/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_x86_64.h" #include #include "arch/x86_64/instruction_set_features_x86_64.h" #include "art_method.h" #include "base/bit_utils.h" #include "code_generator_x86_64.h" #include "entrypoints/quick/quick_entrypoints.h" #include "heap_poisoning.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference.h" #include "mirror/string.h" #include "scoped_thread_state_change-inl.h" #include "thread-current-inl.h" #include "utils/x86_64/assembler_x86_64.h" #include "utils/x86_64/constants_x86_64.h" namespace art { namespace x86_64 { IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen) : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) { } X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() { return down_cast(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() { return codegen_->GetGraph()->GetAllocator(); } bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } return res->Intrinsified(); } static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) { InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } using IntrinsicSlowPathX86_64 = IntrinsicSlowPath; // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast(codegen->GetAssembler())-> // NOLINT // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode { public: explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction) : SlowPathCode(instruction) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86_64* x86_64_codegen = down_cast(codegen); LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(instruction_->IsInvokeStaticOrDirect()) << "Unexpected instruction in read barrier arraycopy slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); int32_t element_size = DataType::Size(DataType::Type::kReference); CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister(); CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister(); CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister(); __ Bind(GetEntryLabel()); NearLabel loop; __ Bind(&loop); __ movl(CpuRegister(TMP), Address(src_curr_addr, 0)); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); // TODO: Inline the mark bit check before calling the runtime? // TMP = ReadBarrier::Mark(TMP); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(TMP); // This runtime call does not require a stack map. x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); __ MaybePoisonHeapReference(CpuRegister(TMP)); __ movl(Address(dst_curr_addr, 0), CpuRegister(TMP)); __ addl(src_curr_addr, Immediate(element_size)); __ addl(dst_curr_addr, Immediate(element_size)); __ cmpl(src_curr_addr, src_stop_addr); __ j(kNotEqual, &loop); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathX86_64"; } private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64); }; #undef __ #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsRegister(), input.AsFpuRegister(), is64bit); } static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); __ movd(output.AsFpuRegister(), input.AsRegister(), is64bit); } void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void GenReverseBytes(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { CpuRegister out = locations->Out().AsRegister(); switch (size) { case DataType::Type::kInt16: // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. __ bswapl(out); __ sarl(out, Immediate(16)); break; case DataType::Type::kInt32: __ bswapl(out); break; case DataType::Type::kInt64: __ bswapq(out); break; default: LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we // need is 64b. static void CreateFloatToFloatPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) { // TODO: Enable memory operations when the assembler supports them. LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); // FP reg to hold mask. } static void MathAbsFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen) { Location output = locations->Out(); DCHECK(output.IsFpuRegister()); XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister(); // TODO: Can mask directly with constant area using pand if we can guarantee // that the literal is aligned on a 16 byte boundary. This will avoid a // temporary. if (is64bit) { __ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF))); __ andpd(output.AsFpuRegister(), xmm_temp); } else { __ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF))); __ andps(output.AsFpuRegister(), xmm_temp); } } void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) { CreateFloatToFloatPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) { CreateFloatToFloatPlusTemps(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_); } static void CreateIntToIntPlusTemp(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { Location output = locations->Out(); CpuRegister out = output.AsRegister(); CpuRegister mask = locations->GetTemp(0).AsRegister(); if (is64bit) { // Create mask. __ movq(mask, out); __ sarq(mask, Immediate(63)); // Add mask. __ addq(out, mask); __ xorq(out, mask); } else { // Create mask. __ movl(mask, out); __ sarl(mask, Immediate(31)); // Add mask. __ addl(out, mask); __ xorl(out, mask); } } void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) { CreateIntToIntPlusTemp(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) { CreateIntToIntPlusTemp(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenMinMaxFP(LocationSummary* locations, bool is_min, bool is_double, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); XmmRegister out = out_loc.AsFpuRegister(); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); return; } // (out := op1) // out <=? op2 // if Nan jmp Nan_label // if out is min jmp done // if op2 is min jmp op2_label // handle -0/+0 // jmp done // Nan_label: // out := NaN // op2_label: // out := op2 // done: // // This removes one jmp, but needs to copy one input (op1) to out. // // TODO: This is straight from Quick. Make NaN an out-of-line slowpath? XmmRegister op2 = op2_loc.AsFpuRegister(); NearLabel nan, done, op2_label; if (is_double) { __ ucomisd(out, op2); } else { __ ucomiss(out, op2); } __ j(Condition::kParityEven, &nan); __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); // Handle 0.0/-0.0. if (is_min) { if (is_double) { __ orpd(out, op2); } else { __ orps(out, op2); } } else { if (is_double) { __ andpd(out, op2); } else { __ andps(out, op2); } } __ jmp(&done); // NaN handling. __ Bind(&nan); if (is_double) { __ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000))); } else { __ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000))); } __ jmp(&done); // out := op2; __ Bind(&op2_label); if (is_double) { __ movsd(out, op2); } else { __ movss(out, op2); } // Done. __ Bind(&done); } static void CreateFPFPToFP(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); // The following is sub-optimal, but all we can do for now. It would be fine to also accept // the second input to be the output (we can simply swap inputs). locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFP(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFP(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFP(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFP(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP( invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_); } static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long, X86_64Assembler* assembler) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { // Can return immediately, as op1_loc == out_loc. // Note: if we ever support separate registers, e.g., output into memory, we need to check for // a copy here. DCHECK(locations->Out().Equals(op1_loc)); return; } CpuRegister out = locations->Out().AsRegister(); CpuRegister op2 = op2_loc.AsRegister(); // (out := op1) // out <=? op2 // if out is min jmp done // out := op2 // done: if (is_long) { __ cmpq(out, op2); } else { __ cmpl(out, op2); } __ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long); } static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) { CreateIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); GetAssembler()->sqrtsd(out, in); } static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) { MoveArguments(invoke, codegen); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->GenerateStaticOrDirectCall( invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI)); // Copy the result back to the expected output. Location out = invoke->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); codegen->MoveFromReturnRegister(out, invoke->GetType()); } } static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { CreateFPToFPLocations(allocator, invoke); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // Needs to be RDI for the invoke. locations->AddTemp(Location::RegisterLocation(RDI)); } static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke, X86_64Assembler* assembler, int round_mode) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen, invoke); } else { XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); __ roundsd(out, in, Immediate(round_mode)); } } void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); } void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); } void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) { CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); } static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke, CodeGeneratorX86_64* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); // Needs to be RDI for the invoke. locations->AddTemp(Location::RegisterLocation(RDI)); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) { CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } XmmRegister in = locations->InAt(0).AsFpuRegister(); CpuRegister out = locations->Out().AsRegister(); XmmRegister t1 = locations->GetTemp(0).AsFpuRegister(); XmmRegister t2 = locations->GetTemp(1).AsFpuRegister(); NearLabel skip_incr, done; X86_64Assembler* assembler = GetAssembler(); // Since no direct x86 rounding instruction matches the required semantics, // this intrinsic is implemented as follows: // result = floor(in); // if (in - result >= 0.5f) // result = result + 1.0f; __ movss(t2, in); __ roundss(t1, in, Immediate(1)); __ subss(t2, t1); __ comiss(t2, codegen_->LiteralFloatAddress(0.5f)); __ j(kBelow, &skip_incr); __ addss(t1, codegen_->LiteralFloatAddress(1.0f)); __ Bind(&skip_incr); // Final conversion to an integer. Unfortunately this also does not have a // direct x86 instruction, since NaN should map to 0 and large positive // values need to be clipped to the extreme value. codegen_->Load32BitValue(out, kPrimIntMax); __ cvtsi2ss(t2, out); __ comiss(t1, t2); __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered __ movl(out, Immediate(0)); // does not change flags __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) __ cvttss2si(out, t1); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) { CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } XmmRegister in = locations->InAt(0).AsFpuRegister(); CpuRegister out = locations->Out().AsRegister(); XmmRegister t1 = locations->GetTemp(0).AsFpuRegister(); XmmRegister t2 = locations->GetTemp(1).AsFpuRegister(); NearLabel skip_incr, done; X86_64Assembler* assembler = GetAssembler(); // Since no direct x86 rounding instruction matches the required semantics, // this intrinsic is implemented as follows: // result = floor(in); // if (in - result >= 0.5) // result = result + 1.0f; __ movsd(t2, in); __ roundsd(t1, in, Immediate(1)); __ subsd(t2, t1); __ comisd(t2, codegen_->LiteralDoubleAddress(0.5)); __ j(kBelow, &skip_incr); __ addsd(t1, codegen_->LiteralDoubleAddress(1.0f)); __ Bind(&skip_incr); // Final conversion to an integer. Unfortunately this also does not have a // direct x86 instruction, since NaN should map to 0 and large positive // values need to be clipped to the extreme value. codegen_->Load64BitValue(out, kPrimLongMax); __ cvtsi2sd(t2, out, /* is64bit */ true); __ comisd(t1, t2); __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered __ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) __ cvttsd2si(out, t1, /* is64bit */ true); __ Bind(&done); } static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // We have to ensure that the native code doesn't clobber the XMM registers which are // non-volatile for ART, but volatile for Native calls. This will ensure that they are // saved in the prologue and properly restored. for (FloatRegister fp_reg : non_volatile_xmm_regs) { locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); } } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); DCHECK(locations->WillCall()); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // We have to ensure that the native code doesn't clobber the XMM registers which are // non-volatile for ART, but volatile for Native calls. This will ensure that they are // saved in the prologue and properly restored. for (FloatRegister fp_reg : non_volatile_xmm_regs) { locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); } } void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickPow); } void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickHypot); } void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { // Check to see if we have known failures that will cause us to have to bail out // to the runtime, and just generate the runtime call directly. HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); // The positions must be non-negative. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // The length must be > 0. HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(RSI)); locations->AddTemp(Location::RegisterLocation(RDI)); locations->AddTemp(Location::RegisterLocation(RCX)); } static void CheckPosition(X86_64Assembler* assembler, Location pos, CpuRegister input, Location length, SlowPathCode* slow_path, CpuRegister temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. if (length.IsConstant()) { __ cmpl(Address(input, length_offset), Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(Address(input, length_offset), length.AsRegister()); } __ j(kLess, slow_path->GetEntryLabel()); } } else { // Check that length(input) >= pos. __ movl(temp, Address(input, length_offset)); __ subl(temp, Immediate(pos_const)); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister()); } __ j(kLess, slow_path->GetEntryLabel()); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. CpuRegister pos_reg = pos.AsRegister(); __ testl(pos_reg, pos_reg); __ j(kNotEqual, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. CpuRegister pos_reg = pos.AsRegister(); __ testl(pos_reg, pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that pos <= length(input). __ cmpl(Address(input, length_offset), pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ movl(temp, Address(input, length_offset)); __ subl(temp, pos_reg); if (length.IsConstant()) { __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmpl(temp, length.AsRegister()); } __ j(kLess, slow_path->GetEntryLabel()); } } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister src = locations->InAt(0).AsRegister(); Location src_pos = locations->InAt(1); CpuRegister dest = locations->InAt(2).AsRegister(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); // Temporaries that we need for MOVSW. CpuRegister src_base = locations->GetTemp(0).AsRegister(); DCHECK_EQ(src_base.AsRegister(), RSI); CpuRegister dest_base = locations->GetTemp(1).AsRegister(); DCHECK_EQ(dest_base.AsRegister(), RDI); CpuRegister count = locations->GetTemp(2).AsRegister(); DCHECK_EQ(count.AsRegister(), RCX); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); // Bail out if the source and destination are the same. __ cmpl(src, dest); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the source is null. __ testl(src, src); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, slow_path->GetEntryLabel()); // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant()) { __ testl(length.AsRegister(), length.AsRegister()); __ j(kLess, slow_path->GetEntryLabel()); } // Validity checks: source. Use src_base as a temporary register. CheckPosition(assembler, src_pos, src, length, slow_path, src_base); // Validity checks: dest. Use src_base as a temporary register. CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base); // We need the count in RCX. if (length.IsConstant()) { __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(count, length.AsRegister()); } // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, char_size * src_pos_const + data_offset)); } else { __ leal(src_base, Address(src, src_pos.AsRegister(), ScaleFactor::TIMES_2, data_offset)); } if (dest_pos.IsConstant()) { int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset)); } else { __ leal(dest_base, Address(dest, dest_pos.AsRegister(), ScaleFactor::TIMES_2, data_offset)); } // Do the move. __ rep_movsw(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); } // Compute base source address, base destination address, and end // source address for the System.arraycopy intrinsic in `src_base`, // `dst_base` and `src_end` respectively. static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler, DataType::Type type, const CpuRegister& src, const Location& src_pos, const CpuRegister& dst, const Location& dst_pos, const Location& copy_length, const CpuRegister& src_base, const CpuRegister& dst_base, const CpuRegister& src_end) { // This routine is only used by the SystemArrayCopy intrinsic. DCHECK_EQ(type, DataType::Type::kReference); const int32_t element_size = DataType::Size(type); const ScaleFactor scale_factor = static_cast(DataType::SizeShift(type)); const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (src_pos.IsConstant()) { int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, element_size * constant + data_offset)); } else { __ leal(src_base, Address(src, src_pos.AsRegister(), scale_factor, data_offset)); } if (dst_pos.IsConstant()) { int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dst_base, Address(dst, element_size * constant + data_offset)); } else { __ leal(dst_base, Address(dst, dst_pos.AsRegister(), scale_factor, data_offset)); } if (copy_length.IsConstant()) { int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_end, Address(src_base, element_size * constant)); } else { __ leal(src_end, Address(src_base, copy_length.AsRegister(), scale_factor, 0)); } } void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); CpuRegister src = locations->InAt(0).AsRegister(); Location src_pos = locations->InAt(1); CpuRegister dest = locations->InAt(2).AsRegister(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Location temp1_loc = locations->GetTemp(0); CpuRegister temp1 = temp1_loc.AsRegister(); Location temp2_loc = locations->GetTemp(1); CpuRegister temp2 = temp2_loc.AsRegister(); Location temp3_loc = locations->GetTemp(2); CpuRegister temp3 = temp3_loc.AsRegister(); Location TMP_loc = Location::RegisterLocation(TMP); SlowPathCode* intrinsic_slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(intrinsic_slow_path); NearLabel conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ cmpl(src, dest); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } __ cmpl(dest_pos.AsRegister(), Immediate(src_pos_constant)); __ j(kGreater, intrinsic_slow_path->GetEntryLabel()); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmpl(src, dest); __ j(kNotEqual, &conditions_on_positions_validated); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ cmpl(src_pos.AsRegister(), Immediate(dest_pos_constant)); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } else { __ cmpl(src_pos.AsRegister(), dest_pos.AsRegister()); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ testl(src, src); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ testl(length.AsRegister(), length.AsRegister()); __ j(kLess, intrinsic_slow_path->GetEntryLabel()); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, intrinsic_slow_path, temp1, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, intrinsic_slow_path, temp1, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. bool did_unpoison = false; if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = dest->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, dest, class_offset, /* needs_null_check */ false); // Register `temp1` is not trashed by the read barrier emitted // by GenerateFieldLoadWithBakerReadBarrier below, as that // method produces a call to a ReadBarrierMarkRegX entry point, // which saves all potentially live registers, including // temporaries such a `temp1`. // /* HeapReference */ temp2 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, src, class_offset, /* needs_null_check */ false); // If heap poisoning is enabled, `temp1` and `temp2` have been // unpoisoned by the the previous calls to // GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ temp1 = dest->klass_ __ movl(temp1, Address(dest, class_offset)); // /* HeapReference */ temp2 = src->klass_ __ movl(temp2, Address(src, class_offset)); if (!optimizations.GetDestinationIsNonPrimitiveArray() || !optimizations.GetSourceIsNonPrimitiveArray()) { // One or two of the references need to be unpoisoned. Unpoison them // both to make the identity check valid. __ MaybeUnpoisonHeapReference(temp1); __ MaybeUnpoisonHeapReference(temp2); did_unpoison = true; } } if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ TMP = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, TMP_loc, temp1, component_offset, /* needs_null_check */ false); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `TMP` has been unpoisoned by // the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ TMP = temp1->component_type_ __ movl(CpuRegister(TMP), Address(temp1, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); } __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetSourceIsNonPrimitiveArray()) { // Bail out if the source is not a non primitive array. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // For the same reason given earlier, `temp1` is not trashed by the // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. // /* HeapReference */ TMP = temp2->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, TMP_loc, temp2, component_offset, /* needs_null_check */ false); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `TMP` has been unpoisoned by // the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference */ TMP = temp2->component_type_ __ movl(CpuRegister(TMP), Address(temp2, component_offset)); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); } __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } __ cmpl(temp1, temp2); if (optimizations.GetDestinationIsTypedObjectArray()) { NearLabel do_copy; __ j(kEqual, &do_copy); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, /* needs_null_check */ false); // We do not need to emit a read barrier for the following // heap reference load, as `temp1` is only used in a // comparison with null below, and this reference is not // kept afterwards. __ cmpl(Address(temp1, super_offset), Immediate(0)); } else { if (!did_unpoison) { __ MaybeUnpoisonHeapReference(temp1); } // /* HeapReference */ temp1 = temp1->component_type_ __ movl(temp1, Address(temp1, component_offset)); __ MaybeUnpoisonHeapReference(temp1); // No need to unpoison the following heap reference load, as // we're comparing against null. __ cmpl(Address(temp1, super_offset), Immediate(0)); } __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, /* needs_null_check */ false); // /* HeapReference */ TMP = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, TMP_loc, temp1, component_offset, /* needs_null_check */ false); __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); } else { // /* HeapReference */ temp1 = src->klass_ __ movl(temp1, Address(src, class_offset)); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference */ TMP = temp1->component_type_ __ movl(CpuRegister(TMP), Address(temp1, component_offset)); // No need to unpoison `TMP` now, as we're comparing against null. __ testl(CpuRegister(TMP), CpuRegister(TMP)); __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); } __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); } const DataType::Type type = DataType::Type::kReference; const int32_t element_size = DataType::Size(type); // Compute base source address, base destination address, and end // source address in `temp1`, `temp2` and `temp3` respectively. GenSystemArrayCopyAddresses( GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // SystemArrayCopy implementation for Baker read barriers (see // also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier): // // if (src_ptr != end_ptr) { // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // // Slow-path copy. // do { // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); // } while (src_ptr != end_ptr) // } else { // // Fast-path copy. // do { // *dest_ptr++ = *src_ptr++; // } while (src_ptr != end_ptr) // } // } NearLabel loop, done; // Don't enter copy loop if `length == 0`. __ cmpl(temp1, temp3); __ j(kEqual, &done); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; constexpr int32_t test_value = static_cast(1 << gray_bit_position); // if (rb_state == ReadBarrier::GrayState()) // goto slow_path; // At this point, just do the "if" and make sure that flags are preserved until the branch. __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value)); // Load fence to prevent load-load reordering. // Note that this is a no-op, thanks to the x86-64 memory model. codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // Slow path used to copy array when `src` is gray. SlowPathCode* read_barrier_slow_path = new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke); codegen_->AddSlowPath(read_barrier_slow_path); // We have done the "if" of the gray bit check above, now branch based on the flags. __ j(kNotZero, read_barrier_slow_path->GetEntryLabel()); // Fast-path copy. // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. __ Bind(&loop); __ movl(CpuRegister(TMP), Address(temp1, 0)); __ movl(Address(temp2, 0), CpuRegister(TMP)); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(read_barrier_slow_path->GetExitLabel()); __ Bind(&done); } else { // Non read barrier code. // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. NearLabel loop, done; __ cmpl(temp1, temp3); __ j(kEqual, &done); __ Bind(&loop); __ movl(CpuRegister(TMP), Address(temp1, 0)); __ movl(Address(temp2, 0), CpuRegister(TMP)); __ addl(temp1, Immediate(element_size)); __ addl(temp2, Immediate(element_size)); __ cmpl(temp1, temp3); __ j(kNotEqual, &loop); __ Bind(&done); } // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* value_can_be_null */ false); __ Bind(intrinsic_slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister argument = locations->InAt(1).AsRegister(); __ testl(argument, argument); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) { if (kEmitCompilerReadBarrier && !StringEqualsOptimizations(invoke).GetArgumentIsString() && !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) { // No support for this odd case (String class is moveable, not in the boot image). return; } LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction. locations->AddTemp(Location::RegisterLocation(RCX)); locations->AddTemp(Location::RegisterLocation(RDI)); // Set output, RSI needed for repe_cmpsq instruction anyways. locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap); } void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister str = locations->InAt(0).AsRegister(); CpuRegister arg = locations->InAt(1).AsRegister(); CpuRegister rcx = locations->GetTemp(0).AsRegister(); CpuRegister rdi = locations->GetTemp(1).AsRegister(); CpuRegister rsi = locations->Out().AsRegister(); NearLabel end, return_true, return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ testl(arg, arg); __ j(kEqual, &return_false); } if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ movl(rcx, Address(str, class_offset)); __ cmpl(rcx, Address(arg, class_offset)); __ j(kNotEqual, &return_false); } // Reference equality check, return true if same reference. __ cmpl(str, arg); __ j(kEqual, &return_true); // Load length and compression flag of receiver string. __ movl(rcx, Address(str, count_offset)); // Check if lengths and compressiond flags are equal, return false if they're not. // Two identical strings will always have same compression style since // compression style is decided on alloc. __ cmpl(rcx, Address(arg, count_offset)); __ j(kNotEqual, &return_false); // Return true if both strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ jrcxz(&return_true); if (mirror::kUseStringCompression) { NearLabel string_uncompressed; // Extract length and differentiate between both compressed or both uncompressed. // Different compression style is cut above. __ shrl(rcx, Immediate(1)); __ j(kCarrySet, &string_uncompressed); // Divide string length by 2, rounding up, and continue as if uncompressed. // Merge clearing the compression flag with +1 for rounding. __ addl(rcx, Immediate(1)); __ shrl(rcx, Immediate(1)); __ Bind(&string_uncompressed); } // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction. __ leal(rsi, Address(str, value_offset)); __ leal(rdi, Address(arg, value_offset)); // Divide string length by 4 and adjust for lengths not divisible by 4. __ addl(rcx, Immediate(3)); __ shrl(rcx, Immediate(2)); // Assertions that must hold in order to compare strings 4 characters (uncompressed) // or 8 characters (compressed) at a time. DCHECK_ALIGNED(value_offset, 8); static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded"); // Loop to compare strings four characters at a time starting at the beginning of the string. __ repe_cmpsq(); // If strings are not equal, zero flag will be cleared. __ j(kNotEqual, &return_false); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ movl(rsi, Immediate(1)); __ jmp(&end); // Return false and exit the function. __ Bind(&return_false); __ xorl(rsi, rsi); __ Bind(&end); } static void CreateStringIndexOfLocations(HInvoke* invoke, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // The data needs to be in RDI for scasw. So request that the string is there, anyways. locations->SetInAt(0, Location::RegisterLocation(RDI)); // If we look for a constant char, we'll still have to copy it into RAX. So just request the // allocator to do that, anyways. We can still do the constant check by checking the parameter // of the instruction explicitly. // Note: This works as we don't clobber RAX anywhere. locations->SetInAt(1, Location::RegisterLocation(RAX)); if (!start_at_zero) { locations->SetInAt(2, Location::RequiresRegister()); // The starting index. } // As we clobber RDI during execution anyways, also use it as the output. locations->SetOut(Location::SameAsFirstInput()); // repne scasw uses RCX as the counter. locations->AddTemp(Location::RegisterLocation(RCX)); // Need another temporary to be able to compute the result. locations->AddTemp(Location::RequiresRegister()); } static void GenerateStringIndexOf(HInvoke* invoke, X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); CpuRegister string_obj = locations->InAt(0).AsRegister(); CpuRegister search_value = locations->InAt(1).AsRegister(); CpuRegister counter = locations->GetTemp(0).AsRegister(); CpuRegister string_length = locations->GetTemp(1).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // Check our assumptions for registers. DCHECK_EQ(string_obj.AsRegister(), RDI); DCHECK_EQ(search_value.AsRegister(), RAX); DCHECK_EQ(counter.AsRegister(), RCX); DCHECK_EQ(out.AsRegister(), RDI); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCode* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (static_cast(code_point->AsIntConstant()->GetValue()) > std::numeric_limits::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != DataType::Type::kUint16) { __ cmpl(search_value, Immediate(std::numeric_limits::max())); slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen->AddSlowPath(slow_path); __ j(kAbove, slow_path->GetEntryLabel()); } // From here down, we know that we are looking for a char that fits in // 16 bits (uncompressed) or 8 bits (compressed). // Location of reference to data array within the String object. int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Load the count field of the string containing the length and compression flag. __ movl(string_length, Address(string_obj, count_offset)); // Do a zero-length check. Even with string compression `count == 0` means empty. // TODO: Support jecxz. NearLabel not_found_label; __ testl(string_length, string_length); __ j(kEqual, ¬_found_label); if (mirror::kUseStringCompression) { // Use TMP to keep string_length_flagged. __ movl(CpuRegister(TMP), string_length); // Mask out first bit used as compression flag. __ shrl(string_length, Immediate(1)); } if (start_at_zero) { // Number of chars to scan is the same as the string length. __ movl(counter, string_length); // Move to the start of the string. __ addq(string_obj, Immediate(value_offset)); } else { CpuRegister start_index = locations->InAt(2).AsRegister(); // Do a start_index check. __ cmpl(start_index, string_length); __ j(kGreaterEqual, ¬_found_label); // Ensure we have a start index >= 0; __ xorl(counter, counter); __ cmpl(start_index, Immediate(0)); __ cmov(kGreater, counter, start_index, /* is64bit */ false); // 32-bit copy is enough. if (mirror::kUseStringCompression) { NearLabel modify_counter, offset_uncompressed_label; __ testl(CpuRegister(TMP), Immediate(1)); __ j(kNotZero, &offset_uncompressed_label); __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset)); __ jmp(&modify_counter); // Move to the start of the string: string_obj + value_offset + 2 * start_index. __ Bind(&offset_uncompressed_label); __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); __ Bind(&modify_counter); } else { __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); } // Now update ecx, the work counter: it's gonna be string.length - start_index. __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit. __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); } if (mirror::kUseStringCompression) { NearLabel uncompressed_string_comparison; NearLabel comparison_done; __ testl(CpuRegister(TMP), Immediate(1)); __ j(kNotZero, &uncompressed_string_comparison); // Check if RAX (search_value) is ASCII. __ cmpl(search_value, Immediate(127)); __ j(kGreater, ¬_found_label); // Comparing byte-per-byte. __ repne_scasb(); __ jmp(&comparison_done); // Everything is set up for repne scasw: // * Comparison address in RDI. // * Counter in ECX. __ Bind(&uncompressed_string_comparison); __ repne_scasw(); __ Bind(&comparison_done); } else { __ repne_scasw(); } // Did we find a match? __ j(kNotEqual, ¬_found_label); // Yes, we matched. Compute the index of the result. __ subl(string_length, counter); __ leal(out, Address(string_length, -1)); NearLabel done; __ jmp(&done); // Failed to match; return -1. __ Bind(¬_found_label); __ movl(out, Immediate(-1)); // And join up at the end. __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ true); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ true); } void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ false); } void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ false); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister byte_array = locations->InAt(0).AsRegister(); __ testl(byte_array, byte_array); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); } void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary( invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(RAX)); } void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister string_to_copy = locations->InAt(0).AsRegister(); __ testl(string_to_copy, string_to_copy); SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(RSI)); locations->AddTemp(Location::RegisterLocation(RDI)); locations->AddTemp(Location::RegisterLocation(RCX)); } void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); size_t char_component_size = DataType::Size(DataType::Type::kUint16); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); CpuRegister obj = locations->InAt(0).AsRegister(); Location srcBegin = locations->InAt(1); int srcBegin_value = srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; CpuRegister srcEnd = locations->InAt(2).AsRegister(); CpuRegister dst = locations->InAt(3).AsRegister(); CpuRegister dstBegin = locations->InAt(4).AsRegister(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = DataType::Size(DataType::Type::kUint16); DCHECK_EQ(char_size, 2u); NearLabel done; // Compute the number of chars (words) to move. __ movl(CpuRegister(RCX), srcEnd); if (srcBegin.IsConstant()) { __ subl(CpuRegister(RCX), Immediate(srcBegin_value)); } else { DCHECK(srcBegin.IsRegister()); __ subl(CpuRegister(RCX), srcBegin.AsRegister()); } if (mirror::kUseStringCompression) { NearLabel copy_uncompressed, copy_loop; const size_t c_char_size = DataType::Size(DataType::Type::kInt8); DCHECK_EQ(c_char_size, 1u); // Location of count in string. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); __ testl(Address(obj, count_offset), Immediate(1)); static_assert(static_cast(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ j(kNotZero, ©_uncompressed); // Compute the address of the source string by adding the number of chars from // the source beginning to the value offset of a string. __ leaq(CpuRegister(RSI), CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset)); // Start the loop to copy String's value to Array of Char. __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); __ Bind(©_loop); __ jrcxz(&done); // Use TMP as temporary (convert byte from RSI to word). // TODO: Selecting RAX as the temporary and using LODSB/STOSW. __ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0)); __ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP)); __ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size)); __ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size)); // TODO: Add support for LOOP to X86_64Assembler. __ subl(CpuRegister(RCX), Immediate(1)); __ jmp(©_loop); __ Bind(©_uncompressed); } __ leaq(CpuRegister(RSI), CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset)); // Compute the address of the destination buffer. __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); // Do the move. __ rep_movsw(); __ Bind(&done); } static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister(); CpuRegister out = locations->Out().AsRegister(); // == address, here for clarity. // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case DataType::Type::kInt8: __ movsxb(out, Address(address, 0)); break; case DataType::Type::kInt16: __ movsxw(out, Address(address, 0)); break; case DataType::Type::kInt32: __ movl(out, Address(address, 0)); break; case DataType::Type::kInt64: __ movq(out, Address(address, 0)); break; default: LOG(FATAL) << "Type not recognized for peek: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1))); } static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { CpuRegister address = locations->InAt(0).AsRegister(); Location value = locations->InAt(1); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case DataType::Type::kInt8: if (value.IsConstant()) { __ movb(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movb(Address(address, 0), value.AsRegister()); } break; case DataType::Type::kInt16: if (value.IsConstant()) { __ movw(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movw(Address(address, 0), value.AsRegister()); } break; case DataType::Type::kInt32: if (value.IsConstant()) { __ movl(Address(address, 0), Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); } else { __ movl(Address(address, 0), value.AsRegister()); } break; case DataType::Type::kInt64: if (value.IsConstant()) { int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); DCHECK(IsInt<32>(v)); int32_t v_32 = v; __ movq(Address(address, 0), Immediate(v_32)); } else { __ movq(Address(address, 0), value.AsRegister()); } break; default: LOG(FATAL) << "Type not recognized for poke: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); } void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) { CpuRegister out = invoke->GetLocations()->Out().AsRegister(); GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset(), /* no_rip */ true)); } static void GenUnsafeGet(HInvoke* invoke, DataType::Type type, bool is_volatile ATTRIBUTE_UNUSED, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Location base_loc = locations->InAt(1); CpuRegister base = base_loc.AsRegister(); Location offset_loc = locations->InAt(2); CpuRegister offset = offset_loc.AsRegister(); Location output_loc = locations->Out(); CpuRegister output = output_loc.AsRegister(); switch (type) { case DataType::Type::kInt32: __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; case DataType::Type::kReference: { if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Address src(base, offset, ScaleFactor::TIMES_1, 0); codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, output_loc, base, src, /* needs_null_check */ false); } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); codegen->GenerateReadBarrierSlow( invoke, output_loc, output_loc, base_loc, 0U, offset_loc); } } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ MaybeUnpoisonHeapReference(output); } break; } case DataType::Type::kInt64: __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator, DataType::Type type, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == DataType::Type::kReference) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); } // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 // memory model. static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); CpuRegister base = locations->InAt(1).AsRegister(); CpuRegister offset = locations->InAt(2).AsRegister(); CpuRegister value = locations->InAt(3).AsRegister(); if (type == DataType::Type::kInt64) { __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } else if (kPoisonHeapReferences && type == DataType::Type::kReference) { CpuRegister temp = locations->GetTemp(0).AsRegister(); __ movl(temp, value); __ PoisonHeapReference(temp); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value); } if (is_volatile) { codegen->MemoryFence(); } if (type == DataType::Type::kReference) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), base, value, value_can_be_null); } } void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut( invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator, DataType::Type type, HInvoke* invoke) { bool can_call = kEmitCompilerReadBarrier && kUseBakerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); LocationSummary* locations = new (allocator) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); // expected value must be in EAX/RAX. locations->SetInAt(3, Location::RegisterLocation(RAX)); locations->SetInAt(4, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); if (type == DataType::Type::kReference) { // Need temporary registers for card-marking, and possibly for // (Baker) read barrier. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) { CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke); } void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke); } static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) { X86_64Assembler* assembler = down_cast(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); CpuRegister base = locations->InAt(1).AsRegister(); CpuRegister offset = locations->InAt(2).AsRegister(); CpuRegister expected = locations->InAt(3).AsRegister(); // Ensure `expected` is in RAX (required by the CMPXCHG instruction). DCHECK_EQ(expected.AsRegister(), RAX); CpuRegister value = locations->InAt(4).AsRegister(); Location out_loc = locations->Out(); CpuRegister out = out_loc.AsRegister(); if (type == DataType::Type::kReference) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); CpuRegister temp1 = locations->GetTemp(0).AsRegister(); CpuRegister temp2 = locations->GetTemp(1).AsRegister(); // Mark card for object assuming new value is stored. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null); // The address of the field within the holding object. Address field_addr(base, offset, ScaleFactor::TIMES_1, 0); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Need to make sure the reference stored in the field is a to-space // one before attempting the CAS or the CAS could fail incorrectly. codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, out_loc, // Unused, used only as a "temporary" within the read barrier. base, field_addr, /* needs_null_check */ false, /* always_update_field */ true, &temp1, &temp2); } bool base_equals_value = (base.AsRegister() == value.AsRegister()); Register value_reg = value.AsRegister(); if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move // `value_reg` to a temporary register. This way, poisoning // `value_reg` won't invalidate `base`. value_reg = temp1.AsRegister(); __ movl(CpuRegister(value_reg), base); } // Check that the register allocator did not assign the location // of `expected` (RAX) to `value` nor to `base`, so that heap // poisoning (when enabled) works as intended below. // - If `value` were equal to `expected`, both references would // be poisoned twice, meaning they would not be poisoned at // all, as heap poisoning uses address negation. // - If `base` were equal to `expected`, poisoning `expected` // would invalidate `base`. DCHECK_NE(value_reg, expected.AsRegister()); DCHECK_NE(base.AsRegister(), expected.AsRegister()); __ PoisonHeapReference(expected); __ PoisonHeapReference(CpuRegister(value_reg)); } __ LockCmpxchgl(field_addr, CpuRegister(value_reg)); // LOCK CMPXCHG has full barrier semantics, and we don't need // scheduling barriers at this time. // Convert ZF into the Boolean result. __ setcc(kZero, out); __ movzxb(out, out); // If heap poisoning is enabled, we need to unpoison the values // that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value_reg` has been moved to a temporary register, no need // to unpoison it. } else { // Ensure `value` is different from `out`, so that unpoisoning // the former does not invalidate the latter. DCHECK_NE(value_reg, out.AsRegister()); __ UnpoisonHeapReference(CpuRegister(value_reg)); } // Ensure `expected` is different from `out`, so that unpoisoning // the former does not invalidate the latter. DCHECK_NE(expected.AsRegister(), out.AsRegister()); __ UnpoisonHeapReference(expected); } } else { if (type == DataType::Type::kInt32) { __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value); } else if (type == DataType::Type::kInt64) { __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value); } else { LOG(FATAL) << "Unexpected CAS type " << type; } // LOCK CMPXCHG has full barrier semantics, and we don't need // scheduling barriers at this time. // Convert ZF into the Boolean result. __ setcc(kZero, out); __ movzxb(out, out); } } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) { GenCAS(DataType::Type::kInt32, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) { GenCAS(DataType::Type::kInt64, invoke, codegen_); } void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); GenCAS(DataType::Type::kReference, invoke, codegen_); } void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); Immediate imm_mask(mask); __ movl(temp, reg); __ shrl(reg, imm_shift); __ andl(temp, imm_mask); __ andl(reg, imm_mask); __ shll(temp, imm_shift); __ orl(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister(); CpuRegister temp = locations->GetTemp(0).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; */ __ bswapl(reg); SwapBits(reg, temp, 1, 0x55555555, assembler); SwapBits(reg, temp, 2, 0x33333333, assembler); SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); } void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask, int32_t shift, int64_t mask, X86_64Assembler* assembler) { Immediate imm_shift(shift); __ movq(temp_mask, Immediate(mask)); __ movq(temp, reg); __ shrq(reg, imm_shift); __ andq(temp, temp_mask); __ andq(reg, temp_mask); __ shlq(temp, imm_shift); __ orq(reg, temp); } void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); CpuRegister reg = locations->InAt(0).AsRegister(); CpuRegister temp1 = locations->GetTemp(0).AsRegister(); CpuRegister temp2 = locations->GetTemp(1).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a long number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555; * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333; * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F; */ __ bswapq(reg); SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler); SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler); SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler); } static void CreateBitCountLocations( ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) { if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { // Do nothing if there is no popcnt support. This results in generating // a call for the intrinsic rather than direct code. return; } LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenBitCount(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); int32_t result = is_long ? POPCOUNT(static_cast(value)) : POPCOUNT(static_cast(value)); codegen->Load32BitValue(out, result); return; } if (src.IsRegister()) { if (is_long) { __ popcntq(out, src.AsRegister()); } else { __ popcntl(out, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } } void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) { CreateBitCountLocations(allocator_, codegen_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) { CreateBitCountLocations(allocator_, codegen_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL : Location::RequiresRegister()); // any will do } static void GenOneBit(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_high, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { __ xorl(out, out); // Clears upper bits too. return; } // Nonzero value. if (is_high) { value = is_long ? 63 - CLZ(static_cast(value)) : 31 - CLZ(static_cast(value)); } else { value = is_long ? CTZ(static_cast(value)) : CTZ(static_cast(value)); } if (is_long) { codegen->Load64BitValue(out, 1ULL << value); } else { codegen->Load32BitValue(out, 1 << value); } return; } // Handle the non-constant cases. CpuRegister tmp = locations->GetTemp(0).AsRegister(); if (is_high) { // Use architectural support: basically 1 << bsr. if (src.IsRegister()) { if (is_long) { __ bsrq(tmp, src.AsRegister()); } else { __ bsrl(tmp, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSR sets ZF if the input was zero. NearLabel is_zero, done; __ j(kEqual, &is_zero); __ movl(out, Immediate(1)); // Clears upper bits too. if (is_long) { __ shlq(out, tmp); } else { __ shll(out, tmp); } __ jmp(&done); __ Bind(&is_zero); __ xorl(out, out); // Clears upper bits too. __ Bind(&done); } else { // Copy input into temporary. if (src.IsRegister()) { if (is_long) { __ movq(tmp, src.AsRegister()); } else { __ movl(tmp, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); } // Do the bit twiddling: basically tmp & -tmp; if (is_long) { __ movq(out, tmp); __ negq(tmp); __ andq(out, tmp); } else { __ movl(out, tmp); __ negl(tmp); __ andl(out, tmp); } } } void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high */ true); } void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high */ true); } void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ true); } void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high */ false); } void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) { CreateOneBitLocations(allocator_, invoke, /* is_high */ false); } void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) { GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ true); } static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenLeadingZeros(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); int zero_value_result = is_long ? 64 : 32; if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = zero_value_result; } else { value = is_long ? CLZ(static_cast(value)) : CLZ(static_cast(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (src.IsRegister()) { if (is_long) { __ bsrq(out, src.AsRegister()); } else { __ bsrl(out, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSR sets ZF if the input was zero, and the output is undefined. NearLabel is_zero, done; __ j(kEqual, &is_zero); // Correct the result from BSR to get the CLZ result. __ xorl(out, Immediate(zero_value_result - 1)); __ jmp(&done); // Fix the zero case with the expected result. __ Bind(&is_zero); __ movl(out, Immediate(zero_value_result)); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenTrailingZeros(X86_64Assembler* assembler, CodeGeneratorX86_64* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); CpuRegister out = locations->Out().AsRegister(); int zero_value_result = is_long ? 64 : 32; if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = zero_value_result; } else { value = is_long ? CTZ(static_cast(value)) : CTZ(static_cast(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (src.IsRegister()) { if (is_long) { __ bsfq(out, src.AsRegister()); } else { __ bsfl(out, src.AsRegister()); } } else if (is_long) { DCHECK(src.IsDoubleStackSlot()); __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex())); } else { DCHECK(src.IsStackSlot()); __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex())); } // BSF sets ZF if the input was zero, and the output is undefined. NearLabel done; __ j(kNotEqual, &done); // Fix the zero case with the expected result. __ movl(out, Immediate(zero_value_result)); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(allocator_, invoke); } void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConvention calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, Location::RegisterLocation(RAX), Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(); LocationSummary* locations = invoke->GetLocations(); X86_64Assembler* assembler = GetAssembler(); CpuRegister out = locations->Out().AsRegister(); InvokeRuntimeCallingConvention calling_convention; if (invoke->InputAt(0)->IsConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (value >= info.low && value <= info.high) { // Just embed the j.l.Integer in the code. ScopedObjectAccess soa(Thread::Current()); mirror::Object* boxed = info.cache->Get(value + (-info.low)); DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed)); uint32_t address = dchecked_integral_cast(reinterpret_cast(boxed)); __ movl(out, Immediate(static_cast(address))); } else { // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0)); uint32_t address = dchecked_integral_cast(reinterpret_cast(info.integer)); __ movl(argument, Immediate(static_cast(address))); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ movl(Address(out, info.value_offset), Immediate(value)); } } else { CpuRegister in = locations->InAt(0).AsRegister(); // Check bounds of our cache. __ leal(out, Address(in, -info.low)); __ cmpl(out, Immediate(info.high - info.low + 1)); NearLabel allocate, done; __ j(kAboveEqual, &allocate); // If the value is within the bounds, load the j.l.Integer directly from the array. uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); uint32_t address = dchecked_integral_cast(reinterpret_cast(info.cache)); if (data_offset + address <= std::numeric_limits::max()) { __ movl(out, Address(out, TIMES_4, data_offset + address)); } else { CpuRegister temp = CpuRegister(calling_convention.GetRegisterAt(0)); __ movl(temp, Immediate(static_cast(data_offset + address))); __ movl(out, Address(temp, out, TIMES_4, 0)); } __ MaybeUnpoisonHeapReference(out); __ jmp(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0)); address = dchecked_integral_cast(reinterpret_cast(info.integer)); __ movl(argument, Immediate(static_cast(address))); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes(); __ movl(Address(out, info.value_offset), in); __ Bind(&done); } } void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) { X86_64Assembler* assembler = GetAssembler(); CpuRegister out = invoke->GetLocations()->Out().AsRegister(); Address address = Address::Absolute (Thread::InterruptedOffset().Int32Value(), /* no_rip */ true); NearLabel done; __ gs()->movl(out, address); __ testl(out, out); __ j(kEqual, &done); __ gs()->movl(address, Immediate(0)); codegen_->MemoryFence(); __ Bind(&done); } void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) { LocationSummary* locations = new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::Any()); } void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite) UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite) UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOf); UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOfAfter); UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferAppend); UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferLength); UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferToString); UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppend); UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderLength); UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderToString); // 1.8. UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(X86_64) #undef __ } // namespace x86_64 } // namespace art