(dest, in_reg); } else { if (!jni_conv->CurrentParamRegister().Equals(in_reg)) { __ Move(jni_conv->CurrentParamRegister(), in_reg, jni_conv->CurrentParamSize()); } } } JniCompiledMethod ArtQuickJniCompileMethod(CompilerDriver* compiler, uint32_t access_flags, uint32_t method_idx, const DexFile& dex_file) { if (Is64BitInstructionSet(compiler->GetInstructionSet())) { return ArtJniCompileMethodInternal( compiler, access_flags, method_idx, dex_file); } else { return ArtJniCompileMethodInternal( compiler, access_flags, method_idx, dex_file); } } } // namespace art