/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MEMORY_REGION_H_ #define ART_RUNTIME_MEMORY_REGION_H_ #include #include #include #include "arch/instruction_set.h" #include "base/bit_utils.h" #include "base/casts.h" #include "base/macros.h" #include "base/value_object.h" #include "globals.h" namespace art { // Memory regions are useful for accessing memory with bounds check in // debug mode. They can be safely passed by value and do not assume ownership // of the region. class MemoryRegion FINAL : public ValueObject { public: struct ContentEquals { constexpr bool operator()(const MemoryRegion& lhs, const MemoryRegion& rhs) const { return lhs.size() == rhs.size() && memcmp(lhs.begin(), rhs.begin(), lhs.size()) == 0; } }; MemoryRegion() : pointer_(nullptr), size_(0) {} MemoryRegion(void* pointer_in, uintptr_t size_in) : pointer_(pointer_in), size_(size_in) {} void* pointer() const { return pointer_; } size_t size() const { return size_; } size_t size_in_bits() const { return size_ * kBitsPerByte; } static size_t pointer_offset() { return OFFSETOF_MEMBER(MemoryRegion, pointer_); } uint8_t* begin() const { return reinterpret_cast(pointer_); } uint8_t* end() const { return begin() + size_; } // Load value of type `T` at `offset`. The memory address corresponding // to `offset` should be word-aligned (on ARM, this is a requirement). template ALWAYS_INLINE T Load(uintptr_t offset) const { T* address = ComputeInternalPointer(offset); DCHECK(IsWordAligned(address)); return *address; } // Store `value` (of type `T`) at `offset`. The memory address // corresponding to `offset` should be word-aligned (on ARM, this is // a requirement). template ALWAYS_INLINE void Store(uintptr_t offset, T value) const { T* address = ComputeInternalPointer(offset); DCHECK(IsWordAligned(address)); *address = value; } // Load value of type `T` at `offset`. The memory address corresponding // to `offset` does not need to be word-aligned. template ALWAYS_INLINE T LoadUnaligned(uintptr_t offset) const { // Equivalent unsigned integer type corresponding to T. typedef typename std::make_unsigned::type U; U equivalent_unsigned_integer_value = 0; // Read the value byte by byte in a little-endian fashion. for (size_t i = 0; i < sizeof(U); ++i) { equivalent_unsigned_integer_value += *ComputeInternalPointer(offset + i) << (i * kBitsPerByte); } return bit_cast(equivalent_unsigned_integer_value); } // Store `value` (of type `T`) at `offset`. The memory address // corresponding to `offset` does not need to be word-aligned. template ALWAYS_INLINE void StoreUnaligned(uintptr_t offset, T value) const { // Equivalent unsigned integer type corresponding to T. typedef typename std::make_unsigned::type U; U equivalent_unsigned_integer_value = bit_cast(value); // Write the value byte by byte in a little-endian fashion. for (size_t i = 0; i < sizeof(U); ++i) { *ComputeInternalPointer(offset + i) = (equivalent_unsigned_integer_value >> (i * kBitsPerByte)) & 0xFF; } } template ALWAYS_INLINE T* PointerTo(uintptr_t offset) const { return ComputeInternalPointer(offset); } // Load a single bit in the region. The bit at offset 0 is the least // significant bit in the first byte. ALWAYS_INLINE bool LoadBit(uintptr_t bit_offset) const { uint8_t bit_mask; uint8_t byte = *ComputeBitPointer(bit_offset, &bit_mask); return byte & bit_mask; } ALWAYS_INLINE void StoreBit(uintptr_t bit_offset, bool value) const { uint8_t bit_mask; uint8_t* byte = ComputeBitPointer(bit_offset, &bit_mask); if (value) { *byte |= bit_mask; } else { *byte &= ~bit_mask; } } // Load `length` bits from the region starting at bit offset `bit_offset`. // The bit at the smallest offset is the least significant bit in the // loaded value. `length` must not be larger than the number of bits // contained in the return value (32). ALWAYS_INLINE uint32_t LoadBits(uintptr_t bit_offset, size_t length) const { DCHECK_LE(length, BitSizeOf()); DCHECK_LE(bit_offset + length, size_in_bits()); if (UNLIKELY(length == 0)) { // Do not touch any memory if the range is empty. return 0; } const uint8_t* address = begin() + bit_offset / kBitsPerByte; const uint32_t shift = bit_offset & (kBitsPerByte - 1); // Load the value (reading only the strictly needed bytes). const uint32_t load_bit_count = shift + length; uint32_t value = address[0] >> shift; if (load_bit_count > 8) { value |= static_cast(address[1]) << (8 - shift); if (load_bit_count > 16) { value |= static_cast(address[2]) << (16 - shift); if (load_bit_count > 24) { value |= static_cast(address[3]) << (24 - shift); if (load_bit_count > 32) { value |= static_cast(address[4]) << (32 - shift); } } } } // Clear unwanted most significant bits. uint32_t clear_bit_count = BitSizeOf(value) - length; value = (value << clear_bit_count) >> clear_bit_count; for (size_t i = 0; i < length; ++i) { DCHECK_EQ((value >> i) & 1, LoadBit(bit_offset + i)); } return value; } // Store `value` on `length` bits in the region starting at bit offset // `bit_offset`. The bit at the smallest offset is the least significant // bit of the stored `value`. `value` must not be larger than `length` // bits. void StoreBits(uintptr_t bit_offset, uint32_t value, size_t length); void CopyFrom(size_t offset, const MemoryRegion& from) const; template void CopyFromVector(size_t offset, Vector& vector) const { if (!vector.empty()) { CopyFrom(offset, MemoryRegion(vector.data(), vector.size())); } } // Compute a sub memory region based on an existing one. ALWAYS_INLINE MemoryRegion Subregion(uintptr_t offset, uintptr_t size_in) const { CHECK_GE(this->size(), size_in); CHECK_LE(offset, this->size() - size_in); return MemoryRegion(reinterpret_cast(begin() + offset), size_in); } // Compute an extended memory region based on an existing one. ALWAYS_INLINE void Extend(const MemoryRegion& region, uintptr_t extra) { pointer_ = region.pointer(); size_ = (region.size() + extra); } private: template ALWAYS_INLINE T* ComputeInternalPointer(size_t offset) const { CHECK_GE(size(), sizeof(T)); CHECK_LE(offset, size() - sizeof(T)); return reinterpret_cast(begin() + offset); } // Locate the bit with the given offset. Returns a pointer to the byte // containing the bit, and sets bit_mask to the bit within that byte. ALWAYS_INLINE uint8_t* ComputeBitPointer(uintptr_t bit_offset, uint8_t* bit_mask) const { uintptr_t bit_remainder = (bit_offset & (kBitsPerByte - 1)); *bit_mask = (1U << bit_remainder); uintptr_t byte_offset = (bit_offset >> kBitsPerByteLog2); return ComputeInternalPointer(byte_offset); } // Is `address` aligned on a machine word? template static constexpr bool IsWordAligned(const T* address) { // Word alignment in bytes. size_t kWordAlignment = static_cast(GetInstructionSetPointerSize(kRuntimeISA)); return IsAlignedParam(address, kWordAlignment); } void* pointer_; size_t size_; }; } // namespace art #endif // ART_RUNTIME_MEMORY_REGION_H_