/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_JIT_PROFILE_COMPILATION_INFO_H_ #define ART_RUNTIME_JIT_PROFILE_COMPILATION_INFO_H_ #include #include #include "base/arena_containers.h" #include "base/arena_object.h" #include "base/atomic.h" #include "base/safe_map.h" #include "bit_memory_region.h" #include "dex/dex_cache_resolved_classes.h" #include "dex/dex_file.h" #include "dex/dex_file_types.h" #include "dex/method_reference.h" #include "dex/type_reference.h" #include "mem_map.h" namespace art { /** * Convenient class to pass around profile information (including inline caches) * without the need to hold GC-able objects. */ struct ProfileMethodInfo { struct ProfileInlineCache { ProfileInlineCache(uint32_t pc, bool missing_types, const std::vector& profile_classes) : dex_pc(pc), is_missing_types(missing_types), classes(profile_classes) {} const uint32_t dex_pc; const bool is_missing_types; const std::vector classes; }; explicit ProfileMethodInfo(MethodReference reference) : ref(reference) {} ProfileMethodInfo(MethodReference reference, const std::vector& caches) : ref(reference), inline_caches(caches) {} MethodReference ref; std::vector inline_caches; }; /** * Profile information in a format suitable to be queried by the compiler and * performing profile guided compilation. * It is a serialize-friendly format based on information collected by the * interpreter (ProfileInfo). * Currently it stores only the hot compiled methods. */ class ProfileCompilationInfo { public: static const uint8_t kProfileMagic[]; static const uint8_t kProfileVersion[]; static const char* kDexMetadataProfileEntry; // Data structures for encoding the offline representation of inline caches. // This is exposed as public in order to make it available to dex2oat compilations // (see compiler/optimizing/inliner.cc). // A dex location together with its checksum. struct DexReference { DexReference() : dex_checksum(0), num_method_ids(0) {} DexReference(const std::string& location, uint32_t checksum, uint32_t num_methods) : dex_location(location), dex_checksum(checksum), num_method_ids(num_methods) {} bool operator==(const DexReference& other) const { return dex_checksum == other.dex_checksum && dex_location == other.dex_location && num_method_ids == other.num_method_ids; } bool MatchesDex(const DexFile* dex_file) const { return dex_checksum == dex_file->GetLocationChecksum() && dex_location == GetProfileDexFileKey(dex_file->GetLocation()); } std::string dex_location; uint32_t dex_checksum; uint32_t num_method_ids; }; // Encodes a class reference in the profile. // The owning dex file is encoded as the index (dex_profile_index) it has in the // profile rather than as a full DexRefence(location,checksum). // This avoids excessive string copying when managing the profile data. // The dex_profile_index is an index in either of: // - OfflineProfileMethodInfo#dex_references vector (public use) // - DexFileData#profile_index (internal use). // Note that the dex_profile_index is not necessary the multidex index. // We cannot rely on the actual multidex index because a single profile may store // data from multiple splits. This means that a profile may contain a classes2.dex from split-A // and one from split-B. struct ClassReference : public ValueObject { ClassReference(uint8_t dex_profile_idx, const dex::TypeIndex type_idx) : dex_profile_index(dex_profile_idx), type_index(type_idx) {} bool operator==(const ClassReference& other) const { return dex_profile_index == other.dex_profile_index && type_index == other.type_index; } bool operator<(const ClassReference& other) const { return dex_profile_index == other.dex_profile_index ? type_index < other.type_index : dex_profile_index < other.dex_profile_index; } uint8_t dex_profile_index; // the index of the owning dex in the profile info dex::TypeIndex type_index; // the type index of the class }; // The set of classes that can be found at a given dex pc. using ClassSet = ArenaSet; // Encodes the actual inline cache for a given dex pc (whether or not the receiver is // megamorphic and its possible types). // If the receiver is megamorphic or is missing types the set of classes will be empty. struct DexPcData : public ArenaObject { explicit DexPcData(ArenaAllocator* allocator) : is_missing_types(false), is_megamorphic(false), classes(std::less(), allocator->Adapter(kArenaAllocProfile)) {} void AddClass(uint16_t dex_profile_idx, const dex::TypeIndex& type_idx); void SetIsMegamorphic() { if (is_missing_types) return; is_megamorphic = true; classes.clear(); } void SetIsMissingTypes() { is_megamorphic = false; is_missing_types = true; classes.clear(); } bool operator==(const DexPcData& other) const { return is_megamorphic == other.is_megamorphic && is_missing_types == other.is_missing_types && classes == other.classes; } // Not all runtime types can be encoded in the profile. For example if the receiver // type is in a dex file which is not tracked for profiling its type cannot be // encoded. When types are missing this field will be set to true. bool is_missing_types; bool is_megamorphic; ClassSet classes; }; // The inline cache map: DexPc -> DexPcData. using InlineCacheMap = ArenaSafeMap; // Maps a method dex index to its inline cache. using MethodMap = ArenaSafeMap; // Profile method hotness information for a single method. Also includes a pointer to the inline // cache map. class MethodHotness { public: enum Flag { kFlagHot = 0x1, kFlagStartup = 0x2, kFlagPostStartup = 0x4, }; bool IsHot() const { return (flags_ & kFlagHot) != 0; } bool IsStartup() const { return (flags_ & kFlagStartup) != 0; } bool IsPostStartup() const { return (flags_ & kFlagPostStartup) != 0; } void AddFlag(Flag flag) { flags_ |= flag; } uint8_t GetFlags() const { return flags_; } bool IsInProfile() const { return flags_ != 0; } private: const InlineCacheMap* inline_cache_map_ = nullptr; uint8_t flags_ = 0; const InlineCacheMap* GetInlineCacheMap() const { return inline_cache_map_; } void SetInlineCacheMap(const InlineCacheMap* info) { inline_cache_map_ = info; } friend class ProfileCompilationInfo; }; // Encodes the full set of inline caches for a given method. // The dex_references vector is indexed according to the ClassReference::dex_profile_index. // i.e. the dex file of any ClassReference present in the inline caches can be found at // dex_references[ClassReference::dex_profile_index]. struct OfflineProfileMethodInfo { explicit OfflineProfileMethodInfo(const InlineCacheMap* inline_cache_map) : inline_caches(inline_cache_map) {} bool operator==(const OfflineProfileMethodInfo& other) const; const InlineCacheMap* const inline_caches; std::vector dex_references; }; // Public methods to create, extend or query the profile. ProfileCompilationInfo(); explicit ProfileCompilationInfo(ArenaPool* arena_pool); ~ProfileCompilationInfo(); // Add the given methods to the current profile object. bool AddMethods(const std::vector& methods, MethodHotness::Flag flags); // Add the given classes to the current profile object. bool AddClasses(const std::set& resolved_classes); // Add multiple type ids for classes in a single dex file. Iterator is for type_ids not // class_defs. template bool AddClassesForDex(const DexFile* dex_file, Iterator index_begin, Iterator index_end) { DexFileData* data = GetOrAddDexFileData(dex_file); if (data == nullptr) { return false; } data->class_set.insert(index_begin, index_end); return true; } // Add a single type id for a dex file. bool AddClassForDex(const TypeReference& ref) { DexFileData* data = GetOrAddDexFileData(ref.dex_file); if (data == nullptr) { return false; } data->class_set.insert(ref.TypeIndex()); return true; } // Add a method index to the profile (without inline caches). The method flags determine if it is // hot, startup, or post startup, or a combination of the previous. bool AddMethodIndex(MethodHotness::Flag flags, const std::string& dex_location, uint32_t checksum, uint16_t method_idx, uint32_t num_method_ids); bool AddMethodIndex(MethodHotness::Flag flags, const MethodReference& ref); // Add a method to the profile using its online representation (containing runtime structures). bool AddMethod(const ProfileMethodInfo& pmi, MethodHotness::Flag flags); // Bulk add sampled methods and/or hot methods for a single dex, fast since it only has one // GetOrAddDexFileData call. template bool AddMethodsForDex(MethodHotness::Flag flags, const DexFile* dex_file, Iterator index_begin, Iterator index_end) { DexFileData* data = GetOrAddDexFileData(dex_file); if (data == nullptr) { return false; } for (Iterator it = index_begin; it != index_end; ++it) { DCHECK_LT(*it, data->num_method_ids); if (!data->AddMethod(flags, *it)) { return false; } } return true; } // Add hotness flags for a simple method. bool AddMethodHotness(const MethodReference& method_ref, const MethodHotness& hotness); // Load or Merge profile information from the given file descriptor. // If the current profile is non-empty the load will fail. // If merge_classes is set to false, classes will not be merged/loaded. // If filter_fn is present, it will be used to filter out profile data belonging // to dex file which do not comply with the filter // (i.e. for which filter_fn(dex_location, dex_checksum) is false). using ProfileLoadFilterFn = std::function; // Profile filter method which accepts all dex locations. // This is convenient to use when we need to accept all locations without repeating the same // lambda. static bool ProfileFilterFnAcceptAll(const std::string& dex_location, uint32_t checksum); bool Load( int fd, bool merge_classes = true, const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll); // Verify integrity of the profile file with the provided dex files. // If there exists a DexData object which maps to a dex_file, then it verifies that: // - The checksums of the DexData and dex_file are equals. // - No method id exceeds NumMethodIds corresponding to the dex_file. // - No class id exceeds NumTypeIds corresponding to the dex_file. // - For every inline_caches, class_ids does not exceed NumTypeIds corresponding to // the dex_file they are in. bool VerifyProfileData(const std::vector &dex_files); // Load profile information from the given file // If the current profile is non-empty the load will fail. // If clear_if_invalid is true and the file is invalid the method clears the // the file and returns true. bool Load(const std::string& filename, bool clear_if_invalid); // Merge the data from another ProfileCompilationInfo into the current object. Only merges // classes if merge_classes is true. This is used for creating the boot profile since // we don't want all of the classes to be image classes. bool MergeWith(const ProfileCompilationInfo& info, bool merge_classes = true); // Merge profile information from the given file descriptor. bool MergeWith(const std::string& filename); // Save the profile data to the given file descriptor. bool Save(int fd); // Save the current profile into the given file. The file will be cleared before saving. bool Save(const std::string& filename, uint64_t* bytes_written); // Return the number of methods that were profiled. uint32_t GetNumberOfMethods() const; // Return the number of resolved classes that were profiled. uint32_t GetNumberOfResolvedClasses() const; // Returns the profile method info for a given method reference. MethodHotness GetMethodHotness(const MethodReference& method_ref) const; MethodHotness GetMethodHotness(const std::string& dex_location, uint32_t dex_checksum, uint16_t dex_method_index) const; // Return true if the class's type is present in the profiling info. bool ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx) const; // Return the method data for the given location and index from the profiling info. // If the method index is not found or the checksum doesn't match, null is returned. // Note: the inline cache map is a pointer to the map stored in the profile and // its allocation will go away if the profile goes out of scope. std::unique_ptr GetMethod(const std::string& dex_location, uint32_t dex_checksum, uint16_t dex_method_index) const; // Dump all the loaded profile info into a string and returns it. // If dex_files is not null then the method indices will be resolved to their // names. // This is intended for testing and debugging. std::string DumpInfo(const std::vector>* dex_files, bool print_full_dex_location = true) const; std::string DumpInfo(const std::vector* dex_files, bool print_full_dex_location = true) const; // Return the classes and methods for a given dex file through out args. The out args are the set // of class as well as the methods and their associated inline caches. Returns true if the dex // file is register and has a matching checksum, false otherwise. bool GetClassesAndMethods(const DexFile& dex_file, /*out*/std::set* class_set, /*out*/std::set* hot_method_set, /*out*/std::set* startup_method_set, /*out*/std::set* post_startup_method_method_set) const; // Perform an equality test with the `other` profile information. bool Equals(const ProfileCompilationInfo& other); // Return the class descriptors for all of the classes in the profiles' class sets. std::set GetResolvedClasses( const std::vector& dex_files_) const; // Return the profile key associated with the given dex location. static std::string GetProfileDexFileKey(const std::string& dex_location); // Generate a test profile which will contain a percentage of the total maximum // number of methods and classes (method_ratio and class_ratio). static bool GenerateTestProfile(int fd, uint16_t number_of_dex_files, uint16_t method_ratio, uint16_t class_ratio, uint32_t random_seed); // Generate a test profile which will randomly contain classes and methods from // the provided list of dex files. static bool GenerateTestProfile(int fd, std::vector>& dex_files, uint16_t method_percentage, uint16_t class_percentage, uint32_t random_seed); // Check that the given profile method info contain the same data. static bool Equals(const ProfileCompilationInfo::OfflineProfileMethodInfo& pmi1, const ProfileCompilationInfo::OfflineProfileMethodInfo& pmi2); ArenaAllocator* GetAllocator() { return &allocator_; } // Return all of the class descriptors in the profile for a set of dex files. std::unordered_set GetClassDescriptors(const std::vector& dex_files); // Return true if the fd points to a profile file. bool IsProfileFile(int fd); // Update the profile keys corresponding to the given dex files based on their current paths. // This method allows fix-ups in the profile for dex files that might have been renamed. // The new profile key will be constructed based on the current dex location. // // The matching [profile key <-> dex_file] is done based on the dex checksum and the number of // methods ids. If neither is a match then the profile key is not updated. // // If the new profile key would collide with an existing key (for a different dex) // the method returns false. Otherwise it returns true. bool UpdateProfileKeys(const std::vector>& dex_files); // Checks if the profile is empty. bool IsEmpty() const; // Clears all the data from the profile. void ClearData(); private: enum ProfileLoadStatus { kProfileLoadWouldOverwiteData, kProfileLoadIOError, kProfileLoadVersionMismatch, kProfileLoadBadData, kProfileLoadSuccess }; const uint32_t kProfileSizeWarningThresholdInBytes = 500000U; const uint32_t kProfileSizeErrorThresholdInBytes = 1000000U; // Internal representation of the profile information belonging to a dex file. // Note that we could do without profile_key (the key used to encode the dex // file in the profile) and profile_index (the index of the dex file in the // profile) fields in this struct because we can infer them from // profile_key_map_ and info_. However, it makes the profiles logic much // simpler if we have references here as well. struct DexFileData : public DeletableArenaObject { DexFileData(ArenaAllocator* allocator, const std::string& key, uint32_t location_checksum, uint16_t index, uint32_t num_methods) : allocator_(allocator), profile_key(key), profile_index(index), checksum(location_checksum), method_map(std::less(), allocator->Adapter(kArenaAllocProfile)), class_set(std::less(), allocator->Adapter(kArenaAllocProfile)), num_method_ids(num_methods), bitmap_storage(allocator->Adapter(kArenaAllocProfile)) { bitmap_storage.resize(ComputeBitmapStorage(num_method_ids)); if (!bitmap_storage.empty()) { method_bitmap = BitMemoryRegion(MemoryRegion( &bitmap_storage[0], bitmap_storage.size()), 0, ComputeBitmapBits(num_method_ids)); } } static size_t ComputeBitmapBits(uint32_t num_method_ids) { return num_method_ids * kBitmapIndexCount; } static size_t ComputeBitmapStorage(uint32_t num_method_ids) { return RoundUp(ComputeBitmapBits(num_method_ids), kBitsPerByte) / kBitsPerByte; } bool operator==(const DexFileData& other) const { return checksum == other.checksum && method_map == other.method_map; } // Mark a method as executed at least once. bool AddMethod(MethodHotness::Flag flags, size_t index); void MergeBitmap(const DexFileData& other) { DCHECK_EQ(bitmap_storage.size(), other.bitmap_storage.size()); for (size_t i = 0; i < bitmap_storage.size(); ++i) { bitmap_storage[i] |= other.bitmap_storage[i]; } } void SetMethodHotness(size_t index, MethodHotness::Flag flags); MethodHotness GetHotnessInfo(uint32_t dex_method_index) const; // The allocator used to allocate new inline cache maps. ArenaAllocator* const allocator_; // The profile key this data belongs to. std::string profile_key; // The profile index of this dex file (matches ClassReference#dex_profile_index). uint8_t profile_index; // The dex checksum. uint32_t checksum; // The methonds' profile information. MethodMap method_map; // The classes which have been profiled. Note that these don't necessarily include // all the classes that can be found in the inline caches reference. ArenaSet class_set; // Find the inline caches of the the given method index. Add an empty entry if // no previous data is found. InlineCacheMap* FindOrAddMethod(uint16_t method_index); // Num method ids. uint32_t num_method_ids; ArenaVector bitmap_storage; BitMemoryRegion method_bitmap; private: enum BitmapIndex { kBitmapIndexStartup, kBitmapIndexPostStartup, kBitmapIndexCount, }; size_t MethodBitIndex(bool startup, size_t index) const { DCHECK_LT(index, num_method_ids); // The format is [startup bitmap][post startup bitmap] // This compresses better than ([startup bit][post statup bit])* return index + (startup ? kBitmapIndexStartup * num_method_ids : kBitmapIndexPostStartup * num_method_ids); } }; // Return the profile data for the given profile key or null if the dex location // already exists but has a different checksum DexFileData* GetOrAddDexFileData(const std::string& profile_key, uint32_t checksum, uint32_t num_method_ids); DexFileData* GetOrAddDexFileData(const DexFile* dex_file) { return GetOrAddDexFileData(GetProfileDexFileKey(dex_file->GetLocation()), dex_file->GetLocationChecksum(), dex_file->NumMethodIds()); } // Add a method to the profile using its offline representation. // This is mostly used to facilitate testing. bool AddMethod(const std::string& dex_location, uint32_t dex_checksum, uint16_t method_index, uint32_t num_method_ids, const OfflineProfileMethodInfo& pmi, MethodHotness::Flag flags); // Add a class index to the profile. bool AddClassIndex(const std::string& dex_location, uint32_t checksum, dex::TypeIndex type_idx, uint32_t num_method_ids); // Add all classes from the given dex cache to the the profile. bool AddResolvedClasses(const DexCacheResolvedClasses& classes); // Encode the known dex_files into a vector. The index of a dex_reference will // be the same as the profile index of the dex file (used to encode the ClassReferences). void DexFileToProfileIndex(/*out*/std::vector* dex_references) const; // Return the dex data associated with the given profile key or null if the profile // doesn't contain the key. const DexFileData* FindDexData(const std::string& profile_key, uint32_t checksum, bool verify_checksum = true) const; // Return the dex data associated with the given dex file or null if the profile doesn't contain // the key or the checksum mismatches. const DexFileData* FindDexData(const DexFile* dex_file) const; // Inflate the input buffer (in_buffer) of size in_size. It returns a buffer of // compressed data for the input buffer of "compressed_data_size" size. std::unique_ptr DeflateBuffer(const uint8_t* in_buffer, uint32_t in_size, /*out*/uint32_t* compressed_data_size); // Inflate the input buffer(in_buffer) of size in_size. out_size is the expected output // size of the buffer. It puts the output in out_buffer. It returns Z_STREAM_END on // success. On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent // and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data. int InflateBuffer(const uint8_t* in_buffer, uint32_t in_size, uint32_t out_size, /*out*/uint8_t* out_buffer); // Parsing functionality. // The information present in the header of each profile line. struct ProfileLineHeader { std::string dex_location; uint16_t class_set_size; uint32_t method_region_size_bytes; uint32_t checksum; uint32_t num_method_ids; }; /** * Encapsulate the source of profile data for loading. * The source can be either a plain file or a zip file. * For zip files, the profile entry will be extracted to * the memory map. */ class ProfileSource { public: /** * Create a profile source for the given fd. The ownership of the fd * remains to the caller; as this class will not attempt to close it at any * point. */ static ProfileSource* Create(int32_t fd) { DCHECK_GT(fd, -1); return new ProfileSource(fd, /*map*/ nullptr); } /** * Create a profile source backed by a memory map. The map can be null in * which case it will the treated as an empty source. */ static ProfileSource* Create(std::unique_ptr&& mem_map) { return new ProfileSource(/*fd*/ -1, std::move(mem_map)); } /** * Read bytes from this source. * Reading will advance the current source position so subsequent * invocations will read from the las position. */ ProfileLoadStatus Read(uint8_t* buffer, size_t byte_count, const std::string& debug_stage, std::string* error); /** Return true if the source has 0 data. */ bool HasEmptyContent() const; /** Return true if all the information from this source has been read. */ bool HasConsumedAllData() const; private: ProfileSource(int32_t fd, std::unique_ptr&& mem_map) : fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {} bool IsMemMap() const { return fd_ == -1; } int32_t fd_; // The fd is not owned by this class. std::unique_ptr mem_map_; size_t mem_map_cur_; // Current position in the map to read from. }; // A helper structure to make sure we don't read past our buffers in the loops. struct SafeBuffer { public: explicit SafeBuffer(size_t size) : storage_(new uint8_t[size]) { ptr_current_ = storage_.get(); ptr_end_ = ptr_current_ + size; } // Reads the content of the descriptor at the current position. ProfileLoadStatus Fill(ProfileSource& source, const std::string& debug_stage, /*out*/std::string* error); // Reads an uint value (high bits to low bits) and advances the current pointer // with the number of bits read. template bool ReadUintAndAdvance(/*out*/ T* value); // Compares the given data with the content current pointer. If the contents are // equal it advances the current pointer by data_size. bool CompareAndAdvance(const uint8_t* data, size_t data_size); // Advances current pointer by data_size. void Advance(size_t data_size); // Returns the count of unread bytes. size_t CountUnreadBytes(); // Returns the current pointer. const uint8_t* GetCurrentPtr(); // Get the underlying raw buffer. uint8_t* Get() { return storage_.get(); } private: std::unique_ptr storage_; uint8_t* ptr_end_; uint8_t* ptr_current_; }; ProfileLoadStatus OpenSource(int32_t fd, /*out*/ std::unique_ptr* source, /*out*/ std::string* error); // Entry point for profile loading functionality. ProfileLoadStatus LoadInternal( int32_t fd, std::string* error, bool merge_classes = true, const ProfileLoadFilterFn& filter_fn = ProfileFilterFnAcceptAll); // Read the profile header from the given fd and store the number of profile // lines into number_of_dex_files. ProfileLoadStatus ReadProfileHeader(ProfileSource& source, /*out*/uint8_t* number_of_dex_files, /*out*/uint32_t* size_uncompressed_data, /*out*/uint32_t* size_compressed_data, /*out*/std::string* error); // Read the header of a profile line from the given fd. ProfileLoadStatus ReadProfileLineHeader(SafeBuffer& buffer, /*out*/ProfileLineHeader* line_header, /*out*/std::string* error); // Read individual elements from the profile line header. bool ReadProfileLineHeaderElements(SafeBuffer& buffer, /*out*/uint16_t* dex_location_size, /*out*/ProfileLineHeader* line_header, /*out*/std::string* error); // Read a single profile line from the given fd. ProfileLoadStatus ReadProfileLine(SafeBuffer& buffer, uint8_t number_of_dex_files, const ProfileLineHeader& line_header, const SafeMap& dex_profile_index_remap, bool merge_classes, /*out*/std::string* error); // Read all the classes from the buffer into the profile `info_` structure. bool ReadClasses(SafeBuffer& buffer, const ProfileLineHeader& line_header, /*out*/std::string* error); // Read all the methods from the buffer into the profile `info_` structure. bool ReadMethods(SafeBuffer& buffer, uint8_t number_of_dex_files, const ProfileLineHeader& line_header, const SafeMap& dex_profile_index_remap, /*out*/std::string* error); // The method generates mapping of profile indices while merging a new profile // data into current data. It returns true, if the mapping was successful. bool RemapProfileIndex(const std::vector& profile_line_headers, const ProfileLoadFilterFn& filter_fn, /*out*/SafeMap* dex_profile_index_remap); // Read the inline cache encoding from line_bufer into inline_cache. bool ReadInlineCache(SafeBuffer& buffer, uint8_t number_of_dex_files, const SafeMap& dex_profile_index_remap, /*out*/InlineCacheMap* inline_cache, /*out*/std::string* error); // Encode the inline cache into the given buffer. void AddInlineCacheToBuffer(std::vector* buffer, const InlineCacheMap& inline_cache); // Return the number of bytes needed to encode the profile information // for the methods in dex_data. uint32_t GetMethodsRegionSize(const DexFileData& dex_data); // Group `classes` by their owning dex profile index and put the result in // `dex_to_classes_map`. void GroupClassesByDex( const ClassSet& classes, /*out*/SafeMap>* dex_to_classes_map); // Find the data for the dex_pc in the inline cache. Adds an empty entry // if no previous data exists. DexPcData* FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc); friend class ProfileCompilationInfoTest; friend class CompilerDriverProfileTest; friend class ProfileAssistantTest; friend class Dex2oatLayoutTest; ArenaPool default_arena_pool_; ArenaAllocator allocator_; // Vector containing the actual profile info. // The vector index is the profile index of the dex data and // matched DexFileData::profile_index. ArenaVector info_; // Cache mapping profile keys to profile index. // This is used to speed up searches since it avoids iterating // over the info_ vector when searching by profile key. ArenaSafeMap profile_key_map_; }; } // namespace art #endif // ART_RUNTIME_JIT_PROFILE_COMPILATION_INFO_H_