/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS64_H_ #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS64_H_ #include "code_generator.h" #include "dex/type_reference.h" #include "driver/compiler_options.h" #include "nodes.h" #include "parallel_move_resolver.h" #include "utils/mips64/assembler_mips64.h" namespace art { namespace mips64 { // InvokeDexCallingConvention registers static constexpr GpuRegister kParameterCoreRegisters[] = { A1, A2, A3, A4, A5, A6, A7 }; static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters); static constexpr FpuRegister kParameterFpuRegisters[] = { F13, F14, F15, F16, F17, F18, F19 }; static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters); // InvokeRuntimeCallingConvention registers static constexpr GpuRegister kRuntimeParameterCoreRegisters[] = { A0, A1, A2, A3, A4, A5, A6, A7 }; static constexpr size_t kRuntimeParameterCoreRegistersLength = arraysize(kRuntimeParameterCoreRegisters); static constexpr FpuRegister kRuntimeParameterFpuRegisters[] = { F12, F13, F14, F15, F16, F17, F18, F19 }; static constexpr size_t kRuntimeParameterFpuRegistersLength = arraysize(kRuntimeParameterFpuRegisters); static constexpr GpuRegister kCoreCalleeSaves[] = { S0, S1, S2, S3, S4, S5, S6, S7, GP, S8, RA }; static constexpr FpuRegister kFpuCalleeSaves[] = { F24, F25, F26, F27, F28, F29, F30, F31 }; class CodeGeneratorMIPS64; VectorRegister VectorRegisterFrom(Location location); class InvokeDexCallingConvention : public CallingConvention { public: InvokeDexCallingConvention() : CallingConvention(kParameterCoreRegisters, kParameterCoreRegistersLength, kParameterFpuRegisters, kParameterFpuRegistersLength, kMips64PointerSize) {} private: DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention); }; class InvokeDexCallingConventionVisitorMIPS64 : public InvokeDexCallingConventionVisitor { public: InvokeDexCallingConventionVisitorMIPS64() {} virtual ~InvokeDexCallingConventionVisitorMIPS64() {} Location GetNextLocation(DataType::Type type) OVERRIDE; Location GetReturnLocation(DataType::Type type) const OVERRIDE; Location GetMethodLocation() const OVERRIDE; private: InvokeDexCallingConvention calling_convention; DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorMIPS64); }; class InvokeRuntimeCallingConvention : public CallingConvention { public: InvokeRuntimeCallingConvention() : CallingConvention(kRuntimeParameterCoreRegisters, kRuntimeParameterCoreRegistersLength, kRuntimeParameterFpuRegisters, kRuntimeParameterFpuRegistersLength, kMips64PointerSize) {} Location GetReturnLocation(DataType::Type return_type); private: DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention); }; class FieldAccessCallingConventionMIPS64 : public FieldAccessCallingConvention { public: FieldAccessCallingConventionMIPS64() {} Location GetObjectLocation() const OVERRIDE { return Location::RegisterLocation(A1); } Location GetFieldIndexLocation() const OVERRIDE { return Location::RegisterLocation(A0); } Location GetReturnLocation(DataType::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return Location::RegisterLocation(V0); } Location GetSetValueLocation(DataType::Type type ATTRIBUTE_UNUSED, bool is_instance) const OVERRIDE { return is_instance ? Location::RegisterLocation(A2) : Location::RegisterLocation(A1); } Location GetFpuLocation(DataType::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return Location::FpuRegisterLocation(F0); } private: DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionMIPS64); }; class ParallelMoveResolverMIPS64 : public ParallelMoveResolverWithSwap { public: ParallelMoveResolverMIPS64(ArenaAllocator* allocator, CodeGeneratorMIPS64* codegen) : ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {} void EmitMove(size_t index) OVERRIDE; void EmitSwap(size_t index) OVERRIDE; void SpillScratch(int reg) OVERRIDE; void RestoreScratch(int reg) OVERRIDE; void Exchange(int index1, int index2, bool double_slot); void ExchangeQuadSlots(int index1, int index2); Mips64Assembler* GetAssembler() const; private: CodeGeneratorMIPS64* const codegen_; DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverMIPS64); }; class SlowPathCodeMIPS64 : public SlowPathCode { public: explicit SlowPathCodeMIPS64(HInstruction* instruction) : SlowPathCode(instruction), entry_label_(), exit_label_() {} Mips64Label* GetEntryLabel() { return &entry_label_; } Mips64Label* GetExitLabel() { return &exit_label_; } private: Mips64Label entry_label_; Mips64Label exit_label_; DISALLOW_COPY_AND_ASSIGN(SlowPathCodeMIPS64); }; class LocationsBuilderMIPS64 : public HGraphVisitor { public: LocationsBuilderMIPS64(HGraph* graph, CodeGeneratorMIPS64* codegen) : HGraphVisitor(graph), codegen_(codegen) {} #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } private: void HandleInvoke(HInvoke* invoke); void HandleBinaryOp(HBinaryOperation* operation); void HandleCondition(HCondition* instruction); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info); Location RegisterOrZeroConstant(HInstruction* instruction); Location FpuRegisterOrConstantForStore(HInstruction* instruction); InvokeDexCallingConventionVisitorMIPS64 parameter_visitor_; CodeGeneratorMIPS64* const codegen_; DISALLOW_COPY_AND_ASSIGN(LocationsBuilderMIPS64); }; class InstructionCodeGeneratorMIPS64 : public InstructionCodeGenerator { public: InstructionCodeGeneratorMIPS64(HGraph* graph, CodeGeneratorMIPS64* codegen); #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } Mips64Assembler* GetAssembler() const { return assembler_; } // Compare-and-jump packed switch generates approx. 3 + 2.5 * N 32-bit // instructions for N cases. // Table-based packed switch generates approx. 11 32-bit instructions // and N 32-bit data words for N cases. // At N = 6 they come out as 18 and 17 32-bit words respectively. // We switch to the table-based method starting with 7 cases. static constexpr uint32_t kPackedSwitchJumpTableThreshold = 6; void GenerateMemoryBarrier(MemBarrierKind kind); private: void GenerateClassInitializationCheck(SlowPathCodeMIPS64* slow_path, GpuRegister class_reg); void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor); void HandleBinaryOp(HBinaryOperation* operation); void HandleCondition(HCondition* instruction); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info); // Generate a heap reference load using one register `out`: // // out <- *(out + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a read barrier and // shall be a register in that case; it may be an invalid location // otherwise. void GenerateReferenceLoadOneRegister(HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option); // Generate a heap reference load using two different registers // `out` and `obj`: // // out <- *(obj + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a Baker's (fast // path) read barrier and shall be a register in that case; it may // be an invalid location otherwise. void GenerateReferenceLoadTwoRegisters(HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option); // Generate a GC root reference load: // // root <- *(obj + offset) // // while honoring read barriers (if any). void GenerateGcRootFieldLoad(HInstruction* instruction, Location root, GpuRegister obj, uint32_t offset, ReadBarrierOption read_barrier_option, Mips64Label* label_low = nullptr); void GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, Mips64Label* true_target, Mips64Label* false_target); void DivRemOneOrMinusOne(HBinaryOperation* instruction); void DivRemByPowerOfTwo(HBinaryOperation* instruction); void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction); void GenerateDivRemIntegral(HBinaryOperation* instruction); void GenerateIntLongCompare(IfCondition cond, bool is64bit, LocationSummary* locations); // When the function returns `false` it means that the condition holds if `dst` is non-zero // and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero // `dst` are exchanged. bool MaterializeIntLongCompare(IfCondition cond, bool is64bit, LocationSummary* input_locations, GpuRegister dst); void GenerateIntLongCompareAndBranch(IfCondition cond, bool is64bit, LocationSummary* locations, Mips64Label* label); void GenerateFpCompare(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* locations); // When the function returns `false` it means that the condition holds if `dst` is non-zero // and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero // `dst` are exchanged. bool MaterializeFpCompare(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* input_locations, FpuRegister dst); void GenerateFpCompareAndBranch(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* locations, Mips64Label* label); void HandleGoto(HInstruction* got, HBasicBlock* successor); void GenPackedSwitchWithCompares(GpuRegister value_reg, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block); void GenTableBasedPackedSwitch(GpuRegister value_reg, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block); int32_t VecAddress(LocationSummary* locations, size_t size, /* out */ GpuRegister* adjusted_base); void GenConditionalMove(HSelect* select); Mips64Assembler* const assembler_; CodeGeneratorMIPS64* const codegen_; DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorMIPS64); }; class CodeGeneratorMIPS64 : public CodeGenerator { public: CodeGeneratorMIPS64(HGraph* graph, const Mips64InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats = nullptr); virtual ~CodeGeneratorMIPS64() {} void GenerateFrameEntry() OVERRIDE; void GenerateFrameExit() OVERRIDE; void Bind(HBasicBlock* block) OVERRIDE; size_t GetWordSize() const OVERRIDE { return kMips64DoublewordSize; } size_t GetFloatingPointSpillSlotSize() const OVERRIDE { return GetGraph()->HasSIMD() ? 2 * kMips64DoublewordSize // 16 bytes for each spill. : 1 * kMips64DoublewordSize; // 8 bytes for each spill. } uintptr_t GetAddressOf(HBasicBlock* block) OVERRIDE { return assembler_.GetLabelLocation(GetLabelOf(block)); } HGraphVisitor* GetLocationBuilder() OVERRIDE { return &location_builder_; } HGraphVisitor* GetInstructionVisitor() OVERRIDE { return &instruction_visitor_; } Mips64Assembler* GetAssembler() OVERRIDE { return &assembler_; } const Mips64Assembler& GetAssembler() const OVERRIDE { return assembler_; } // Emit linker patches. void EmitLinkerPatches(ArenaVector* linker_patches) OVERRIDE; void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) OVERRIDE; // Fast path implementation of ReadBarrier::Barrier for a heap // reference field load when Baker's read barriers are used. void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, GpuRegister obj, uint32_t offset, Location temp, bool needs_null_check); // Fast path implementation of ReadBarrier::Barrier for a heap // reference array load when Baker's read barriers are used. void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, GpuRegister obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check); // Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier, // GenerateArrayLoadWithBakerReadBarrier and some intrinsics. // // Load the object reference located at the address // `obj + offset + (index << scale_factor)`, held by object `obj`, into // `ref`, and mark it if needed. // // If `always_update_field` is true, the value of the reference is // atomically updated in the holder (`obj`). void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, GpuRegister obj, uint32_t offset, Location index, ScaleFactor scale_factor, Location temp, bool needs_null_check, bool always_update_field = false); // Generate a read barrier for a heap reference within `instruction` // using a slow path. // // A read barrier for an object reference read from the heap is // implemented as a call to the artReadBarrierSlow runtime entry // point, which is passed the values in locations `ref`, `obj`, and // `offset`: // // mirror::Object* artReadBarrierSlow(mirror::Object* ref, // mirror::Object* obj, // uint32_t offset); // // The `out` location contains the value returned by // artReadBarrierSlow. // // When `index` is provided (i.e. for array accesses), the offset // value passed to artReadBarrierSlow is adjusted to take `index` // into account. void GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // If read barriers are enabled, generate a read barrier for a heap // reference using a slow path. If heap poisoning is enabled, also // unpoison the reference in `out`. void MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // Generate a read barrier for a GC root within `instruction` using // a slow path. // // A read barrier for an object reference GC root is implemented as // a call to the artReadBarrierForRootSlow runtime entry point, // which is passed the value in location `root`: // // mirror::Object* artReadBarrierForRootSlow(GcRoot* root); // // The `out` location contains the value returned by // artReadBarrierForRootSlow. void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root); void MarkGCCard(GpuRegister object, GpuRegister value, bool value_can_be_null); // Register allocation. void SetupBlockedRegisters() const OVERRIDE; size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; void DumpCoreRegister(std::ostream& stream, int reg) const OVERRIDE; void DumpFloatingPointRegister(std::ostream& stream, int reg) const OVERRIDE; InstructionSet GetInstructionSet() const OVERRIDE { return InstructionSet::kMips64; } const Mips64InstructionSetFeatures& GetInstructionSetFeatures() const { return isa_features_; } Mips64Label* GetLabelOf(HBasicBlock* block) const { return CommonGetLabelOf(block_labels_, block); } void Initialize() OVERRIDE { block_labels_ = CommonInitializeLabels(); } // We prefer aligned loads and stores (less code), so spill and restore registers in slow paths // at aligned locations. uint32_t GetPreferredSlotsAlignment() const OVERRIDE { return kMips64DoublewordSize; } void Finalize(CodeAllocator* allocator) OVERRIDE; // Code generation helpers. void MoveLocation(Location dst, Location src, DataType::Type dst_type) OVERRIDE; void MoveConstant(Location destination, int32_t value) OVERRIDE; void AddLocationAsTemp(Location location, LocationSummary* locations) OVERRIDE; void SwapLocations(Location loc1, Location loc2, DataType::Type type); // Generate code to invoke a runtime entry point. void InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr) OVERRIDE; // Generate code to invoke a runtime entry point, but do not record // PC-related information in a stack map. void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path); void GenerateInvokeRuntime(int32_t entry_point_offset); ParallelMoveResolver* GetMoveResolver() OVERRIDE { return &move_resolver_; } bool NeedsTwoRegisters(DataType::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return false; } // Check if the desired_string_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadString::LoadKind GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) OVERRIDE; // Check if the desired_class_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadClass::LoadKind GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) OVERRIDE; // Check if the desired_dispatch_info is supported. If it is, return it, // otherwise return a fall-back info that should be used instead. HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, HInvokeStaticOrDirect* invoke) OVERRIDE; void GenerateStaticOrDirectCall( HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) OVERRIDE; void GenerateVirtualCall( HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) OVERRIDE; void MoveFromReturnRegister(Location trg ATTRIBUTE_UNUSED, DataType::Type type ATTRIBUTE_UNUSED) OVERRIDE { UNIMPLEMENTED(FATAL) << "Not implemented on MIPS64"; } void GenerateNop() OVERRIDE; void GenerateImplicitNullCheck(HNullCheck* instruction) OVERRIDE; void GenerateExplicitNullCheck(HNullCheck* instruction) OVERRIDE; // The PcRelativePatchInfo is used for PC-relative addressing of methods/strings/types, // whether through .data.bimg.rel.ro, .bss, or directly in the boot image. // // The 16-bit halves of the 32-bit PC-relative offset are patched separately, necessitating // two patches/infos. There can be more than two patches/infos if the instruction supplying // the high half is shared with e.g. a slow path, while the low half is supplied by separate // instructions, e.g.: // auipc r1, high // patch // lwu r2, low(r1) // patch // beqzc r2, slow_path // back: // ... // slow_path: // ... // sw r2, low(r1) // patch // bc back struct PcRelativePatchInfo : PatchInfo { PcRelativePatchInfo(const DexFile* dex_file, uint32_t off_or_idx, const PcRelativePatchInfo* info_high) : PatchInfo(dex_file, off_or_idx), patch_info_high(info_high) { } // Pointer to the info for the high half patch or nullptr if this is the high half patch info. const PcRelativePatchInfo* patch_info_high; private: PcRelativePatchInfo(PcRelativePatchInfo&& other) = delete; DISALLOW_COPY_AND_ASSIGN(PcRelativePatchInfo); }; PcRelativePatchInfo* NewBootImageMethodPatch(MethodReference target_method, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewMethodBssEntryPatch(MethodReference target_method, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewBootImageTypePatch(const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewTypeBssEntryPatch(const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewBootImageStringPatch(const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewStringBssEntryPatch(const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high = nullptr); Literal* DeduplicateBootImageAddressLiteral(uint64_t address); void EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high, GpuRegister out, PcRelativePatchInfo* info_low = nullptr); void PatchJitRootUse(uint8_t* code, const uint8_t* roots_data, const Literal* literal, uint64_t index_in_table) const; Literal* DeduplicateJitStringLiteral(const DexFile& dex_file, dex::StringIndex string_index, Handle handle); Literal* DeduplicateJitClassLiteral(const DexFile& dex_file, dex::TypeIndex type_index, Handle handle); private: using Uint32ToLiteralMap = ArenaSafeMap; using Uint64ToLiteralMap = ArenaSafeMap; using StringToLiteralMap = ArenaSafeMap; using TypeToLiteralMap = ArenaSafeMap; Literal* DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map); Literal* DeduplicateUint64Literal(uint64_t value); PcRelativePatchInfo* NewPcRelativePatch(const DexFile* dex_file, uint32_t offset_or_index, const PcRelativePatchInfo* info_high, ArenaDeque* patches); template void EmitPcRelativeLinkerPatches(const ArenaDeque& infos, ArenaVector* linker_patches); // Labels for each block that will be compiled. Mips64Label* block_labels_; // Indexed by block id. Mips64Label frame_entry_label_; LocationsBuilderMIPS64 location_builder_; InstructionCodeGeneratorMIPS64 instruction_visitor_; ParallelMoveResolverMIPS64 move_resolver_; Mips64Assembler assembler_; const Mips64InstructionSetFeatures& isa_features_; // Deduplication map for 32-bit literals, used for non-patchable boot image addresses. Uint32ToLiteralMap uint32_literals_; // Deduplication map for 64-bit literals, used for non-patchable method address or method code // address. Uint64ToLiteralMap uint64_literals_; // PC-relative method patch info for kBootImageLinkTimePcRelative. ArenaDeque boot_image_method_patches_; // PC-relative method patch info for kBssEntry. ArenaDeque method_bss_entry_patches_; // PC-relative type patch info for kBootImageLinkTimePcRelative. ArenaDeque boot_image_type_patches_; // PC-relative type patch info for kBssEntry. ArenaDeque type_bss_entry_patches_; // PC-relative String patch info; type depends on configuration (intern table or boot image PIC). ArenaDeque boot_image_string_patches_; // PC-relative type patch info for kBssEntry. ArenaDeque string_bss_entry_patches_; // Patches for string root accesses in JIT compiled code. StringToLiteralMap jit_string_patches_; // Patches for class root accesses in JIT compiled code. TypeToLiteralMap jit_class_patches_; DISALLOW_COPY_AND_ASSIGN(CodeGeneratorMIPS64); }; } // namespace mips64 } // namespace art #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS64_H_