/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "disassembler_arm.h" #include #include #include "android-base/logging.h" #include "arch/arm/registers_arm.h" #include "base/bit_utils.h" #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #include "aarch32/disasm-aarch32.h" #include "aarch32/instructions-aarch32.h" #pragma GCC diagnostic pop namespace art { namespace arm { using vixl::aarch32::MemOperand; using vixl::aarch32::PrintDisassembler; using vixl::aarch32::pc; static const vixl::aarch32::Register tr(TR); class DisassemblerArm::CustomDisassembler FINAL : public PrintDisassembler { class CustomDisassemblerStream FINAL : public DisassemblerStream { public: CustomDisassemblerStream(std::ostream& os, const CustomDisassembler* disasm, const DisassemblerOptions* options) : DisassemblerStream(os), disasm_(disasm), options_(options) {} DisassemblerStream& operator<<(const PrintLabel& label) OVERRIDE { const LocationType type = label.GetLocationType(); switch (type) { case kLoadByteLocation: case kLoadHalfWordLocation: case kLoadWordLocation: case kLoadDoubleWordLocation: case kLoadSignedByteLocation: case kLoadSignedHalfWordLocation: case kLoadSinglePrecisionLocation: case kLoadDoublePrecisionLocation: case kVld1Location: case kVld2Location: case kVld3Location: case kVld4Location: { const int32_t offset = label.GetImmediate(); os() << "[pc, #" << offset << "]"; PrintLiteral(type, offset); return *this; } default: return DisassemblerStream::operator<<(label); } } DisassemblerStream& operator<<(vixl::aarch32::Register reg) OVERRIDE { if (reg.Is(tr)) { os() << "tr"; return *this; } else { return DisassemblerStream::operator<<(reg); } } DisassemblerStream& operator<<(const MemOperand& operand) OVERRIDE { // VIXL must use a PrintLabel object whenever the base register is PC; // the following check verifies this invariant, and guards against bugs. DCHECK(!operand.GetBaseRegister().Is(pc)); DisassemblerStream::operator<<(operand); if (operand.GetBaseRegister().Is(tr) && operand.IsImmediate()) { os() << " ; "; options_->thread_offset_name_function_(os(), operand.GetOffsetImmediate()); } return *this; } DisassemblerStream& operator<<(const vixl::aarch32::AlignedMemOperand& operand) OVERRIDE { // VIXL must use a PrintLabel object whenever the base register is PC; // the following check verifies this invariant, and guards against bugs. DCHECK(!operand.GetBaseRegister().Is(pc)); return DisassemblerStream::operator<<(operand); } private: void PrintLiteral(LocationType type, int32_t offset); const CustomDisassembler* disasm_; const DisassemblerOptions* options_; }; public: CustomDisassembler(std::ostream& os, const DisassemblerOptions* options) : PrintDisassembler(&disassembler_stream_), disassembler_stream_(os, this, options), is_t32_(true) {} void PrintCodeAddress(uint32_t prog_ctr) OVERRIDE { os() << "0x" << std::hex << std::setw(8) << std::setfill('0') << prog_ctr << ": "; } void SetIsT32(bool is_t32) { is_t32_ = is_t32; } bool GetIsT32() const { return is_t32_; } private: CustomDisassemblerStream disassembler_stream_; // Whether T32 stream is decoded. bool is_t32_; }; void DisassemblerArm::CustomDisassembler::CustomDisassemblerStream::PrintLiteral(LocationType type, int32_t offset) { // Literal offsets are not required to be aligned, so we may need unaligned access. typedef const int16_t unaligned_int16_t __attribute__ ((aligned (1))); typedef const uint16_t unaligned_uint16_t __attribute__ ((aligned (1))); typedef const int32_t unaligned_int32_t __attribute__ ((aligned (1))); typedef const int64_t unaligned_int64_t __attribute__ ((aligned (1))); typedef const float unaligned_float __attribute__ ((aligned (1))); typedef const double unaligned_double __attribute__ ((aligned (1))); // Zeros are used for the LocationType values this function does not care about. const size_t literal_size[kVst4Location + 1] = { 0, 0, 0, 0, sizeof(uint8_t), sizeof(unaligned_uint16_t), sizeof(unaligned_int32_t), sizeof(unaligned_int64_t), sizeof(int8_t), sizeof(unaligned_int16_t), sizeof(unaligned_float), sizeof(unaligned_double)}; const uintptr_t begin = reinterpret_cast(options_->base_address_); const uintptr_t end = reinterpret_cast(options_->end_address_); uintptr_t literal_addr = RoundDown(disasm_->GetCodeAddress(), vixl::aarch32::kRegSizeInBytes) + offset; literal_addr += disasm_->GetIsT32() ? vixl::aarch32::kT32PcDelta : vixl::aarch32::kA32PcDelta; if (!options_->absolute_addresses_) { literal_addr += begin; } os() << " ; "; // Bail out if not within expected buffer range to avoid trying to fetch invalid literals // (we can encounter them when interpreting raw data as instructions). if (literal_addr < begin || literal_addr > end - literal_size[type]) { os() << "(?)"; } else { switch (type) { case kLoadByteLocation: os() << *reinterpret_cast(literal_addr); break; case kLoadHalfWordLocation: os() << *reinterpret_cast(literal_addr); break; case kLoadWordLocation: { const int32_t value = *reinterpret_cast(literal_addr); os() << "0x" << std::hex << std::setw(8) << std::setfill('0') << value; break; } case kLoadDoubleWordLocation: { const int64_t value = *reinterpret_cast(literal_addr); os() << "0x" << std::hex << std::setw(16) << std::setfill('0') << value; break; } case kLoadSignedByteLocation: os() << *reinterpret_cast(literal_addr); break; case kLoadSignedHalfWordLocation: os() << *reinterpret_cast(literal_addr); break; case kLoadSinglePrecisionLocation: os() << *reinterpret_cast(literal_addr); break; case kLoadDoublePrecisionLocation: os() << *reinterpret_cast(literal_addr); break; default: UNIMPLEMENTED(FATAL) << "Unexpected literal type: " << type; } } } DisassemblerArm::DisassemblerArm(DisassemblerOptions* options) : Disassembler(options), disasm_(std::make_unique(output_, options)) {} size_t DisassemblerArm::Dump(std::ostream& os, const uint8_t* begin) { uintptr_t next; // Remove the Thumb specifier bit; no effect if begin does not point to T32 code. const uintptr_t instr_ptr = reinterpret_cast(begin) & ~1; const bool is_t32 = (reinterpret_cast(begin) & 1) != 0; disasm_->SetCodeAddress(GetPc(instr_ptr)); disasm_->SetIsT32(is_t32); if (is_t32) { const uint16_t* const ip = reinterpret_cast(instr_ptr); const uint16_t* const end_address = reinterpret_cast( GetDisassemblerOptions()->end_address_); next = reinterpret_cast(disasm_->DecodeT32At(ip, end_address)); } else { const uint32_t* const ip = reinterpret_cast(instr_ptr); next = reinterpret_cast(disasm_->DecodeA32At(ip)); } os << output_.str(); output_.str(std::string()); return next - instr_ptr; } void DisassemblerArm::Dump(std::ostream& os, const uint8_t* begin, const uint8_t* end) { DCHECK_LE(begin, end); // Remove the Thumb specifier bit; no effect if begin does not point to T32 code. const uintptr_t base = reinterpret_cast(begin) & ~1; const bool is_t32 = (reinterpret_cast(begin) & 1) != 0; disasm_->SetCodeAddress(GetPc(base)); disasm_->SetIsT32(is_t32); if (is_t32) { // The Thumb specifier bits cancel each other. disasm_->DisassembleT32Buffer(reinterpret_cast(base), end - begin); } else { disasm_->DisassembleA32Buffer(reinterpret_cast(base), end - begin); } os << output_.str(); output_.str(std::string()); } } // namespace arm } // namespace art