/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_mips64.h" #include "arch/mips64/instruction_set_features_mips64.h" #include "art_method.h" #include "code_generator_mips64.h" #include "entrypoints/quick/quick_entrypoints.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include "utils/mips64/assembler_mips64.h" #include "utils/mips64/constants_mips64.h" namespace art { namespace mips64 { IntrinsicLocationsBuilderMIPS64::IntrinsicLocationsBuilderMIPS64(CodeGeneratorMIPS64* codegen) : codegen_(codegen), allocator_(codegen->GetGraph()->GetAllocator()) { } Mips64Assembler* IntrinsicCodeGeneratorMIPS64::GetAssembler() { return reinterpret_cast(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorMIPS64::GetAllocator() { return codegen_->GetGraph()->GetAllocator(); } #define __ codegen->GetAssembler()-> static void MoveFromReturnRegister(Location trg, DataType::Type type, CodeGeneratorMIPS64* codegen) { if (!trg.IsValid()) { DCHECK_EQ(type, DataType::Type::kVoid); return; } DCHECK_NE(type, DataType::Type::kVoid); if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { GpuRegister trg_reg = trg.AsRegister(); if (trg_reg != V0) { __ Move(V0, trg_reg); } } else { FpuRegister trg_reg = trg.AsFpuRegister(); if (trg_reg != F0) { if (type == DataType::Type::kFloat32) { __ MovS(F0, trg_reg); } else { __ MovD(F0, trg_reg); } } } } static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS64* codegen) { InvokeDexCallingConventionVisitorMIPS64 calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } // Slow-path for fallback (calling the managed code to handle the // intrinsic) in an intrinsified call. This will copy the arguments // into the positions for a regular call. // // Note: The actual parameters are required to be in the locations // given by the invoke's location summary. If an intrinsic // modifies those locations before a slowpath call, they must be // restored! class IntrinsicSlowPathMIPS64 : public SlowPathCodeMIPS64 { public: explicit IntrinsicSlowPathMIPS64(HInvoke* invoke) : SlowPathCodeMIPS64(invoke), invoke_(invoke) { } void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE { CodeGeneratorMIPS64* codegen = down_cast(codegen_in); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, invoke_->GetLocations()); MoveArguments(invoke_, codegen); if (invoke_->IsInvokeStaticOrDirect()) { codegen->GenerateStaticOrDirectCall( invoke_->AsInvokeStaticOrDirect(), Location::RegisterLocation(A0), this); } else { codegen->GenerateVirtualCall( invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0), this); } // Copy the result back to the expected output. Location out = invoke_->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory. DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg())); MoveFromReturnRegister(out, invoke_->GetType(), codegen); } RestoreLiveRegisters(codegen, invoke_->GetLocations()); __ Bc(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathMIPS64"; } private: // The instruction where this slow path is happening. HInvoke* const invoke_; DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS64); }; #undef __ bool IntrinsicLocationsBuilderMIPS64::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); return res != nullptr && res->Intrinsified(); } #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { FpuRegister in = locations->InAt(0).AsFpuRegister(); GpuRegister out = locations->Out().AsRegister(); if (is64bit) { __ Dmfc1(out, in); } else { __ Mfc1(out, in); } } // long java.lang.Double.doubleToRawLongBits(double) void IntrinsicLocationsBuilderMIPS64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } // int java.lang.Float.floatToRawIntBits(float) void IntrinsicLocationsBuilderMIPS64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveIntToFP(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { GpuRegister in = locations->InAt(0).AsRegister(); FpuRegister out = locations->Out().AsFpuRegister(); if (is64bit) { __ Dmtc1(in, out); } else { __ Mtc1(in, out); } } // double java.lang.Double.longBitsToDouble(long) void IntrinsicLocationsBuilderMIPS64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } // float java.lang.Float.intBitsToFloat(int) void IntrinsicLocationsBuilderMIPS64::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } static void GenReverseBytes(LocationSummary* locations, DataType::Type type, Mips64Assembler* assembler) { GpuRegister in = locations->InAt(0).AsRegister(); GpuRegister out = locations->Out().AsRegister(); switch (type) { case DataType::Type::kInt16: __ Dsbh(out, in); __ Seh(out, out); break; case DataType::Type::kInt32: __ Rotr(out, in, 16); __ Wsbh(out, out); break; case DataType::Type::kInt64: __ Dsbh(out, in); __ Dshd(out, out); break; default: LOG(FATAL) << "Unexpected size for reverse-bytes: " << type; UNREACHABLE(); } } // int java.lang.Integer.reverseBytes(int) void IntrinsicLocationsBuilderMIPS64::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } // long java.lang.Long.reverseBytes(long) void IntrinsicLocationsBuilderMIPS64::VisitLongReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } // short java.lang.Short.reverseBytes(short) void IntrinsicLocationsBuilderMIPS64::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitShortReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } static void GenNumberOfLeadingZeroes(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { GpuRegister in = locations->InAt(0).AsRegister(); GpuRegister out = locations->Out().AsRegister(); if (is64bit) { __ Dclz(out, in); } else { __ Clz(out, in); } } // int java.lang.Integer.numberOfLeadingZeros(int i) void IntrinsicLocationsBuilderMIPS64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } // int java.lang.Long.numberOfLeadingZeros(long i) void IntrinsicLocationsBuilderMIPS64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenNumberOfTrailingZeroes(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { Location in = locations->InAt(0); Location out = locations->Out(); if (is64bit) { __ Dsbh(out.AsRegister(), in.AsRegister()); __ Dshd(out.AsRegister(), out.AsRegister()); __ Dbitswap(out.AsRegister(), out.AsRegister()); __ Dclz(out.AsRegister(), out.AsRegister()); } else { __ Rotr(out.AsRegister(), in.AsRegister(), 16); __ Wsbh(out.AsRegister(), out.AsRegister()); __ Bitswap(out.AsRegister(), out.AsRegister()); __ Clz(out.AsRegister(), out.AsRegister()); } } // int java.lang.Integer.numberOfTrailingZeros(int i) void IntrinsicLocationsBuilderMIPS64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } // int java.lang.Long.numberOfTrailingZeros(long i) void IntrinsicLocationsBuilderMIPS64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenReverse(LocationSummary* locations, DataType::Type type, Mips64Assembler* assembler) { DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); GpuRegister in = locations->InAt(0).AsRegister(); GpuRegister out = locations->Out().AsRegister(); if (type == DataType::Type::kInt32) { __ Rotr(out, in, 16); __ Wsbh(out, out); __ Bitswap(out, out); } else { __ Dsbh(out, in); __ Dshd(out, out); __ Dbitswap(out, out); } } // int java.lang.Integer.reverse(int) void IntrinsicLocationsBuilderMIPS64::VisitIntegerReverse(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerReverse(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } // long java.lang.Long.reverse(long) void IntrinsicLocationsBuilderMIPS64::VisitLongReverse(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongReverse(HInvoke* invoke) { GenReverse(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } static void GenBitCount(LocationSummary* locations, const DataType::Type type, Mips64Assembler* assembler) { GpuRegister out = locations->Out().AsRegister(); GpuRegister in = locations->InAt(0).AsRegister(); DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // // A generalization of the best bit counting method to integers of // bit-widths up to 128 (parameterized by type T) is this: // // v = v - ((v >> 1) & (T)~(T)0/3); // temp // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count // // For comparison, for 32-bit quantities, this algorithm can be executed // using 20 MIPS instructions (the calls to LoadConst32() generate two // machine instructions each for the values being used in this algorithm). // A(n unrolled) loop-based algorithm requires 25 instructions. // // For a 64-bit operand this can be performed in 24 instructions compared // to a(n unrolled) loop based algorithm which requires 38 instructions. // // There are algorithms which are faster in the cases where very few // bits are set but the algorithm here attempts to minimize the total // number of instructions executed even when a large number of bits // are set. if (type == DataType::Type::kInt32) { __ Srl(TMP, in, 1); __ LoadConst32(AT, 0x55555555); __ And(TMP, TMP, AT); __ Subu(TMP, in, TMP); __ LoadConst32(AT, 0x33333333); __ And(out, TMP, AT); __ Srl(TMP, TMP, 2); __ And(TMP, TMP, AT); __ Addu(TMP, out, TMP); __ Srl(out, TMP, 4); __ Addu(out, out, TMP); __ LoadConst32(AT, 0x0F0F0F0F); __ And(out, out, AT); __ LoadConst32(TMP, 0x01010101); __ MulR6(out, out, TMP); __ Srl(out, out, 24); } else if (type == DataType::Type::kInt64) { __ Dsrl(TMP, in, 1); __ LoadConst64(AT, 0x5555555555555555L); __ And(TMP, TMP, AT); __ Dsubu(TMP, in, TMP); __ LoadConst64(AT, 0x3333333333333333L); __ And(out, TMP, AT); __ Dsrl(TMP, TMP, 2); __ And(TMP, TMP, AT); __ Daddu(TMP, out, TMP); __ Dsrl(out, TMP, 4); __ Daddu(out, out, TMP); __ LoadConst64(AT, 0x0F0F0F0F0F0F0F0FL); __ And(out, out, AT); __ LoadConst64(TMP, 0x0101010101010101L); __ Dmul(out, out, TMP); __ Dsrl32(out, out, 24); } } // int java.lang.Integer.bitCount(int) void IntrinsicLocationsBuilderMIPS64::VisitIntegerBitCount(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } // int java.lang.Long.bitCount(long) void IntrinsicLocationsBuilderMIPS64::VisitLongBitCount(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongBitCount(HInvoke* invoke) { GenBitCount(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } static void MathAbsFP(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { FpuRegister in = locations->InAt(0).AsFpuRegister(); FpuRegister out = locations->Out().AsFpuRegister(); if (is64bit) { __ AbsD(out, in); } else { __ AbsS(out, in); } } // double java.lang.Math.abs(double) void IntrinsicLocationsBuilderMIPS64::VisitMathAbsDouble(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } // float java.lang.Math.abs(float) void IntrinsicLocationsBuilderMIPS64::VisitMathAbsFloat(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToInt(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { GpuRegister in = locations->InAt(0).AsRegister(); GpuRegister out = locations->Out().AsRegister(); if (is64bit) { __ Dsra32(AT, in, 31); __ Xor(out, in, AT); __ Dsubu(out, out, AT); } else { __ Sra(AT, in, 31); __ Xor(out, in, AT); __ Subu(out, out, AT); } } // int java.lang.Math.abs(int) void IntrinsicLocationsBuilderMIPS64::VisitMathAbsInt(HInvoke* invoke) { CreateIntToInt(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } // long java.lang.Math.abs(long) void IntrinsicLocationsBuilderMIPS64::VisitMathAbsLong(HInvoke* invoke) { CreateIntToInt(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenMinMaxFP(LocationSummary* locations, bool is_min, DataType::Type type, Mips64Assembler* assembler) { FpuRegister a = locations->InAt(0).AsFpuRegister(); FpuRegister b = locations->InAt(1).AsFpuRegister(); FpuRegister out = locations->Out().AsFpuRegister(); Mips64Label noNaNs; Mips64Label done; FpuRegister ftmp = ((out != a) && (out != b)) ? out : FTMP; // When Java computes min/max it prefers a NaN to a number; the // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of // the inputs is a NaN and the other is a valid number, the MIPS // instruction will return the number; Java wants the NaN value // returned. This is why there is extra logic preceding the use of // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a // NaN, return the NaN, otherwise return the min/max. if (type == DataType::Type::kFloat64) { __ CmpUnD(FTMP, a, b); __ Bc1eqz(FTMP, &noNaNs); // One of the inputs is a NaN __ CmpEqD(ftmp, a, a); // If a == a then b is the NaN, otherwise a is the NaN. __ SelD(ftmp, a, b); if (ftmp != out) { __ MovD(out, ftmp); } __ Bc(&done); __ Bind(&noNaNs); if (is_min) { __ MinD(out, a, b); } else { __ MaxD(out, a, b); } } else { DCHECK_EQ(type, DataType::Type::kFloat32); __ CmpUnS(FTMP, a, b); __ Bc1eqz(FTMP, &noNaNs); // One of the inputs is a NaN __ CmpEqS(ftmp, a, a); // If a == a then b is the NaN, otherwise a is the NaN. __ SelS(ftmp, a, b); if (ftmp != out) { __ MovS(out, ftmp); } __ Bc(&done); __ Bind(&noNaNs); if (is_min) { __ MinS(out, a, b); } else { __ MaxS(out, a, b); } } __ Bind(&done); } static void CreateFPFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } // double java.lang.Math.min(double, double) void IntrinsicLocationsBuilderMIPS64::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, DataType::Type::kFloat64, GetAssembler()); } // float java.lang.Math.min(float, float) void IntrinsicLocationsBuilderMIPS64::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, DataType::Type::kFloat32, GetAssembler()); } // double java.lang.Math.max(double, double) void IntrinsicLocationsBuilderMIPS64::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, DataType::Type::kFloat64, GetAssembler()); } // float java.lang.Math.max(float, float) void IntrinsicLocationsBuilderMIPS64::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, DataType::Type::kFloat32, GetAssembler()); } static void GenMinMax(LocationSummary* locations, bool is_min, Mips64Assembler* assembler) { GpuRegister lhs = locations->InAt(0).AsRegister(); GpuRegister rhs = locations->InAt(1).AsRegister(); GpuRegister out = locations->Out().AsRegister(); if (lhs == rhs) { if (out != lhs) { __ Move(out, lhs); } } else { // Some architectures, such as ARM and MIPS (prior to r6), have a // conditional move instruction which only changes the target // (output) register if the condition is true (MIPS prior to r6 had // MOVF, MOVT, and MOVZ). The SELEQZ and SELNEZ instructions always // change the target (output) register. If the condition is true the // output register gets the contents of the "rs" register; otherwise, // the output register is set to zero. One consequence of this is // that to implement something like "rd = c==0 ? rs : rt" MIPS64r6 // needs to use a pair of SELEQZ/SELNEZ instructions. After // executing this pair of instructions one of the output registers // from the pair will necessarily contain zero. Then the code ORs the // output registers from the SELEQZ/SELNEZ instructions to get the // final result. // // The initial test to see if the output register is same as the // first input register is needed to make sure that value in the // first input register isn't clobbered before we've finished // computing the output value. The logic in the corresponding else // clause performs the same task but makes sure the second input // register isn't clobbered in the event that it's the same register // as the output register; the else clause also handles the case // where the output register is distinct from both the first, and the // second input registers. if (out == lhs) { __ Slt(AT, rhs, lhs); if (is_min) { __ Seleqz(out, lhs, AT); __ Selnez(AT, rhs, AT); } else { __ Selnez(out, lhs, AT); __ Seleqz(AT, rhs, AT); } } else { __ Slt(AT, lhs, rhs); if (is_min) { __ Seleqz(out, rhs, AT); __ Selnez(AT, lhs, AT); } else { __ Selnez(out, rhs, AT); __ Seleqz(AT, lhs, AT); } } __ Or(out, out, AT); } } static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } // int java.lang.Math.min(int, int) void IntrinsicLocationsBuilderMIPS64::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, GetAssembler()); } // long java.lang.Math.min(long, long) void IntrinsicLocationsBuilderMIPS64::VisitMathMinLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, GetAssembler()); } // int java.lang.Math.max(int, int) void IntrinsicLocationsBuilderMIPS64::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, GetAssembler()); } // long java.lang.Math.max(long, long) void IntrinsicLocationsBuilderMIPS64::VisitMathMaxLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, GetAssembler()); } // double java.lang.Math.sqrt(double) void IntrinsicLocationsBuilderMIPS64::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); Mips64Assembler* assembler = GetAssembler(); FpuRegister in = locations->InAt(0).AsFpuRegister(); FpuRegister out = locations->Out().AsFpuRegister(); __ SqrtD(out, in); } static void CreateFPToFP(ArenaAllocator* allocator, HInvoke* invoke, Location::OutputOverlap overlaps = Location::kOutputOverlap) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), overlaps); } // double java.lang.Math.rint(double) void IntrinsicLocationsBuilderMIPS64::VisitMathRint(HInvoke* invoke) { CreateFPToFP(allocator_, invoke, Location::kNoOutputOverlap); } void IntrinsicCodeGeneratorMIPS64::VisitMathRint(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); Mips64Assembler* assembler = GetAssembler(); FpuRegister in = locations->InAt(0).AsFpuRegister(); FpuRegister out = locations->Out().AsFpuRegister(); __ RintD(out, in); } // double java.lang.Math.floor(double) void IntrinsicLocationsBuilderMIPS64::VisitMathFloor(HInvoke* invoke) { CreateFPToFP(allocator_, invoke); } const constexpr uint16_t kFPLeaveUnchanged = kPositiveZero | kPositiveInfinity | kNegativeZero | kNegativeInfinity | kQuietNaN | kSignalingNaN; enum FloatRoundingMode { kFloor, kCeil, }; static void GenRoundingMode(LocationSummary* locations, FloatRoundingMode mode, Mips64Assembler* assembler) { FpuRegister in = locations->InAt(0).AsFpuRegister(); FpuRegister out = locations->Out().AsFpuRegister(); DCHECK_NE(in, out); Mips64Label done; // double floor/ceil(double in) { // if in.isNaN || in.isInfinite || in.isZero { // return in; // } __ ClassD(out, in); __ Dmfc1(AT, out); __ Andi(AT, AT, kFPLeaveUnchanged); // +0.0 | +Inf | -0.0 | -Inf | qNaN | sNaN __ MovD(out, in); __ Bnezc(AT, &done); // Long outLong = floor/ceil(in); // if (outLong == Long.MAX_VALUE) || (outLong == Long.MIN_VALUE) { // // floor()/ceil() has almost certainly returned a value // // which can't be successfully represented as a signed // // 64-bit number. Java expects that the input value will // // be returned in these cases. // // There is also a small probability that floor(in)/ceil(in) // // correctly truncates/rounds up the input value to // // Long.MAX_VALUE or Long.MIN_VALUE. In these cases, this // // exception handling code still does the correct thing. // return in; // } if (mode == kFloor) { __ FloorLD(out, in); } else if (mode == kCeil) { __ CeilLD(out, in); } __ Dmfc1(AT, out); __ MovD(out, in); __ Daddiu(TMP, AT, 1); __ Dati(TMP, 0x8000); // TMP = AT + 0x8000 0000 0000 0001 // or AT - 0x7FFF FFFF FFFF FFFF. // IOW, TMP = 1 if AT = Long.MIN_VALUE // or TMP = 0 if AT = Long.MAX_VALUE. __ Dsrl(TMP, TMP, 1); // TMP = 0 if AT = Long.MIN_VALUE // or AT = Long.MAX_VALUE. __ Beqzc(TMP, &done); // double out = outLong; // return out; __ Dmtc1(AT, out); __ Cvtdl(out, out); __ Bind(&done); // } } void IntrinsicCodeGeneratorMIPS64::VisitMathFloor(HInvoke* invoke) { GenRoundingMode(invoke->GetLocations(), kFloor, GetAssembler()); } // double java.lang.Math.ceil(double) void IntrinsicLocationsBuilderMIPS64::VisitMathCeil(HInvoke* invoke) { CreateFPToFP(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathCeil(HInvoke* invoke) { GenRoundingMode(invoke->GetLocations(), kCeil, GetAssembler()); } static void GenRound(LocationSummary* locations, Mips64Assembler* assembler, DataType::Type type) { FpuRegister in = locations->InAt(0).AsFpuRegister(); FpuRegister half = locations->GetTemp(0).AsFpuRegister(); GpuRegister out = locations->Out().AsRegister(); DCHECK(type == DataType::Type::kFloat32 || type == DataType::Type::kFloat64); Mips64Label done; // out = floor(in); // // if (out != MAX_VALUE && out != MIN_VALUE) { // TMP = ((in - out) >= 0.5) ? 1 : 0; // return out += TMP; // } // return out; // out = floor(in); if (type == DataType::Type::kFloat64) { __ FloorLD(FTMP, in); __ Dmfc1(out, FTMP); } else { __ FloorWS(FTMP, in); __ Mfc1(out, FTMP); } // if (out != MAX_VALUE && out != MIN_VALUE) if (type == DataType::Type::kFloat64) { __ Daddiu(TMP, out, 1); __ Dati(TMP, 0x8000); // TMP = out + 0x8000 0000 0000 0001 // or out - 0x7FFF FFFF FFFF FFFF. // IOW, TMP = 1 if out = Long.MIN_VALUE // or TMP = 0 if out = Long.MAX_VALUE. __ Dsrl(TMP, TMP, 1); // TMP = 0 if out = Long.MIN_VALUE // or out = Long.MAX_VALUE. __ Beqzc(TMP, &done); } else { __ Addiu(TMP, out, 1); __ Aui(TMP, TMP, 0x8000); // TMP = out + 0x8000 0001 // or out - 0x7FFF FFFF. // IOW, TMP = 1 if out = Int.MIN_VALUE // or TMP = 0 if out = Int.MAX_VALUE. __ Srl(TMP, TMP, 1); // TMP = 0 if out = Int.MIN_VALUE // or out = Int.MAX_VALUE. __ Beqzc(TMP, &done); } // TMP = (0.5 <= (in - out)) ? -1 : 0; if (type == DataType::Type::kFloat64) { __ Cvtdl(FTMP, FTMP); // Convert output of floor.l.d back to "double". __ LoadConst64(AT, bit_cast(0.5)); __ SubD(FTMP, in, FTMP); __ Dmtc1(AT, half); __ CmpLeD(FTMP, half, FTMP); __ Dmfc1(TMP, FTMP); } else { __ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float". __ LoadConst32(AT, bit_cast(0.5f)); __ SubS(FTMP, in, FTMP); __ Mtc1(AT, half); __ CmpLeS(FTMP, half, FTMP); __ Mfc1(TMP, FTMP); } // Return out -= TMP. if (type == DataType::Type::kFloat64) { __ Dsubu(out, out, TMP); } else { __ Subu(out, out, TMP); } __ Bind(&done); } // int java.lang.Math.round(float) void IntrinsicLocationsBuilderMIPS64::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS64::VisitMathRoundFloat(HInvoke* invoke) { GenRound(invoke->GetLocations(), GetAssembler(), DataType::Type::kFloat32); } // long java.lang.Math.round(double) void IntrinsicLocationsBuilderMIPS64::VisitMathRoundDouble(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS64::VisitMathRoundDouble(HInvoke* invoke) { GenRound(invoke->GetLocations(), GetAssembler(), DataType::Type::kFloat64); } // byte libcore.io.Memory.peekByte(long address) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekByte(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister out = invoke->GetLocations()->Out().AsRegister(); __ Lb(out, adr, 0); } // short libcore.io.Memory.peekShort(long address) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekShortNative(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister out = invoke->GetLocations()->Out().AsRegister(); __ Lh(out, adr, 0); } // int libcore.io.Memory.peekInt(long address) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekIntNative(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister out = invoke->GetLocations()->Out().AsRegister(); __ Lw(out, adr, 0); } // long libcore.io.Memory.peekLong(long address) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPeekLongNative(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister out = invoke->GetLocations()->Out().AsRegister(); __ Ld(out, adr, 0); } static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } // void libcore.io.Memory.pokeByte(long address, byte value) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeByte(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister(); __ Sb(val, adr, 0); } // void libcore.io.Memory.pokeShort(long address, short value) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeShortNative(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister(); __ Sh(val, adr, 0); } // void libcore.io.Memory.pokeInt(long address, int value) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeIntNative(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister(); __ Sw(val, adr, 00); } // void libcore.io.Memory.pokeLong(long address, long value) void IntrinsicLocationsBuilderMIPS64::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMemoryPokeLongNative(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister adr = invoke->GetLocations()->InAt(0).AsRegister(); GpuRegister val = invoke->GetLocations()->InAt(1).AsRegister(); __ Sd(val, adr, 0); } // Thread java.lang.Thread.currentThread() void IntrinsicLocationsBuilderMIPS64::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS64::VisitThreadCurrentThread(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister out = invoke->GetLocations()->Out().AsRegister(); __ LoadFromOffset(kLoadUnsignedWord, out, TR, Thread::PeerOffset().Int32Value()); } static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, DataType::Type type) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in InstructionCodeGeneratorMIPS64::GenerateReferenceLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } // Note that the caller must supply a properly aligned memory address. // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur). static void GenUnsafeGet(HInvoke* invoke, DataType::Type type, bool is_volatile, CodeGeneratorMIPS64* codegen) { LocationSummary* locations = invoke->GetLocations(); DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64) || (type == DataType::Type::kReference)) << type; Mips64Assembler* assembler = codegen->GetAssembler(); // Target register. Location trg_loc = locations->Out(); GpuRegister trg = trg_loc.AsRegister(); // Object pointer. Location base_loc = locations->InAt(1); GpuRegister base = base_loc.AsRegister(); // Long offset. Location offset_loc = locations->InAt(2); GpuRegister offset = offset_loc.AsRegister(); if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == DataType::Type::kReference))) { __ Daddu(TMP, base, offset); } switch (type) { case DataType::Type::kInt64: __ Ld(trg, TMP, 0); if (is_volatile) { __ Sync(0); } break; case DataType::Type::kInt32: __ Lw(trg, TMP, 0); if (is_volatile) { __ Sync(0); } break; case DataType::Type::kReference: if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke, trg_loc, base, /* offset */ 0U, /* index */ offset_loc, TIMES_1, temp, /* needs_null_check */ false); if (is_volatile) { __ Sync(0); } } else { __ Lwu(trg, TMP, 0); if (is_volatile) { __ Sync(0); } codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, /* offset */ 0U, /* index */ offset_loc); } } else { __ Lwu(trg, TMP, 0); if (is_volatile) { __ Sync(0); } __ MaybeUnpoisonHeapReference(trg); } break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } // int sun.misc.Unsafe.getInt(Object o, long offset) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, codegen_); } // int sun.misc.Unsafe.getIntVolatile(Object o, long offset) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, codegen_); } // long sun.misc.Unsafe.getLong(Object o, long offset) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, codegen_); } // long sun.misc.Unsafe.getLongVolatile(Object o, long offset) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ true, codegen_); } // Object sun.misc.Unsafe.getObject(Object o, long offset) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, codegen_); } // Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); } // Note that the caller must supply a properly aligned memory address. // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur). static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, bool is_ordered, CodeGeneratorMIPS64* codegen) { DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64) || (type == DataType::Type::kReference)); Mips64Assembler* assembler = codegen->GetAssembler(); // Object pointer. GpuRegister base = locations->InAt(1).AsRegister(); // Long offset. GpuRegister offset = locations->InAt(2).AsRegister(); GpuRegister value = locations->InAt(3).AsRegister(); __ Daddu(TMP, base, offset); if (is_volatile || is_ordered) { __ Sync(0); } switch (type) { case DataType::Type::kInt32: case DataType::Type::kReference: if (kPoisonHeapReferences && type == DataType::Type::kReference) { __ PoisonHeapReference(AT, value); __ Sw(AT, TMP, 0); } else { __ Sw(value, TMP, 0); } break; case DataType::Type::kInt64: __ Sd(value, TMP, 0); break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } if (is_volatile) { __ Sync(0); } if (type == DataType::Type::kReference) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(base, value, value_can_be_null); } } // void sun.misc.Unsafe.putInt(Object o, long offset, int x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, /* is_ordered */ false, codegen_); } // void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, /* is_ordered */ true, codegen_); } // void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ true, /* is_ordered */ false, codegen_); } // void sun.misc.Unsafe.putObject(Object o, long offset, Object x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, /* is_ordered */ false, codegen_); } // void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, /* is_ordered */ true, codegen_); } // void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ true, /* is_ordered */ false, codegen_); } // void sun.misc.Unsafe.putLong(Object o, long offset, long x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, /* is_ordered */ false, codegen_); } // void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, /* is_ordered */ true, codegen_); } // void sun.misc.Unsafe.putLongVolatile(Object o, long offset, long x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ true, /* is_ordered */ false, codegen_); } static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) { bool can_call = kEmitCompilerReadBarrier && kUseBakerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); // Temporary register used in CAS by (Baker) read barrier. if (can_call) { locations->AddTemp(Location::RequiresRegister()); } } // Note that the caller must supply a properly aligned memory address. // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur). static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorMIPS64* codegen) { Mips64Assembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GpuRegister base = locations->InAt(1).AsRegister(); Location offset_loc = locations->InAt(2); GpuRegister offset = offset_loc.AsRegister(); GpuRegister expected = locations->InAt(3).AsRegister(); GpuRegister value = locations->InAt(4).AsRegister(); Location out_loc = locations->Out(); GpuRegister out = out_loc.AsRegister(); DCHECK_NE(base, out); DCHECK_NE(offset, out); DCHECK_NE(expected, out); if (type == DataType::Type::kReference) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); // Mark card for object assuming new value is stored. Worst case we will mark an unchanged // object and scan the receiver at the next GC for nothing. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(base, value, value_can_be_null); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); // Need to make sure the reference stored in the field is a to-space // one before attempting the CAS or the CAS could fail incorrectly. codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, out_loc, // Unused, used only as a "temporary" within the read barrier. base, /* offset */ 0u, /* index */ offset_loc, ScaleFactor::TIMES_1, temp, /* needs_null_check */ false, /* always_update_field */ true); } } Mips64Label loop_head, exit_loop; __ Daddu(TMP, base, offset); if (kPoisonHeapReferences && type == DataType::Type::kReference) { __ PoisonHeapReference(expected); // Do not poison `value`, if it is the same register as // `expected`, which has just been poisoned. if (value != expected) { __ PoisonHeapReference(value); } } // do { // tmp_value = [tmp_ptr] - expected; // } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value)); // result = tmp_value != 0; __ Sync(0); __ Bind(&loop_head); if (type == DataType::Type::kInt64) { __ Lld(out, TMP); } else { // Note: We will need a read barrier here, when read barrier // support is added to the MIPS64 back end. __ Ll(out, TMP); if (type == DataType::Type::kReference) { // The LL instruction sign-extends the 32-bit value, but // 32-bit references must be zero-extended. Zero-extend `out`. __ Dext(out, out, 0, 32); } } __ Dsubu(out, out, expected); // If we didn't get the 'expected' __ Sltiu(out, out, 1); // value, set 'out' to false, and __ Beqzc(out, &exit_loop); // return. __ Move(out, value); // Use 'out' for the 'store conditional' instruction. // If we use 'value' directly, we would lose 'value' // in the case that the store fails. Whether the // store succeeds, or fails, it will load the // correct Boolean value into the 'out' register. if (type == DataType::Type::kInt64) { __ Scd(out, TMP); } else { __ Sc(out, TMP); } __ Beqzc(out, &loop_head); // If we couldn't do the read-modify-write // cycle atomically then retry. __ Bind(&exit_loop); __ Sync(0); if (kPoisonHeapReferences && type == DataType::Type::kReference) { __ UnpoisonHeapReference(expected); // Do not unpoison `value`, if it is the same register as // `expected`, which has just been unpoisoned. if (value != expected) { __ UnpoisonHeapReference(value); } } } // boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeCASInt(HInvoke* invoke) { GenCas(invoke, DataType::Type::kInt32, codegen_); } // boolean sun.misc.Unsafe.compareAndSwapLong(Object o, long offset, long expected, long x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeCASLong(HInvoke* invoke) { CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeCASLong(HInvoke* invoke) { GenCas(invoke, DataType::Type::kInt64, codegen_); } // boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x) void IntrinsicLocationsBuilderMIPS64::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); GenCas(invoke, DataType::Type::kReference, codegen_); } // int java.lang.String.compareTo(String anotherString) void IntrinsicLocationsBuilderMIPS64::VisitStringCompareTo(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister())); } void IntrinsicCodeGeneratorMIPS64::VisitStringCompareTo(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); GpuRegister argument = locations->InAt(1).AsRegister(); SlowPathCodeMIPS64* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke); codegen_->AddSlowPath(slow_path); __ Beqzc(argument, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); __ Bind(slow_path->GetExitLabel()); } // boolean java.lang.String.equals(Object anObject) void IntrinsicLocationsBuilderMIPS64::VisitStringEquals(HInvoke* invoke) { if (kEmitCompilerReadBarrier && !StringEqualsOptimizations(invoke).GetArgumentIsString() && !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) { // No support for this odd case (String class is moveable, not in the boot image). return; } LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS64::VisitStringEquals(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GpuRegister str = locations->InAt(0).AsRegister(); GpuRegister arg = locations->InAt(1).AsRegister(); GpuRegister out = locations->Out().AsRegister(); GpuRegister temp1 = locations->GetTemp(0).AsRegister(); GpuRegister temp2 = locations->GetTemp(1).AsRegister(); GpuRegister temp3 = locations->GetTemp(2).AsRegister(); Mips64Label loop; Mips64Label end; Mips64Label return_true; Mips64Label return_false; // Get offsets of count, value, and class fields within a string object. const int32_t count_offset = mirror::String::CountOffset().Int32Value(); const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); const int32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // If the register containing the pointer to "this", and the register // containing the pointer to "anObject" are the same register then // "this", and "anObject" are the same object and we can // short-circuit the logic to a true result. if (str == arg) { __ LoadConst64(out, 1); return; } StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ Beqzc(arg, &return_false); } // Reference equality check, return true if same reference. __ Beqc(str, arg, &return_true); if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ Lw(temp1, str, class_offset); __ Lw(temp2, arg, class_offset); __ Bnec(temp1, temp2, &return_false); } // Load `count` fields of this and argument strings. __ Lw(temp1, str, count_offset); __ Lw(temp2, arg, count_offset); // Check if `count` fields are equal, return false if they're not. // Also compares the compression style, if differs return false. __ Bnec(temp1, temp2, &return_false); // Return true if both strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ Beqzc(temp1, &return_true); // Don't overwrite input registers __ Move(TMP, str); __ Move(temp3, arg); // Assertions that must hold in order to compare strings 8 bytes at a time. DCHECK_ALIGNED(value_offset, 8); static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded"); if (mirror::kUseStringCompression) { // For string compression, calculate the number of bytes to compare (not chars). __ Dext(temp2, temp1, 0, 1); // Extract compression flag. __ Srl(temp1, temp1, 1); // Extract length. __ Sllv(temp1, temp1, temp2); // Double the byte count if uncompressed. } // Loop to compare strings 8 bytes at a time starting at the beginning of the string. // Ok to do this because strings are zero-padded to kObjectAlignment. __ Bind(&loop); __ Ld(out, TMP, value_offset); __ Ld(temp2, temp3, value_offset); __ Bnec(out, temp2, &return_false); __ Daddiu(TMP, TMP, 8); __ Daddiu(temp3, temp3, 8); // With string compression, we have compared 8 bytes, otherwise 4 chars. __ Addiu(temp1, temp1, mirror::kUseStringCompression ? -8 : -4); __ Bgtzc(temp1, &loop); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ LoadConst64(out, 1); __ Bc(&end); // Return false and exit the function. __ Bind(&return_false); __ LoadConst64(out, 0); __ Bind(&end); } static void GenerateStringIndexOf(HInvoke* invoke, Mips64Assembler* assembler, CodeGeneratorMIPS64* codegen, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); GpuRegister tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister() : TMP; // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCodeMIPS64* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) { // Always needs the slow-path. We could directly dispatch to it, // but this case should be rare, so for simplicity just put the // full slow-path down and branch unconditionally. slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke); codegen->AddSlowPath(slow_path); __ Bc(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != DataType::Type::kUint16) { GpuRegister char_reg = locations->InAt(1).AsRegister(); __ LoadConst32(tmp_reg, std::numeric_limits::max()); slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke); codegen->AddSlowPath(slow_path); __ Bltuc(tmp_reg, char_reg, slow_path->GetEntryLabel()); // UTF-16 required } if (start_at_zero) { DCHECK_EQ(tmp_reg, A2); // Start-index = 0. __ Clear(tmp_reg); } codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes(); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } // int java.lang.String.indexOf(int ch) void IntrinsicLocationsBuilderMIPS64::VisitStringIndexOf(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime // calling convention. So it's best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister())); // Need a temp for slow-path codepoint compare, and need to send start-index=0. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } void IntrinsicCodeGeneratorMIPS64::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ true); } // int java.lang.String.indexOf(int ch, int fromIndex) void IntrinsicLocationsBuilderMIPS64::VisitStringIndexOfAfter(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime // calling convention. So it's best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister())); } void IntrinsicCodeGeneratorMIPS64::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ false); } // java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount) void IntrinsicLocationsBuilderMIPS64::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister())); } void IntrinsicCodeGeneratorMIPS64::VisitStringNewStringFromBytes(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GpuRegister byte_array = locations->InAt(0).AsRegister(); SlowPathCodeMIPS64* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke); codegen_->AddSlowPath(slow_path); __ Beqzc(byte_array, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) void IntrinsicLocationsBuilderMIPS64::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister())); } void IntrinsicCodeGeneratorMIPS64::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); } // java.lang.StringFactory.newStringFromString(String toCopy) void IntrinsicLocationsBuilderMIPS64::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32); locations->SetOut(Location::RegisterLocation(outLocation.AsRegister())); } void IntrinsicCodeGeneratorMIPS64::VisitStringNewStringFromString(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GpuRegister string_to_copy = locations->InAt(0).AsRegister(); SlowPathCodeMIPS64* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke); codegen_->AddSlowPath(slow_path); __ Beqzc(string_to_copy, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } static void GenIsInfinite(LocationSummary* locations, bool is64bit, Mips64Assembler* assembler) { FpuRegister in = locations->InAt(0).AsFpuRegister(); GpuRegister out = locations->Out().AsRegister(); if (is64bit) { __ ClassD(FTMP, in); } else { __ ClassS(FTMP, in); } __ Mfc1(out, FTMP); __ Andi(out, out, kPositiveInfinity | kNegativeInfinity); __ Sltu(out, ZERO, out); } // boolean java.lang.Float.isInfinite(float) void IntrinsicLocationsBuilderMIPS64::VisitFloatIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitFloatIsInfinite(HInvoke* invoke) { GenIsInfinite(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } // boolean java.lang.Double.isInfinite(double) void IntrinsicLocationsBuilderMIPS64::VisitDoubleIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitDoubleIsInfinite(HInvoke* invoke) { GenIsInfinite(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } // void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin) void IntrinsicLocationsBuilderMIPS64::VisitStringGetCharsNoCheck(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS64::VisitStringGetCharsNoCheck(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16); GpuRegister srcObj = locations->InAt(0).AsRegister(); GpuRegister srcBegin = locations->InAt(1).AsRegister(); GpuRegister srcEnd = locations->InAt(2).AsRegister(); GpuRegister dstObj = locations->InAt(3).AsRegister(); GpuRegister dstBegin = locations->InAt(4).AsRegister(); GpuRegister dstPtr = locations->GetTemp(0).AsRegister(); GpuRegister srcPtr = locations->GetTemp(1).AsRegister(); GpuRegister numChrs = locations->GetTemp(2).AsRegister(); Mips64Label done; Mips64Label loop; // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Get offset of value field within a string object. const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); __ Beqc(srcEnd, srcBegin, &done); // No characters to move. // Calculate number of characters to be copied. __ Dsubu(numChrs, srcEnd, srcBegin); // Calculate destination address. __ Daddiu(dstPtr, dstObj, data_offset); __ Dlsa(dstPtr, dstBegin, dstPtr, char_shift); if (mirror::kUseStringCompression) { Mips64Label uncompressed_copy, compressed_loop; const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); // Load count field and extract compression flag. __ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset); __ Dext(TMP, TMP, 0, 1); // If string is uncompressed, use uncompressed path. __ Bnezc(TMP, &uncompressed_copy); // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. __ Daddu(srcPtr, srcObj, srcBegin); __ Bind(&compressed_loop); __ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset); __ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0); __ Daddiu(numChrs, numChrs, -1); __ Daddiu(srcPtr, srcPtr, 1); __ Daddiu(dstPtr, dstPtr, 2); __ Bnezc(numChrs, &compressed_loop); __ Bc(&done); __ Bind(&uncompressed_copy); } // Calculate source address. __ Daddiu(srcPtr, srcObj, value_offset); __ Dlsa(srcPtr, srcBegin, srcPtr, char_shift); __ Bind(&loop); __ Lh(AT, srcPtr, 0); __ Daddiu(numChrs, numChrs, -1); __ Daddiu(srcPtr, srcPtr, char_size); __ Sh(AT, dstPtr, 0); __ Daddiu(dstPtr, dstPtr, char_size); __ Bnezc(numChrs, &loop); __ Bind(&done); } // static void java.lang.System.arraycopy(Object src, int srcPos, // Object dest, int destPos, // int length) void IntrinsicLocationsBuilderMIPS64::VisitSystemArrayCopyChar(HInvoke* invoke) { HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); // As long as we are checking, we might as well check to see if the src and dest // positions are >= 0. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // And since we are already checking, check the length too. if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } // Okay, it is safe to generate inline code. LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int srcPos, Object dest, int destPos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } // Utility routine to verify that "length(input) - pos >= length" static void EnoughItems(Mips64Assembler* assembler, GpuRegister length_input_minus_pos, Location length, SlowPathCodeMIPS64* slow_path) { if (length.IsConstant()) { int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue(); if (IsInt<16>(length_constant)) { __ Slti(TMP, length_input_minus_pos, length_constant); __ Bnezc(TMP, slow_path->GetEntryLabel()); } else { __ LoadConst32(TMP, length_constant); __ Bltc(length_input_minus_pos, TMP, slow_path->GetEntryLabel()); } } else { __ Bltc(length_input_minus_pos, length.AsRegister(), slow_path->GetEntryLabel()); } } static void CheckPosition(Mips64Assembler* assembler, Location pos, GpuRegister input, Location length, SlowPathCodeMIPS64* slow_path, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); // Calculate length(input) - pos. if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. __ LoadFromOffset(kLoadWord, AT, input, length_offset); EnoughItems(assembler, AT, length, slow_path); } } else { // Check that (length(input) - pos) >= zero. __ LoadFromOffset(kLoadWord, AT, input, length_offset); DCHECK_GT(pos_const, 0); __ Addiu32(AT, AT, -pos_const); __ Bltzc(AT, slow_path->GetEntryLabel()); // Verify that (length(input) - pos) >= length. EnoughItems(assembler, AT, length, slow_path); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. GpuRegister pos_reg = pos.AsRegister(); __ Bnezc(pos_reg, slow_path->GetEntryLabel()); } else { // Verify that pos >= 0. GpuRegister pos_reg = pos.AsRegister(); __ Bltzc(pos_reg, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= zero. __ LoadFromOffset(kLoadWord, AT, input, length_offset); __ Subu(AT, AT, pos_reg); __ Bltzc(AT, slow_path->GetEntryLabel()); // Verify that (length(input) - pos) >= length. EnoughItems(assembler, AT, length, slow_path); } } void IntrinsicCodeGeneratorMIPS64::VisitSystemArrayCopyChar(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); GpuRegister src = locations->InAt(0).AsRegister(); Location src_pos = locations->InAt(1); GpuRegister dest = locations->InAt(2).AsRegister(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Mips64Label loop; GpuRegister dest_base = locations->GetTemp(0).AsRegister(); GpuRegister src_base = locations->GetTemp(1).AsRegister(); GpuRegister count = locations->GetTemp(2).AsRegister(); SlowPathCodeMIPS64* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS64(invoke); codegen_->AddSlowPath(slow_path); // Bail out if the source and destination are the same (to handle overlap). __ Beqc(src, dest, slow_path->GetEntryLabel()); // Bail out if the source is null. __ Beqzc(src, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ Beqzc(dest, slow_path->GetEntryLabel()); // Load length into register for count. if (length.IsConstant()) { __ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue()); } else { // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. __ Bltzc(length.AsRegister(), slow_path->GetEntryLabel()); __ Move(count, length.AsRegister()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path); // If count is zero, we're done. __ Beqzc(count, slow_path->GetExitLabel()); // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16); const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Calculate source and destination addresses. if (src_pos.IsConstant()) { int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ Daddiu64(src_base, src, data_offset + char_size * src_pos_const, TMP); } else { __ Daddiu64(src_base, src, data_offset, TMP); __ Dlsa(src_base, src_pos.AsRegister(), src_base, char_shift); } if (dest_pos.IsConstant()) { int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ Daddiu64(dest_base, dest, data_offset + char_size * dest_pos_const, TMP); } else { __ Daddiu64(dest_base, dest, data_offset, TMP); __ Dlsa(dest_base, dest_pos.AsRegister(), dest_base, char_shift); } __ Bind(&loop); __ Lh(TMP, src_base, 0); __ Daddiu(src_base, src_base, char_size); __ Daddiu(count, count, -1); __ Sh(TMP, dest_base, 0); __ Daddiu(dest_base, dest_base, char_size); __ Bnezc(count, &loop); __ Bind(slow_path->GetExitLabel()); } static void GenHighestOneBit(LocationSummary* locations, DataType::Type type, Mips64Assembler* assembler) { DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type; GpuRegister in = locations->InAt(0).AsRegister(); GpuRegister out = locations->Out().AsRegister(); if (type == DataType::Type::kInt64) { __ Dclz(TMP, in); __ LoadConst64(AT, INT64_C(0x8000000000000000)); __ Dsrlv(AT, AT, TMP); } else { __ Clz(TMP, in); __ LoadConst32(AT, 0x80000000); __ Srlv(AT, AT, TMP); } // For either value of "type", when "in" is zero, "out" should also // be zero. Without this extra "and" operation, when "in" is zero, // "out" would be either Integer.MIN_VALUE, or Long.MIN_VALUE because // the MIPS logical shift operations "dsrlv", and "srlv" don't use // the shift amount (TMP) directly; they use either (TMP % 64) or // (TMP % 32), respectively. __ And(out, AT, in); } // int java.lang.Integer.highestOneBit(int) void IntrinsicLocationsBuilderMIPS64::VisitIntegerHighestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerHighestOneBit(HInvoke* invoke) { GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } // long java.lang.Long.highestOneBit(long) void IntrinsicLocationsBuilderMIPS64::VisitLongHighestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongHighestOneBit(HInvoke* invoke) { GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } static void GenLowestOneBit(LocationSummary* locations, DataType::Type type, Mips64Assembler* assembler) { DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type; GpuRegister in = locations->InAt(0).AsRegister(); GpuRegister out = locations->Out().AsRegister(); if (type == DataType::Type::kInt64) { __ Dsubu(TMP, ZERO, in); } else { __ Subu(TMP, ZERO, in); } __ And(out, TMP, in); } // int java.lang.Integer.lowestOneBit(int) void IntrinsicLocationsBuilderMIPS64::VisitIntegerLowestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerLowestOneBit(HInvoke* invoke) { GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } // long java.lang.Long.lowestOneBit(long) void IntrinsicLocationsBuilderMIPS64::VisitLongLowestOneBit(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitLongLowestOneBit(HInvoke* invoke) { GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64)); } static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64)); } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS64* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); FpuRegister in = locations->InAt(0).AsFpuRegister(); DCHECK_EQ(in, F12); FpuRegister out = locations->Out().AsFpuRegister(); DCHECK_EQ(out, F0); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); } static void GenFPFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS64* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); FpuRegister in0 = locations->InAt(0).AsFpuRegister(); DCHECK_EQ(in0, F12); FpuRegister in1 = locations->InAt(1).AsFpuRegister(); DCHECK_EQ(in1, F13); FpuRegister out = locations->Out().AsFpuRegister(); DCHECK_EQ(out, F0); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); } // static double java.lang.Math.cos(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } // static double java.lang.Math.sin(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } // static double java.lang.Math.acos(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } // static double java.lang.Math.asin(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } // static double java.lang.Math.atan(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } // static double java.lang.Math.atan2(double y, double x) void IntrinsicLocationsBuilderMIPS64::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathAtan2(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickAtan2); } // static double java.lang.Math.pow(double y, double x) void IntrinsicLocationsBuilderMIPS64::VisitMathPow(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathPow(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickPow); } // static double java.lang.Math.cbrt(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } // static double java.lang.Math.cosh(double x) void IntrinsicLocationsBuilderMIPS64::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } // static double java.lang.Math.exp(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } // static double java.lang.Math.expm1(double x) void IntrinsicLocationsBuilderMIPS64::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } // static double java.lang.Math.hypot(double x, double y) void IntrinsicLocationsBuilderMIPS64::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathHypot(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickHypot); } // static double java.lang.Math.log(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } // static double java.lang.Math.log10(double x) void IntrinsicLocationsBuilderMIPS64::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } // static double java.lang.Math.nextAfter(double start, double direction) void IntrinsicLocationsBuilderMIPS64::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathNextAfter(HInvoke* invoke) { GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter); } // static double java.lang.Math.sinh(double x) void IntrinsicLocationsBuilderMIPS64::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } // static double java.lang.Math.tan(double a) void IntrinsicLocationsBuilderMIPS64::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } // static double java.lang.Math.tanh(double x) void IntrinsicLocationsBuilderMIPS64::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorMIPS64::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } // long java.lang.Integer.valueOf(long) void IntrinsicLocationsBuilderMIPS64::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConvention calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, calling_convention.GetReturnLocation(DataType::Type::kReference), Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorMIPS64::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(); LocationSummary* locations = invoke->GetLocations(); Mips64Assembler* assembler = GetAssembler(); InstructionCodeGeneratorMIPS64* icodegen = down_cast(codegen_->GetInstructionVisitor()); GpuRegister out = locations->Out().AsRegister(); InvokeRuntimeCallingConvention calling_convention; if (invoke->InputAt(0)->IsConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (value >= info.low && value <= info.high) { // Just embed the j.l.Integer in the code. ScopedObjectAccess soa(Thread::Current()); mirror::Object* boxed = info.cache->Get(value + (-info.low)); DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed)); uint32_t address = dchecked_integral_cast(reinterpret_cast(boxed)); __ LoadConst64(out, address); } else { // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. uint32_t address = dchecked_integral_cast(reinterpret_cast(info.integer)); __ LoadConst64(calling_convention.GetRegisterAt(0), address); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ StoreConstToOffset(kStoreWord, value, out, info.value_offset, TMP); // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation // one. icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); } } else { GpuRegister in = locations->InAt(0).AsRegister(); Mips64Label allocate, done; int32_t count = static_cast(info.high) - info.low + 1; // Is (info.low <= in) && (in <= info.high)? __ Addiu32(out, in, -info.low); // As unsigned quantities is out < (info.high - info.low + 1)? __ LoadConst32(AT, count); // Branch if out >= (info.high - info.low + 1). // This means that "in" is outside of the range [info.low, info.high]. __ Bgeuc(out, AT, &allocate); // If the value is within the bounds, load the j.l.Integer directly from the array. uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); uint32_t address = dchecked_integral_cast(reinterpret_cast(info.cache)); __ LoadConst64(TMP, data_offset + address); __ Dlsa(out, out, TMP, TIMES_4); __ Lwu(out, out, 0); __ MaybeUnpoisonHeapReference(out); __ Bc(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. address = dchecked_integral_cast(reinterpret_cast(info.integer)); __ LoadConst64(calling_convention.GetRegisterAt(0), address); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ StoreToOffset(kStoreWord, in, out, info.value_offset); // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation // one. icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); __ Bind(&done); } } // static boolean java.lang.Thread.interrupted() void IntrinsicLocationsBuilderMIPS64::VisitThreadInterrupted(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorMIPS64::VisitThreadInterrupted(HInvoke* invoke) { Mips64Assembler* assembler = GetAssembler(); GpuRegister out = invoke->GetLocations()->Out().AsRegister(); int32_t offset = Thread::InterruptedOffset().Int32Value(); __ LoadFromOffset(kLoadWord, out, TR, offset); Mips64Label done; __ Beqzc(out, &done); __ Sync(0); __ StoreToOffset(kStoreWord, ZERO, TR, offset); __ Sync(0); __ Bind(&done); } void IntrinsicLocationsBuilderMIPS64::VisitReachabilityFence(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); } void IntrinsicCodeGeneratorMIPS64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } UNIMPLEMENTED_INTRINSIC(MIPS64, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(MIPS64, SystemArrayCopy) UNIMPLEMENTED_INTRINSIC(MIPS64, StringStringIndexOf); UNIMPLEMENTED_INTRINSIC(MIPS64, StringStringIndexOfAfter); UNIMPLEMENTED_INTRINSIC(MIPS64, StringBufferAppend); UNIMPLEMENTED_INTRINSIC(MIPS64, StringBufferLength); UNIMPLEMENTED_INTRINSIC(MIPS64, StringBufferToString); UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderAppend); UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderLength); UNIMPLEMENTED_INTRINSIC(MIPS64, StringBuilderToString); // 1.8. UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(MIPS64, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(MIPS64) #undef __ } // namespace mips64 } // namespace art