/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file_verifier.h" #include #include #include #include "android-base/stringprintf.h" #include "base/leb128.h" #include "code_item_accessors-inl.h" #include "descriptors_names.h" #include "dex_file-inl.h" #include "modifiers.h" #include "utf-inl.h" namespace art { using android::base::StringAppendV; using android::base::StringPrintf; static constexpr uint32_t kTypeIdLimit = std::numeric_limits::max(); static bool IsValidOrNoTypeId(uint16_t low, uint16_t high) { return (high == 0) || ((high == 0xffffU) && (low == 0xffffU)); } static bool IsValidTypeId(uint16_t low ATTRIBUTE_UNUSED, uint16_t high) { return (high == 0); } static uint32_t MapTypeToBitMask(DexFile::MapItemType map_item_type) { switch (map_item_type) { case DexFile::kDexTypeHeaderItem: return 1 << 0; case DexFile::kDexTypeStringIdItem: return 1 << 1; case DexFile::kDexTypeTypeIdItem: return 1 << 2; case DexFile::kDexTypeProtoIdItem: return 1 << 3; case DexFile::kDexTypeFieldIdItem: return 1 << 4; case DexFile::kDexTypeMethodIdItem: return 1 << 5; case DexFile::kDexTypeClassDefItem: return 1 << 6; case DexFile::kDexTypeCallSiteIdItem: return 1 << 7; case DexFile::kDexTypeMethodHandleItem: return 1 << 8; case DexFile::kDexTypeMapList: return 1 << 9; case DexFile::kDexTypeTypeList: return 1 << 10; case DexFile::kDexTypeAnnotationSetRefList: return 1 << 11; case DexFile::kDexTypeAnnotationSetItem: return 1 << 12; case DexFile::kDexTypeClassDataItem: return 1 << 13; case DexFile::kDexTypeCodeItem: return 1 << 14; case DexFile::kDexTypeStringDataItem: return 1 << 15; case DexFile::kDexTypeDebugInfoItem: return 1 << 16; case DexFile::kDexTypeAnnotationItem: return 1 << 17; case DexFile::kDexTypeEncodedArrayItem: return 1 << 18; case DexFile::kDexTypeAnnotationsDirectoryItem: return 1 << 19; } return 0; } static bool IsDataSectionType(DexFile::MapItemType map_item_type) { switch (map_item_type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: return false; case DexFile::kDexTypeCallSiteIdItem: case DexFile::kDexTypeMethodHandleItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: case DexFile::kDexTypeAnnotationsDirectoryItem: return true; } return true; } const char* DexFileVerifier::CheckLoadStringByIdx(dex::StringIndex idx, const char* error_string) { if (UNLIKELY(!CheckIndex(idx.index_, dex_file_->NumStringIds(), error_string))) { return nullptr; } return dex_file_->StringDataByIdx(idx); } // Try to find the name of the method with the given index. We do not want to rely on DexFile // infrastructure at this point, so do it all by hand. begin and header correspond to begin_ and // header_ of the DexFileVerifier. str will contain the pointer to the method name on success // (flagged by the return value), otherwise error_msg will contain an error string. static bool FindMethodName(uint32_t method_index, const uint8_t* begin, const DexFile::Header* header, const char** str, std::string* error_msg) { if (method_index >= header->method_ids_size_) { *error_msg = "Method index not available for method flags verification"; return false; } uint32_t string_idx = (reinterpret_cast(begin + header->method_ids_off_) + method_index)->name_idx_.index_; if (string_idx >= header->string_ids_size_) { *error_msg = "String index not available for method flags verification"; return false; } uint32_t string_off = (reinterpret_cast(begin + header->string_ids_off_) + string_idx)-> string_data_off_; if (string_off >= header->file_size_) { *error_msg = "String offset out of bounds for method flags verification"; return false; } const uint8_t* str_data_ptr = begin + string_off; uint32_t dummy; if (!DecodeUnsignedLeb128Checked(&str_data_ptr, begin + header->file_size_, &dummy)) { *error_msg = "String size out of bounds for method flags verification"; return false; } *str = reinterpret_cast(str_data_ptr); return true; } // Gets constructor flags based on the |method_name|. Returns true if // method_name is either or and sets // |constructor_flags_by_name| appropriately. Otherwise set // |constructor_flags_by_name| to zero and returns whether // |method_name| is valid. bool GetConstructorFlagsForMethodName(const char* method_name, uint32_t* constructor_flags_by_name) { if (method_name[0] != '<') { *constructor_flags_by_name = 0; return true; } if (strcmp(method_name + 1, "clinit>") == 0) { *constructor_flags_by_name = kAccStatic | kAccConstructor; return true; } if (strcmp(method_name + 1, "init>") == 0) { *constructor_flags_by_name = kAccConstructor; return true; } *constructor_flags_by_name = 0; return false; } const char* DexFileVerifier::CheckLoadStringByTypeIdx(dex::TypeIndex type_idx, const char* error_string) { if (UNLIKELY(!CheckIndex(type_idx.index_, dex_file_->NumTypeIds(), error_string))) { return nullptr; } return CheckLoadStringByIdx(dex_file_->GetTypeId(type_idx).descriptor_idx_, error_string); } const DexFile::FieldId* DexFileVerifier::CheckLoadFieldId(uint32_t idx, const char* error_string) { if (UNLIKELY(!CheckIndex(idx, dex_file_->NumFieldIds(), error_string))) { return nullptr; } return &dex_file_->GetFieldId(idx); } const DexFile::MethodId* DexFileVerifier::CheckLoadMethodId(uint32_t idx, const char* err_string) { if (UNLIKELY(!CheckIndex(idx, dex_file_->NumMethodIds(), err_string))) { return nullptr; } return &dex_file_->GetMethodId(idx); } const DexFile::ProtoId* DexFileVerifier::CheckLoadProtoId(uint32_t idx, const char* err_string) { if (UNLIKELY(!CheckIndex(idx, dex_file_->NumProtoIds(), err_string))) { return nullptr; } return &dex_file_->GetProtoId(idx); } // Helper macro to load string and return false on error. #define LOAD_STRING(var, idx, error) \ const char* (var) = CheckLoadStringByIdx(idx, error); \ if (UNLIKELY((var) == nullptr)) { \ return false; \ } // Helper macro to load string by type idx and return false on error. #define LOAD_STRING_BY_TYPE(var, type_idx, error) \ const char* (var) = CheckLoadStringByTypeIdx(type_idx, error); \ if (UNLIKELY((var) == nullptr)) { \ return false; \ } // Helper macro to load method id. Return last parameter on error. #define LOAD_METHOD(var, idx, error_string, error_stmt) \ const DexFile::MethodId* (var) = CheckLoadMethodId(idx, error_string); \ if (UNLIKELY((var) == nullptr)) { \ error_stmt; \ } // Helper macro to load method id. Return last parameter on error. #define LOAD_FIELD(var, idx, fmt, error_stmt) \ const DexFile::FieldId* (var) = CheckLoadFieldId(idx, fmt); \ if (UNLIKELY((var) == nullptr)) { \ error_stmt; \ } bool DexFileVerifier::Verify(const DexFile* dex_file, const uint8_t* begin, size_t size, const char* location, bool verify_checksum, std::string* error_msg) { std::unique_ptr verifier( new DexFileVerifier(dex_file, begin, size, location, verify_checksum)); if (!verifier->Verify()) { *error_msg = verifier->FailureReason(); return false; } return true; } bool DexFileVerifier::CheckShortyDescriptorMatch(char shorty_char, const char* descriptor, bool is_return_type) { switch (shorty_char) { case 'V': if (UNLIKELY(!is_return_type)) { ErrorStringPrintf("Invalid use of void"); return false; } FALLTHROUGH_INTENDED; case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': if (UNLIKELY((descriptor[0] != shorty_char) || (descriptor[1] != '\0'))) { ErrorStringPrintf("Shorty vs. primitive type mismatch: '%c', '%s'", shorty_char, descriptor); return false; } break; case 'L': if (UNLIKELY((descriptor[0] != 'L') && (descriptor[0] != '['))) { ErrorStringPrintf("Shorty vs. type mismatch: '%c', '%s'", shorty_char, descriptor); return false; } break; default: ErrorStringPrintf("Bad shorty character: '%c'", shorty_char); return false; } return true; } bool DexFileVerifier::CheckListSize(const void* start, size_t count, size_t elem_size, const char* label) { // Check that size is not 0. CHECK_NE(elem_size, 0U); const uint8_t* range_start = reinterpret_cast(start); const uint8_t* file_start = reinterpret_cast(begin_); // Check for overflow. uintptr_t max = 0 - 1; size_t available_bytes_till_end_of_mem = max - reinterpret_cast(start); size_t max_count = available_bytes_till_end_of_mem / elem_size; if (max_count < count) { ErrorStringPrintf("Overflow in range for %s: %zx for %zu@%zu", label, static_cast(range_start - file_start), count, elem_size); return false; } const uint8_t* range_end = range_start + count * elem_size; const uint8_t* file_end = file_start + size_; if (UNLIKELY((range_start < file_start) || (range_end > file_end))) { // Note: these two tests are enough as we make sure above that there's no overflow. ErrorStringPrintf("Bad range for %s: %zx to %zx", label, static_cast(range_start - file_start), static_cast(range_end - file_start)); return false; } return true; } bool DexFileVerifier::CheckList(size_t element_size, const char* label, const uint8_t* *ptr) { // Check that the list is available. The first 4B are the count. if (!CheckListSize(*ptr, 1, 4U, label)) { return false; } uint32_t count = *reinterpret_cast(*ptr); if (count > 0) { if (!CheckListSize(*ptr + 4, count, element_size, label)) { return false; } } *ptr += 4 + count * element_size; return true; } bool DexFileVerifier::CheckIndex(uint32_t field, uint32_t limit, const char* label) { if (UNLIKELY(field >= limit)) { ErrorStringPrintf("Bad index for %s: %x >= %x", label, field, limit); return false; } return true; } bool DexFileVerifier::CheckValidOffsetAndSize(uint32_t offset, uint32_t size, size_t alignment, const char* label) { if (size == 0) { if (offset != 0) { ErrorStringPrintf("Offset(%d) should be zero when size is zero for %s.", offset, label); return false; } } if (size_ <= offset) { ErrorStringPrintf("Offset(%d) should be within file size(%zu) for %s.", offset, size_, label); return false; } if (alignment != 0 && !IsAlignedParam(offset, alignment)) { ErrorStringPrintf("Offset(%d) should be aligned by %zu for %s.", offset, alignment, label); return false; } return true; } bool DexFileVerifier::CheckSizeLimit(uint32_t size, uint32_t limit, const char* label) { if (size > limit) { ErrorStringPrintf("Size(%u) should not exceed limit(%u) for %s.", size, limit, label); return false; } return true; } bool DexFileVerifier::CheckHeader() { // Check file size from the header. uint32_t expected_size = header_->file_size_; if (size_ != expected_size) { ErrorStringPrintf("Bad file size (%zd, expected %u)", size_, expected_size); return false; } uint32_t adler_checksum = dex_file_->CalculateChecksum(); // Compute and verify the checksum in the header. if (adler_checksum != header_->checksum_) { if (verify_checksum_) { ErrorStringPrintf("Bad checksum (%08x, expected %08x)", adler_checksum, header_->checksum_); return false; } else { LOG(WARNING) << StringPrintf( "Ignoring bad checksum (%08x, expected %08x)", adler_checksum, header_->checksum_); } } // Check the contents of the header. if (header_->endian_tag_ != DexFile::kDexEndianConstant) { ErrorStringPrintf("Unexpected endian_tag: %x", header_->endian_tag_); return false; } const uint32_t expected_header_size = dex_file_->IsCompactDexFile() ? sizeof(CompactDexFile::Header) : sizeof(StandardDexFile::Header); if (header_->header_size_ != expected_header_size) { ErrorStringPrintf("Bad header size: %ud expected %ud", header_->header_size_, expected_header_size); return false; } // Check that all offsets are inside the file. bool result = CheckValidOffsetAndSize(header_->link_off_, header_->link_size_, 0 /* unaligned */, "link") && CheckValidOffsetAndSize(header_->map_off_, header_->map_off_, 4, "map") && CheckValidOffsetAndSize(header_->string_ids_off_, header_->string_ids_size_, 4, "string-ids") && CheckValidOffsetAndSize(header_->type_ids_off_, header_->type_ids_size_, 4, "type-ids") && CheckSizeLimit(header_->type_ids_size_, DexFile::kDexNoIndex16, "type-ids") && CheckValidOffsetAndSize(header_->proto_ids_off_, header_->proto_ids_size_, 4, "proto-ids") && CheckSizeLimit(header_->proto_ids_size_, DexFile::kDexNoIndex16, "proto-ids") && CheckValidOffsetAndSize(header_->field_ids_off_, header_->field_ids_size_, 4, "field-ids") && CheckValidOffsetAndSize(header_->method_ids_off_, header_->method_ids_size_, 4, "method-ids") && CheckValidOffsetAndSize(header_->class_defs_off_, header_->class_defs_size_, 4, "class-defs") && CheckValidOffsetAndSize(header_->data_off_, header_->data_size_, 0, // Unaligned, spec doesn't talk about it, even though size // is supposed to be a multiple of 4. "data"); return result; } bool DexFileVerifier::CheckMap() { const DexFile::MapList* map = reinterpret_cast(begin_ + header_->map_off_); // Check that map list content is available. if (!CheckListSize(map, 1, sizeof(DexFile::MapList), "maplist content")) { return false; } const DexFile::MapItem* item = map->list_; uint32_t count = map->size_; uint32_t last_offset = 0; uint32_t last_type = 0; uint32_t data_item_count = 0; uint32_t data_items_left = header_->data_size_; uint32_t used_bits = 0; // Sanity check the size of the map list. if (!CheckListSize(item, count, sizeof(DexFile::MapItem), "map size")) { return false; } // Check the items listed in the map. for (uint32_t i = 0; i < count; i++) { if (UNLIKELY(last_offset >= item->offset_ && i != 0)) { ErrorStringPrintf("Out of order map item: %x then %x for type %x last type was %x", last_offset, item->offset_, static_cast(item->type_), last_type); return false; } if (UNLIKELY(item->offset_ >= header_->file_size_)) { ErrorStringPrintf("Map item after end of file: %x, size %x", item->offset_, header_->file_size_); return false; } DexFile::MapItemType item_type = static_cast(item->type_); if (IsDataSectionType(item_type)) { uint32_t icount = item->size_; if (UNLIKELY(icount > data_items_left)) { ErrorStringPrintf("Too many items in data section: %ud item_type %zx", data_item_count + icount, static_cast(item_type)); return false; } data_items_left -= icount; data_item_count += icount; } uint32_t bit = MapTypeToBitMask(item_type); if (UNLIKELY(bit == 0)) { ErrorStringPrintf("Unknown map section type %x", item->type_); return false; } if (UNLIKELY((used_bits & bit) != 0)) { ErrorStringPrintf("Duplicate map section of type %x", item->type_); return false; } used_bits |= bit; last_offset = item->offset_; last_type = item->type_; item++; } // Check for missing sections in the map. if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeHeaderItem)) == 0)) { ErrorStringPrintf("Map is missing header entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeMapList)) == 0)) { ErrorStringPrintf("Map is missing map_list entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeStringIdItem)) == 0 && ((header_->string_ids_off_ != 0) || (header_->string_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing string_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeTypeIdItem)) == 0 && ((header_->type_ids_off_ != 0) || (header_->type_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing type_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeProtoIdItem)) == 0 && ((header_->proto_ids_off_ != 0) || (header_->proto_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing proto_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeFieldIdItem)) == 0 && ((header_->field_ids_off_ != 0) || (header_->field_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing field_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeMethodIdItem)) == 0 && ((header_->method_ids_off_ != 0) || (header_->method_ids_size_ != 0)))) { ErrorStringPrintf("Map is missing method_ids entry"); return false; } if (UNLIKELY((used_bits & MapTypeToBitMask(DexFile::kDexTypeClassDefItem)) == 0 && ((header_->class_defs_off_ != 0) || (header_->class_defs_size_ != 0)))) { ErrorStringPrintf("Map is missing class_defs entry"); return false; } return true; } uint32_t DexFileVerifier::ReadUnsignedLittleEndian(uint32_t size) { uint32_t result = 0; if (LIKELY(CheckListSize(ptr_, size, sizeof(uint8_t), "encoded_value"))) { for (uint32_t i = 0; i < size; i++) { result |= ((uint32_t) *(ptr_++)) << (i * 8); } } return result; } #define DECODE_UNSIGNED_CHECKED_FROM_WITH_ERROR_VALUE(ptr, var, error_value) \ uint32_t var; \ if (!DecodeUnsignedLeb128Checked(&(ptr), begin_ + size_, &(var))) { \ return error_value; \ } #define DECODE_UNSIGNED_CHECKED_FROM(ptr, var) \ uint32_t var; \ if (!DecodeUnsignedLeb128Checked(&(ptr), begin_ + size_, &(var))) { \ ErrorStringPrintf("Read out of bounds"); \ return false; \ } #define DECODE_SIGNED_CHECKED_FROM(ptr, var) \ int32_t var; \ if (!DecodeSignedLeb128Checked(&(ptr), begin_ + size_, &(var))) { \ ErrorStringPrintf("Read out of bounds"); \ return false; \ } bool DexFileVerifier::CheckAndGetHandlerOffsets(const DexFile::CodeItem* code_item, uint32_t* handler_offsets, uint32_t handlers_size) { CodeItemDataAccessor accessor(*dex_file_, code_item); const uint8_t* handlers_base = accessor.GetCatchHandlerData(); for (uint32_t i = 0; i < handlers_size; i++) { bool catch_all; size_t offset = ptr_ - handlers_base; DECODE_SIGNED_CHECKED_FROM(ptr_, size); if (UNLIKELY((size < -65536) || (size > 65536))) { ErrorStringPrintf("Invalid exception handler size: %d", size); return false; } if (size <= 0) { catch_all = true; size = -size; } else { catch_all = false; } handler_offsets[i] = static_cast(offset); while (size-- > 0) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, type_idx); if (!CheckIndex(type_idx, header_->type_ids_size_, "handler type_idx")) { return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, addr); if (UNLIKELY(addr >= accessor.InsnsSizeInCodeUnits())) { ErrorStringPrintf("Invalid handler addr: %x", addr); return false; } } if (catch_all) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, addr); if (UNLIKELY(addr >= accessor.InsnsSizeInCodeUnits())) { ErrorStringPrintf("Invalid handler catch_all_addr: %x", addr); return false; } } } return true; } bool DexFileVerifier::CheckClassDataItemField(uint32_t idx, uint32_t access_flags, uint32_t class_access_flags, dex::TypeIndex class_type_index, bool expect_static) { // Check for overflow. if (!CheckIndex(idx, header_->field_ids_size_, "class_data_item field_idx")) { return false; } // Check that it's the right class. dex::TypeIndex my_class_index = (reinterpret_cast(begin_ + header_->field_ids_off_) + idx)-> class_idx_; if (class_type_index != my_class_index) { ErrorStringPrintf("Field's class index unexpected, %" PRIu16 "vs %" PRIu16, my_class_index.index_, class_type_index.index_); return false; } // Check that it falls into the right class-data list. bool is_static = (access_flags & kAccStatic) != 0; if (UNLIKELY(is_static != expect_static)) { ErrorStringPrintf("Static/instance field not in expected list"); return false; } // Check field access flags. std::string error_msg; if (!CheckFieldAccessFlags(idx, access_flags, class_access_flags, &error_msg)) { ErrorStringPrintf("%s", error_msg.c_str()); return false; } return true; } bool DexFileVerifier::CheckClassDataItemMethod(uint32_t idx, uint32_t access_flags, uint32_t class_access_flags, dex::TypeIndex class_type_index, uint32_t code_offset, std::unordered_set* direct_method_indexes, bool expect_direct) { DCHECK(direct_method_indexes != nullptr); // Check for overflow. if (!CheckIndex(idx, header_->method_ids_size_, "class_data_item method_idx")) { return false; } // Check that it's the right class. dex::TypeIndex my_class_index = (reinterpret_cast(begin_ + header_->method_ids_off_) + idx)-> class_idx_; if (class_type_index != my_class_index) { ErrorStringPrintf("Method's class index unexpected, %" PRIu16 " vs %" PRIu16, my_class_index.index_, class_type_index.index_); return false; } // Check that it's not defined as both direct and virtual. if (expect_direct) { direct_method_indexes->insert(idx); } else if (direct_method_indexes->find(idx) != direct_method_indexes->end()) { ErrorStringPrintf("Found virtual method with same index as direct method: %d", idx); return false; } std::string error_msg; const char* method_name; if (!FindMethodName(idx, begin_, header_, &method_name, &error_msg)) { ErrorStringPrintf("%s", error_msg.c_str()); return false; } uint32_t constructor_flags_by_name = 0; if (!GetConstructorFlagsForMethodName(method_name, &constructor_flags_by_name)) { ErrorStringPrintf("Bad method name: %s", method_name); return false; } bool has_code = (code_offset != 0); if (!CheckMethodAccessFlags(idx, access_flags, class_access_flags, constructor_flags_by_name, has_code, expect_direct, &error_msg)) { ErrorStringPrintf("%s", error_msg.c_str()); return false; } if (constructor_flags_by_name != 0) { if (!CheckConstructorProperties(idx, constructor_flags_by_name)) { DCHECK(FailureReasonIsSet()); return false; } } return true; } bool DexFileVerifier::CheckPadding(size_t offset, uint32_t aligned_offset, DexFile::MapItemType type) { if (offset < aligned_offset) { if (!CheckListSize(begin_ + offset, aligned_offset - offset, sizeof(uint8_t), "section")) { return false; } while (offset < aligned_offset) { if (UNLIKELY(*ptr_ != '\0')) { ErrorStringPrintf("Non-zero padding %x before section of type %zu at offset 0x%zx", *ptr_, static_cast(type), offset); return false; } ptr_++; offset++; } } return true; } bool DexFileVerifier::CheckEncodedValue() { if (!CheckListSize(ptr_, 1, sizeof(uint8_t), "encoded_value header")) { return false; } uint8_t header_byte = *(ptr_++); uint32_t value_type = header_byte & DexFile::kDexAnnotationValueTypeMask; uint32_t value_arg = header_byte >> DexFile::kDexAnnotationValueArgShift; switch (value_type) { case DexFile::kDexAnnotationByte: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value byte size %x", value_arg); return false; } ptr_++; break; case DexFile::kDexAnnotationShort: case DexFile::kDexAnnotationChar: if (UNLIKELY(value_arg > 1)) { ErrorStringPrintf("Bad encoded_value char/short size %x", value_arg); return false; } ptr_ += value_arg + 1; break; case DexFile::kDexAnnotationInt: case DexFile::kDexAnnotationFloat: if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value int/float size %x", value_arg); return false; } ptr_ += value_arg + 1; break; case DexFile::kDexAnnotationLong: case DexFile::kDexAnnotationDouble: ptr_ += value_arg + 1; break; case DexFile::kDexAnnotationString: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value string size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->string_ids_size_, "encoded_value string")) { return false; } break; } case DexFile::kDexAnnotationType: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value type size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->type_ids_size_, "encoded_value type")) { return false; } break; } case DexFile::kDexAnnotationField: case DexFile::kDexAnnotationEnum: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value field/enum size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->field_ids_size_, "encoded_value field")) { return false; } break; } case DexFile::kDexAnnotationMethod: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value method size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->method_ids_size_, "encoded_value method")) { return false; } break; } case DexFile::kDexAnnotationArray: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value array value_arg %x", value_arg); return false; } if (!CheckEncodedArray()) { return false; } break; case DexFile::kDexAnnotationAnnotation: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value annotation value_arg %x", value_arg); return false; } if (!CheckEncodedAnnotation()) { return false; } break; case DexFile::kDexAnnotationNull: if (UNLIKELY(value_arg != 0)) { ErrorStringPrintf("Bad encoded_value null value_arg %x", value_arg); return false; } break; case DexFile::kDexAnnotationBoolean: if (UNLIKELY(value_arg > 1)) { ErrorStringPrintf("Bad encoded_value boolean size %x", value_arg); return false; } break; case DexFile::kDexAnnotationMethodType: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value method type size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, header_->proto_ids_size_, "method_type value")) { return false; } break; } case DexFile::kDexAnnotationMethodHandle: { if (UNLIKELY(value_arg > 3)) { ErrorStringPrintf("Bad encoded_value method handle size %x", value_arg); return false; } uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1); if (!CheckIndex(idx, dex_file_->NumMethodHandles(), "method_handle value")) { return false; } break; } default: ErrorStringPrintf("Bogus encoded_value value_type %x", value_type); return false; } return true; } bool DexFileVerifier::CheckEncodedArray() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, size); while (size--) { if (!CheckEncodedValue()) { failure_reason_ = StringPrintf("Bad encoded_array value: %s", failure_reason_.c_str()); return false; } } return true; } bool DexFileVerifier::CheckEncodedAnnotation() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, anno_idx); if (!CheckIndex(anno_idx, header_->type_ids_size_, "encoded_annotation type_idx")) { return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, size); uint32_t last_idx = 0; for (uint32_t i = 0; i < size; i++) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, idx); if (!CheckIndex(idx, header_->string_ids_size_, "annotation_element name_idx")) { return false; } if (UNLIKELY(last_idx >= idx && i != 0)) { ErrorStringPrintf("Out-of-order annotation_element name_idx: %x then %x", last_idx, idx); return false; } if (!CheckEncodedValue()) { return false; } last_idx = idx; } return true; } bool DexFileVerifier::FindClassIndexAndDef(uint32_t index, bool is_field, dex::TypeIndex* class_type_index, const DexFile::ClassDef** output_class_def) { DCHECK(class_type_index != nullptr); DCHECK(output_class_def != nullptr); // First check if the index is valid. if (index >= (is_field ? header_->field_ids_size_ : header_->method_ids_size_)) { return false; } // Next get the type index. if (is_field) { *class_type_index = (reinterpret_cast(begin_ + header_->field_ids_off_) + index)-> class_idx_; } else { *class_type_index = (reinterpret_cast(begin_ + header_->method_ids_off_) + index)-> class_idx_; } // Check if that is valid. if (class_type_index->index_ >= header_->type_ids_size_) { return false; } // Now search for the class def. This is basically a specialized version of the DexFile code, as // we should not trust that this is a valid DexFile just yet. const DexFile::ClassDef* class_def_begin = reinterpret_cast(begin_ + header_->class_defs_off_); for (size_t i = 0; i < header_->class_defs_size_; ++i) { const DexFile::ClassDef* class_def = class_def_begin + i; if (class_def->class_idx_ == *class_type_index) { *output_class_def = class_def; return true; } } // Didn't find the class-def, not defined here... return false; } bool DexFileVerifier::CheckOrderAndGetClassDef(bool is_field, const char* type_descr, uint32_t curr_index, uint32_t prev_index, bool* have_class, dex::TypeIndex* class_type_index, const DexFile::ClassDef** class_def) { if (curr_index < prev_index) { ErrorStringPrintf("out-of-order %s indexes %" PRIu32 " and %" PRIu32, type_descr, prev_index, curr_index); return false; } if (!*have_class) { *have_class = FindClassIndexAndDef(curr_index, is_field, class_type_index, class_def); if (!*have_class) { // Should have really found one. ErrorStringPrintf("could not find declaring class for %s index %" PRIu32, type_descr, curr_index); return false; } } return true; } bool DexFileVerifier::CheckStaticFieldTypes(const DexFile::ClassDef* class_def) { if (class_def == nullptr) { return true; } ClassDataItemIterator field_it(*dex_file_, ptr_); EncodedStaticFieldValueIterator array_it(*dex_file_, *class_def); for (; field_it.HasNextStaticField() && array_it.HasNext(); field_it.Next(), array_it.Next()) { uint32_t index = field_it.GetMemberIndex(); const DexFile::TypeId& type_id = dex_file_->GetTypeId(dex_file_->GetFieldId(index).type_idx_); const char* field_type_name = dex_file_->GetStringData(dex_file_->GetStringId(type_id.descriptor_idx_)); Primitive::Type field_type = Primitive::GetType(field_type_name[0]); EncodedArrayValueIterator::ValueType array_type = array_it.GetValueType(); // Ensure this matches RuntimeEncodedStaticFieldValueIterator. switch (array_type) { case EncodedArrayValueIterator::ValueType::kBoolean: if (field_type != Primitive::kPrimBoolean) { ErrorStringPrintf("unexpected static field initial value type: 'Z' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kByte: if (field_type != Primitive::kPrimByte) { ErrorStringPrintf("unexpected static field initial value type: 'B' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kShort: if (field_type != Primitive::kPrimShort) { ErrorStringPrintf("unexpected static field initial value type: 'S' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kChar: if (field_type != Primitive::kPrimChar) { ErrorStringPrintf("unexpected static field initial value type: 'C' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kInt: if (field_type != Primitive::kPrimInt) { ErrorStringPrintf("unexpected static field initial value type: 'I' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kLong: if (field_type != Primitive::kPrimLong) { ErrorStringPrintf("unexpected static field initial value type: 'J' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kFloat: if (field_type != Primitive::kPrimFloat) { ErrorStringPrintf("unexpected static field initial value type: 'F' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kDouble: if (field_type != Primitive::kPrimDouble) { ErrorStringPrintf("unexpected static field initial value type: 'D' vs '%c'", field_type_name[0]); return false; } break; case EncodedArrayValueIterator::ValueType::kNull: case EncodedArrayValueIterator::ValueType::kString: case EncodedArrayValueIterator::ValueType::kType: if (field_type != Primitive::kPrimNot) { ErrorStringPrintf("unexpected static field initial value type: 'L' vs '%c'", field_type_name[0]); return false; } break; default: ErrorStringPrintf("unexpected static field initial value type: %x", array_type); return false; } } if (array_it.HasNext()) { ErrorStringPrintf("too many static field initial values"); return false; } return true; } template bool DexFileVerifier::CheckIntraClassDataItemFields(ClassDataItemIterator* it, bool* have_class, dex::TypeIndex* class_type_index, const DexFile::ClassDef** class_def) { DCHECK(it != nullptr); // These calls use the raw access flags to check whether the whole dex field is valid. uint32_t prev_index = 0; for (; kStatic ? it->HasNextStaticField() : it->HasNextInstanceField(); it->Next()) { uint32_t curr_index = it->GetMemberIndex(); if (!CheckOrderAndGetClassDef(true, kStatic ? "static field" : "instance field", curr_index, prev_index, have_class, class_type_index, class_def)) { return false; } DCHECK(class_def != nullptr); if (!CheckClassDataItemField(curr_index, it->GetRawMemberAccessFlags(), (*class_def)->access_flags_, *class_type_index, kStatic)) { return false; } prev_index = curr_index; } return true; } template bool DexFileVerifier::CheckIntraClassDataItemMethods( ClassDataItemIterator* it, std::unordered_set* direct_method_indexes, bool* have_class, dex::TypeIndex* class_type_index, const DexFile::ClassDef** class_def) { uint32_t prev_index = 0; for (; kDirect ? it->HasNextDirectMethod() : it->HasNextVirtualMethod(); it->Next()) { uint32_t curr_index = it->GetMemberIndex(); if (!CheckOrderAndGetClassDef(false, kDirect ? "direct method" : "virtual method", curr_index, prev_index, have_class, class_type_index, class_def)) { return false; } DCHECK(class_def != nullptr); if (!CheckClassDataItemMethod(curr_index, it->GetRawMemberAccessFlags(), (*class_def)->access_flags_, *class_type_index, it->GetMethodCodeItemOffset(), direct_method_indexes, kDirect)) { return false; } prev_index = curr_index; } return true; } bool DexFileVerifier::CheckIntraClassDataItem() { ClassDataItemIterator it(*dex_file_, ptr_); std::unordered_set direct_method_indexes; // This code is complicated by the fact that we don't directly know which class this belongs to. // So we need to explicitly search with the first item we find (either field or method), and then, // as the lookup is expensive, cache the result. bool have_class = false; dex::TypeIndex class_type_index; const DexFile::ClassDef* class_def = nullptr; // Check fields. if (!CheckIntraClassDataItemFields(&it, &have_class, &class_type_index, &class_def)) { return false; } if (!CheckIntraClassDataItemFields(&it, &have_class, &class_type_index, &class_def)) { return false; } // Check methods. if (!CheckIntraClassDataItemMethods(&it, &direct_method_indexes, &have_class, &class_type_index, &class_def)) { return false; } if (!CheckIntraClassDataItemMethods(&it, &direct_method_indexes, &have_class, &class_type_index, &class_def)) { return false; } const uint8_t* end_ptr = it.EndDataPointer(); // Check static field types against initial static values in encoded array. if (!CheckStaticFieldTypes(class_def)) { return false; } ptr_ = end_ptr; return true; } bool DexFileVerifier::CheckIntraCodeItem() { const DexFile::CodeItem* code_item = reinterpret_cast(ptr_); if (!CheckListSize(code_item, 1, sizeof(DexFile::CodeItem), "code")) { return false; } CodeItemDataAccessor accessor(*dex_file_, code_item); if (UNLIKELY(accessor.InsSize() > accessor.RegistersSize())) { ErrorStringPrintf("ins_size (%ud) > registers_size (%ud)", accessor.InsSize(), accessor.RegistersSize()); return false; } if (UNLIKELY(accessor.OutsSize() > 5 && accessor.OutsSize() > accessor.RegistersSize())) { /* * outs_size can be up to 5, even if registers_size is smaller, since the * short forms of method invocation allow repetitions of a register multiple * times within a single parameter list. However, longer parameter lists * need to be represented in-order in the register file. */ ErrorStringPrintf("outs_size (%ud) > registers_size (%ud)", accessor.OutsSize(), accessor.RegistersSize()); return false; } const uint16_t* insns = accessor.Insns(); uint32_t insns_size = accessor.InsnsSizeInCodeUnits(); if (!CheckListSize(insns, insns_size, sizeof(uint16_t), "insns size")) { return false; } // Grab the end of the insns if there are no try_items. uint32_t try_items_size = accessor.TriesSize(); if (try_items_size == 0) { ptr_ = reinterpret_cast(&insns[insns_size]); return true; } // try_items are 4-byte aligned. Verify the spacer is 0. if (((reinterpret_cast(&insns[insns_size]) & 3) != 0) && (insns[insns_size] != 0)) { ErrorStringPrintf("Non-zero padding: %x", insns[insns_size]); return false; } const DexFile::TryItem* try_items = accessor.TryItems().begin(); if (!CheckListSize(try_items, try_items_size, sizeof(DexFile::TryItem), "try_items size")) { return false; } ptr_ = accessor.GetCatchHandlerData(); DECODE_UNSIGNED_CHECKED_FROM(ptr_, handlers_size); if (UNLIKELY((handlers_size == 0) || (handlers_size >= 65536))) { ErrorStringPrintf("Invalid handlers_size: %ud", handlers_size); return false; } std::unique_ptr handler_offsets(new uint32_t[handlers_size]); if (!CheckAndGetHandlerOffsets(code_item, &handler_offsets[0], handlers_size)) { return false; } uint32_t last_addr = 0; while (try_items_size--) { if (UNLIKELY(try_items->start_addr_ < last_addr)) { ErrorStringPrintf("Out-of_order try_item with start_addr: %x", try_items->start_addr_); return false; } if (UNLIKELY(try_items->start_addr_ >= insns_size)) { ErrorStringPrintf("Invalid try_item start_addr: %x", try_items->start_addr_); return false; } uint32_t i; for (i = 0; i < handlers_size; i++) { if (try_items->handler_off_ == handler_offsets[i]) { break; } } if (UNLIKELY(i == handlers_size)) { ErrorStringPrintf("Bogus handler offset: %x", try_items->handler_off_); return false; } last_addr = try_items->start_addr_ + try_items->insn_count_; if (UNLIKELY(last_addr > insns_size)) { ErrorStringPrintf("Invalid try_item insn_count: %x", try_items->insn_count_); return false; } try_items++; } return true; } bool DexFileVerifier::CheckIntraStringDataItem() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, size); const uint8_t* file_end = begin_ + size_; for (uint32_t i = 0; i < size; i++) { CHECK_LT(i, size); // b/15014252 Prevents hitting the impossible case below if (UNLIKELY(ptr_ >= file_end)) { ErrorStringPrintf("String data would go beyond end-of-file"); return false; } uint8_t byte = *(ptr_++); // Switch on the high 4 bits. switch (byte >> 4) { case 0x00: // Special case of bit pattern 0xxx. if (UNLIKELY(byte == 0)) { CHECK_LT(i, size); // b/15014252 Actually hit this impossible case with clang ErrorStringPrintf("String data shorter than indicated utf16_size %x", size); return false; } break; case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: // No extra checks necessary for bit pattern 0xxx. break; case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0f: // Illegal bit patterns 10xx or 1111. // Note: 1111 is valid for normal UTF-8, but not here. ErrorStringPrintf("Illegal start byte %x in string data", byte); return false; case 0x0c: case 0x0d: { // Bit pattern 110x has an additional byte. uint8_t byte2 = *(ptr_++); if (UNLIKELY((byte2 & 0xc0) != 0x80)) { ErrorStringPrintf("Illegal continuation byte %x in string data", byte2); return false; } uint16_t value = ((byte & 0x1f) << 6) | (byte2 & 0x3f); if (UNLIKELY((value != 0) && (value < 0x80))) { ErrorStringPrintf("Illegal representation for value %x in string data", value); return false; } break; } case 0x0e: { // Bit pattern 1110 has 2 additional bytes. uint8_t byte2 = *(ptr_++); if (UNLIKELY((byte2 & 0xc0) != 0x80)) { ErrorStringPrintf("Illegal continuation byte %x in string data", byte2); return false; } uint8_t byte3 = *(ptr_++); if (UNLIKELY((byte3 & 0xc0) != 0x80)) { ErrorStringPrintf("Illegal continuation byte %x in string data", byte3); return false; } uint16_t value = ((byte & 0x0f) << 12) | ((byte2 & 0x3f) << 6) | (byte3 & 0x3f); if (UNLIKELY(value < 0x800)) { ErrorStringPrintf("Illegal representation for value %x in string data", value); return false; } break; } } } if (UNLIKELY(*(ptr_++) != '\0')) { ErrorStringPrintf("String longer than indicated size %x", size); return false; } return true; } bool DexFileVerifier::CheckIntraDebugInfoItem() { DECODE_UNSIGNED_CHECKED_FROM(ptr_, dummy); DECODE_UNSIGNED_CHECKED_FROM(ptr_, parameters_size); if (UNLIKELY(parameters_size > 65536)) { ErrorStringPrintf("Invalid parameters_size: %x", parameters_size); return false; } for (uint32_t j = 0; j < parameters_size; j++) { DECODE_UNSIGNED_CHECKED_FROM(ptr_, parameter_name); if (parameter_name != 0) { parameter_name--; if (!CheckIndex(parameter_name, header_->string_ids_size_, "debug_info_item parameter_name")) { return false; } } } while (true) { uint8_t opcode = *(ptr_++); switch (opcode) { case DexFile::DBG_END_SEQUENCE: { return true; } case DexFile::DBG_ADVANCE_PC: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, advance_pc_dummy); break; } case DexFile::DBG_ADVANCE_LINE: { DECODE_SIGNED_CHECKED_FROM(ptr_, advance_line_dummy); break; } case DexFile::DBG_START_LOCAL: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, reg_num); if (UNLIKELY(reg_num >= 65536)) { ErrorStringPrintf("Bad reg_num for opcode %x", opcode); return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, name_idx); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL name_idx")) { return false; } } DECODE_UNSIGNED_CHECKED_FROM(ptr_, type_idx); if (type_idx != 0) { type_idx--; if (!CheckIndex(type_idx, header_->type_ids_size_, "DBG_START_LOCAL type_idx")) { return false; } } break; } case DexFile::DBG_END_LOCAL: case DexFile::DBG_RESTART_LOCAL: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, reg_num); if (UNLIKELY(reg_num >= 65536)) { ErrorStringPrintf("Bad reg_num for opcode %x", opcode); return false; } break; } case DexFile::DBG_START_LOCAL_EXTENDED: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, reg_num); if (UNLIKELY(reg_num >= 65536)) { ErrorStringPrintf("Bad reg_num for opcode %x", opcode); return false; } DECODE_UNSIGNED_CHECKED_FROM(ptr_, name_idx); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED name_idx")) { return false; } } DECODE_UNSIGNED_CHECKED_FROM(ptr_, type_idx); if (type_idx != 0) { type_idx--; if (!CheckIndex(type_idx, header_->type_ids_size_, "DBG_START_LOCAL_EXTENDED type_idx")) { return false; } } DECODE_UNSIGNED_CHECKED_FROM(ptr_, sig_idx); if (sig_idx != 0) { sig_idx--; if (!CheckIndex(sig_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED sig_idx")) { return false; } } break; } case DexFile::DBG_SET_FILE: { DECODE_UNSIGNED_CHECKED_FROM(ptr_, name_idx); if (name_idx != 0) { name_idx--; if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_SET_FILE name_idx")) { return false; } } break; } } } } bool DexFileVerifier::CheckIntraAnnotationItem() { if (!CheckListSize(ptr_, 1, sizeof(uint8_t), "annotation visibility")) { return false; } // Check visibility switch (*(ptr_++)) { case DexFile::kDexVisibilityBuild: case DexFile::kDexVisibilityRuntime: case DexFile::kDexVisibilitySystem: break; default: ErrorStringPrintf("Bad annotation visibility: %x", *ptr_); return false; } if (!CheckEncodedAnnotation()) { return false; } return true; } bool DexFileVerifier::CheckIntraAnnotationsDirectoryItem() { const DexFile::AnnotationsDirectoryItem* item = reinterpret_cast(ptr_); if (!CheckListSize(item, 1, sizeof(DexFile::AnnotationsDirectoryItem), "annotations_directory")) { return false; } // Field annotations follow immediately after the annotations directory. const DexFile::FieldAnnotationsItem* field_item = reinterpret_cast(item + 1); uint32_t field_count = item->fields_size_; if (!CheckListSize(field_item, field_count, sizeof(DexFile::FieldAnnotationsItem), "field_annotations list")) { return false; } uint32_t last_idx = 0; for (uint32_t i = 0; i < field_count; i++) { if (UNLIKELY(last_idx >= field_item->field_idx_ && i != 0)) { ErrorStringPrintf("Out-of-order field_idx for annotation: %x then %x", last_idx, field_item->field_idx_); return false; } last_idx = field_item->field_idx_; field_item++; } // Method annotations follow immediately after field annotations. const DexFile::MethodAnnotationsItem* method_item = reinterpret_cast(field_item); uint32_t method_count = item->methods_size_; if (!CheckListSize(method_item, method_count, sizeof(DexFile::MethodAnnotationsItem), "method_annotations list")) { return false; } last_idx = 0; for (uint32_t i = 0; i < method_count; i++) { if (UNLIKELY(last_idx >= method_item->method_idx_ && i != 0)) { ErrorStringPrintf("Out-of-order method_idx for annotation: %x then %x", last_idx, method_item->method_idx_); return false; } last_idx = method_item->method_idx_; method_item++; } // Parameter annotations follow immediately after method annotations. const DexFile::ParameterAnnotationsItem* parameter_item = reinterpret_cast(method_item); uint32_t parameter_count = item->parameters_size_; if (!CheckListSize(parameter_item, parameter_count, sizeof(DexFile::ParameterAnnotationsItem), "parameter_annotations list")) { return false; } last_idx = 0; for (uint32_t i = 0; i < parameter_count; i++) { if (UNLIKELY(last_idx >= parameter_item->method_idx_ && i != 0)) { ErrorStringPrintf("Out-of-order method_idx for annotation: %x then %x", last_idx, parameter_item->method_idx_); return false; } last_idx = parameter_item->method_idx_; parameter_item++; } // Return a pointer to the end of the annotations. ptr_ = reinterpret_cast(parameter_item); return true; } bool DexFileVerifier::CheckIntraSectionIterate(size_t offset, uint32_t section_count, DexFile::MapItemType type) { // Get the right alignment mask for the type of section. size_t alignment_mask; switch (type) { case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: alignment_mask = sizeof(uint8_t) - 1; break; default: alignment_mask = sizeof(uint32_t) - 1; break; } // Iterate through the items in the section. for (uint32_t i = 0; i < section_count; i++) { size_t aligned_offset = (offset + alignment_mask) & ~alignment_mask; // Check the padding between items. if (!CheckPadding(offset, aligned_offset, type)) { return false; } // Check depending on the section type. const uint8_t* start_ptr = ptr_; switch (type) { case DexFile::kDexTypeStringIdItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::StringId), "string_ids")) { return false; } ptr_ += sizeof(DexFile::StringId); break; } case DexFile::kDexTypeTypeIdItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::TypeId), "type_ids")) { return false; } ptr_ += sizeof(DexFile::TypeId); break; } case DexFile::kDexTypeProtoIdItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::ProtoId), "proto_ids")) { return false; } ptr_ += sizeof(DexFile::ProtoId); break; } case DexFile::kDexTypeFieldIdItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::FieldId), "field_ids")) { return false; } ptr_ += sizeof(DexFile::FieldId); break; } case DexFile::kDexTypeMethodIdItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::MethodId), "method_ids")) { return false; } ptr_ += sizeof(DexFile::MethodId); break; } case DexFile::kDexTypeClassDefItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::ClassDef), "class_defs")) { return false; } ptr_ += sizeof(DexFile::ClassDef); break; } case DexFile::kDexTypeCallSiteIdItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::CallSiteIdItem), "call_site_ids")) { return false; } ptr_ += sizeof(DexFile::CallSiteIdItem); break; } case DexFile::kDexTypeMethodHandleItem: { if (!CheckListSize(ptr_, 1, sizeof(DexFile::MethodHandleItem), "method_handles")) { return false; } ptr_ += sizeof(DexFile::MethodHandleItem); break; } case DexFile::kDexTypeTypeList: { if (!CheckList(sizeof(DexFile::TypeItem), "type_list", &ptr_)) { return false; } break; } case DexFile::kDexTypeAnnotationSetRefList: { if (!CheckList(sizeof(DexFile::AnnotationSetRefItem), "annotation_set_ref_list", &ptr_)) { return false; } break; } case DexFile::kDexTypeAnnotationSetItem: { if (!CheckList(sizeof(uint32_t), "annotation_set_item", &ptr_)) { return false; } break; } case DexFile::kDexTypeClassDataItem: { if (!CheckIntraClassDataItem()) { return false; } break; } case DexFile::kDexTypeCodeItem: { if (!CheckIntraCodeItem()) { return false; } break; } case DexFile::kDexTypeStringDataItem: { if (!CheckIntraStringDataItem()) { return false; } break; } case DexFile::kDexTypeDebugInfoItem: { if (!CheckIntraDebugInfoItem()) { return false; } break; } case DexFile::kDexTypeAnnotationItem: { if (!CheckIntraAnnotationItem()) { return false; } break; } case DexFile::kDexTypeEncodedArrayItem: { if (!CheckEncodedArray()) { return false; } break; } case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckIntraAnnotationsDirectoryItem()) { return false; } break; } case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMapList: break; } if (start_ptr == ptr_) { ErrorStringPrintf("Unknown map item type %x", type); return false; } if (IsDataSectionType(type)) { if (aligned_offset == 0u) { ErrorStringPrintf("Item %d offset is 0", i); return false; } DCHECK(offset_to_type_map_.Find(aligned_offset) == offset_to_type_map_.end()); offset_to_type_map_.Insert(std::pair(aligned_offset, type)); } aligned_offset = ptr_ - begin_; if (UNLIKELY(aligned_offset > size_)) { ErrorStringPrintf("Item %d at ends out of bounds", i); return false; } offset = aligned_offset; } return true; } bool DexFileVerifier::CheckIntraIdSection(size_t offset, uint32_t count, DexFile::MapItemType type) { uint32_t expected_offset; uint32_t expected_size; // Get the expected offset and size from the header. switch (type) { case DexFile::kDexTypeStringIdItem: expected_offset = header_->string_ids_off_; expected_size = header_->string_ids_size_; break; case DexFile::kDexTypeTypeIdItem: expected_offset = header_->type_ids_off_; expected_size = header_->type_ids_size_; break; case DexFile::kDexTypeProtoIdItem: expected_offset = header_->proto_ids_off_; expected_size = header_->proto_ids_size_; break; case DexFile::kDexTypeFieldIdItem: expected_offset = header_->field_ids_off_; expected_size = header_->field_ids_size_; break; case DexFile::kDexTypeMethodIdItem: expected_offset = header_->method_ids_off_; expected_size = header_->method_ids_size_; break; case DexFile::kDexTypeClassDefItem: expected_offset = header_->class_defs_off_; expected_size = header_->class_defs_size_; break; default: ErrorStringPrintf("Bad type for id section: %x", type); return false; } // Check that the offset and size are what were expected from the header. if (UNLIKELY(offset != expected_offset)) { ErrorStringPrintf("Bad offset for section: got %zx, expected %x", offset, expected_offset); return false; } if (UNLIKELY(count != expected_size)) { ErrorStringPrintf("Bad size for section: got %x, expected %x", count, expected_size); return false; } return CheckIntraSectionIterate(offset, count, type); } bool DexFileVerifier::CheckIntraDataSection(size_t offset, uint32_t count, DexFile::MapItemType type) { size_t data_start = header_->data_off_; size_t data_end = data_start + header_->data_size_; // Sanity check the offset of the section. if (UNLIKELY((offset < data_start) || (offset > data_end))) { ErrorStringPrintf("Bad offset for data subsection: %zx", offset); return false; } if (!CheckIntraSectionIterate(offset, count, type)) { return false; } size_t next_offset = ptr_ - begin_; if (next_offset > data_end) { ErrorStringPrintf("Out-of-bounds end of data subsection: %zu data_off=%u data_size=%u", next_offset, header_->data_off_, header_->data_size_); return false; } return true; } bool DexFileVerifier::CheckIntraSection() { const DexFile::MapList* map = reinterpret_cast(begin_ + header_->map_off_); const DexFile::MapItem* item = map->list_; size_t offset = 0; uint32_t count = map->size_; ptr_ = begin_; // Check the items listed in the map. while (count--) { const size_t current_offset = offset; uint32_t section_offset = item->offset_; uint32_t section_count = item->size_; DexFile::MapItemType type = static_cast(item->type_); // Check for padding and overlap between items. if (!CheckPadding(offset, section_offset, type)) { return false; } else if (UNLIKELY(offset > section_offset)) { ErrorStringPrintf("Section overlap or out-of-order map: %zx, %x", offset, section_offset); return false; } // Check each item based on its type. switch (type) { case DexFile::kDexTypeHeaderItem: if (UNLIKELY(section_count != 1)) { ErrorStringPrintf("Multiple header items"); return false; } if (UNLIKELY(section_offset != 0)) { ErrorStringPrintf("Header at %x, not at start of file", section_offset); return false; } ptr_ = begin_ + header_->header_size_; offset = header_->header_size_; break; case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: if (!CheckIntraIdSection(section_offset, section_count, type)) { return false; } offset = ptr_ - begin_; break; case DexFile::kDexTypeMapList: if (UNLIKELY(section_count != 1)) { ErrorStringPrintf("Multiple map list items"); return false; } if (UNLIKELY(section_offset != header_->map_off_)) { ErrorStringPrintf("Map not at header-defined offset: %x, expected %x", section_offset, header_->map_off_); return false; } ptr_ += sizeof(uint32_t) + (map->size_ * sizeof(DexFile::MapItem)); offset = section_offset + sizeof(uint32_t) + (map->size_ * sizeof(DexFile::MapItem)); break; case DexFile::kDexTypeMethodHandleItem: case DexFile::kDexTypeCallSiteIdItem: CheckIntraSectionIterate(section_offset, section_count, type); offset = ptr_ - begin_; break; case DexFile::kDexTypeTypeList: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: case DexFile::kDexTypeAnnotationsDirectoryItem: if (!CheckIntraDataSection(section_offset, section_count, type)) { return false; } offset = ptr_ - begin_; break; } if (offset == current_offset) { ErrorStringPrintf("Unknown map item type %x", type); return false; } item++; } return true; } bool DexFileVerifier::CheckOffsetToTypeMap(size_t offset, uint16_t type) { DCHECK_NE(offset, 0u); auto it = offset_to_type_map_.Find(offset); if (UNLIKELY(it == offset_to_type_map_.end())) { ErrorStringPrintf("No data map entry found @ %zx; expected %x", offset, type); return false; } if (UNLIKELY(it->second != type)) { ErrorStringPrintf("Unexpected data map entry @ %zx; expected %x, found %x", offset, type, it->second); return false; } return true; } dex::TypeIndex DexFileVerifier::FindFirstClassDataDefiner(const uint8_t* ptr, bool* success) { ClassDataItemIterator it(*dex_file_, ptr); *success = true; if (it.HasNextStaticField() || it.HasNextInstanceField()) { LOAD_FIELD(field, it.GetMemberIndex(), "first_class_data_definer field_id", *success = false; return dex::TypeIndex(DexFile::kDexNoIndex16)) return field->class_idx_; } if (it.HasNextMethod()) { LOAD_METHOD(method, it.GetMemberIndex(), "first_class_data_definer method_id", *success = false; return dex::TypeIndex(DexFile::kDexNoIndex16)) return method->class_idx_; } return dex::TypeIndex(DexFile::kDexNoIndex16); } dex::TypeIndex DexFileVerifier::FindFirstAnnotationsDirectoryDefiner(const uint8_t* ptr, bool* success) { const DexFile::AnnotationsDirectoryItem* item = reinterpret_cast(ptr); *success = true; if (item->fields_size_ != 0) { DexFile::FieldAnnotationsItem* field_items = (DexFile::FieldAnnotationsItem*) (item + 1); LOAD_FIELD(field, field_items[0].field_idx_, "first_annotations_dir_definer field_id", *success = false; return dex::TypeIndex(DexFile::kDexNoIndex16)) return field->class_idx_; } if (item->methods_size_ != 0) { DexFile::MethodAnnotationsItem* method_items = (DexFile::MethodAnnotationsItem*) (item + 1); LOAD_METHOD(method, method_items[0].method_idx_, "first_annotations_dir_definer method id", *success = false; return dex::TypeIndex(DexFile::kDexNoIndex16)) return method->class_idx_; } if (item->parameters_size_ != 0) { DexFile::ParameterAnnotationsItem* parameter_items = (DexFile::ParameterAnnotationsItem*) (item + 1); LOAD_METHOD(method, parameter_items[0].method_idx_, "first_annotations_dir_definer method id", *success = false; return dex::TypeIndex(DexFile::kDexNoIndex16)) return method->class_idx_; } return dex::TypeIndex(DexFile::kDexNoIndex16); } bool DexFileVerifier::CheckInterStringIdItem() { const DexFile::StringId* item = reinterpret_cast(ptr_); // Check the map to make sure it has the right offset->type. if (!CheckOffsetToTypeMap(item->string_data_off_, DexFile::kDexTypeStringDataItem)) { return false; } // Check ordering between items. if (previous_item_ != nullptr) { const DexFile::StringId* prev_item = reinterpret_cast(previous_item_); const char* prev_str = dex_file_->GetStringData(*prev_item); const char* str = dex_file_->GetStringData(*item); if (UNLIKELY(CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(prev_str, str) >= 0)) { ErrorStringPrintf("Out-of-order string_ids: '%s' then '%s'", prev_str, str); return false; } } ptr_ += sizeof(DexFile::StringId); return true; } bool DexFileVerifier::CheckInterTypeIdItem() { const DexFile::TypeId* item = reinterpret_cast(ptr_); LOAD_STRING(descriptor, item->descriptor_idx_, "inter_type_id_item descriptor_idx") // Check that the descriptor is a valid type. if (UNLIKELY(!IsValidDescriptor(descriptor))) { ErrorStringPrintf("Invalid type descriptor: '%s'", descriptor); return false; } // Check ordering between items. if (previous_item_ != nullptr) { const DexFile::TypeId* prev_item = reinterpret_cast(previous_item_); if (UNLIKELY(prev_item->descriptor_idx_ >= item->descriptor_idx_)) { ErrorStringPrintf("Out-of-order type_ids: %x then %x", prev_item->descriptor_idx_.index_, item->descriptor_idx_.index_); return false; } } ptr_ += sizeof(DexFile::TypeId); return true; } bool DexFileVerifier::CheckInterProtoIdItem() { const DexFile::ProtoId* item = reinterpret_cast(ptr_); LOAD_STRING(shorty, item->shorty_idx_, "inter_proto_id_item shorty_idx") if (item->parameters_off_ != 0 && !CheckOffsetToTypeMap(item->parameters_off_, DexFile::kDexTypeTypeList)) { return false; } // Check that return type is representable as a uint16_t; if (UNLIKELY(!IsValidOrNoTypeId(item->return_type_idx_.index_, item->pad_))) { ErrorStringPrintf("proto with return type idx outside uint16_t range '%x:%x'", item->pad_, item->return_type_idx_.index_); return false; } // Check the return type and advance the shorty. LOAD_STRING_BY_TYPE(return_type, item->return_type_idx_, "inter_proto_id_item return_type_idx") if (!CheckShortyDescriptorMatch(*shorty, return_type, true)) { return false; } shorty++; DexFileParameterIterator it(*dex_file_, *item); while (it.HasNext() && *shorty != '\0') { if (!CheckIndex(it.GetTypeIdx().index_, dex_file_->NumTypeIds(), "inter_proto_id_item shorty type_idx")) { return false; } const char* descriptor = it.GetDescriptor(); if (!CheckShortyDescriptorMatch(*shorty, descriptor, false)) { return false; } it.Next(); shorty++; } if (UNLIKELY(it.HasNext() || *shorty != '\0')) { ErrorStringPrintf("Mismatched length for parameters and shorty"); return false; } // Check ordering between items. This relies on type_ids being in order. if (previous_item_ != nullptr) { const DexFile::ProtoId* prev = reinterpret_cast(previous_item_); if (UNLIKELY(prev->return_type_idx_ > item->return_type_idx_)) { ErrorStringPrintf("Out-of-order proto_id return types"); return false; } else if (prev->return_type_idx_ == item->return_type_idx_) { DexFileParameterIterator curr_it(*dex_file_, *item); DexFileParameterIterator prev_it(*dex_file_, *prev); while (curr_it.HasNext() && prev_it.HasNext()) { dex::TypeIndex prev_idx = prev_it.GetTypeIdx(); dex::TypeIndex curr_idx = curr_it.GetTypeIdx(); DCHECK_NE(prev_idx, dex::TypeIndex(DexFile::kDexNoIndex16)); DCHECK_NE(curr_idx, dex::TypeIndex(DexFile::kDexNoIndex16)); if (prev_idx < curr_idx) { break; } else if (UNLIKELY(prev_idx > curr_idx)) { ErrorStringPrintf("Out-of-order proto_id arguments"); return false; } prev_it.Next(); curr_it.Next(); } if (!curr_it.HasNext()) { // Either a duplicate ProtoId or a ProtoId with a shorter argument list follows // a ProtoId with a longer one. Both cases are forbidden by the specification. ErrorStringPrintf("Out-of-order proto_id arguments"); return false; } } } ptr_ += sizeof(DexFile::ProtoId); return true; } bool DexFileVerifier::CheckInterFieldIdItem() { const DexFile::FieldId* item = reinterpret_cast(ptr_); // Check that the class descriptor is valid. LOAD_STRING_BY_TYPE(class_descriptor, item->class_idx_, "inter_field_id_item class_idx") if (UNLIKELY(!IsValidDescriptor(class_descriptor) || class_descriptor[0] != 'L')) { ErrorStringPrintf("Invalid descriptor for class_idx: '%s'", class_descriptor); return false; } // Check that the type descriptor is a valid field name. LOAD_STRING_BY_TYPE(type_descriptor, item->type_idx_, "inter_field_id_item type_idx") if (UNLIKELY(!IsValidDescriptor(type_descriptor) || type_descriptor[0] == 'V')) { ErrorStringPrintf("Invalid descriptor for type_idx: '%s'", type_descriptor); return false; } // Check that the name is valid. LOAD_STRING(descriptor, item->name_idx_, "inter_field_id_item name_idx") if (UNLIKELY(!IsValidMemberName(descriptor))) { ErrorStringPrintf("Invalid field name: '%s'", descriptor); return false; } // Check ordering between items. This relies on the other sections being in order. if (previous_item_ != nullptr) { const DexFile::FieldId* prev_item = reinterpret_cast(previous_item_); if (UNLIKELY(prev_item->class_idx_ > item->class_idx_)) { ErrorStringPrintf("Out-of-order field_ids"); return false; } else if (prev_item->class_idx_ == item->class_idx_) { if (UNLIKELY(prev_item->name_idx_ > item->name_idx_)) { ErrorStringPrintf("Out-of-order field_ids"); return false; } else if (prev_item->name_idx_ == item->name_idx_) { if (UNLIKELY(prev_item->type_idx_ >= item->type_idx_)) { ErrorStringPrintf("Out-of-order field_ids"); return false; } } } } ptr_ += sizeof(DexFile::FieldId); return true; } bool DexFileVerifier::CheckInterMethodIdItem() { const DexFile::MethodId* item = reinterpret_cast(ptr_); // Check that the class descriptor is a valid reference name. LOAD_STRING_BY_TYPE(class_descriptor, item->class_idx_, "inter_method_id_item class_idx") if (UNLIKELY(!IsValidDescriptor(class_descriptor) || (class_descriptor[0] != 'L' && class_descriptor[0] != '['))) { ErrorStringPrintf("Invalid descriptor for class_idx: '%s'", class_descriptor); return false; } // Check that the name is valid. LOAD_STRING(descriptor, item->name_idx_, "inter_method_id_item name_idx") if (UNLIKELY(!IsValidMemberName(descriptor))) { ErrorStringPrintf("Invalid method name: '%s'", descriptor); return false; } // Check that the proto id is valid. if (UNLIKELY(!CheckIndex(item->proto_idx_, dex_file_->NumProtoIds(), "inter_method_id_item proto_idx"))) { return false; } // Check ordering between items. This relies on the other sections being in order. if (previous_item_ != nullptr) { const DexFile::MethodId* prev_item = reinterpret_cast(previous_item_); if (UNLIKELY(prev_item->class_idx_ > item->class_idx_)) { ErrorStringPrintf("Out-of-order method_ids"); return false; } else if (prev_item->class_idx_ == item->class_idx_) { if (UNLIKELY(prev_item->name_idx_ > item->name_idx_)) { ErrorStringPrintf("Out-of-order method_ids"); return false; } else if (prev_item->name_idx_ == item->name_idx_) { if (UNLIKELY(prev_item->proto_idx_ >= item->proto_idx_)) { ErrorStringPrintf("Out-of-order method_ids"); return false; } } } } ptr_ += sizeof(DexFile::MethodId); return true; } bool DexFileVerifier::CheckInterClassDefItem() { const DexFile::ClassDef* item = reinterpret_cast(ptr_); // Check that class_idx_ is representable as a uint16_t; if (UNLIKELY(!IsValidTypeId(item->class_idx_.index_, item->pad1_))) { ErrorStringPrintf("class with type idx outside uint16_t range '%x:%x'", item->pad1_, item->class_idx_.index_); return false; } // Check that superclass_idx_ is representable as a uint16_t; if (UNLIKELY(!IsValidOrNoTypeId(item->superclass_idx_.index_, item->pad2_))) { ErrorStringPrintf("class with superclass type idx outside uint16_t range '%x:%x'", item->pad2_, item->superclass_idx_.index_); return false; } // Check for duplicate class def. if (defined_classes_.find(item->class_idx_) != defined_classes_.end()) { ErrorStringPrintf("Redefinition of class with type idx: '%d'", item->class_idx_.index_); return false; } defined_classes_.insert(item->class_idx_); LOAD_STRING_BY_TYPE(class_descriptor, item->class_idx_, "inter_class_def_item class_idx") if (UNLIKELY(!IsValidDescriptor(class_descriptor) || class_descriptor[0] != 'L')) { ErrorStringPrintf("Invalid class descriptor: '%s'", class_descriptor); return false; } // Only allow non-runtime modifiers. if ((item->access_flags_ & ~kAccJavaFlagsMask) != 0) { ErrorStringPrintf("Invalid class flags: '%d'", item->access_flags_); return false; } if (item->interfaces_off_ != 0 && !CheckOffsetToTypeMap(item->interfaces_off_, DexFile::kDexTypeTypeList)) { return false; } if (item->annotations_off_ != 0 && !CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationsDirectoryItem)) { return false; } if (item->class_data_off_ != 0 && !CheckOffsetToTypeMap(item->class_data_off_, DexFile::kDexTypeClassDataItem)) { return false; } if (item->static_values_off_ != 0 && !CheckOffsetToTypeMap(item->static_values_off_, DexFile::kDexTypeEncodedArrayItem)) { return false; } if (item->superclass_idx_.IsValid()) { if (header_->GetVersion() >= DexFile::kClassDefinitionOrderEnforcedVersion) { // Check that a class does not inherit from itself directly (by having // the same type idx as its super class). if (UNLIKELY(item->superclass_idx_ == item->class_idx_)) { ErrorStringPrintf("Class with same type idx as its superclass: '%d'", item->class_idx_.index_); return false; } // Check that a class is defined after its super class (if the // latter is defined in the same Dex file). const DexFile::ClassDef* superclass_def = dex_file_->FindClassDef(item->superclass_idx_); if (superclass_def != nullptr) { // The superclass is defined in this Dex file. if (superclass_def > item) { // ClassDef item for super class appearing after the class' ClassDef item. ErrorStringPrintf("Invalid class definition ordering:" " class with type idx: '%d' defined before" " superclass with type idx: '%d'", item->class_idx_.index_, item->superclass_idx_.index_); return false; } } } LOAD_STRING_BY_TYPE(superclass_descriptor, item->superclass_idx_, "inter_class_def_item superclass_idx") if (UNLIKELY(!IsValidDescriptor(superclass_descriptor) || superclass_descriptor[0] != 'L')) { ErrorStringPrintf("Invalid superclass: '%s'", superclass_descriptor); return false; } } // Check interfaces. const DexFile::TypeList* interfaces = dex_file_->GetInterfacesList(*item); if (interfaces != nullptr) { uint32_t size = interfaces->Size(); for (uint32_t i = 0; i < size; i++) { if (header_->GetVersion() >= DexFile::kClassDefinitionOrderEnforcedVersion) { // Check that a class does not implement itself directly (by having the // same type idx as one of its immediate implemented interfaces). if (UNLIKELY(interfaces->GetTypeItem(i).type_idx_ == item->class_idx_)) { ErrorStringPrintf("Class with same type idx as implemented interface: '%d'", item->class_idx_.index_); return false; } // Check that a class is defined after the interfaces it implements // (if they are defined in the same Dex file). const DexFile::ClassDef* interface_def = dex_file_->FindClassDef(interfaces->GetTypeItem(i).type_idx_); if (interface_def != nullptr) { // The interface is defined in this Dex file. if (interface_def > item) { // ClassDef item for interface appearing after the class' ClassDef item. ErrorStringPrintf("Invalid class definition ordering:" " class with type idx: '%d' defined before" " implemented interface with type idx: '%d'", item->class_idx_.index_, interfaces->GetTypeItem(i).type_idx_.index_); return false; } } } // Ensure that the interface refers to a class (not an array nor a primitive type). LOAD_STRING_BY_TYPE(inf_descriptor, interfaces->GetTypeItem(i).type_idx_, "inter_class_def_item interface type_idx") if (UNLIKELY(!IsValidDescriptor(inf_descriptor) || inf_descriptor[0] != 'L')) { ErrorStringPrintf("Invalid interface: '%s'", inf_descriptor); return false; } } /* * Ensure that there are no duplicates. This is an O(N^2) test, but in * practice the number of interfaces implemented by any given class is low. */ for (uint32_t i = 1; i < size; i++) { dex::TypeIndex idx1 = interfaces->GetTypeItem(i).type_idx_; for (uint32_t j =0; j < i; j++) { dex::TypeIndex idx2 = interfaces->GetTypeItem(j).type_idx_; if (UNLIKELY(idx1 == idx2)) { ErrorStringPrintf("Duplicate interface: '%s'", dex_file_->StringByTypeIdx(idx1)); return false; } } } } // Check that references in class_data_item are to the right class. if (item->class_data_off_ != 0) { const uint8_t* data = begin_ + item->class_data_off_; bool success; dex::TypeIndex data_definer = FindFirstClassDataDefiner(data, &success); if (!success) { return false; } if (UNLIKELY((data_definer != item->class_idx_) && (data_definer != dex::TypeIndex(DexFile::kDexNoIndex16)))) { ErrorStringPrintf("Invalid class_data_item"); return false; } } // Check that references in annotations_directory_item are to right class. if (item->annotations_off_ != 0) { // annotations_off_ is supposed to be aligned by 4. if (!IsAlignedParam(item->annotations_off_, 4)) { ErrorStringPrintf("Invalid annotations_off_, not aligned by 4"); return false; } const uint8_t* data = begin_ + item->annotations_off_; bool success; dex::TypeIndex annotations_definer = FindFirstAnnotationsDirectoryDefiner(data, &success); if (!success) { return false; } if (UNLIKELY((annotations_definer != item->class_idx_) && (annotations_definer != dex::TypeIndex(DexFile::kDexNoIndex16)))) { ErrorStringPrintf("Invalid annotations_directory_item"); return false; } } ptr_ += sizeof(DexFile::ClassDef); return true; } bool DexFileVerifier::CheckInterCallSiteIdItem() { const DexFile::CallSiteIdItem* item = reinterpret_cast(ptr_); // Check call site referenced by item is in encoded array section. if (!CheckOffsetToTypeMap(item->data_off_, DexFile::kDexTypeEncodedArrayItem)) { ErrorStringPrintf("Invalid offset in CallSideIdItem"); return false; } CallSiteArrayValueIterator it(*dex_file_, *item); // Check Method Handle if (!it.HasNext() || it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodHandle) { ErrorStringPrintf("CallSiteArray missing method handle"); return false; } uint32_t handle_index = static_cast(it.GetJavaValue().i); if (handle_index >= dex_file_->NumMethodHandles()) { ErrorStringPrintf("CallSite has bad method handle id: %x", handle_index); return false; } // Check target method name. it.Next(); if (!it.HasNext() || it.GetValueType() != EncodedArrayValueIterator::ValueType::kString) { ErrorStringPrintf("CallSiteArray missing target method name"); return false; } uint32_t name_index = static_cast(it.GetJavaValue().i); if (name_index >= dex_file_->NumStringIds()) { ErrorStringPrintf("CallSite has bad method name id: %x", name_index); return false; } // Check method type. it.Next(); if (!it.HasNext() || it.GetValueType() != EncodedArrayValueIterator::ValueType::kMethodType) { ErrorStringPrintf("CallSiteArray missing method type"); return false; } uint32_t proto_index = static_cast(it.GetJavaValue().i); if (proto_index >= dex_file_->NumProtoIds()) { ErrorStringPrintf("CallSite has bad method type: %x", proto_index); return false; } ptr_ += sizeof(DexFile::CallSiteIdItem); return true; } bool DexFileVerifier::CheckInterMethodHandleItem() { const DexFile::MethodHandleItem* item = reinterpret_cast(ptr_); DexFile::MethodHandleType method_handle_type = static_cast(item->method_handle_type_); if (method_handle_type > DexFile::MethodHandleType::kLast) { ErrorStringPrintf("Bad method handle type %x", item->method_handle_type_); return false; } uint32_t index = item->field_or_method_idx_; switch (method_handle_type) { case DexFile::MethodHandleType::kStaticPut: case DexFile::MethodHandleType::kStaticGet: case DexFile::MethodHandleType::kInstancePut: case DexFile::MethodHandleType::kInstanceGet: { LOAD_FIELD(field, index, "method_handle_item field_idx", return false); break; } case DexFile::MethodHandleType::kInvokeStatic: case DexFile::MethodHandleType::kInvokeInstance: case DexFile::MethodHandleType::kInvokeConstructor: case DexFile::MethodHandleType::kInvokeDirect: case DexFile::MethodHandleType::kInvokeInterface: { LOAD_METHOD(method, index, "method_handle_item method_idx", return false); break; } } ptr_ += sizeof(DexFile::MethodHandleItem); return true; } bool DexFileVerifier::CheckInterAnnotationSetRefList() { const DexFile::AnnotationSetRefList* list = reinterpret_cast(ptr_); const DexFile::AnnotationSetRefItem* item = list->list_; uint32_t count = list->size_; while (count--) { if (item->annotations_off_ != 0 && !CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } item++; } ptr_ = reinterpret_cast(item); return true; } bool DexFileVerifier::CheckInterAnnotationSetItem() { const DexFile::AnnotationSetItem* set = reinterpret_cast(ptr_); const uint32_t* offsets = set->entries_; uint32_t count = set->size_; uint32_t last_idx = 0; for (uint32_t i = 0; i < count; i++) { if (*offsets != 0 && !CheckOffsetToTypeMap(*offsets, DexFile::kDexTypeAnnotationItem)) { return false; } // Get the annotation from the offset and the type index for the annotation. const DexFile::AnnotationItem* annotation = reinterpret_cast(begin_ + *offsets); const uint8_t* data = annotation->annotation_; DECODE_UNSIGNED_CHECKED_FROM(data, idx); if (UNLIKELY(last_idx >= idx && i != 0)) { ErrorStringPrintf("Out-of-order entry types: %x then %x", last_idx, idx); return false; } last_idx = idx; offsets++; } ptr_ = reinterpret_cast(offsets); return true; } bool DexFileVerifier::CheckInterClassDataItem() { ClassDataItemIterator it(*dex_file_, ptr_); bool success; dex::TypeIndex defining_class = FindFirstClassDataDefiner(ptr_, &success); if (!success) { return false; } for (; it.HasNextStaticField() || it.HasNextInstanceField(); it.Next()) { LOAD_FIELD(field, it.GetMemberIndex(), "inter_class_data_item field_id", return false) if (UNLIKELY(field->class_idx_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for class_data_item field"); return false; } } for (; it.HasNextMethod(); it.Next()) { uint32_t code_off = it.GetMethodCodeItemOffset(); if (code_off != 0 && !CheckOffsetToTypeMap(code_off, DexFile::kDexTypeCodeItem)) { return false; } LOAD_METHOD(method, it.GetMemberIndex(), "inter_class_data_item method_id", return false) if (UNLIKELY(method->class_idx_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for class_data_item method"); return false; } } ptr_ = it.EndDataPointer(); return true; } bool DexFileVerifier::CheckInterAnnotationsDirectoryItem() { const DexFile::AnnotationsDirectoryItem* item = reinterpret_cast(ptr_); bool success; dex::TypeIndex defining_class = FindFirstAnnotationsDirectoryDefiner(ptr_, &success); if (!success) { return false; } if (item->class_annotations_off_ != 0 && !CheckOffsetToTypeMap(item->class_annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } // Field annotations follow immediately after the annotations directory. const DexFile::FieldAnnotationsItem* field_item = reinterpret_cast(item + 1); uint32_t field_count = item->fields_size_; for (uint32_t i = 0; i < field_count; i++) { LOAD_FIELD(field, field_item->field_idx_, "inter_annotations_directory_item field_id", return false) if (UNLIKELY(field->class_idx_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for field_annotation"); return false; } if (!CheckOffsetToTypeMap(field_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } field_item++; } // Method annotations follow immediately after field annotations. const DexFile::MethodAnnotationsItem* method_item = reinterpret_cast(field_item); uint32_t method_count = item->methods_size_; for (uint32_t i = 0; i < method_count; i++) { LOAD_METHOD(method, method_item->method_idx_, "inter_annotations_directory_item method_id", return false) if (UNLIKELY(method->class_idx_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for method_annotation"); return false; } if (!CheckOffsetToTypeMap(method_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) { return false; } method_item++; } // Parameter annotations follow immediately after method annotations. const DexFile::ParameterAnnotationsItem* parameter_item = reinterpret_cast(method_item); uint32_t parameter_count = item->parameters_size_; for (uint32_t i = 0; i < parameter_count; i++) { LOAD_METHOD(parameter_method, parameter_item->method_idx_, "inter_annotations_directory_item parameter method_id", return false) if (UNLIKELY(parameter_method->class_idx_ != defining_class)) { ErrorStringPrintf("Mismatched defining class for parameter_annotation"); return false; } if (!CheckOffsetToTypeMap(parameter_item->annotations_off_, DexFile::kDexTypeAnnotationSetRefList)) { return false; } parameter_item++; } ptr_ = reinterpret_cast(parameter_item); return true; } bool DexFileVerifier::CheckInterSectionIterate(size_t offset, uint32_t count, DexFile::MapItemType type) { // Get the right alignment mask for the type of section. size_t alignment_mask; switch (type) { case DexFile::kDexTypeClassDataItem: alignment_mask = sizeof(uint8_t) - 1; break; default: alignment_mask = sizeof(uint32_t) - 1; break; } // Iterate through the items in the section. previous_item_ = nullptr; for (uint32_t i = 0; i < count; i++) { uint32_t new_offset = (offset + alignment_mask) & ~alignment_mask; ptr_ = begin_ + new_offset; const uint8_t* prev_ptr = ptr_; if (MapTypeToBitMask(type) == 0) { ErrorStringPrintf("Unknown map item type %x", type); return false; } // Check depending on the section type. switch (type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: break; case DexFile::kDexTypeStringIdItem: { if (!CheckInterStringIdItem()) { return false; } break; } case DexFile::kDexTypeTypeIdItem: { if (!CheckInterTypeIdItem()) { return false; } break; } case DexFile::kDexTypeProtoIdItem: { if (!CheckInterProtoIdItem()) { return false; } break; } case DexFile::kDexTypeFieldIdItem: { if (!CheckInterFieldIdItem()) { return false; } break; } case DexFile::kDexTypeMethodIdItem: { if (!CheckInterMethodIdItem()) { return false; } break; } case DexFile::kDexTypeClassDefItem: { // There shouldn't be more class definitions than type ids allow. // This check should be redundant, since there are checks that the // class_idx_ is within range and that there is only one definition // for a given type id. if (i > kTypeIdLimit) { ErrorStringPrintf("Too many class definition items"); return false; } if (!CheckInterClassDefItem()) { return false; } break; } case DexFile::kDexTypeCallSiteIdItem: { if (!CheckInterCallSiteIdItem()) { return false; } break; } case DexFile::kDexTypeMethodHandleItem: { if (!CheckInterMethodHandleItem()) { return false; } break; } case DexFile::kDexTypeAnnotationSetRefList: { if (!CheckInterAnnotationSetRefList()) { return false; } break; } case DexFile::kDexTypeAnnotationSetItem: { if (!CheckInterAnnotationSetItem()) { return false; } break; } case DexFile::kDexTypeClassDataItem: { // There shouldn't be more class data than type ids allow. // This check should be redundant, since there are checks that the // class_idx_ is within range and that there is only one definition // for a given type id. if (i > kTypeIdLimit) { ErrorStringPrintf("Too many class data items"); return false; } if (!CheckInterClassDataItem()) { return false; } break; } case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckInterAnnotationsDirectoryItem()) { return false; } break; } } previous_item_ = prev_ptr; offset = ptr_ - begin_; } return true; } bool DexFileVerifier::CheckInterSection() { const DexFile::MapList* map = reinterpret_cast(begin_ + header_->map_off_); const DexFile::MapItem* item = map->list_; uint32_t count = map->size_; // Cross check the items listed in the map. while (count--) { uint32_t section_offset = item->offset_; uint32_t section_count = item->size_; DexFile::MapItemType type = static_cast(item->type_); bool found = false; switch (type) { case DexFile::kDexTypeHeaderItem: case DexFile::kDexTypeMapList: case DexFile::kDexTypeTypeList: case DexFile::kDexTypeCodeItem: case DexFile::kDexTypeStringDataItem: case DexFile::kDexTypeDebugInfoItem: case DexFile::kDexTypeAnnotationItem: case DexFile::kDexTypeEncodedArrayItem: found = true; break; case DexFile::kDexTypeStringIdItem: case DexFile::kDexTypeTypeIdItem: case DexFile::kDexTypeProtoIdItem: case DexFile::kDexTypeFieldIdItem: case DexFile::kDexTypeMethodIdItem: case DexFile::kDexTypeClassDefItem: case DexFile::kDexTypeCallSiteIdItem: case DexFile::kDexTypeMethodHandleItem: case DexFile::kDexTypeAnnotationSetRefList: case DexFile::kDexTypeAnnotationSetItem: case DexFile::kDexTypeClassDataItem: case DexFile::kDexTypeAnnotationsDirectoryItem: { if (!CheckInterSectionIterate(section_offset, section_count, type)) { return false; } found = true; break; } } if (!found) { ErrorStringPrintf("Unknown map item type %x", item->type_); return false; } item++; } return true; } bool DexFileVerifier::Verify() { // Check the header. if (!CheckHeader()) { return false; } // Check the map section. if (!CheckMap()) { return false; } // Check structure within remaining sections. if (!CheckIntraSection()) { return false; } // Check references from one section to another. if (!CheckInterSection()) { return false; } return true; } void DexFileVerifier::ErrorStringPrintf(const char* fmt, ...) { va_list ap; va_start(ap, fmt); DCHECK(failure_reason_.empty()) << failure_reason_; failure_reason_ = StringPrintf("Failure to verify dex file '%s': ", location_); StringAppendV(&failure_reason_, fmt, ap); va_end(ap); } // Fields and methods may have only one of public/protected/private. static bool CheckAtMostOneOfPublicProtectedPrivate(uint32_t flags) { size_t count = (((flags & kAccPublic) == 0) ? 0 : 1) + (((flags & kAccProtected) == 0) ? 0 : 1) + (((flags & kAccPrivate) == 0) ? 0 : 1); return count <= 1; } // Helper functions to retrieve names from the dex file. We do not want to rely on DexFile // functionality, as we're still verifying the dex file. begin and header correspond to the // underscored variants in the DexFileVerifier. static std::string GetStringOrError(const uint8_t* const begin, const DexFile::Header* const header, dex::StringIndex string_idx) { // The `string_idx` is not guaranteed to be valid yet. if (header->string_ids_size_ <= string_idx.index_) { return "(error)"; } const DexFile::StringId* string_id = reinterpret_cast(begin + header->string_ids_off_) + string_idx.index_; // Assume that the data is OK at this point. String data has been checked at this point. const uint8_t* ptr = begin + string_id->string_data_off_; uint32_t dummy; if (!DecodeUnsignedLeb128Checked(&ptr, begin + header->file_size_, &dummy)) { return "(error)"; } return reinterpret_cast(ptr); } static std::string GetClassOrError(const uint8_t* const begin, const DexFile::Header* const header, dex::TypeIndex class_idx) { // The `class_idx` is either `FieldId::class_idx_` or `MethodId::class_idx_` and // it has already been checked in `DexFileVerifier::CheckClassDataItemField()` // or `DexFileVerifier::CheckClassDataItemMethod()`, respectively, to match // a valid defining class. CHECK_LT(class_idx.index_, header->type_ids_size_); const DexFile::TypeId* type_id = reinterpret_cast(begin + header->type_ids_off_) + class_idx.index_; // Assume that the data is OK at this point. Type id offsets have been checked at this point. return GetStringOrError(begin, header, type_id->descriptor_idx_); } static std::string GetFieldDescriptionOrError(const uint8_t* const begin, const DexFile::Header* const header, uint32_t idx) { // The `idx` has already been checked in `DexFileVerifier::CheckClassDataItemField()`. CHECK_LT(idx, header->field_ids_size_); const DexFile::FieldId* field_id = reinterpret_cast(begin + header->field_ids_off_) + idx; // Assume that the data is OK at this point. Field id offsets have been checked at this point. std::string class_name = GetClassOrError(begin, header, field_id->class_idx_); std::string field_name = GetStringOrError(begin, header, field_id->name_idx_); return class_name + "." + field_name; } static std::string GetMethodDescriptionOrError(const uint8_t* const begin, const DexFile::Header* const header, uint32_t idx) { // The `idx` has already been checked in `DexFileVerifier::CheckClassDataItemMethod()`. CHECK_LT(idx, header->method_ids_size_); const DexFile::MethodId* method_id = reinterpret_cast(begin + header->method_ids_off_) + idx; // Assume that the data is OK at this point. Method id offsets have been checked at this point. std::string class_name = GetClassOrError(begin, header, method_id->class_idx_); std::string method_name = GetStringOrError(begin, header, method_id->name_idx_); return class_name + "." + method_name; } bool DexFileVerifier::CheckFieldAccessFlags(uint32_t idx, uint32_t field_access_flags, uint32_t class_access_flags, std::string* error_msg) { // Generally sort out >16-bit flags. if ((field_access_flags & ~kAccJavaFlagsMask) != 0) { *error_msg = StringPrintf("Bad field access_flags for %s: %x(%s)", GetFieldDescriptionOrError(begin_, header_, idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); return false; } // Flags allowed on fields, in general. Other lower-16-bit flags are to be ignored. constexpr uint32_t kFieldAccessFlags = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccFinal | kAccVolatile | kAccTransient | kAccSynthetic | kAccEnum; // Fields may have only one of public/protected/final. if (!CheckAtMostOneOfPublicProtectedPrivate(field_access_flags)) { *error_msg = StringPrintf("Field may have only one of public/protected/private, %s: %x(%s)", GetFieldDescriptionOrError(begin_, header_, idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); return false; } // Interfaces have a pretty restricted list. if ((class_access_flags & kAccInterface) != 0) { // Interface fields must be public final static. constexpr uint32_t kPublicFinalStatic = kAccPublic | kAccFinal | kAccStatic; if ((field_access_flags & kPublicFinalStatic) != kPublicFinalStatic) { *error_msg = StringPrintf("Interface field is not public final static, %s: %x(%s)", GetFieldDescriptionOrError(begin_, header_, idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } // Interface fields may be synthetic, but may not have other flags. constexpr uint32_t kDisallowed = ~(kPublicFinalStatic | kAccSynthetic); if ((field_access_flags & kFieldAccessFlags & kDisallowed) != 0) { *error_msg = StringPrintf("Interface field has disallowed flag, %s: %x(%s)", GetFieldDescriptionOrError(begin_, header_, idx).c_str(), field_access_flags, PrettyJavaAccessFlags(field_access_flags).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } return true; } // Volatile fields may not be final. constexpr uint32_t kVolatileFinal = kAccVolatile | kAccFinal; if ((field_access_flags & kVolatileFinal) == kVolatileFinal) { *error_msg = StringPrintf("Fields may not be volatile and final: %s", GetFieldDescriptionOrError(begin_, header_, idx).c_str()); return false; } return true; } bool DexFileVerifier::CheckMethodAccessFlags(uint32_t method_index, uint32_t method_access_flags, uint32_t class_access_flags, uint32_t constructor_flags_by_name, bool has_code, bool expect_direct, std::string* error_msg) { // Generally sort out >16-bit flags, except dex knows Constructor and DeclaredSynchronized. constexpr uint32_t kAllMethodFlags = kAccJavaFlagsMask | kAccConstructor | kAccDeclaredSynchronized; if ((method_access_flags & ~kAllMethodFlags) != 0) { *error_msg = StringPrintf("Bad method access_flags for %s: %x", GetMethodDescriptionOrError(begin_, header_, method_index).c_str(), method_access_flags); return false; } // Flags allowed on fields, in general. Other lower-16-bit flags are to be ignored. constexpr uint32_t kMethodAccessFlags = kAccPublic | kAccPrivate | kAccProtected | kAccStatic | kAccFinal | kAccSynthetic | kAccSynchronized | kAccBridge | kAccVarargs | kAccNative | kAccAbstract | kAccStrict; // Methods may have only one of public/protected/final. if (!CheckAtMostOneOfPublicProtectedPrivate(method_access_flags)) { *error_msg = StringPrintf("Method may have only one of public/protected/private, %s: %x", GetMethodDescriptionOrError(begin_, header_, method_index).c_str(), method_access_flags); return false; } constexpr uint32_t kConstructorFlags = kAccStatic | kAccConstructor; const bool is_constructor_by_name = (constructor_flags_by_name & kConstructorFlags) != 0; const bool is_clinit_by_name = constructor_flags_by_name == kConstructorFlags; // Only methods named "" or "" may be marked constructor. Note: we cannot enforce // the reverse for backwards compatibility reasons. if (((method_access_flags & kAccConstructor) != 0) && !is_constructor_by_name) { *error_msg = StringPrintf("Method %" PRIu32 "(%s) is marked constructor, but doesn't match name", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); return false; } if (is_constructor_by_name) { // Check that the static constructor (= static initializer) is named "" and that the // instance constructor is called "". bool is_static = (method_access_flags & kAccStatic) != 0; if (is_static ^ is_clinit_by_name) { *error_msg = StringPrintf("Constructor %" PRIu32 "(%s) is not flagged correctly wrt/ static.", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } } // Check that static and private methods, as well as constructors, are in the direct methods list, // and other methods in the virtual methods list. bool is_direct = ((method_access_flags & (kAccStatic | kAccPrivate)) != 0) || is_constructor_by_name; if (is_direct != expect_direct) { *error_msg = StringPrintf("Direct/virtual method %" PRIu32 "(%s) not in expected list %d", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str(), expect_direct); return false; } // From here on out it is easier to mask out the bits we're supposed to ignore. method_access_flags &= kMethodAccessFlags; // Interfaces are special. if ((class_access_flags & kAccInterface) != 0) { // Non-static interface methods must be public or private. uint32_t desired_flags = (kAccPublic | kAccStatic); if (dex_file_->SupportsDefaultMethods()) { desired_flags |= kAccPrivate; } if ((method_access_flags & desired_flags) == 0) { *error_msg = StringPrintf("Interface virtual method %" PRIu32 "(%s) is not public", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } } // If there aren't any instructions, make sure that's expected. if (!has_code) { // Only native or abstract methods may not have code. if ((method_access_flags & (kAccNative | kAccAbstract)) == 0) { *error_msg = StringPrintf("Method %" PRIu32 "(%s) has no code, but is not marked native or " "abstract", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); return false; } // Constructors must always have code. if (is_constructor_by_name) { *error_msg = StringPrintf("Constructor %u(%s) must not be abstract or native", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } if ((method_access_flags & kAccAbstract) != 0) { // Abstract methods are not allowed to have the following flags. constexpr uint32_t kForbidden = kAccPrivate | kAccStatic | kAccFinal | kAccNative | kAccStrict | kAccSynchronized; if ((method_access_flags & kForbidden) != 0) { *error_msg = StringPrintf("Abstract method %" PRIu32 "(%s) has disallowed access flags %x", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str(), method_access_flags); return false; } // Abstract methods should be in an abstract class or interface. if ((class_access_flags & (kAccInterface | kAccAbstract)) == 0) { LOG(WARNING) << "Method " << GetMethodDescriptionOrError(begin_, header_, method_index) << " is abstract, but the declaring class is neither abstract nor an " << "interface in dex file " << dex_file_->GetLocation(); } } // Interfaces are special. if ((class_access_flags & kAccInterface) != 0) { // Interface methods without code must be abstract. if ((method_access_flags & (kAccPublic | kAccAbstract)) != (kAccPublic | kAccAbstract)) { *error_msg = StringPrintf("Interface method %" PRIu32 "(%s) is not public and abstract", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); if (dex_file_->SupportsDefaultMethods()) { return false; } else { // Allow in older versions, but warn. LOG(WARNING) << "This dex file is invalid and will be rejected in the future. Error is: " << *error_msg; } } // At this point, we know the method is public and abstract. This means that all the checks // for invalid combinations above applies. In addition, interface methods must not be // protected. This is caught by the check for only-one-of-public-protected-private. } return true; } // When there's code, the method must not be native or abstract. if ((method_access_flags & (kAccNative | kAccAbstract)) != 0) { *error_msg = StringPrintf("Method %" PRIu32 "(%s) has code, but is marked native or abstract", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); return false; } // Instance constructors must not be synchronized and a few other flags. if (constructor_flags_by_name == kAccConstructor) { static constexpr uint32_t kInitAllowed = kAccPrivate | kAccProtected | kAccPublic | kAccStrict | kAccVarargs | kAccSynthetic; if ((method_access_flags & ~kInitAllowed) != 0) { *error_msg = StringPrintf("Constructor %" PRIu32 "(%s) flagged inappropriately %x", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str(), method_access_flags); return false; } } return true; } bool DexFileVerifier::CheckConstructorProperties( uint32_t method_index, uint32_t constructor_flags) { DCHECK(constructor_flags == kAccConstructor || constructor_flags == (kAccConstructor | kAccStatic)); // Check signature matches expectations. const DexFile::MethodId* const method_id = CheckLoadMethodId(method_index, "Bad / method id"); if (method_id == nullptr) { return false; } // Check the ProtoId for the corresponding method. // // TODO(oth): the error message here is to satisfy the MethodId test // in the DexFileVerifierTest. The test is checking that the error // contains this string if the index is out of range. const DexFile::ProtoId* const proto_id = CheckLoadProtoId(method_id->proto_idx_, "inter_method_id_item proto_idx"); if (proto_id == nullptr) { return false; } Signature signature = dex_file_->GetMethodSignature(*method_id); if (constructor_flags == (kAccStatic | kAccConstructor)) { if (!signature.IsVoid() || signature.GetNumberOfParameters() != 0) { ErrorStringPrintf(" must have descriptor ()V"); return false; } } else if (!signature.IsVoid()) { ErrorStringPrintf("Constructor %u(%s) must be void", method_index, GetMethodDescriptionOrError(begin_, header_, method_index).c_str()); return false; } return true; } } // namespace art