/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file_loader.h" #include "android-base/stringprintf.h" #include "base/stl_util.h" #include "compact_dex_file.h" #include "dex_file.h" #include "dex_file_verifier.h" #include "standard_dex_file.h" #include "ziparchive/zip_archive.h" // system/core/zip_archive definitions. struct ZipEntry; typedef void* ZipArchiveHandle; namespace art { namespace { class VectorContainer : public DexFileContainer { public: explicit VectorContainer(std::vector&& vector) : vector_(std::move(vector)) { } virtual ~VectorContainer() OVERRIDE { } int GetPermissions() OVERRIDE { return 0; } bool IsReadOnly() OVERRIDE { return true; } bool EnableWrite() OVERRIDE { return false; } bool DisableWrite() OVERRIDE { return false; } private: std::vector vector_; DISALLOW_COPY_AND_ASSIGN(VectorContainer); }; } // namespace using android::base::StringPrintf; class DexZipArchive; class DexZipEntry { public: // Extract this entry to memory. // Returns null on failure and sets error_msg. const std::vector Extract(std::string* error_msg) { std::vector map(GetUncompressedLength()); if (map.size() == 0) { DCHECK(!error_msg->empty()); return map; } const int32_t error = ExtractToMemory(handle_, zip_entry_, map.data(), map.size()); if (error) { *error_msg = std::string(ErrorCodeString(error)); } return map; } virtual ~DexZipEntry() { delete zip_entry_; } uint32_t GetUncompressedLength() { return zip_entry_->uncompressed_length; } uint32_t GetCrc32() { return zip_entry_->crc32; } private: DexZipEntry(ZipArchiveHandle handle, ::ZipEntry* zip_entry, const std::string& entry_name) : handle_(handle), zip_entry_(zip_entry), entry_name_(entry_name) {} ZipArchiveHandle handle_; ::ZipEntry* const zip_entry_; std::string const entry_name_; friend class DexZipArchive; DISALLOW_COPY_AND_ASSIGN(DexZipEntry); }; class DexZipArchive { public: // return new DexZipArchive instance on success, null on error. static DexZipArchive* Open(const uint8_t* base, size_t size, std::string* error_msg) { ZipArchiveHandle handle; uint8_t* nonconst_base = const_cast(base); const int32_t error = OpenArchiveFromMemory(nonconst_base, size, "ZipArchiveMemory", &handle); if (error) { *error_msg = std::string(ErrorCodeString(error)); CloseArchive(handle); return nullptr; } return new DexZipArchive(handle); } DexZipEntry* Find(const char* name, std::string* error_msg) const { DCHECK(name != nullptr); // Resist the urge to delete the space. <: is a bigraph sequence. std::unique_ptr< ::ZipEntry> zip_entry(new ::ZipEntry); const int32_t error = FindEntry(handle_, ZipString(name), zip_entry.get()); if (error) { *error_msg = std::string(ErrorCodeString(error)); return nullptr; } return new DexZipEntry(handle_, zip_entry.release(), name); } ~DexZipArchive() { CloseArchive(handle_); } private: explicit DexZipArchive(ZipArchiveHandle handle) : handle_(handle) {} ZipArchiveHandle handle_; friend class DexZipEntry; DISALLOW_COPY_AND_ASSIGN(DexZipArchive); }; static bool IsZipMagic(uint32_t magic) { return (('P' == ((magic >> 0) & 0xff)) && ('K' == ((magic >> 8) & 0xff))); } bool DexFileLoader::IsMagicValid(uint32_t magic) { return IsMagicValid(reinterpret_cast(&magic)); } bool DexFileLoader::IsMagicValid(const uint8_t* magic) { return StandardDexFile::IsMagicValid(magic) || CompactDexFile::IsMagicValid(magic); } bool DexFileLoader::IsVersionAndMagicValid(const uint8_t* magic) { if (StandardDexFile::IsMagicValid(magic)) { return StandardDexFile::IsVersionValid(magic); } if (CompactDexFile::IsMagicValid(magic)) { return CompactDexFile::IsVersionValid(magic); } return false; } bool DexFileLoader::IsMultiDexLocation(const char* location) { return strrchr(location, kMultiDexSeparator) != nullptr; } std::string DexFileLoader::GetMultiDexClassesDexName(size_t index) { return (index == 0) ? "classes.dex" : StringPrintf("classes%zu.dex", index + 1); } std::string DexFileLoader::GetMultiDexLocation(size_t index, const char* dex_location) { return (index == 0) ? dex_location : StringPrintf("%s%cclasses%zu.dex", dex_location, kMultiDexSeparator, index + 1); } std::string DexFileLoader::GetDexCanonicalLocation(const char* dex_location) { CHECK_NE(dex_location, static_cast(nullptr)); std::string base_location = GetBaseLocation(dex_location); const char* suffix = dex_location + base_location.size(); DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator); // Warning: Bionic implementation of realpath() allocates > 12KB on the stack. // Do not run this code on a small stack, e.g. in signal handler. UniqueCPtr path(realpath(base_location.c_str(), nullptr)); if (path != nullptr && path.get() != base_location) { return std::string(path.get()) + suffix; } else if (suffix[0] == 0) { return base_location; } else { return dex_location; } } // All of the implementations here should be independent of the runtime. // TODO: implement all the virtual methods. bool DexFileLoader::GetMultiDexChecksums( const char* filename ATTRIBUTE_UNUSED, std::vector* checksums ATTRIBUTE_UNUSED, std::string* error_msg, int zip_fd ATTRIBUTE_UNUSED, bool* zip_file_only_contains_uncompress_dex ATTRIBUTE_UNUSED) const { *error_msg = "UNIMPLEMENTED"; return false; } std::unique_ptr DexFileLoader::Open(const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg) const { return OpenCommon(base, size, /*data_base*/ nullptr, /*data_size*/ 0, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, /*container*/ nullptr, /*verify_result*/ nullptr); } std::unique_ptr DexFileLoader::OpenWithDataSection( const uint8_t* base, size_t size, const uint8_t* data_base, size_t data_size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg) const { return OpenCommon(base, size, data_base, data_size, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, /*container*/ nullptr, /*verify_result*/ nullptr); } bool DexFileLoader::OpenAll( const uint8_t* base, size_t size, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector>* dex_files) const { DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr"; uint32_t magic = *reinterpret_cast(base); if (IsZipMagic(magic)) { std::unique_ptr zip_archive(DexZipArchive::Open(base, size, error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } return OpenAllDexFilesFromZip(*zip_archive.get(), location, verify, verify_checksum, error_msg, dex_files); } if (IsMagicValid(magic)) { const DexFile::Header* dex_header = reinterpret_cast(base); std::unique_ptr dex_file(Open(base, size, location, dex_header->checksum_, /*oat_dex_file*/ nullptr, verify, verify_checksum, error_msg)); if (dex_file.get() != nullptr) { dex_files->push_back(std::move(dex_file)); return true; } else { return false; } } *error_msg = StringPrintf("Expected valid zip or dex file"); return false; } std::unique_ptr DexFileLoader::OpenCommon(const uint8_t* base, size_t size, const uint8_t* data_base, size_t data_size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, std::unique_ptr container, VerifyResult* verify_result) { if (verify_result != nullptr) { *verify_result = VerifyResult::kVerifyNotAttempted; } std::unique_ptr dex_file; if (size >= sizeof(StandardDexFile::Header) && StandardDexFile::IsMagicValid(base)) { if (data_size != 0) { CHECK_EQ(base, data_base) << "Unsupported for standard dex"; } dex_file.reset(new StandardDexFile(base, size, location, location_checksum, oat_dex_file, std::move(container))); } else if (size >= sizeof(CompactDexFile::Header) && CompactDexFile::IsMagicValid(base)) { if (data_base == nullptr) { // TODO: Is there a clean way to support both an explicit data section and reading the one // from the header. CHECK_EQ(data_size, 0u); const CompactDexFile::Header* const header = CompactDexFile::Header::At(base); data_base = base + header->data_off_; data_size = header->data_size_; } dex_file.reset(new CompactDexFile(base, size, data_base, data_size, location, location_checksum, oat_dex_file, std::move(container))); // Disable verification for CompactDex input. verify = false; } else { *error_msg = "Invalid or truncated dex file"; } if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file '%s' from memory: %s", location.c_str(), error_msg->c_str()); return nullptr; } if (!dex_file->Init(error_msg)) { dex_file.reset(); return nullptr; } if (verify && !DexFileVerifier::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(), location.c_str(), verify_checksum, error_msg)) { if (verify_result != nullptr) { *verify_result = VerifyResult::kVerifyFailed; } return nullptr; } if (verify_result != nullptr) { *verify_result = VerifyResult::kVerifySucceeded; } return dex_file; } std::unique_ptr DexFileLoader::OpenOneDexFileFromZip( const DexZipArchive& zip_archive, const char* entry_name, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, ZipOpenErrorCode* error_code) const { CHECK(!location.empty()); std::unique_ptr zip_entry(zip_archive.Find(entry_name, error_msg)); if (zip_entry == nullptr) { *error_code = ZipOpenErrorCode::kEntryNotFound; return nullptr; } if (zip_entry->GetUncompressedLength() == 0) { *error_msg = StringPrintf("Dex file '%s' has zero length", location.c_str()); *error_code = ZipOpenErrorCode::kDexFileError; return nullptr; } std::vector map(zip_entry->Extract(error_msg)); if (map.size() == 0) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(), error_msg->c_str()); *error_code = ZipOpenErrorCode::kExtractToMemoryError; return nullptr; } VerifyResult verify_result; std::unique_ptr dex_file = OpenCommon( map.data(), map.size(), /*data_base*/ nullptr, /*data_size*/ 0u, location, zip_entry->GetCrc32(), /*oat_dex_file*/ nullptr, verify, verify_checksum, error_msg, std::make_unique(std::move(map)), &verify_result); if (dex_file == nullptr) { if (verify_result == VerifyResult::kVerifyNotAttempted) { *error_code = ZipOpenErrorCode::kDexFileError; } else { *error_code = ZipOpenErrorCode::kVerifyError; } return nullptr; } if (verify_result != VerifyResult::kVerifySucceeded) { *error_code = ZipOpenErrorCode::kVerifyError; return nullptr; } *error_code = ZipOpenErrorCode::kNoError; return dex_file; } // Technically we do not have a limitation with respect to the number of dex files that can be in a // multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols // (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what // seems an excessive number. static constexpr size_t kWarnOnManyDexFilesThreshold = 100; bool DexFileLoader::OpenAllDexFilesFromZip( const DexZipArchive& zip_archive, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector>* dex_files) const { DCHECK(dex_files != nullptr) << "DexFile::OpenFromZip: out-param is nullptr"; ZipOpenErrorCode error_code; std::unique_ptr dex_file(OpenOneDexFileFromZip(zip_archive, kClassesDex, location, verify, verify_checksum, error_msg, &error_code)); if (dex_file.get() == nullptr) { return false; } else { // Had at least classes.dex. dex_files->push_back(std::move(dex_file)); // Now try some more. // We could try to avoid std::string allocations by working on a char array directly. As we // do not expect a lot of iterations, this seems too involved and brittle. for (size_t i = 1; ; ++i) { std::string name = GetMultiDexClassesDexName(i); std::string fake_location = GetMultiDexLocation(i, location.c_str()); std::unique_ptr next_dex_file(OpenOneDexFileFromZip(zip_archive, name.c_str(), fake_location, verify, verify_checksum, error_msg, &error_code)); if (next_dex_file.get() == nullptr) { if (error_code != ZipOpenErrorCode::kEntryNotFound) { LOG(WARNING) << "Zip open failed: " << *error_msg; } break; } else { dex_files->push_back(std::move(next_dex_file)); } if (i == kWarnOnManyDexFilesThreshold) { LOG(WARNING) << location << " has in excess of " << kWarnOnManyDexFilesThreshold << " dex files. Please consider coalescing and shrinking the number to " " avoid runtime overhead."; } if (i == std::numeric_limits::max()) { LOG(ERROR) << "Overflow in number of dex files!"; break; } } return true; } } } // namespace art