# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import matplotlib matplotlib.use('Agg') import its.error import sys from PIL import Image import numpy import math import unittest import cStringIO import copy import random DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([ [1.000, 0.000, 1.402], [1.000, -0.344, -0.714], [1.000, 1.772, 0.000]]) DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128]) DEFAULT_GAMMA_LUT = numpy.array( [math.floor(65535 * math.pow(i/65535.0, 1/2.2) + 0.5) for i in xrange(65536)]) DEFAULT_INVGAMMA_LUT = numpy.array( [math.floor(65535 * math.pow(i/65535.0, 2.2) + 0.5) for i in xrange(65536)]) MAX_LUT_SIZE = 65536 NUM_TRYS = 2 NUM_FRAMES = 4 def convert_capture_to_rgb_image(cap, ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, yuv_off=DEFAULT_YUV_OFFSETS, props=None): """Convert a captured image object to a RGB image. Args: cap: A capture object as returned by its.device.do_capture. ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. yuv_off: (Optional) offsets to subtract from each of Y,U,V values. props: (Optional) camera properties object (of static values); required for processing raw images. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ w = cap["width"] h = cap["height"] if cap["format"] == "raw10": assert(props is not None) cap = unpack_raw10_capture(cap, props) if cap["format"] == "raw12": assert(props is not None) cap = unpack_raw12_capture(cap, props) if cap["format"] == "yuv": y = cap["data"][0:w*h] u = cap["data"][w*h:w*h*5/4] v = cap["data"][w*h*5/4:w*h*6/4] return convert_yuv420_planar_to_rgb_image(y, u, v, w, h) elif cap["format"] == "jpeg": return decompress_jpeg_to_rgb_image(cap["data"]) elif cap["format"] == "raw" or cap["format"] == "rawStats": assert(props is not None) r,gr,gb,b = convert_capture_to_planes(cap, props) return convert_raw_to_rgb_image(r,gr,gb,b, props, cap["metadata"]) else: raise its.error.Error('Invalid format %s' % (cap["format"])) def unpack_rawstats_capture(cap): """Unpack a rawStats capture to the mean and variance images. Args: cap: A capture object as returned by its.device.do_capture. Returns: Tuple (mean_image var_image) of float-4 images, with non-normalized pixel values computed from the RAW16 images on the device """ assert(cap["format"] == "rawStats") w = cap["width"] h = cap["height"] img = numpy.ndarray(shape=(2*h*w*4,), dtype='= wcrop >= 0) assert(hfull >= hcrop >= 0) assert(wfull - wcrop >= xcrop >= 0) assert(hfull - hcrop >= ycrop >= 0) if w == wfull and h == hfull: # Crop needed; extract the center region. img = img[ycrop:ycrop+hcrop,xcrop:xcrop+wcrop] w = wcrop h = hcrop elif w == wcrop and h == hcrop: # No crop needed; image is already cropped to the active array. None else: raise its.error.Error('Invalid image size metadata') # Separate the image planes. imgs = [img[::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1), img[::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1), img[1::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1), img[1::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1)] idxs = get_canonical_cfa_order(props) return [imgs[i] for i in idxs] elif cap["format"] == "rawStats": assert(props is not None) white_level = float(props['android.sensor.info.whiteLevel']) mean_image, var_image = its.image.unpack_rawstats_capture(cap) idxs = get_canonical_cfa_order(props) return [mean_image[:,:,i] / white_level for i in idxs] else: raise its.error.Error('Invalid format %s' % (cap["format"])) def get_canonical_cfa_order(props): """Returns a mapping from the Bayer 2x2 top-left grid in the CFA to the standard order R,Gr,Gb,B. Args: props: Camera properties object. Returns: List of 4 integers, corresponding to the positions in the 2x2 top- left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as 0,1,2,3 in row major order. """ # Note that raw streams aren't croppable, so the cropRegion doesn't need # to be considered when determining the top-left pixel color. cfa_pat = props['android.sensor.info.colorFilterArrangement'] if cfa_pat == 0: # RGGB return [0,1,2,3] elif cfa_pat == 1: # GRBG return [1,0,3,2] elif cfa_pat == 2: # GBRG return [2,3,0,1] elif cfa_pat == 3: # BGGR return [3,2,1,0] else: raise its.error.Error("Not supported") def get_gains_in_canonical_order(props, gains): """Reorders the gains tuple to the canonical R,Gr,Gb,B order. Args: props: Camera properties object. gains: List of 4 values, in R,G_even,G_odd,B order. Returns: List of gains values, in R,Gr,Gb,B order. """ cfa_pat = props['android.sensor.info.colorFilterArrangement'] if cfa_pat in [0,1]: # RGGB or GRBG, so G_even is Gr return gains elif cfa_pat in [2,3]: # GBRG or BGGR, so G_even is Gb return [gains[0], gains[2], gains[1], gains[3]] else: raise its.error.Error("Not supported") def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, props, cap_res): """Convert a Bayer raw-16 image to an RGB image. Includes some extremely rudimentary demosaicking and color processing operations; the output of this function shouldn't be used for any image quality analysis. Args: r_plane,gr_plane,gb_plane,b_plane: Numpy arrays for each color plane in the Bayer image, with pixels in the [0.0, 1.0] range. props: Camera properties object. cap_res: Capture result (metadata) object. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0] """ # Values required for the RAW to RGB conversion. assert(props is not None) white_level = float(props['android.sensor.info.whiteLevel']) black_levels = props['android.sensor.blackLevelPattern'] gains = cap_res['android.colorCorrection.gains'] ccm = cap_res['android.colorCorrection.transform'] # Reorder black levels and gains to R,Gr,Gb,B, to match the order # of the planes. black_levels = [get_black_level(i,props,cap_res) for i in range(4)] gains = get_gains_in_canonical_order(props, gains) # Convert CCM from rational to float, as numpy arrays. ccm = numpy.array(its.objects.rational_to_float(ccm)).reshape(3,3) # Need to scale the image back to the full [0,1] range after subtracting # the black level from each pixel. scale = white_level / (white_level - max(black_levels)) # Three-channel black levels, normalized to [0,1] by white_level. black_levels = numpy.array([b/white_level for b in [ black_levels[i] for i in [0,1,3]]]) # Three-channel gains. gains = numpy.array([gains[i] for i in [0,1,3]]) h,w = r_plane.shape[:2] img = numpy.dstack([r_plane,(gr_plane+gb_plane)/2.0,b_plane]) img = (((img.reshape(h,w,3) - black_levels) * scale) * gains).clip(0.0,1.0) img = numpy.dot(img.reshape(w*h,3), ccm.T).reshape(h,w,3).clip(0.0,1.0) return img def get_black_level(chan, props, cap_res=None): """Return the black level to use for a given capture. Uses a dynamic value from the capture result if available, else falls back to the static global value in the camera characteristics. Args: chan: The channel index, in canonical order (R, Gr, Gb, B). props: The camera properties object. cap_res: A capture result object. Returns: The black level value for the specified channel. """ if (cap_res is not None and cap_res.has_key('android.sensor.dynamicBlackLevel') and cap_res['android.sensor.dynamicBlackLevel'] is not None): black_levels = cap_res['android.sensor.dynamicBlackLevel'] else: black_levels = props['android.sensor.blackLevelPattern'] idxs = its.image.get_canonical_cfa_order(props) ordered_black_levels = [black_levels[i] for i in idxs] return ordered_black_levels[chan] def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane, w, h, ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, yuv_off=DEFAULT_YUV_OFFSETS): """Convert a YUV420 8-bit planar image to an RGB image. Args: y_plane: The packed 8-bit Y plane. u_plane: The packed 8-bit U plane. v_plane: The packed 8-bit V plane. w: The width of the image. h: The height of the image. ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. yuv_off: (Optional) offsets to subtract from each of Y,U,V values. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ y = numpy.subtract(y_plane, yuv_off[0]) u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8) v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8) u = u.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0) v = v.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0) yuv = numpy.dstack([y, u.reshape(w*h), v.reshape(w*h)]) flt = numpy.empty([h, w, 3], dtype=numpy.float32) flt.reshape(w*h*3)[:] = yuv.reshape(h*w*3)[:] flt = numpy.dot(flt.reshape(w*h,3), ccm_yuv_to_rgb.T).clip(0, 255) rgb = numpy.empty([h, w, 3], dtype=numpy.uint8) rgb.reshape(w*h*3)[:] = flt.reshape(w*h*3)[:] return rgb.astype(numpy.float32) / 255.0 def load_rgb_image(fname): """Load a standard image file (JPG, PNG, etc.). Args: fname: The path of the file to load. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ img = Image.open(fname) w = img.size[0] h = img.size[1] a = numpy.array(img) if len(a.shape) == 3 and a.shape[2] == 3: # RGB return a.reshape(h,w,3) / 255.0 elif len(a.shape) == 2 or len(a.shape) == 3 and a.shape[2] == 1: # Greyscale; convert to RGB return a.reshape(h*w).repeat(3).reshape(h,w,3) / 255.0 else: raise its.error.Error('Unsupported image type') def load_yuv420_to_rgb_image(yuv_fname, w, h, layout="planar", ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, yuv_off=DEFAULT_YUV_OFFSETS): """Load a YUV420 image file, and return as an RGB image. Supported layouts include "planar" and "nv21". The "yuv" formatted captures returned from the device via do_capture are in the "planar" layout; other layouts may only be needed for loading files from other sources. Args: yuv_fname: The path of the YUV420 file. w: The width of the image. h: The height of the image. layout: (Optional) the layout of the YUV data (as a string). ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. yuv_off: (Optional) offsets to subtract from each of Y,U,V values. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ with open(yuv_fname, "rb") as f: if layout == "planar": # Plane of Y, plane of V, plane of U. y = numpy.fromfile(f, numpy.uint8, w*h, "") v = numpy.fromfile(f, numpy.uint8, w*h/4, "") u = numpy.fromfile(f, numpy.uint8, w*h/4, "") elif layout == "nv21": # Plane of Y, plane of interleaved VUVUVU... y = numpy.fromfile(f, numpy.uint8, w*h, "") vu = numpy.fromfile(f, numpy.uint8, w*h/2, "") v = vu[0::2] u = vu[1::2] else: raise its.error.Error('Unsupported image layout') return convert_yuv420_planar_to_rgb_image( y,u,v,w,h,ccm_yuv_to_rgb,yuv_off) def load_yuv420_planar_to_yuv_planes(yuv_fname, w, h): """Load a YUV420 planar image file, and return Y, U, and V plane images. Args: yuv_fname: The path of the YUV420 file. w: The width of the image. h: The height of the image. Returns: Separate Y, U, and V images as float-1 Numpy arrays, pixels in [0,1]. Note that pixel (0,0,0) is not black, since U,V pixels are centered at 0.5, and also that the Y and U,V plane images returned are different sizes (due to chroma subsampling in the YUV420 format). """ with open(yuv_fname, "rb") as f: y = numpy.fromfile(f, numpy.uint8, w*h, "") v = numpy.fromfile(f, numpy.uint8, w*h/4, "") u = numpy.fromfile(f, numpy.uint8, w*h/4, "") return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1), (u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1), (v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1)) def decompress_jpeg_to_rgb_image(jpeg_buffer): """Decompress a JPEG-compressed image, returning as an RGB image. Args: jpeg_buffer: The JPEG stream. Returns: A numpy array for the RGB image, with pixels in [0,1]. """ img = Image.open(cStringIO.StringIO(jpeg_buffer)) w = img.size[0] h = img.size[1] return numpy.array(img).reshape(h,w,3) / 255.0 def apply_lut_to_image(img, lut): """Applies a LUT to every pixel in a float image array. Internally converts to a 16b integer image, since the LUT can work with up to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also have fewer than 65536 entries, however it must be sized as a power of 2 (and for smaller luts, the scale must match the bitdepth). For a 16b lut of 65536 entries, the operation performed is: lut[r * 65535] / 65535 -> r' lut[g * 65535] / 65535 -> g' lut[b * 65535] / 65535 -> b' For a 10b lut of 1024 entries, the operation becomes: lut[r * 1023] / 1023 -> r' lut[g * 1023] / 1023 -> g' lut[b * 1023] / 1023 -> b' Args: img: Numpy float image array, with pixel values in [0,1]. lut: Numpy table encoding a LUT, mapping 16b integer values. Returns: Float image array after applying LUT to each pixel. """ n = len(lut) if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0: raise its.error.Error('Invalid arg LUT size: %d' % (n)) m = float(n-1) return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32) def apply_matrix_to_image(img, mat): """Multiplies a 3x3 matrix with each float-3 image pixel. Each pixel is considered a column vector, and is left-multiplied by the given matrix: [ ] r r' [ mat ] * g -> g' [ ] b b' Args: img: Numpy float image array, with pixel values in [0,1]. mat: Numpy 3x3 matrix. Returns: The numpy float-3 image array resulting from the matrix mult. """ h = img.shape[0] w = img.shape[1] img2 = numpy.empty([h, w, 3], dtype=numpy.float32) img2.reshape(w*h*3)[:] = (numpy.dot(img.reshape(h*w, 3), mat.T) ).reshape(w*h*3)[:] return img2 def get_image_patch(img, xnorm, ynorm, wnorm, hnorm): """Get a patch (tile) of an image. Args: img: Numpy float image array, with pixel values in [0,1]. xnorm,ynorm,wnorm,hnorm: Normalized (in [0,1]) coords for the tile. Returns: Float image array of the patch. """ hfull = img.shape[0] wfull = img.shape[1] xtile = int(math.ceil(xnorm * wfull)) ytile = int(math.ceil(ynorm * hfull)) wtile = int(math.floor(wnorm * wfull)) htile = int(math.floor(hnorm * hfull)) if len(img.shape)==2: return img[ytile:ytile+htile,xtile:xtile+wtile].copy() else: return img[ytile:ytile+htile,xtile:xtile+wtile,:].copy() def compute_image_means(img): """Calculate the mean of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of mean values, one per color channel in the image. """ means = [] chans = img.shape[2] for i in xrange(chans): means.append(numpy.mean(img[:,:,i], dtype=numpy.float64)) return means def compute_image_variances(img): """Calculate the variance of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of mean values, one per color channel in the image. """ variances = [] chans = img.shape[2] for i in xrange(chans): variances.append(numpy.var(img[:,:,i], dtype=numpy.float64)) return variances def compute_image_snrs(img): """Calculate the SNR (db) of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of SNR value, one per color channel in the image. """ means = compute_image_means(img) variances = compute_image_variances(img) std_devs = [math.sqrt(v) for v in variances] snr = [20 * math.log10(m/s) for m,s in zip(means, std_devs)] return snr def compute_image_max_gradients(img): """Calculate the maximum gradient of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of gradient max values, one per color channel in the image. """ grads = [] chans = img.shape[2] for i in xrange(chans): grads.append(numpy.amax(numpy.gradient(img[:, :, i]))) return grads def write_image(img, fname, apply_gamma=False): """Save a float-3 numpy array image to a file. Supported formats: PNG, JPEG, and others; see PIL docs for more. Image can be 3-channel, which is interpreted as RGB, or can be 1-channel, which is greyscale. Can optionally specify that the image should be gamma-encoded prior to writing it out; this should be done if the image contains linear pixel values, to make the image look "normal". Args: img: Numpy image array data. fname: Path of file to save to; the extension specifies the format. apply_gamma: (Optional) apply gamma to the image prior to writing it. """ if apply_gamma: img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT) (h, w, chans) = img.shape if chans == 3: Image.fromarray((img * 255.0).astype(numpy.uint8), "RGB").save(fname) elif chans == 1: img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h,w,3) Image.fromarray(img3, "RGB").save(fname) else: raise its.error.Error('Unsupported image type') def downscale_image(img, f): """Shrink an image by a given integer factor. This function computes output pixel values by averaging over rectangular regions of the input image; it doesn't skip or sample pixels, and all input image pixels are evenly weighted. If the downscaling factor doesn't cleanly divide the width and/or height, then the remaining pixels on the right or bottom edge are discarded prior to the downscaling. Args: img: The input image as an ndarray. f: The downscaling factor, which should be an integer. Returns: The new (downscaled) image, as an ndarray. """ h,w,chans = img.shape f = int(f) assert(f >= 1) h = (h/f)*f w = (w/f)*f img = img[0:h:,0:w:,::] chs = [] for i in xrange(chans): ch = img.reshape(h*w*chans)[i::chans].reshape(h,w) ch = ch.reshape(h,w/f,f).mean(2).reshape(h,w/f) ch = ch.T.reshape(w/f,h/f,f).mean(2).T.reshape(h/f,w/f) chs.append(ch.reshape(h*w/(f*f))) img = numpy.vstack(chs).T.reshape(h/f,w/f,chans) return img def compute_image_sharpness(img): """Calculate the sharpness of input image. Args: img: Numpy float RGB/luma image array, with pixel values in [0,1]. Returns: A sharpness estimation value based on the average of gradient magnitude. Larger value means the image is sharper. """ chans = img.shape[2] assert(chans == 1 or chans == 3) if (chans == 1): luma = img[:, :, 0] elif (chans == 3): luma = 0.299 * img[:,:,0] + 0.587 * img[:,:,1] + 0.114 * img[:,:,2] [gy, gx] = numpy.gradient(luma) return numpy.average(numpy.sqrt(gy*gy + gx*gx)) def normalize_img(img): """Normalize the image values to between 0 and 1. Args: img: 2-D numpy array of image values Returns: Normalized image """ return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img)) def chart_located_per_argv(): """Determine if chart already located outside of test. If chart info provided, return location and size. If not, return None. Args: None Returns: chart_loc: float converted xnorm,ynorm,wnorm,hnorm,scale from argv text. argv is of form 'chart_loc=0.45,0.45,0.1,0.1,1.0' """ for s in sys.argv[1:]: if s[:10] == "chart_loc=" and len(s) > 10: chart_loc = s[10:].split(",") return map(float, chart_loc) return None, None, None, None, None def rotate_img_per_argv(img): """Rotate an image 180 degrees if "rotate" is in argv Args: img: 2-D numpy array of image values Returns: Rotated image """ img_out = img if "rotate180" in sys.argv: img_out = numpy.fliplr(numpy.flipud(img_out)) return img_out def stationary_lens_cap(cam, req, fmt): """Take up to NUM_TRYS caps and save the 1st one with lens stationary. Args: cam: open device session req: capture request fmt: format for capture Returns: capture """ trys = 0 done = False reqs = [req] * NUM_FRAMES while not done: print 'Waiting for lens to move to correct location...' cap = cam.do_capture(reqs, fmt) done = (cap[NUM_FRAMES-1]['metadata']['android.lens.state'] == 0) print ' status: ', done trys += 1 if trys == NUM_TRYS: raise its.error.Error('Cannot settle lens after %d trys!' % trys) return cap[NUM_FRAMES-1] class __UnitTest(unittest.TestCase): """Run a suite of unit tests on this module. """ # TODO: Add more unit tests. def test_apply_matrix_to_image(self): """Unit test for apply_matrix_to_image. Test by using a canned set of values on a 1x1 pixel image. [ 1 2 3 ] [ 0.1 ] [ 1.4 ] [ 4 5 6 ] * [ 0.2 ] = [ 3.2 ] [ 7 8 9 ] [ 0.3 ] [ 5.0 ] mat x y """ mat = numpy.array([[1,2,3], [4,5,6], [7,8,9]]) x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3) y = apply_matrix_to_image(x, mat).reshape(3).tolist() y_ref = [1.4,3.2,5.0] passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)]) self.assertTrue(passed) def test_apply_lut_to_image(self): """Unit test for apply_lut_to_image. Test by using a canned set of values on a 1x1 pixel image. The LUT will simply double the value of the index: lut[x] = 2*x """ lut = numpy.array([2*i for i in xrange(65536)]) x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3) y = apply_lut_to_image(x, lut).reshape(3).tolist() y_ref = [0.2,0.4,0.6] passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)]) self.assertTrue(passed) def test_unpack_raw10_image(self): """Unit test for unpack_raw10_image. RAW10 bit packing format bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Byte 0: P0[9] P0[8] P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] Byte 1: P1[9] P1[8] P1[7] P1[6] P1[5] P1[4] P1[3] P1[2] Byte 2: P2[9] P2[8] P2[7] P2[6] P2[5] P2[4] P2[3] P2[2] Byte 3: P3[9] P3[8] P3[7] P3[6] P3[5] P3[4] P3[3] P3[2] Byte 4: P3[1] P3[0] P2[1] P2[0] P1[1] P1[0] P0[1] P0[0] """ # test by using a random 4x4 10-bit image H = 4 W = 4 check_list = random.sample(range(0, 1024), H*W) img_check = numpy.array(check_list).reshape(H, W) # pack bits for row_start in range(0, len(check_list), W): msbs = [] lsbs = "" for pixel in range(W): val = numpy.binary_repr(check_list[row_start+pixel], 10) msbs.append(int(val[:8], base=2)) lsbs = val[8:] + lsbs packed = msbs packed.append(int(lsbs, base=2)) chunk_raw10 = numpy.array(packed, dtype="uint8").reshape(1, 5) if row_start == 0: img_raw10 = chunk_raw10 else: img_raw10 = numpy.vstack((img_raw10, chunk_raw10)) # unpack and check against original self.assertTrue(numpy.array_equal(unpack_raw10_image(img_raw10), img_check)) if __name__ == "__main__": unittest.main()