/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_ATOMIC_H_ #define ART_LIBARTBASE_BASE_ATOMIC_H_ #include #include #include #include #include #include "base/macros.h" namespace art { template class PACKED(sizeof(T)) Atomic : public std::atomic { public: Atomic() : std::atomic(T()) { } explicit Atomic(T value) : std::atomic(value) { } // Load from memory without ordering or synchronization constraints. T LoadRelaxed() const { return this->load(std::memory_order_relaxed); } // Load from memory with acquire ordering. T LoadAcquire() const { return this->load(std::memory_order_acquire); } // Word tearing allowed, but may race. // TODO: Optimize? // There has been some discussion of eventually disallowing word // tearing for Java data loads. T LoadJavaData() const { return this->load(std::memory_order_relaxed); } // Load from memory with a total ordering. // Corresponds exactly to a Java volatile load. T LoadSequentiallyConsistent() const { return this->load(std::memory_order_seq_cst); } // Store to memory without ordering or synchronization constraints. void StoreRelaxed(T desired_value) { this->store(desired_value, std::memory_order_relaxed); } // Word tearing allowed, but may race. void StoreJavaData(T desired_value) { this->store(desired_value, std::memory_order_relaxed); } // Store to memory with release ordering. void StoreRelease(T desired_value) { this->store(desired_value, std::memory_order_release); } // Store to memory with a total ordering. void StoreSequentiallyConsistent(T desired_value) { this->store(desired_value, std::memory_order_seq_cst); } // Atomically replace the value with desired_value. T ExchangeRelaxed(T desired_value) { return this->exchange(desired_value, std::memory_order_relaxed); } // Atomically replace the value with desired_value. T ExchangeSequentiallyConsistent(T desired_value) { return this->exchange(desired_value, std::memory_order_seq_cst); } // Atomically replace the value with desired_value. T ExchangeAcquire(T desired_value) { return this->exchange(desired_value, std::memory_order_acquire); } // Atomically replace the value with desired_value. T ExchangeRelease(T desired_value) { return this->exchange(desired_value, std::memory_order_release); } // Atomically replace the value with desired_value if it matches the expected_value. // Participates in total ordering of atomic operations. Returns true on success, false otherwise. // If the value does not match, updates the expected_value argument with the value that was // atomically read for the failed comparison. bool CompareAndExchangeStrongSequentiallyConsistent(T* expected_value, T desired_value) { return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_seq_cst); } // Atomically replace the value with desired_value if it matches the expected_value. // Participates in total ordering of atomic operations. Returns true on success, false otherwise. // If the value does not match, updates the expected_value argument with the value that was // atomically read for the failed comparison. bool CompareAndExchangeStrongAcquire(T* expected_value, T desired_value) { return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_acquire); } // Atomically replace the value with desired_value if it matches the expected_value. // Participates in total ordering of atomic operations. Returns true on success, false otherwise. // If the value does not match, updates the expected_value argument with the value that was // atomically read for the failed comparison. bool CompareAndExchangeStrongRelease(T* expected_value, T desired_value) { return this->compare_exchange_strong(*expected_value, desired_value, std::memory_order_release); } // Atomically replace the value with desired_value if it matches the expected_value. // Participates in total ordering of atomic operations. bool CompareAndSetStrongSequentiallyConsistent(T expected_value, T desired_value) { return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst); } // The same, except it may fail spuriously. bool CompareAndSetWeakSequentiallyConsistent(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst); } // Atomically replace the value with desired_value if it matches the expected_value. Doesn't // imply ordering or synchronization constraints. bool CompareAndSetStrongRelaxed(T expected_value, T desired_value) { return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed); } // Atomically replace the value with desired_value if it matches the expected_value. Prior writes // to other memory locations become visible to the threads that do a consume or an acquire on the // same location. bool CompareAndSetStrongRelease(T expected_value, T desired_value) { return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_release); } // The same, except it may fail spuriously. bool CompareAndSetWeakRelaxed(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed); } // Atomically replace the value with desired_value if it matches the expected_value. Prior writes // made to other memory locations by the thread that did the release become visible in this // thread. bool CompareAndSetWeakAcquire(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire); } // Atomically replace the value with desired_value if it matches the expected_value. Prior writes // to other memory locations become visible to the threads that do a consume or an acquire on the // same location. bool CompareAndSetWeakRelease(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release); } T FetchAndAddSequentiallyConsistent(const T value) { return this->fetch_add(value, std::memory_order_seq_cst); // Return old_value. } T FetchAndAddRelaxed(const T value) { return this->fetch_add(value, std::memory_order_relaxed); // Return old_value. } T FetchAndAddAcquire(const T value) { return this->fetch_add(value, std::memory_order_acquire); // Return old_value. } T FetchAndAddRelease(const T value) { return this->fetch_add(value, std::memory_order_acquire); // Return old_value. } T FetchAndSubSequentiallyConsistent(const T value) { return this->fetch_sub(value, std::memory_order_seq_cst); // Return old value. } T FetchAndSubRelaxed(const T value) { return this->fetch_sub(value, std::memory_order_relaxed); // Return old value. } T FetchAndBitwiseAndSequentiallyConsistent(const T value) { return this->fetch_and(value, std::memory_order_seq_cst); // Return old_value. } T FetchAndBitwiseAndAcquire(const T value) { return this->fetch_and(value, std::memory_order_acquire); // Return old_value. } T FetchAndBitwiseAndRelease(const T value) { return this->fetch_and(value, std::memory_order_release); // Return old_value. } T FetchAndBitwiseOrSequentiallyConsistent(const T value) { return this->fetch_or(value, std::memory_order_seq_cst); // Return old_value. } T FetchAndBitwiseOrAcquire(const T value) { return this->fetch_or(value, std::memory_order_acquire); // Return old_value. } T FetchAndBitwiseOrRelease(const T value) { return this->fetch_or(value, std::memory_order_release); // Return old_value. } T FetchAndBitwiseXorSequentiallyConsistent(const T value) { return this->fetch_xor(value, std::memory_order_seq_cst); // Return old_value. } T FetchAndBitwiseXorAcquire(const T value) { return this->fetch_xor(value, std::memory_order_acquire); // Return old_value. } T FetchAndBitwiseXorRelease(const T value) { return this->fetch_xor(value, std::memory_order_release); // Return old_value. } volatile T* Address() { return reinterpret_cast(this); } static T MaxValue() { return std::numeric_limits::max(); } }; typedef Atomic AtomicInteger; static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size"); static_assert(alignof(AtomicInteger) == alignof(int32_t), "AtomicInteger alignment differs from that of underlyingtype"); static_assert(sizeof(Atomic) == sizeof(int64_t), "Weird Atomic size"); // Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit // architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte // aligned. #if defined(__LP64__) static_assert(alignof(Atomic) == alignof(int64_t), "Atomic alignment differs from that of underlying type"); #endif } // namespace art #endif // ART_LIBARTBASE_BASE_ATOMIC_H_