/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "debugger_interface.h" #include #include "base/array_ref.h" #include "base/mutex.h" #include "base/time_utils.h" #include "thread-current-inl.h" #include "thread.h" #include #include #include // // Debug interface for native tools (gdb, lldb, libunwind, simpleperf). // // See http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html // // There are two ways for native tools to access the debug data safely: // // 1) Synchronously, by setting a breakpoint in the __*_debug_register_code // method, which is called after every modification of the linked list. // GDB does this, but it is complex to set up and it stops the process. // // 2) Asynchronously, by monitoring the action_seqlock_. // * The seqlock is a monotonically increasing counter which is incremented // before and after every modification of the linked list. Odd value of // the counter means the linked list is being modified (it is locked). // * The tool should read the value of the seqlock both before and after // copying the linked list. If the seqlock values match and are even, // the copy is consistent. Otherwise, the reader should try again. // * Note that using the data directly while is it being modified // might crash the tool. Therefore, the only safe way is to make // a copy and use the copy only after the seqlock has been checked. // * Note that the process might even free and munmap the data while // it is being copied, therefore the reader should either handle // SEGV or use OS calls to read the memory (e.g. process_vm_readv). // * The seqlock can be used to determine the number of modifications of // the linked list, which can be used to intelligently cache the data. // Note the possible overflow of the seqlock. It is intentionally // 32-bit, since 64-bit atomics can be tricky on some architectures. // * The timestamps on the entry record the time when the entry was // created which is relevant if the unwinding is not live and is // postponed until much later. All timestamps must be unique. // * Memory barriers are used to make it possible to reason about // the data even when it is being modified (e.g. the process crashed // while that data was locked, and thus it will be never unlocked). // * In particular, it should be possible to: // 1) read the seqlock and then the linked list head pointer. // 2) copy the entry and check that seqlock has not changed. // 3) copy the symfile and check that seqlock has not changed. // 4) go back to step 2 using the next pointer (if non-null). // This safely creates copy of all symfiles, although other data // might be inconsistent/unusable (e.g. prev_, action_timestamp_). // * For full conformance with the C++ memory model, all seqlock // protected accesses should be atomic. We currently do this in the // more critical cases. The rest will have to be fixed before // attempting to run TSAN on this code. // namespace art { extern "C" { typedef enum { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN } JITAction; struct JITCodeEntry { // Atomic to ensure the reader can always iterate over the linked list // (e.g. the process could crash in the middle of writing this field). std::atomic next_; // Non-atomic. The reader should not use it. It is only used for deletion. JITCodeEntry* prev_; const uint8_t* symfile_addr_; uint64_t symfile_size_; // Beware of the offset (12 on x86; but 16 on ARM32). // Android-specific fields: uint64_t register_timestamp_; // CLOCK_MONOTONIC time of entry registration. }; struct JITDescriptor { uint32_t version_ = 1; // NB: GDB supports only version 1. uint32_t action_flag_ = JIT_NOACTION; // One of the JITAction enum values. JITCodeEntry* relevant_entry_ = nullptr; // The entry affected by the action. std::atomic head_{nullptr}; // Head of link list of all entries. // Android-specific fields: uint8_t magic_[8] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', '1'}; uint32_t flags_ = 0; // Reserved for future use. Must be 0. uint32_t sizeof_descriptor = sizeof(JITDescriptor); uint32_t sizeof_entry = sizeof(JITCodeEntry); std::atomic_uint32_t action_seqlock_{0}; // Incremented before and after any modification. uint64_t action_timestamp_ = 1; // CLOCK_MONOTONIC time of last action. }; // Check that std::atomic has the expected layout. static_assert(alignof(std::atomic_uint32_t) == alignof(uint32_t), "Weird alignment"); static_assert(sizeof(std::atomic_uint32_t) == sizeof(uint32_t), "Weird size"); static_assert(alignof(std::atomic) == alignof(void*), "Weird alignment"); static_assert(sizeof(std::atomic) == sizeof(void*), "Weird size"); // GDB may set breakpoint here. We must ensure it is not removed or deduplicated. void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } // Alternatively, native tools may overwrite this field to execute custom handler. void (*__jit_debug_register_code_ptr)() = __jit_debug_register_code; // The root data structure describing of all JITed methods. JITDescriptor __jit_debug_descriptor {}; // The following globals mirror the ones above, but are used to register dex files. void __attribute__((noinline)) __dex_debug_register_code() { __asm__(""); } void (*__dex_debug_register_code_ptr)() = __dex_debug_register_code; JITDescriptor __dex_debug_descriptor {}; } // Mark the descriptor as "locked", so native tools know the data is being modified. static void ActionSeqlock(JITDescriptor& descriptor) { DCHECK_EQ(descriptor.action_seqlock_.load() & 1, 0u) << "Already locked"; descriptor.action_seqlock_.fetch_add(1, std::memory_order_relaxed); // Ensure that any writes within the locked section cannot be reordered before the increment. std::atomic_thread_fence(std::memory_order_release); } // Mark the descriptor as "unlocked", so native tools know the data is safe to read. static void ActionSequnlock(JITDescriptor& descriptor) { DCHECK_EQ(descriptor.action_seqlock_.load() & 1, 1u) << "Already unlocked"; // Ensure that any writes within the locked section cannot be reordered after the increment. std::atomic_thread_fence(std::memory_order_release); descriptor.action_seqlock_.fetch_add(1, std::memory_order_relaxed); } static JITCodeEntry* CreateJITCodeEntryInternal( JITDescriptor& descriptor, void (*register_code_ptr)(), const ArrayRef& symfile) REQUIRES(Locks::native_debug_interface_lock_) { // Ensure the timestamp is monotonically increasing even in presence of low // granularity system timer. This ensures each entry has unique timestamp. uint64_t timestamp = std::max(descriptor.action_timestamp_ + 1, NanoTime()); JITCodeEntry* head = descriptor.head_.load(std::memory_order_relaxed); JITCodeEntry* entry = new JITCodeEntry; CHECK(entry != nullptr); entry->symfile_addr_ = symfile.data(); entry->symfile_size_ = symfile.size(); entry->prev_ = nullptr; entry->next_.store(head, std::memory_order_relaxed); entry->register_timestamp_ = timestamp; // We are going to modify the linked list, so take the seqlock. ActionSeqlock(descriptor); if (head != nullptr) { head->prev_ = entry; } descriptor.head_.store(entry, std::memory_order_relaxed); descriptor.relevant_entry_ = entry; descriptor.action_flag_ = JIT_REGISTER_FN; descriptor.action_timestamp_ = timestamp; ActionSequnlock(descriptor); (*register_code_ptr)(); return entry; } static void DeleteJITCodeEntryInternal( JITDescriptor& descriptor, void (*register_code_ptr)(), JITCodeEntry* entry) REQUIRES(Locks::native_debug_interface_lock_) { CHECK(entry != nullptr); // Ensure the timestamp is monotonically increasing even in presence of low // granularity system timer. This ensures each entry has unique timestamp. uint64_t timestamp = std::max(descriptor.action_timestamp_ + 1, NanoTime()); // We are going to modify the linked list, so take the seqlock. ActionSeqlock(descriptor); JITCodeEntry* next = entry->next_.load(std::memory_order_relaxed); if (entry->prev_ != nullptr) { entry->prev_->next_.store(next, std::memory_order_relaxed); } else { descriptor.head_.store(next, std::memory_order_relaxed); } if (next != nullptr) { next->prev_ = entry->prev_; } descriptor.relevant_entry_ = entry; descriptor.action_flag_ = JIT_UNREGISTER_FN; descriptor.action_timestamp_ = timestamp; ActionSequnlock(descriptor); (*register_code_ptr)(); // Ensure that clear below can not be reordered above the unlock above. std::atomic_thread_fence(std::memory_order_release); // Aggressively clear the entry as an extra check of the synchronisation. memset(entry, 0, sizeof(*entry)); delete entry; } static std::unordered_map __dex_debug_entries GUARDED_BY(Locks::native_debug_interface_lock_); void AddNativeDebugInfoForDex(Thread* current_thread, ArrayRef dexfile) { MutexLock mu(current_thread, *Locks::native_debug_interface_lock_); DCHECK(dexfile.data() != nullptr); // This is just defensive check. The class linker should not register the dex file twice. if (__dex_debug_entries.count(dexfile.data()) == 0) { JITCodeEntry* entry = CreateJITCodeEntryInternal(__dex_debug_descriptor, __dex_debug_register_code_ptr, dexfile); __dex_debug_entries.emplace(dexfile.data(), entry); } } void RemoveNativeDebugInfoForDex(Thread* current_thread, ArrayRef dexfile) { MutexLock mu(current_thread, *Locks::native_debug_interface_lock_); auto it = __dex_debug_entries.find(dexfile.data()); // We register dex files in the class linker and free them in DexFile_closeDexFile, but // there might be cases where we load the dex file without using it in the class linker. if (it != __dex_debug_entries.end()) { DeleteJITCodeEntryInternal(__dex_debug_descriptor, __dex_debug_register_code_ptr, it->second); __dex_debug_entries.erase(it); } } static size_t __jit_debug_mem_usage GUARDED_BY(Locks::native_debug_interface_lock_) = 0; // Mapping from handle to entry. Used to manage life-time of the entries. static std::unordered_map __jit_debug_entries GUARDED_BY(Locks::native_debug_interface_lock_); void AddNativeDebugInfoForJit(const void* handle, const std::vector& symfile) { DCHECK_NE(symfile.size(), 0u); // Make a copy of the buffer to shrink it and to pass ownership to JITCodeEntry. uint8_t* copy = new uint8_t[symfile.size()]; CHECK(copy != nullptr); memcpy(copy, symfile.data(), symfile.size()); JITCodeEntry* entry = CreateJITCodeEntryInternal( __jit_debug_descriptor, __jit_debug_register_code_ptr, ArrayRef(copy, symfile.size())); __jit_debug_mem_usage += sizeof(JITCodeEntry) + entry->symfile_size_; // We don't provide handle for type debug info, which means we cannot free it later. // (this only happens when --generate-debug-info flag is enabled for the purpose // of being debugged with gdb; it does not happen for debuggable apps by default). bool ok = handle == nullptr || __jit_debug_entries.emplace(handle, entry).second; DCHECK(ok) << "Native debug entry already exists for " << std::hex << handle; } void RemoveNativeDebugInfoForJit(const void* handle) { auto it = __jit_debug_entries.find(handle); // We generate JIT native debug info only if the right runtime flags are enabled, // but we try to remove it unconditionally whenever code is freed from JIT cache. if (it != __jit_debug_entries.end()) { JITCodeEntry* entry = it->second; const uint8_t* symfile_addr = entry->symfile_addr_; uint64_t symfile_size = entry->symfile_size_; DeleteJITCodeEntryInternal(__jit_debug_descriptor, __jit_debug_register_code_ptr, entry); __jit_debug_entries.erase(it); __jit_debug_mem_usage -= sizeof(JITCodeEntry) + symfile_size; delete[] symfile_addr; } } size_t GetJitNativeDebugInfoMemUsage() { return __jit_debug_mem_usage + __jit_debug_entries.size() * 2 * sizeof(void*); } } // namespace art